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Abstract

The aim of my dissertation was to elucidate how environmental changes have
influenced evolutionary and distributional patterns in the near-shore molluscan fauna of the
Atlantic Coastal Plain (southeastern U.S.) over the past three million years. Disentangling the
long-term evolutionary responses of species to environmental change is important for
understanding the mechanisms controlling evolutionary processes and for assessing how
current and future climate changes will impact Earth’s biodiversity. My dissertation was
comprised of three chapters that integrated both paleontological and neontological data to
study the molluscan record of the Atlantic Coastal Plain. The first study in my dissertation
focused on 14 extant marine mollusk species and their potential responses to future climate
changes over the next ~100 years. Two hypotheses were tested: that suitable areas will shift
northwards for these species, and that they will show varied responses to future climate
change based on species-specific niche attributes. I found that species were not predicted to
shift pole-ward, but rather showed varied responses to future warming. Many of the studied
species will be hard hit by future climate changes, such that over 20% of their suitable area
will disappear by the end of this century. The second study statistically analyzed whether the
niches of mollusk species remained stable across three million years of profound
environmental changes. Prior to this research, the long-term evolutionary dynamics of
species’ niches to differing climatic regimes remained uncertain, even though the question is
vital to understanding the fate of biodiversity in a rapidly changing world. I found that
species’ tolerances were statistically similar from the Pliocene to the present-day, which
suggest that species will respond to current and future warming by altering distributions to
track suitable habitat, or, if the pace of change is too rapid, by going extinct. The last study
tested whether niche breadth and/or geographic range size was a better predictor of extinction

selectivity for mollusk species from the Pliocene. I hypothesized that species that went

iii



extinct post Pliocene would have smaller geographic ranges and smaller niche breadths
compared with those species that are still extant. I found that only realized niche breadth (i.e.,
the breadth of the environment actually occupied by a species) and geographic range size,
rather than fundamental niche breadth, are inversely related to extinction probability. This
finding has implications for assessing which species are more at risk as a consequence of
current and future climate changes, and helps to sharpen our understanding of which
macroevolutionary processes shape patterns of diversity over evolutionary time scales.
Together, these studies indicated that abiotic, environmental factors play a fundamental role
in governing species’ distributions in deep time. More specifically, species did not seem to
rapidly evolve in response to new environmental conditions, but tracked preferred habitat or
faced extirpation if conditions exceeded their tolerance limits. These findings can be used to

ensure that paleobiology does not become the biology of the future.
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Introduction

My research interests are focused on gaining deeper insight into macroevolutionary
patterns and processes preserved in the fossil record. The aim of my dissertation is to
elucidate how environmental changes have influenced evolutionary and distributional
patterns in the near-shore molluscan fauna of the Atlantic Coastal Plain (southeastern U.S.)
over the past three million years. Disentangling the long-term evolutionary responses of
species to environmental change is important for understanding the mechanisms controlling
evolutionary processes (Ross & Allmon, 1990; Gould, 2002; Parmesan, 2006; Wiley &
Lieberman, 2011) and for assessing how current and future climate changes (IPCC, 2007)
will impact Earth’s biodiversity (Burrows ef al., 1991; Aratjo & Rahbek, 2006; Harley et al.,
2006). Whereas modern biological inquiry can examine only a snapshot of a species’ lifetime,
the paleontological record provides a ledger of species’ responses to constantly changing
environments over millions of years (Roy et al., 1996; Patzkowsky & Holland, 2012).
Therefore, to fully understand the evolutionary and conservation implications of current
climate changes, we must look to similar episodes of environmental change in the past using
the entire duration of species’ lifetimes (Jablonski, 1991; McKinney, 1997; Dietl & Flessa,
2011). Here, I consider the Pliocene fossil record, which was the most recent period in Earth

history when temperatures were sustained at levels expected at the end of this century

(Robinson & Dowsett, 2008).

Study system

My dissertation is comprised of three chapters that integrate both paleontological and

neontological data to study the molluscan record of the Atlantic Coastal Plain (Dietl & Flessa,



2011; Fritz et al., 2013). The past three million years of molluscan evolution in the Atlantic
Coastal Plain provide an excellent record in which to study implications of climate change
for two reasons. First, remains of fossil and recent mollusks are extremely abundant ((Allmon
et al., 1993; Campbell, 1993; Hendricks, 2009) and present interesting diversity patterns
(Todd et al., 2002; Vermeij, 2005). Overall diversity in the region has remained relatively
unchanged since the Pliocene, despite ~70% extinction, indicating that extinctions were
balanced by originations (Allmon ef al., 1993).

Second, the Atlantic Coastal Plain experienced significant environmental disturbances,
from the closing of the Isthmus of Panama about three million years ago to numerous
Pleistocene glacial/interglacial cycles (Krantz, 1990; Toscano & York, 1992; Cronin &
Dowsett, 1996). These environmental changes can be divided into three major intervals: (1)
the early Pliocene, when sea surface temperatures were generally cooler than today; (ii) the
‘mid-Pliocene warm period’ (mPWP), ~3.3—3 Ma, when temperatures were generally warmer
than today, reflecting closure of the Isthmus of Panama and reorientation of the Gulf Stream
along the eastern coast of North America (Dowsett & Cronin, 1990); and (iii) a cooling
period associated with the onset of Northern Hemisphere glaciations around 2.5-2.4 Ma and
continuing to the present-day (Williams et al., 2009). Isotopic and biotic evidence suggests
that there was reduced seasonality and warmer conditions along the eastern seaboard of the
USA during the mPWP, with winter water conditions generally 3—5°C warmer than today in
the Carolinas and Virginias (Dowsett & Wiggs, 1992; Knowles et al., 2009; Williams et al.,
2009). These environmental changes provide the perfect backdrop to analyze how species are

affected by abiotic changes over geological time scales.



Species

Author

Details Climatic Zone

Larval Strategy

Referred to as the
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dislocata eastern auger. Tropical

Table 0.1 Ten core extant species that served as the link across all three chapters, some of which are economically important.



Research chapters

I used the above-described system to investigate over 100 bivalve and gastropod
species that occur in the Neogene record of the Atlantic Coastal Plain. My goal was to
uncover general patterns for how species respond to environmental change, and thus I
utilized taxa that were both ecologically and phylogenetically distinct. Ten core extant
species served as a link across all three chapters, some of which are economically important
(Table 0.1); remaining species were classified within 50 bivalve and 16 gastropod genera. I
personally vetted and compiled an extensive database of species’ occurrences spanning over
three million years and covering the entirety of the Atlantic Coastal Plain. These data were
derived from visits to several natural history collections and from detailed analyses of the
literature. In order to ensure appropriate stratigraphic context and age controls for these
occurrences, | assembled a stratigraphic database for all Pliocene—Recent geologic units of
the Atlantic Coastal Plain (Appendix S2.2). Correlations and unit ages were determined by

literature survey and use of various stratigraphic databases.

The first study in my dissertation focused on 14 extant marine mollusk species and
their potential responses to future climate changes over the next ~100 years. Two hypotheses
were tested: that suitable areas will shift northwards for these species, and that they will show
varied responses to future climate change based on species-specific niche attributes (Saupe et
al., 2014, in press). Ecological niche models (ENMs) were used to forecast potential
distributions according to three scenarios of future change for three time slices using climate
data from the Hadley Climate Centre (UK). Contrary to my hypothesis, I did not find a
coherent pattern of areas with suitable environments expanding at high-latitude range
boundaries, with simultaneous contraction at their low-latitude boundaries. These results
contrast with previously-documented trends among terrestrial and other marine species,

which are rapidly shifting their ranges to higher latitudes. Furthermore, although one might



expect that warming would benefit tropical species, I found that many of the studied species
will lose significant portions of their suitable habitat and may even face extirpation by the
end of this century. Alternatively, my second hypothesis was supported in that species were
predicted to have differing responses to future warming, which depended upon the particulars
of their niche characteristics. The species-specific nature of responses to climate change is

consistent with those observed in the fossil record during past episodes of climate change.

The second study focused on ten fossil species and statistically analyzed whether their
niches remained stable across three million years of profound environmental changes (Saupe
et al., in review). Prior to this research, the long-term evolutionary dynamics of species’
niches to differing climatic regimes remained uncertain, even though the question is vital to
understanding the fate of biodiversity in a rapidly changing world. I found that the
environmental preferences of species remained stable across three million years. My results
suggest that species will respond to current and future warming by altering distributions to
track suitable habitat, or, if the pace of change is too rapid, by going extinct. My research
also supports the use of methods that project species’ present-day environmental
requirements to future climatic landscapes to assess conservation risks (e.g., (Peterson et al.,
2002; Thuiller et al., 2005; Saupe et al., 2014, in press). At the macroevolutionary scale, this
research provides evidence that species’ distributions are structured by environmental factors.

The last study tested whether niche breadth and/or geographic range size were better
predictors of extinction selectivity for mollusk species from the Pliocene. Small geographic
range sizes have often been associated with increased risk of extinction in both neontological
(Schwartz et al., 2006; Fritz et al., 2009; Boulangeat et al., 2012) and paleontological
(Jablonski & Hunt, 2006; Payne & Finnegan, 2007; Harnik, 2011) studies, while theory
suggests that specialist species should be at higher risk during times of environmental change
(Eldredge, 1979; Vrba, 1980; McKinney, 1997; Devictor et al., 2008; Colles et al., 2009;

Myers & Saupe, 2013). Using ENM and paleoclimatic data, I was able to quantify niche



breadth for Pliocene species that (i) have survived to the present-day and (ii) have since gone
extinct. [ hypothesized that species that went extinct post Pliocene would have smaller
geographic ranges and smaller niche breadths compared with those species that are still
extant. However, contrary to my hypothesis, I found that only realized niche breadth (i.e., the
breadth of the environment actually occupied by a species) and geographic range size, rather
than fundamental niche breadth, are inversely related to extinction probability. This finding
has implications for assessing which species are more at risk as a consequence of current and
future climate changes (Mace et al., 2008), and helps to sharpen our understanding of which
macroevolutionary processes shape patterns of diversity over millions of years (Lieberman &
Vrba, 1995; Myers & Saupe, 2013).

The results of these studies highlight the importance of integrating neontological and
paleontological data to study macroevolutionary patterns through time. My research indicates
that abiotic, environmental factors play a fundamental role in governing species’ distributions
across millions of years. More specifically, species do not seem to rapidly evolve in response
to new environmental conditions, but rather they track preferred habitat or face extirpation if
conditions exceed tolerance limits. The lack of evolution in niche attributes potentially
provides a mechanism explaining patterns of morphological stasis observed in the fossil
record (Eldredge & Gould, 1972; Eldredge et al., 2005). I also discovered that the breadth of
the fundamental niche (i.e., whether a species is an environmental specialist or generalist) is
not a major factor controlling extinction probability. Indeed, the actual amount of niche space
occupied by the species (i.e., the realized niche) and geographic range size seem to be the
main factors impacting survivorship. The future models I constructed for these mollusks
predict that they will be hard hit by climate changes, particularly since the pace of future
change may exceed past rates. Thus, even though they survived conditions in the Pliocene
similar to those predicted for the end of this century, the speed at which we approach these

changes may be too rapid for species to keep pace.



At the heart of it, [ am fascinated by Earth’s biodiversity, both past and present. As a
child, I would marvel at the red-eyed tree frogs, pangolins, tarsiers, fennec foxes, and
jumping spiders that would peer at me from the pages of nature magazines. I began a journey
to study this biodiversity because I want to understand how and why it evolved, and
ultimately by doing so, I hope to better protect it for generations to come. With respect to my
dissertation, human-induced climate changes will have critical implications for biodiversity
in general and for commercial mollusks, since near shore environments provide over $US14
trillion/year in ecosystem goods and services (Costanza et al., 1997). However, protecting
diversity is not only vital for our economy and for maintaining our food and medicine
reserves (Chapin et al., 2000; Parmesan and Yohe, 2003), but for preserving the sense of awe
we receive from our flora and fauna—for ensuring that beauty remains in this world. I hope
that my dissertation, with a look towards the past, can inform our future—Ilet us not make

paleobiology the biology of the future.
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Chapter 1. Climate change and marine mollusks of the western North
Atlantic: future prospects and perils
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Abstract

Numerous studies have examined potential responses of terrestrial biotas to future
climate change, but fewer have considered marine realms. We forecast how marine
molluscan faunas of the Atlantic Coastal Plain might respond to environmental change over
the remainder of this century. We test the hypotheses that suitable areas will shift northwards
for studied species, and that species will show varied responses to future climate change. We
generated ecological niche models (in GARP and MAXENT) for 14 ecologically,
economically and potentially medically important mollusk species, using present-day
summaries and future forecasts of climate from the Hadley Centre and known species
occurrence data from natural history collections. Niche models were used to forecast
potential distributions according to three scenarios of future change for three time slices.
Northern extremes of suitability are predicted to shift northwards for only three (GARP) or
four (MAXENT) of the 14 species, whereas the southern edge of suitability is predicted to shift
southwards for seven (GARP) and one (MAXENT) of the 14 species. When changes in the
geographical centroids of suitability are considered, no significant poleward shifts are
anticipated for individual species. Instead, half of the study species (many economically
important) experience substantial (> 20%) loss of suitable environmental area, even under the
lowest-emission future climate scenario. Furthermore, the direction and magnitude of the
response to predicted climate change is species-specific. We do not find a coherent pattern of
areas with suitable environments expanding at high-latitude range boundaries, with
simultaneous contraction at their low-latitude boundaries. Tropical marine mollusks may thus
show varied responses as average temperatures warm. These results contrast with trends
among terrestrial and other marine species, which are rapidly shifting their ranges to higher
latitudes. Conversely, the differing responses of these species to future warming are

consistent with responses of species to past episodes of change, as observed in the fossil
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record.

Introduction

Predicting the impacts of future climate change on Earth’s biodiversity is critical to
preserving biological resources and for understanding evolutionary processes (Thomas et al.,
2004; Chen et al., 2011). The advent of ecological niche models (ENMs) has facilitated these
types of predictions, being the standard framework used to project species’ abiotic
requirements onto future climate landscapes, in order to assess likely changes in
distributional potential. ENM analyses, however, have focused primarily on terrestrial
species, leaving the predicted responses of marine taxa understudied to date. This imbalance
reflects the difficulty of obtaining representative datasets for marine species’ occurrences and
environmental parameters, and of studying marine processes (Richardson & Poloczanska,
2008; Dambach & Rddder, 2011; Robinson et al., 2011). Recently, however, new marine-
orientated data resources have allowed for rapid developments in the study of marine species,
from present-day patterns of suitability (e.g. Lima ef al., 2007; Pauly et al., 2011; Reiss et al.,
2011; Tyberghein et al., 2012; Yesson et al., 2012) to predicting species’ responses to
changing climate (e.g. Clark ef al., 2003; Cheung et al., 2009; Dambach & Rodder, 2011;
Lenoir et al., 2011; Russell et al., 2012; Jones et al., 2013).

Here, we use novel present-day summaries and modeled future climates from the Met
Office Hadley Centre (Jones et al., 2011) to study 14 abundant, well-sampled, ecologically
and phylogenetically diverse marine mollusk species (Table 1.1) from the near-shore
continental shelf of the western North Atlantic. Three of these species are commercially
important: the Atlantic oyster, Crassostrea virginica (Gmelin, 1791); the southern hard-shell
clam, Mercenaria campechiensis (Gmelin, 1791); and the giant Atlantic cockle, Dinocardium
robustum (Lightfoot, 1786). We also include Crepidula fornicata (Linnaeus, 1758), an

invasive species detrimental to aquaculture in Europe, and Conus spp., which have
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biomedical potential (Alonso et al., 2003).

We test two hypotheses regarding the likely responses of these mollusks to future
changes: (1) that they will respond to changing climate by shifting their distributions
polewards, and (2) that they will respond to changing climate as a function of species-
specific niche attributes, not congruently as an assemblage. Previous research supports the
first hypothesis, because marine ectotherms tend to occupy the full extent of latitudes within
their thermal limits (Portner & Knust, 2007; Tewksbury et al., 2008; Sunday et al., 2012).
Consequently, ectotherms should shift northwards in response to warming, because
temperatures outside their thermal envelopes decrease their capacity to perform aerobically,
and detrimentally impact other physiological processes (Somero, 2002; Portner & Knust,
2007).

Poleward range shifts have formed the dominant observed (Jones et al., 2010; Sorte et
al., 2010) and anticipated (Cheung et al., 2009; Albouy et al., 2013) response by marine
species to climate change, but recent research indicates that this focus underestimates the
impacts of climate change on species’ distributions. Evidence suggests that multidirectional
distributional shifts are probably due to complexity of the species’ niches. VanDerWal et al.
(2013) propose that multidirectional shifts might be more pronounced for tropical or
subtropical species than for temperate species, but this hypothesis remains relatively untested
because of the prevailing focus on temperate species. Thus, our study, which focuses on both
temperate and tropical species, may shed light on these response dynamics (see Table S1.1.1
in Appendix S1.1).

We also test whether the focal species are likely to respond to changing climate
independently and idiosyncratically, with differing distributional shifts. Based on species’
responses to longer-term climate oscillations (e.g. Foster ef al., 1990) and previous studies
(e.g. Edwards & Richardson, 2004; Portner & Knust, 2007; Peterson ef al., 2008a;

Drinkwater et al., 2010; VanDerWal et al., 2013), we anticipate diverse responses to
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changing climate that are related to the unique climatic envelope of each species. If non-
congruent responses were identified, assemblage composition and community structure could

be affected (Harley et al., 2006; Worm et al., 2006).

Materials and Methods

Study area.
We trained models for each species in an area generated by buffering distributional

data by 10.5° and dissolving buffered areas to create a continuous region. This buffered
region represented a simple hypothesis of distributional potential for these species, tempered
by sampling effort. We excluded areas that were not adequately sampled (e.g. South
America), because the inclusion of undersampled areas may result in false absences during
model calibration. Isolated occurrence points were also excluded from the training region for
this reason, and because we deemed them potentially unreliable. In effect, we sought to focus
on the union of the area sampled by researchers and that most likely accessible to the species
sensu Phillips et al. (2009), VanDerWal et al. (2009) and Peterson et al. (2011). Models were
calibrated on these circumscribed areas (Barve et al., 2011) and projected to the entire study
region, which comprised the eastern seaboard of North America, the Gulf Coast, the
Caribbean and part of South America, from 28° S to 56° N and from 110° W to 33° W. All

spatial analyses were conducted within these bounds (Fig. 1.1).

14



Anomia simplex

Bulla occidentalis
Conus anabathrum
Conus spurius
Crassostrea virginica
Crepidula fornicata
Dinocardium robustum
Lucina pensylvanica
Melongena corona
Mercenaria campechiensis
Neverita duplicata
Oliva sayana

Strombus alatus
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Terebra dislocata

Figure 1.1 Distributional data for all 14 marine mollusk species within the western
North Atlantic. For individual maps, see Figs S1.1.1-1.1.4 in Appendix S1.1.

Distributional data.
Presence-only distributional data were obtained from the Florida Museum of Natural

History (FLMNH), the Academy of Natural Sciences of Drexel University, the University of

Michigan Museum of Zoology, the Natuurhistorisch Museum Rotterdam and the U.S.



National Museum of Natural History (Fig. 1.1, Table 1.1, Figs S1.1.1-S1.1.4 in Appendix
S1.1). The data obtained were representative of the known distributions of these species
(Table S1.1.1), the majority of which occupy depths from c. 0 to 70 m, and are subtropical to
tropical (see Table S1.1.1 for details). Only adult forms (benthic) were considered in this
study; as such, potential variation in the environmental preferences of larval stages was not
captured [most species considered here have planktotrophic larvae, except Conus
anabathrum Crosse, 1865, Melongena corona (Gmelin, 1791), Terebra dislocata (Say, 1822)
and Lucina pensylvanica (Linnaeus, 1758)]. Although assessing heterogeneity in
environmental preferences through ontogeny was of interest, it would have been difficult to
implement for marine species whose planktonic or free-swimming larval forms lack
distributional records (Hiddink, 2003; Robinson et al., 2011).

We georeferenced distributional data following the point-radius method (Wieczorek
et al., 2004) using either GOOGLE EARTH 6.0 combined with the MANIS GEOREFERENCING
CALCULATOR (Wieczorek et al., 2001) or BIOGEOMANCER (Guralnick ez al., 2006). The exact
protocols depended upon the particular locality string and followed standard georeferencing
guidelines (Chapman & Wieczorek, 2006). Only distributional data with spatial uncertainty
less than 6.5 km were retained, totalling 1334 records across the 14 species (Table 1.1).
These minor levels of uncertainty in the data should not influence model performance
(Graham et al., 2008), given that they were finer than the spatial resolution of our
environmental data (1° x 1°). We subsampled the occurrence data to leave one record per
environmental pixel, to account for sampling biases (Royle et al., 2012; Yackulic et al.,

2013).
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Table 1.1 Model evaluation results for 14 mollusk species from the western North Atlantic.
The second column indicates number of spatially unique points used to calibrate each model.
The following columns report P-values and area under the curve ratios from the partial
receiver operating characteristic analyses (partial ROC), designed to assess model
significance. A similar number of external occurrence points were used in partial ROC
analyses. The ‘% pts omitted’ column specifies the proportion of external testing points
omitted by binary present-day models at a 5% omission threshold.

No. of MAXENT GARP
spatially
Species unique P AUC % pts p AUC % pts
training ratio omitted ratio omitted
points

Bivalvia
Anomia simplex 24 0.0112 1.36 6.1% 0.0284 1.43 20.4%
Crassostrea virginica 22 0.0000 1.64 27.6% 0.0000 1.70 0.0%
Dinocardium robustum 21 0.0000 1.67 5.4% 0.0000 1.63 2.7%
Lucina pensylvanica 17 0.0000 1.44 7.5% 0.0641 1.24 20.0%
Mercenaria campechiensis 15 0.0000 1.72 28.6% 0.1196 1.13 34.3%

Gastropoda
Bulla occidentalis 47 0.0000 1.59 3.1% 0.0000 1.54 3.1%
Conus anabathrum 17 0.0000 1.51 5.6% 0.0043 1.30 11.1%
Conus spurius 24 0.0000 1.56 6.5% 0.0000 1.51 8.7%
Crepidula fornicata 29 0.0000 1.48 11.5% 0.0096 1.45 7.7%
Melongena corona 19 0.0478 1.32 14.7% 0.0161 1.48 12.0%
Neverita duplicata 23 0.0222 1.63 9.1% 0.0066 1.57 13.6%
Oliva sayana 19 0.0000 1.85 32.5% 0.0000 1.70 5.0%
Strombus alatus 19 0.0001 1.64 5.0% 0.0054 1.58 7.5%
Terebra dislocata 18 0.0002 1.61 6.7% 0.0473 1.46 8.9%

Environmental data.
Niche models for present-day distributions were constructed using eight surface-level

environmental variables from the Ocean Cycle model (Diat-HadOCC) component of the
Hadley Centre Global Environmental Model version 2 with Earth System components
(HadGEM2-ES; Moss et al., 2010; Collins et al., 2011; Martin et al., 2011) and a world
bathymetry layer (Amante & Eakins, 2009). The eight Diat-HadOCC variables represented
modeled averages for 1991-2010 at 1° x 1° resolution: dissolved inorganic carbon (DIC);
diatom phytoplankton concentration; non-diatom phytoplankton concentration; zooplankton;
sea-surface temperature (SST); sea-surface salinity (SSS); total alkalinity; and nitrogen
concentration. The bathymetry grid was resampled from 2’ resolution to 1° using the natural-
neighbour interpolation function in ARCGIS 10 (Sibson, 1981). These data provided a rich

environmental characterization with which to assess how species may respond to
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environmental change. Although temperature and salinity have been reported to constrain the
distributions of other marine invertebrates (e.g. Jones et al., 2009; Tunnell et al., 2010;
Russell ef al., 2012), the additional parameters were potentially important in determining the
suitability of environments for marine mollusks (Talmage & Gobler, 2009).

Future environmental parameters were derived from HadGEM2-ES under the new
Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report Representative
Concentration Pathways (RCP) 2.6, 4.5 and 8.5 emission scenarios (Moss et al., 2010),
representing least to greatest estimated greenhouse gas emissions, respectively; these
scenarios allowed us to understand and assess variation among possible future climates. We
evaluated RCP scenarios for 2021-2040, 2041-2060 and 2081-2100. Future projections for
depth changes in the ocean were not available, so present-day bathymetry was used. Keeping
bathymetry at present-day conditions should not affect our analyses, given the resolution of
our study and the fact that sea level is predicted to rise only c. 20—65 cm over this interval

(IPCC, 2007).

Modeling algorithms.
GARP (Genetic Algorithm for Rule-Set Prediction) provides an evolutionary

computing algorithm for building ENMs based on non-random associations between known
occurrence points for a species and sets of environmental coverages (Stockwell & Peters,
1999). We used DESKTOPGARP 1.1.3 (available at: http://www.lifemapper.org/desktopgarp/)
with an internal testing feature (i.e. a random 50% of input data held back to evaluate model
quality), resulting in 100 models for each species, with a 0.01 convergence limit and
maximum of 1000 iterations. The ‘best subsets’ procedure was implemented (Anderson et
al., 2003), wherein the ten best models were summed in ARCGIS 10 (ESRI, Redlands, CA,
USA) to create a map of model agreement, with pixel values ranging from 0 to 10. We

changed the values of two peripheral pixels from each environmental layer, because

18



DESKTOPGARP rescales predictor variable values to the range 0—254. This ensured that the
lowest and highest values from projection regions and time slices were also present in
calibration regions, producing consistent projections in GARP.

MAXENT (version 3.1.1) minimizes the relative entropy between two probability
densities (one from the distributional data and one from the background or study area)
defined in covariate space (Elith ez al., 2011). We used the default parameters, including
logistic output, random test percentage 0, regularization multiplier 1, and 10,000 background
points. Linear, quadratic, product, threshold and hinge feature types were enabled, and we
removed duplicate presences. We also ran MAXENT with extrapolation disabled, which
truncates the model response curves outside values found in the calibration region and elicits

a response curve closer to that of GARP (Owens et al., 2013).

Model analysis and verification.

Post-processing of ENMs.
Maps of projected ENMs were initially converted into integer grids, retaining three

significant digits, and reclassified as either 0 (unsuitable area) or 1 (suitable area) for ease of
comparison (Liu et al., 2005) using threshold values that allowed a maximum of 5%
omission error based on the calibration data. A certain percentage of occurrence data was
accepted as omission error in model predictions, because error may exist in the dataset
(Peterson et al., 2011). Although the choice of threshold may affect analyses (Nenzen &
Aratijo, 2011; Jones et al., 2013), the raw model results exhibited patterns similar to those
obtained using thresholds. Calculations of the area predicted to be suitable within the study
region were performed by projecting grids onto a global cylindrical equal-area projection,
and summing the areas in ARCMAP. Once the maps were reclassified, we calculated the
potential cumulative area lost and gained from the present to the three future time slices
sensu Cheung et al. (2009) and Thuiller ef al. (2005). These maps were not representative of

distribution sensu stricto, but rather areas of predicted environmental suitability. The
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assumption was that species would track and fill suitable areas. Hence, the cumulative
environmental suitability maps potentially misrepresented diversity in the present (i.e. subject
to assumptions regarding which areas were accessible to the species; Barve et al., 2011) and
for the future (Aranda & Lobo, 2011). Our analysis, however, aimed to characterize potential
new area gained and lost across species. To visualize cumulative suitable area lost/gained as
a function of latitude, we tabulated the distributions of values across particular latitudes in R
2.15.0 (R Core Team, 2012), and standardized based on numbers of pixels available (Fig.
1.2).

Latitudinal range shifts through time were calculated using gCentroid in the RGEOS
package in R 2.15.0 (Bivand & Rundel, 2011). First, present-day and future binary suitability
maps were converted to polygons in ARCGIS 10. These (often non-contiguous) polygons
were then imported into R to find the ‘centre of mass’ or true centroid of areas presenting

suitable conditions for each time slice.

Model quality metrics.
We assessed present-day model quality using three approaches (Table 1.1, Table

S1.1.1). The first two analyses relied on external testing data (50% of occurrence points) set
aside for each species (i.e. not used in model calibration). First, we calculated omission error
rates, with false negatives defined as distributional data points falling at sites identified
(wrongly) as unsuitable by the models (Anderson et al., 2003). Second, we tested model
predictions via partial receiver operating characteristic analyses (partial ROC; Peterson et al.,
2008b). We used a Visual Basic routine developed by N. Barve (University of Kansas,

Lawrence, KS; http://hdl.handle.net/1808/10059), using an expected error rate of £ = 5%

(Peterson et al., 2008b). We performed 1000 bootstrap iterations by resampling 50% of test
points with replacement. Third, we compared our models qualitatively with previously
published distributions (see Table S1.1.1 for references). We found few map-based

depictions of these species distributions in the literature, so we compared our models to
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textual descriptions of species’ ranges. We assessed the correspondence of our models with
published distributional summaries, with regard to omission error rather than commission
error, because species may often be absent from suitable regions owing to biological or

historical constraints, or may not be sampled (Peterson et al., 2011).

Model extrapolation.
When transferring models to different situations, conditions outside the range of

values of environmental variables in the calibration region may be encountered, leading to
extrapolation. MAXENT identifies areas of potential strict extrapolation via clamping and
multivariate environmental similarity surfaces (MESS; Elith et al., 2011). We used Mobility
Oriented Parity (MOP), a modification of MESS, to (1) assess where strict extrapolation may
occur, and to (2) calculate environmental similarity from a given pixel in a transfer
time/region to those within the calibration region (Owens et al., 2013). We compared
environmental similarity using the closest 10% of pixels in the environmental space of the
study area to a given pixel, in both the present-day projection and the RCP 8.5 2081-2100
time slice within R (Owens et al., 2013). We chose the RCP 8.5 2081-2100 time slice for
visualization of extrapolation because these environmental parameters deviated most from
present-day parameters.

The above approach focused on ranges of values for environmental variables
independently, but novel combinations of values for these predictors should also be
considered (combinational extrapolation). Zurrell et al. (2012) extended the MESS concept to
identify parts of environmental space within sampled ranges of individual univariate
predictors, but representing new multivariate combinations of variables (combinational
extrapolation). These new combinations could pose the same extrapolation problems to a
model. We ran the R script of Zurrell et al. (2012) to detect such areas, creating
environmental overlap masks for present-day projections and the RCP 2.6 2081-2100 and

RCP 8.5 2081-2100 time slices.
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Sensitivity tests on predictor data.
We performed sensitivity tests to assess how the inclusion of environmental

predictors might affect our modeling results. First, we excluded bathymetry from analyses,
because it may provide only indirect information on a species’ physiology, and indirect
variables should be avoided when transferring models in space and time (Peterson ef al.,
2011). Similarly, we assessed whether numbers of variables and correlations among them
(tested using ‘cor’ in R 2.15.0; see Fig. 1.2.1 in Appendix S1.2) artificially induced declines
in suitable areas anticipated under future climate-change scenarios. That is, we repeated the
exercise using a less-correlated subset of predictor variables (i.e. only bathymetry, diatom
phytoplankton concentration, nitrogen concentration, SST and SSS). Because results of these
exercises were closely similar and we had no reason to exclude particular variables, we
present only those results derived from the full analysis (Table S1.2.1 in Appendix S1.2).

To ascertain which variables drove the predicted broad-scale future changes, we
reprojected future models holding each temporally varying variable constant (i.e. using the
present-day value for that variable and future values for all other variables), totalling eight
iterations per species. These jackknifed simulations were compared to the original projected
future distributions to assess how changes in a particular variable influenced future
projections, thereby identifying the variable(s) that cause the changes. We performed the
reverse analysis to assess congruence between the approaches, wherein we held variables at
present-day conditions except for one variable set to future values. This process was repeated
for all variables for each species, but rather than being compared to original future
projections, the latter simulations were compared to present-day models. The above analyses
were undertaken using MAXENT for the 2081-2100 time slice of the RCP 2.6 and RCP 8.5
scenarios to illustrate generalities of the system’s behaviour (see Tables S1.2.2 & S1.2.3 in

Appendix S1.2).
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Results

We present the lowest scenario for greenhouse gas emissions (RCP 2.6) — that is, the
best-case scenario — unless otherwise noted (the more extreme scenarios are documented in
Appendix S1.1, with results mirroring those from the conservative scenario, albeit with
greater reductions in suitable area predicted for all species). Results for MAXENT represent
those under the default settings, which produced fewer overall changes in suitability, unless

otherwise noted.

Model analysis and verification.

Model quality metrics.
Model evaluation exercises suggest satisfactory model performance, with the possible

exceptions of Lucina pensylvanica and Mercenaria campechiensis. Omission error rates are
generally low: 78% of models have < 15% omission error (Table 1.1). Partial ROC tests are
statistically significant, except for the GARP models for L. pensylvanica and

M. campechiensis (Table 1.1). Finally, our models accord well with published distributions
(Table S1.1.1 and Figs S1.1.5-S1.1.8 in Appendix S1.1): only one (M. campechiensis) omits
large regions known to be inhabited. Errors occur along the northern extreme of the species’
range, where records document M. campechiensis in waters off New Jersey, but models
predict suitable areas only as far north as Georgia and South Carolina. Less severe omission
errors occur in MAXENT models for Oliva sayana Ravenel, 1834 and Strombus alatus
Gmelin, 1791, where small suitable areas are again missing from northern reaches of these

species’ ranges.

Model extrapolation.
Novel environments occur in areas that do not intersect with model predictions for

either the present-day or the RCP 8.5 2081-2100 projection (Fig. S1.3.1 and Table S1.3.1 in
Appendix S1.3). Environmental overlap masks indicate that the present-day projections are

largely unaffected by novel combinations of environmental parameters, except for regions off
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the coast of Brazil. Conversely, future time slices show large numbers of pixels presenting

novel environmental combinations (Fig. S1.3.2 in Appendix S1.3).
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Future suitability patterns.

Poleward range shifts.
Northern and southern extremes of suitability for most species are predicted to

remain relatively constant through the remainder of this century, even when allowing for
model extrapolation. Northern extremes of suitability are predicted to shift northward for
only three (GARP; Bulla occidentalis Adams, 1850, Crassostrea virginica and

Crepidula fornicata) or four (MAXENT; plus Conus spurius Gmelin, 1791) of the 14 species,
whereas the southern edge of suitability is predicted to shift southwards for seven (GARP;
Conus anabathrum, Conus spurius, Crassostrea virginica, Melongena corona,

Mercenaria campechiensis, Lucina pensylvanica and Terebra dislocata) and one (MAXENT;
Melongena corona) of the 14 species (Fig. 1.3). When changes in the geographical centroid
of suitability are considered, no significant poleward shifts in suitable conditions are
observed for individual species (Fig. 1.3). Across all species, the average change in centroid
position from now to the end of century is only 1.4° (MAXENT) or 5.1° (GARP), but this shift
occurs towards the equator, not polewards (see Table 1.2 and Figs S1.1.10 & S1.1.11 in
Appendix S1.1 for other RCP scenarios). The centroid of suitable conditions shifts
northwards for some species (e.g. Crepidula fornicata and Crassostrea virginica) and

southwards for others (e.g. Mercenaria campechiensis and Terebra dislocata).

Table 1.2 Average change in centroid position across all 14 marine mollusk species from the
present to 2081-2100 for each IPCC Representative Concentration Pathways (RCP) emission
scenario, expressed in degrees latitude.

RCP scenario MAXENT GARP
2.6 -1.43 -5.14
4.5 -3.46 -4.14
8.5 -4.37 -3.70
Mean -3.09 -4.33
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Species-specific versus assemblage responses.
Most species are predicted to exhibit declines in available suitable area. Ten

(MAXENT) or 12 (GARP) of the 14 species show a contraction of suitable area (Figs 1.4 &
1.5), including the medically or economically important species Conus anabathrum,
Dinocardium robustum and Mercenaria campechiensis. Even so, the amount of decline and
regions affected vary among species considered, as the centroid analyses indicate (Fig. 1.3).
Half of species show reductions in suitable area of more than 20% by 2080 (4nomia
simplex d’Orbigny, 1853, Conus anabathrum, Dinocardium robustum,
Mercenaria campechiensis, Oliva sayana, Strombus alatus and Terebra dislocata). GARP
estimates reductions in suitable conditions of around 60% for four of these taxa
(Conus anabathrum, Dinocardium robustum, Mercenaria campechiensis and
Terebra dislocata), whereas MAXENT predicts less dramatic, but still substantial (25-47%),
losses for the same species. Running MAXENT without extrapolation suggests declines in
suitable area similar to those under default settings for most species. Even closely related
taxa are predicted to respond to warming differently: Conus spurius gains area (MAXENT) or
has minor retractions (GARP and non-extrapolation version of MAXENT), unlike

C. anabathrum, which is anticipated to undergo dramatic reductions in suitable area.
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Figure 1.3 Latitudinal extent (light shading) and change in centroid of suitable
conditions (dark line) for each of the 14 marine mollusk species in the western North
Atlantic from the present (P) to each time slice (2021-2040, 2041-2060 and 2081-
2100) for IPCC Representative Concentration Pathways (RCP) 2.6 emission scenario.
Note that both the absolute extent and centroid of suitable conditions remains fairly
stable through time. Some species (e.g. Crassostrea virginica and Crepidula fornicata)
have extents and centroids that shift slightly north, while others have extents and
centroids that shift slightly south (e.g. Mercenaria campechiensis and Terebra dislocata).
This variability highlights the species-specific nature of the predicted responses to
future climate change.
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Figure 1.4 Histograms depicting the number of marine mollusk species that gained or
lost suitable area in the western North Atlantic per time slice, algorithm and RCP
emission scenario compared to present-day models. Darker colours indicate gains in
suitable area, whereas lighter colours indicate loss of suitable area.

Across the full set of species, the loss of suitable conditions generally increases with
time. Declines in suitable conditions are common across the study area, particularly at
latitudes 10—15° N (Fig. 1.2). Some regions may become unsuitable for many of the species
considered: e.g. the Lesser Antilles, Bay of Campeche, the Atlantic seaboard south of South
Carolina, and the Bahamas (Figs S1.1.9, S1.1.12 & S1.1.13 in Appendix S1.1).

Few species are predicted to see newly suitable area or an overall expansion in
distributional potential. For instance, Bulla occidentalis and Crassostrea virginica are the

only species that see distributional potential increasing under both modeling algorithms.



MAXENT models anticipate relative stasis or increases in available area for Conus spurius and
Lucina pensylvanica. Under the non-extrapolative version of MAXENT, however, only

L. pensylvanica gains suitable area. Although the loss of distributional area outpaces any
absolute gains, predictions for newly suitable areas tend to be concentrated near the equator
(Fig. 1.2, Figs S1.1.9, S1.1.12 & S1.1.13). Despite expected reductions in distributional
potential under future climate scenarios, all species are predicted to retain some continuously
suitable areas through time (Table 1.3). The average area reconstructed as stable and suitable
in all time slices across all species is 61.8% (MAXENT) and 49.0% (GARP), expressed as a

percentage of the present-day suitable area.

30



"Sowieu sa1ads [[nJ 10j T°T 9[qe, 99S "SoLIeuads uoissiwa (dD)Y) 11e 103 (00T Z-180Z pue
090Z-T%02Z ‘0¥0Z-1Z02) S921[S oW} 2.1mnj 9313 03 Aep juasald a3 woJj sa1ads ysn[ow suriew
#T 9Y3 JO [2€d 10J O[IUB}Y YIION UI9ISOM d3 Ul Bade d[qeins ul agueyd a8ejuadtad G 1 3.InsIyg

BJRI0[SIP | = snjeje ‘s euefes ‘0 2]e0l|dnp "N == SISUBIYIBAIED ||| = BUOIOD || = BOJUBAIASUSD "] e
WNJSNQOJ “(J e BJEOIUIOY ") s ROIUIBIIA "D snunds "D WNIYIEGRUE *D) e SI[BJUBPIOVO *G we XOIAUIS *Y e
00L¢-180C¢ 090¢-L¥0C 0¥0c-120cC 00L¢-180¢ 090¢-L¥0C 0¥0¢-120cC 00L¢-180C¢ 090¢-L¥0C 0¥0¢-120cC

%001~

%08-

%09-

%0¢

%0t
%001~

%08-
%09-

m m %0t~

%0¢-

%0

G'8 dOd S’V dOd 9'C dOd %0Y

) /
\ I/ [1/)

W
|

\

31



Table 1.3 Percentage of area predicted to remain suitable for 14 marine mollusk species
within the study region according to RCP 2.6, 4.5 and 8.5 emission scenarios. The ‘Present’
column designates the percentage of present-day suitable area for particular species within
the study region. The ‘All suitable’ column indicates the amount of area that remained
continuously suitable geographically throughout all time slices, expressed as a percentage of
the present-day suitable area.

Species RCP MAXENT GARP
2021- 2041- 2081- Al 2021- 2041- 2081- Al
2040 2060 2100 suitable Present 2040 2060 2100 suitable Present
Bivalvia
2.6 55.1 52.3 52.7 46.5 37.1 50.6 51.2 432
Anomia simplex 4.5 55.9 52.0 52.0 37.5 5.7 53.6 51.8 51.2 7.4 4.3
8.5 55.9 52.0 52.3 20.7 53.6 51.8 51.8 0.0
Crassostrea 2.6 95.9 95.6 96.9 74.2 62.8 61.5 52.6 87.3
virgAi;'titA:a 4.5 95.6 96.3 95.9 70.4 4.6 64.1 62.8 53.2 38.0 7.4
8.5 95.6 96.3 96.3 60.8 64.1 62.8 53.8 11.0
Dinocardium 2.6 60.5 46.7 50.0 447 65.1 49.1 46.7 29.1
robustum 4.5 57.9 46.7 50.7 19.7 4.0 63.9 46.2 49.7 6.4 3.6
8.5 57.9 46.7 50.7 0.7 63.9 46.2 49.7 1.4
Lucina 2.6 90.1 87.8 86.4 85.8 79.3 72.6 67.7 50.2
. 4.5 90.6 87.2 85.8 58.8 9.0 79.3 73.8 72.6 5.4 6.1
pensylvanica 85 906 872 866 31.0 793 720 713 0.0
Mercenaria 2.6 60.7 53.6 44.0 41.7 22.4 16.0 18.6 12.9
campechiensis 4.5 58.3 48.8 429 38.1 2.2 22.4 16.3 18.6 3.6 3.6
8.5 58.3 48.8 429 11.9 22.4 16.3 18.6 0.0
Gastropoda
2.6 95.1 93.9 95.0 91.4 91.8 89.6 85.6 95.9
Bulla occidentalis 4.5 95.1 94.1 93.9 92.2 16.1 91.8 88.6 87.5 71.0 13.6
8.5 95.1 94.1 94.0 87.8 91.8 88.9 87.7 20.0
2.6 80.8 67.8 56.3 55.1 25.6 19.5 11.3 14.3
Conus anabathrum 4.5 80.4 66.9 57.1 67.8 6.3 24.8 18.8 15.0 0.0 4.1
8.5 80.4 66.9 57.1 29.4 24.8 18.8 15.0 0.0
2.6 86.5 84.6 85.9 81.0 97.3 95.0 92.1 63.8
Conus spurius 4.5 85.3 84.4 85.7 81.6 12.1 97.1 94.4 93.7 5.8 10.1
8.5 85.3 84.4 85.7 69.4 97.1 94.6 93.7 0.0
2.6 77.3 66.7 69.7 63.9 89.4 84.9 74.3 73.6
Crepidula fornicata 4.5 73.9 67.9 67.9 49.7 8.4 88.6 82.9 80.8 44.5 8.7
8.5 73.9 67.9 69.1 38.8 88.6 83.3 80.8 17.8
2.6 72.9 68.8 56.3 50.0 43.5 27.5 24.6 333
Melongena corona 4.5 72.9 64.6 56.3 47.9 13 42.0 27.5 26.1 19.5 2.2
8.5 72.9 64.6 56.3 16.7 42.0 27.5 26.1 34
2.6 79.5 73.4 72.7 66.9 84.0 68.6 59.4 83.4
Neverita duplicata 4.5 80.9 73.4 73.0 57.0 5.0 73.0 67.6 64.2 60.5 6.7
8.5 80.9 73.4 74.1 43.7 73.0 67.6 64.2 41.0
2.6 87.9 79.3 58.6 58.4 73.7 62.3 449 43.7
Oliva sayana 4.5 86.2 79.3 62.1 38.7 3.6 74.3 61.1 55.1 19.8 4.3
8.5 86.2 79.3 62.1 27.0 74.3 61.7 55.1 13.8
2.6 75.5 52.9 51.5 57.7 47.6 18.4 10.9 34.7
Strombus alatus 4.5 64.5 52.9 51.9 423 6.6 25.6 18.1 15.0 10.6 4.4
8.5 64.5 52.9 51.9 26.1 25.6 18.4 15.0 0.0
2.6 53.8 30.7 29.7 48.6 27.7 9.6 10.2 20.0
Terebra dislocata 4.5 31.4 30.7 29.0 30.6 4.5 10.9 9.6 11.3 15.3 2.1
8.5 314 30.7 29.0 14.5 10.9 8.9 10.9 3.5
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Variables responsible for future trends.
Based on jackknife manipulation, changes in single variables do not seem to drive

model predictions for most species, although the suitable area typically decreases or remains
stable when individual variables are held constant. In fact, the only individual variables that
suggest a potential increase in suitable area for several species are non-diatom phytoplankton
and SST (Table S1.2.2). Decreases, increases and stasis in suitable area for single species
depend on the variable held constant, which is perhaps to be expected given the complexity
of the model parameters and abiotic environmental preferences of species. Reverse analyses,
with focal variables set to future values and all other variables held at present-day values,

produce similar results (Table S1.2.2).

Discussion

Poleward range shifts.
Our initial hypothesis that suitable environmental conditions for species will expand

at poleward range boundaries, with simultaneous contraction at low-latitude boundaries, is
not broadly supported. Species did not present consistent patterns of poleward expansion, and
although suitable area is lost near the equator, it is also lost across the entire study area. In
fact, newly suitable environmental areas are predicted to become available at low latitudes.
These results match aspects of the predictions of Burrows ez al. (1991) and VanDerWal et al.
(2013), but differ from other analyses of marine taxa (Cheung et al., 2009; Jones et al., 2010;
Sorte et al., 2010; Sunday ef al., 2012), which suggest that marine species will shift their
distributions polewards in response to warming climates. These opposing responses may
derive, as suggested by VanDerWal et al. (2013), from having a primary focus on tropical
rather than temperate species, with the narrower climatic tolerances of tropical species
producing unpredictable distributional shifts under changing climate. Interestingly, however,

the temperate-zone species considered here exhibit the same multidirectional distributional

33



shifts as the entirely subtropical and tropical assemblages.

We suspect that northern waters will remain too cold for tropical and subtropical
species to shift northwards, while substantial environmental perturbations in present-day
distributional areas will cause the predicted reductions in suitable area for most of our
species. Evidence for this hypothesis is twofold. First, temperature is implicated in causing
declines in suitable area, and future values for this variable at species’ northern range
margins appear to remain outside the environmental tolerance limits determined from
species’ niche models. Tropical species are particularly sensitive to temperature changes,
because their upper lethal thermal limits are closer to the maximum habitat temperature than
those of temperate species (Compton et al., 2007; Tewksbury et al., 2008; Sunday et al.,
2012; Aratjo et al., 2013). Second, environmental overlap analyses suggest that there will be
significant environmental perturbation, with virtually all regions having novel environmental
combinations in the future. Temperature, however, is not the sole driver of losses in suitable
area, because future temperature values in present-day distributional areas remain largely
within absolute thermal tolerance limits for these species as determined from niche modeling.
Consequently, other variables, such as changes in primary productivity, may work in

combination with temperature changes to restrict future predicted species’ distributions.

Species-specific responses.
We also find idiosyncratic and species-specific responses to changing climate. The

amount and direction of the predicted responses depends upon the niche characteristics of
each species (Foster et al., 1990; Peterson et al., 2008a; VanDerWal et al., 2013), with the
areas lost and gained varying between taxa. No consistent response is observed when solely
tropical, or subtropical or temperate species are considered. Nevertheless, although the
predicted responses are species-specific, the dominant signal for the 21st century is one of
severe (>20%) distributional reductions for most of our study species, and this aspect of our

study matches the patterns documented for terrestrial species (Thuiller ez al., 2005; Pereira et
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al., 2010; Visconti et al., 2011) and some marine species (e.g. Albouy et al., 2013).

Modeling constraints.
The results from any predictive study that employs modeling must be treated with

some caution. For instance, the assumptions inherent in transferring ENMs among time
periods have been discussed in detail elsewhere (Pearman et al., 2008; Peterson et al., 2011),
including those associated with the supposition that niches remain stable in the face of
environmental change (Peterson, 2011). Other limitations include applying a global Earth
System model to the continental shelf (see Holt et al., 2009; Collins et al., 2011), where
predictor variables are difficult to validate at the spatial scale considered, and in coastal
environments. At the moment, however, these environmental data are the best available,
particularly for future projections of both biogeochemical and physical parameters. Ideally,
as with other recent studies (Fordham ef al., 2012a), we would explore the implications of
multiple such models, but that was impossible given the current availability of data.

Our environmental data warrant further consideration with respect to their efficacy in
characterizing the niches of marine mollusks. For example, some concern exists regarding
whether ocean surface data accurately simulate benthic conditions for these taxa. Although
potentially problematic, surface data have previously been employed to characterize the
distributions of benthic species that live in shallow waters on the continental shelf (e.g.
Bentlage et al., 2013), particularly since surface conditions track benthic conditions to some
degree at times of the year when mixing occurs (see Noble, 2001; Korty et al., 2008).
Additional caveats include the inability to account for substrate type, a factor that affects
fine-scale distributional patterns in benthic mollusks. Inclusion of this variable, however,
would be impossible at the coarse spatial resolution of our study.

Aside from these abiotic constraints, our application of ENM does not account for
dispersal or population dynamics (Anderson et al., 2009; Fordham et al., 2012b, 2013).

These finer-scale processes, however, may play second fiddle to environmental gradients at
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broad spatial scales, which have been shown to limit the latitudinal ranges of marine
ectotherms (Gaines et al., 2007; TomaSovych & Kidwell, 2009; Robinson et al., 2011;
Buckley et al., 2012; Sunday et al., 2012).

Another issue worth noting is that we considered commercially-harvested species:
Crassostrea virginica, Dinocardium robustum and Mercenaria campechiensis. These species
will become increasingly vulnerable to overfishing with changing climate, which could
precipitate population declines not visible to most modeling applications. These species may
also prove more difficult to model, since present-day and historical harvest pressures affect
perceptions of a species’ niche via non-detection in abiotically suitable areas (Mellin et al.,
2012; Russell et al., 2012). The inclusion of harvest pressure is likely to indicate a more dire
(and perhaps more realistic) future for those species.

If our results are generally applicable, though, they suggest far-reaching effects of
climate change on marine mollusks, an essential component of marine ecosystems. Our
models not only anticipate extensive degradation of conditions for these species, but also
some range shifts that will change the composition of local assemblages. Notably, invasion
and community re-organization can also precipitate extinction (Harley, 2011; Urban et al.,
2012), such that community-level analyses that consider interspecfic interactions would help
clarify the fate of these mollusks (Davis et al., 1998; Aratjo & Guisan, 2006). As with
changing interspecific interactions, pollution and overharvesting pose similar severe threats
to the survival of species (Harley, 2011; Russell ez al., 2012). Thus, the already-substantial
amount of 21st-century marine biotic degradation predicted by our models is almost surely an

underestimate.
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Chapter 2. Macroevolutionary consequences of profound climate change
on niche evolution in marine mollusks over the past 3 million years
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Abstract

In order to predict the fate of biodiversity in a rapidly changing world, we must first
understand how species adapt to new environmental conditions. The long-term evolutionary
dynamics of species’ physiological tolerances to differing climatic regimes remains obscure.
Here, we unite paleontological and neontological data to analyze whether species’
physiological tolerances remain stable across three million years of profound environmental
changes using ten phylogenetically, ecologically, and developmentally diverse mollusk
species from the Atlantic Coastal Plain, USA. We additionally investigate whether these
species’ upper and lower thermal tolerances are constrained across this interval. We find that
these species’ environmental preferences are stable across the duration of their lifetimes,
even when faced with significant environmental perturbations. Our results suggest that
species will respond to current and future warming by altering distributions to track suitable
habitat, or, if the pace of change is too rapid, by going extinct. Our findings support methods
that project species’ present-day environmental requirements to future climatic landscapes to
assess conservation risks. At the macroevolutionary scale, we provide evidence that species’

distributions are structured by environmental factors.
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Introduction

Earth’s climate is rapidly changing, altering all facets of our planet at an
unprecedented rate, from the biosphere, to the hydrosphere, to the atmosphere (IPCC, 2013).
Given these changes, debate exists as to whether species can adapt their physiological
tolerances to altered environmental conditions (Pearman et al., 2008; Lavergne et al., 2010;
Hoffmann & Sgro, 2011). Determining whether species’ climatic preferences (niches) evolve
or remain stable in the face of environmental change over the long term is important for
implementing proper conservation measures and mitigating threats posed to biodiversity
(Pereira et al., 2010; Dawson et al., 2011; Moritz & Agudo, 2013), and for shedding light on
macroevolutionary dynamics (Eldredge et al., 2005; Roy et al., 2009; Valentine et al., 2012;
Jablonski ef al., 2013; Romdal et al., 2013).

Here, we unite paleontological and neontological data (Dietl & Flessa, 2011; Fritz et
al., 2013) to test niche stability across three million years of environmental changes using ten
phylogenetically, ecologically, and developmentally diverse bivalve and gastropod species
from the Atlantic Coastal Plain, USA (Table S2.1.1 in Appendix S2.1). Species’ niches were
quantified using ecological niche modeling (ENM) (Peterson et al., 2011) for three time
periods within the Pliocene—recent molluscan record of the Atlantic Coastal Plain: mid-
Pliocene Warm Period (mPWP; 3.264-3.025 Ma), Eemian Last Interglacial Period (LIG; 130
Ka), and present-day interval (PI). Our null hypothesis is that niches remained stable across
this interval. We additionally investigate whether these species’ upper and lower thermal
tolerances are constrained across millions of years. Recent research suggests that tolerances
to heat are largely conserved within terrestrial species, but that tolerances to cold are more
variable (Araljo ef al., 2013). This asymmetry is thought to diminish in the marine realm,
where ectotherms are limited by both cold and warm conditions due to decreased aerobic

capacity (Somero, 2002; Portner & Knust, 2007; Sunday et al., 2011). This study is the first
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to incorporate both modern and fossil data across millions of years to understand ecological
and evolutionary responses of species to changes in their environment, though see (Malizia &
Stigall, 2011; Stigall, 2012) for analyses in deep time. Although characterizing the entirety of
a species’ fundamental niche (FN) is often difficult (Arajo et al., 2013), we study close
approximations here, given that recent biophysical approaches have determined that FNs can
be represented by limited sets of parameters like temperature (Kearney et al., 2010; Kearney
et al., 2013). This is particularly true for marine ectotherms, which have been shown to
closely match range limits within their thermal tolerances (Sunday et al., 2011).

Theoretical (Kawecki, 1995; Holt, 1996) and empirical studies both support
(Martinez-Meyer et al., 2004; Martinez-Meyer & Peterson, 2006; Strubble et al., 2013) and
reject niche stability (Broennimann ef al., 2007; Rodder & Lotters, 2009; Malizia & Stigall,
2011; Stigall, 2012). The debate has even continued at the genetic level, where recent
research indicates that genetic reshuffling in Drosophila species can occur in response to
climate change (Umina et al., 2005; Balanya et al., 2006); however, it is still unknown if
these genetic changes translate into evolution of actual physiological tolerances. The context
in which niche evolution is considered is important with respect to whether change occurred
in actual physiological tolerances (i.e., the FN), or whether it occurred because of differences
in resource utilization or underlying environmental structure (i.e., changes in the realized
niche; RN). Characterizing the entirety of the FN is difficult (Peterson ef al., 2011), and
studies may incorrectly indicate niche evolution if environmental availability is not
considered (Peterson, 2011; Aralijo & Peterson, 2012; Broennimann et al., 2012). The
aforementioned studies have contributed much to our understanding of how species’
physiological tolerances evolve; however, questions remain as to the dominance of niche
evolution versus stability, particularly since most studies lacked a temporal component that
would allow for analysis of change across the entire duration of a species’ lifetime (i.e., Mys;

Eldredge et al., 2005).
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The Atlantic Coastal Plain record is ideal for elucidating the coevolution of species’
niches and the environment. Not only has the region experienced profound environmental
changes from the closure of the Central American Seaway beginning in the Pliocene (Allmon,
2001) to glacial/interglacial cycles (Cronin, 1988; Haug & Tiedemann, 1998), but these
environmental changes have been associated with patterns of extinction, species turnover,
and ecological change (Allmon ef al., 1993; Todd et al., 2002; Vermeij, 2005; Klaus et al.,
2011). The mid-Pliocene Warm Period (~3.1 Mys), included in this study, is considered a
climatic analog for conditions expected at the end of this century, and can contribute to how
target species may fare under future climate scenarios (Dowsett et al., 2009). Results are vital
for proper mitigation of the risks posed by current and future climate changes to Earth’s

biodiversity (Moritz & Agudo, 2013; Warren et al., 2013).

Materials and Methods

Study area.
All models were calibrated within a region bounded by the Americas and 34°W

longitude, and 48°N and 44°S latitude (Fig. 2.1). We sought the union of the area sampled by
researchers and that was most likely accessible to the species across spatial and temporal
dimensions (Phillips et al., 2009; VanDerWal et al., 2009; Peterson et al., 2011). With the
exception of L. pensylvanica and T. dislocata, which have benthic larvae, target species are

capable of dispersing long distances as planktonic larvae on ocean currents.

Taxa.
We selected ten species that occur in both the modern and fossil (from ~3.1 Ma to

recent) records of the Atlantic Coastal Plain, USA. These species were chosen because they
have diverse phylogenetic positions, varied ecological habits and developmental modes, and
abundant distributional data available from fossil and modern localities (Table S2.1.1 in

Appendix S2.1). We used morphological criteria to identify target species. Each taxon is
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readily diagnosable, and the unique combinations of apomorphies that these species possess
are present in their fossil representatives. All evidence suggests that these lineages represent
species that have distinct evolutionary trajectories, a supposition supported by the fact that

most invertebrate species have durations of >3 million years (Eldredge et al., 2005).

Distributional data.

Present-day.
Presence-only distributional data were downloaded from five institutions, including

the Florida Museum of Natural History (FLMNH), Academy of Natural Sciences of Drexel
University, University of Michigan Museum of Zoology, Natuurhistorisch Museum
Rotterdam, and U.S. National Museum of Natural History; records are representative of the
known, modern-day distributions of these species (Table S2.1.1 and Figs. S2.1.3-S2.1.5 in
Appendix S2.1) (Saupe et al., In Press). We assigned latitude and longitude coordinates to
distributional data following standard georeferencing protocols (Chapman & Wieczorek,
2006). Only records with spatial uncertainty <15 km were retained, ensuring that they were
matched correctly with corresponding environmental data of a coarser spatial resolution (i.e.,
1.25 x 1.25°) (Graham et al., 2008). We subsampled distributional data to leave one record
per environmental pixel to account for sampling biases, which reduced records from 1,522 to
324 across the ten species (Table S2.1.1 in Appendix S2.1). This process did not affect the
resultant overall distribution of the species, but rather prevented certain localities with
multiple records from being unduly weighted in the analyses (Royle et al., 2012; Yackulic et

al., 2013).

Fossil.
We considered fossil distributional data from Pliocene (~3.264-3.025 Ma) and Last

Interglacial (~130 Ka) strata of the Atlantic Coastal Plain, USA. To ensure distributional data
were derived from geologic units of similar ages to our periods of interest, we generated a

stratigraphic database for all Pliocene-recent geologic units of the Atlantic Coastal Plain
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(Appendix S2.2). Correlations and unit ages were determined by extensive literature survey
and use of various stratigraphic databases, resulting in 10 viable formations for the Pliocene
and 16 for the LIG (see Appendix S2.2). We note that these formations are not exactly 3.1
Ma and 130 Ka, respectively, but closely approximate the environmental data currently
available.

Distributional records were obtained from onsite investigations of collections to
ensure proper species identification, including the Florida Museum of Natural History,
Paleontological Research Institution, Virginia Museum of Natural History, Academy of
Natural Sciences of Drexel University, and Yale Peabody Museum. As with present-day
distributional data, we subsampled fossil distributional data to leave one record per
environmental pixel, such that Pliocene records were reduced from 1,140 to 104 records
across the ten species, and LIG records were reduced from 442 to 110 records (Table S2.1.1
in Appendix S2.1). At least six spatially-explicit distributional records were used for model
calibration for any given species/time period; studies have shown this number to be

statistically robust for extant species (Hernandez et al., 2006; Pearson et al., 2007).

Environmental data.
Environmental data were derived from the coupled atmosphere-ocean HadCM3

global climate model (GCM) (Gordon et al., 2000; Pope et al., 2000) for three time slices:
mid-Pliocene Warm Period (mPWP; 3.264-3.025 Ma), Eemian Last Interglacial Period (LIG;
130 Ka), and pre-industrial (PI; ~1850-1890). Ideally, we would use an ensemble-modeling
approach that considered multiple GCMs (Fordham et al., 2012); however, model output
from the LIG was available to us only from HadCM3. This GCM has been successfully used
within a large range of Quaternary and pre-Quaternary modeling studies. Pre-industrial
output was chosen for present-day modeling to match the spread of collecting dates for
distributional data, which included museum records from the early to mid 1900’s. Boundary

conditions for the mPWP GCM used the alternate PRISM3D PlioMIP dataset described in
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(Haywood et al., 2011). LIG boundary conditions were from (Singarayer & Valdes, 2010)
and (Singarayer et al., 2011). Here, atmospheric gas concentrations were derived from ice
core records (Petit et al., 1999; Spahni et al., 2005; Loulergue et al., 2008), and orbital
parameters were derived from (Berger & Loutre, 1991). The pre-industrial experiment was
equivalent to (Braconnot et al., 2007). All experiments were run for 500 model years, and
environmental parameters were derived from the final 30 years of each experiment at 1.25 x
1.25° resolution (~140 x 140 km at the equator). Where ocean data were unavailable (i.e.,
sites presenting macrofossil data, but where the GCM indicated land), we used an inverse-
distance weighted algorithm to extrapolate model data.

Monthly salinity and temperature outputs were converted to maximum, minimum and
average yearly coverages for both surface and bottom conditions using ArcGIS. From these
coverages, we eliminated variables that significantly co-varied (assessed using the ‘cor’
function in R.15.2; R Core Team, 2012). Ultimately, two bottom variables: yearly average
salinity and temperature, and four surface variables: maximum and minimum salinity, and
maximum and minimum temperature, were retained. Both maximum and minimum
temperature were preserved, since these variables possessed some degree of independent
scatter and were deemed biologically important for marine ectotherms (Tomasovych &
Kidwell, 2009; Buckley et al., 2012; Sunday et al., 2012).

To avoid inaccurate niche representations due to truncated model response curves
(Owens et al., 2013), we assessed peripherality of distributional data with respect to the
environment of the calibration region using histograms produced in R.15.2. Results indicated
peripherality of data is not a problem, with the potential exception of bottom salinity and

temperature variables.

Modeling algorithm.
Ecological niche models (ENMs) were generated using Maxent v. 3.3.3 (Phillips ef al.,

2006), a widely employed and popular modeling algorithm (Fig. 2.1 and Figs. S2.1.1-S2.1.2

50



in Appendix S2.1). Maxent minimizes the relative entropy between two probability densities
— one from the distributional data and one from the background or study area — defined in
covariate space (Elith ef al., 2011). We enabled only quadratic features to simulate realistic
bell-shaped response curves that are known from physiological experiments of plants and
animals (Austin, 1985; Austin et al., 1994; Hooper et al., 2008; Angilletta, 2009). However,
to test model sensitivity, we also enabled all features (i.e., linear, quadratic, product,
threshold, and hinge), which produced models similar to those with only quadratic features.
We calibrated models using all spatially-explicit data points for each species/time slice,
running 100 bootstrap replicates with a ten percent random test percentage. We took the
median of the 100 replicates and converted to integer grids, retaining three decimals, in
ArcMap v.10.1. The mean value for these grids was used to threshold to binary predictions
(Liu et al., 2005; Freeman & Moisen, 2008). This method is particularly suitable when
prevalence data varies among models, as with past and present time slices (Freeman &
Moisen, 2008).

To correct for biases in fossil distributional data, we implemented a bias file within
Maxent for past modeling. The bias file describes the probability that an area was sampled;
thus, regions with rock outcrop (i.e., areas where species may actually be detected or
sampled) were weighted twice as heavily as regions without rock outcrop. Maxent will then
factor out this bias during the modeling process (see (Dudik et al., 2005) for details). This
method essentially accounts for incomplete knowledge of a species distribution sensu

(Svenning et al., 2011).

Model verification.
Two model validation methods were used, depending on the prevalence of

distributional records (Table S2.1.2 in Appendix S2.1). For species/time slices with <25
points, we assessed statistical significance using a jackknife procedure under a least training

presence threshold (Pearson et al., 2007). This method, however, may produce over-
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optimistic estimates of predictive power for sample sizes >25, and thus these species/time
slices were tested via partial Receiver Operating Characteristic analyses (“partial ROC”)
(Peterson et al., 2008). Distributional records were divided into five random replicates of
75% training and 25% testing points. Maxent models were re-calibrated using these training
sets, performing 1000 bootstrap iterations with random test percentage equal to 20. The
median model from these replicates was assessed for statistical significance using testing sets
within a Visual Basic routine developed by N. Barve (U. Kansas;

http://hdl.handle.net/1808/10059). The error rate was set to £ = 1% (Peterson et al., 2008),

and we performed 1,000 bootstrap iterations by resampling 50% of test points with

replacement.

Niche comparisons.

Geographic projections.
We used ENMTools v1.3 (Warren et al., 2008; Warren et al., 2010) to quantify

similarity of ENMs within each lineage through time (Table 2.1 and Appendix S2.3).
ENMTools uses randomization tests to compare observed similarity to that expected under a
null hypothesis. The null is rejected if models are more (or less) similar than expected by
chance, based on the environment within the geographical regions of interest (Warren ef al.,
2010). Similarity is quantified using Schoener’s D (Schoener, 1968), with values ranging
from 0 to 1, or more to less similar, respectively.

For each of the ten species, we compared observed niches across three different time
periods: mPWP, LIG, and PI. Comparisons were made in two directions sensu (Warren et al.,
2008; Warren et al., 2010; Broennimann et al., 2012); i.e., the model of time A was
compared to the model of time B projected to time A and vice versa. This was done because
it is possible for two niches to be more similar than expected based on the environment
available for one time slice, but less similar than expected based on the environment

available for the other (or some combination thereof). To ensure accurate response curves
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when projecting, we disabled clamping and enabled extrapolation within Maxent (Owens e?
al., 2013). Null distributions consisted of 100 random models generated within Maxent, with
model parameters drawn from the study system. Statistical significance was assessed by
creating histograms in R: if the observed value fell outside the null distribution to the high
end, niches were more similar than expected by chance, whereas if the observed value fell
outside the null distribution to the lower end, niches were more different than expected by
chance. Observed values that fell within the null distribution did not allow for discrimination
of similarity or differences based on the environment available to the entities in question.
Note that because the present analysis was aimed at demonstrating the absence of change
(null hypothesis), rather than being a ‘fishing expedition’ looking for any evidence of change,
it was not necessary to apply the Bonferroni adjustment for the geographic or environmental

comparisons (Perneger, 1998).

Environmental comparisons.
The quantitative framework provided by (Warren et al., 2008; Warren et al., 2010)

has proven a powerful tool for assessing niche similarity; however, this method makes
comparisons using the geographical projections of niches, which can introduce error when
analyzing niches through time and in different environments (Williams & Jackson, 2007;
Williams et al., 2007). Consequently, we also calculated metrics of niche overlap in gridded
environmental space using the methodology of (Broennimann et al., 2012). Here, ordination
techniques (Thuiller et al., 2005; Hof et al., 2010) allow for direct comparison of species-
environment relationships in environmental space, and corrects observed distributional
densities for each region in light of the availability of environmental space using kernel
density functions (Table 2.1 and Appendix S2.3). Niche overlap is measured along gradients
of a multivariate analysis, and statistical significance is assessed using the same framework

employed in ENMTools. Tests of niche equivalency and niche similarity were performed, but
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we focused on niche similarity, since niches will rarely, if ever, be absolutely identical
(Warren et al., 2008).

We tested for similarity using a principal component analysis (PCA) applied to all six
environmental parameters. We also tested for similarity by reducing niche dimensionality to
three variables, including surface coverages for maximum salinity, maximum temperature,
and minimum temperature. These variables were retained because they explained the most
variance in the data and were deemed biologically important (Tewksbury et al., 2008; Jones
et al., 2009; Tunnell et al., 2010; Sunday et al., 2012). Analyses performed with this reduced
set of variables are potentially more informative, since over-parameterization can constrict
niche estimates and lead to approximations closer to the RN, not the FN. Moreover, these
additional variables may be uninformative with regards to species’ niche attributes, which
would add noise to comparisons and contribute to type II errors. PCA analyses were
calibrated on both environments (project=false). We used both the PCA-occ and PCA-env
functions; the former calibrates the PCA based only on the distributional data, whereas the
latter uses data from the entire environmental space of the two study systems; results were
equivalent, and thus we present only those from PCA-env. A bin size of 100 was used to
characterize the environment, running 1000 replicates for similarity tests. Since prevalence of
distributional data varies through time, i.e., past time slices typically contained fewer data
points, we generated input data from ENMSs, subsampling one point per pixel in binary
predictions so that comparisons were unbiased with regard to the amount of input data. This
also ensured that comparisons were being made using approximations closer to the FN, rather
than the RN.

We also tested similarity in raw variables (Table 2.2 and Appendix S2.3). We used
the script of (Broennimann et al., 2012) to analyze each of the six variables individually, and
we modified the script to compare raw variables in two dimensions, while still accounting for

differences in availability of environments in a given time period. We were interested in
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testing for evolution in overall temperature parameters, and thus we assessed similarity using
average bottom temperature and maximum surface temperature. Significance was evaluated
by generating histograms in R to determine where observed D values fell in relation to the

null distributions.
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Table 2.1 P-values for multi-dimensional niche comparison tests (1) using a PCA applied to
all six environmental variables (Broennimann et al., 2012); (2) using a PCA applied to the
three most important environmental variables; (3) using raw average bottom temperature and
maximum surface temperature with a modified script of Broennimann et a/. (2012); and (4)
using ENMTools (Warren et al., 2008, 2010) on projections of ecological niche models. Bold
values indicate non-significant results. All significant results (P<0.05) indicate niches are
statistically more similar than expected given the environmental background of the time
slices, except for the result with the asterisk, which indicates a niche comparison that was
statistically dissimilar. Note that it is possible for two niches to be more similar than expected
based on the environment available for one time slice, but less similar than expected based on
the environment available for the other. See Appendix S2.3 for graphical depictions of

Species/Comparison JmPWP—LIG LIG—mPWP|PI—LIG LIG—PI ___ |mPWP—PI_PI—mPWP
Environmental comparison: p-values for tests using PCA on all 6 variables
Anomia simplex 0.06 0.00 0.00 0.00 0.04 0.00
.E Crassostrea virginica 0.05 0.01 0.00 0.00 0.03 0.00
T>u Dinocardium robustum 0.32 0.00 0.00 0.00 0.01 0.00
@ Lucina pensylvanica 0.16 0.00 0.09 0.00 0.14 0.00
Mercenaria campechiensis 0.15 0.00 0.00 0.00 0.06 0.00
@ Bulla occidentalis 0.11 0.00 0.00 0.00 0.16 0.00
B Crepidula fornicata 0.11 0.00 0.01 0.00 0.01 0.01
§' Neverita duplicata 0.09 0.00 0.00 0.00 0.05 0.00
E Oliva sayana 0.12 0.00 0.00 0.00 0.03 0.00
O Terebra dislocata 0.06 0.01 0.00 0.00 0.01 0.00
Environmental comparison: p-values for tests using PCA on 3 most important variables
Anomia simplex 0.01 0.00 0.00 0.00 0.01 0.00
_g Crassostrea virginica 0.04 0.00 0.03 0.00 0.00 0.00
T>u Dinocardium robustum 0.01 0.00 0.00 0.02 0.09 0.00
@ Lucina pensylvanica 0.25 0.01 0.00 0.00 0.03 0.03
Mercenaria campechiensis 0.01 0.00 0.00 0.02 0.00 0.00
@ Bulla occidentalis 0.34 0.54 0.10 0.29 0.31 0.20
§ Crepidula fornicata 0.03 0.00 0.02 0.00 0.29 0.58
© Neverita duplicata 0.08 0.00 0.01 0.44 0.01 0.00
E Oliva sayana 0.02 0.00 0.00 0.00 0.00 0.00
O Terebra dislocata 0.02 0.00 0.00 0.01 0.00 0.00
Environmental comparison: p-values for tests using raw temperature variables
Anomia simplex <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
'E Crassostrea virginica <0.05 NS <0.05 <0.05 <0.05 NS
T>u Dinocardium robustum <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
@ Lucina pensylvanica <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
Mercenaria campechiensis <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
@ Bulla occidentalis NS NS <0.05 <0.05 <0.05 NS
B Crepidula fornicata <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
§' Neverita duplicata <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
‘Q Oliva sayana <0.05 <0.05 <0.05 <0.05 <0.05 NS
O Terebra dislocata <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
Geographic comparison: p-values for tests using ecological niche models
Anomia simplex <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
_g Crassostrea virginica NS <0.05 <0.05 <0.05 <0.05 <0.05
T>u Dinocardium robustum <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
@ Lucina pensylvanica <0.05 <0.05 <0.05 <0.05 <0.05 NS
Mercenaria campechiensis <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
@ Bulla occidentalis <0.05* <0.05 <0.05 <0.05 <0.05 NS
B Crepidula fornicata <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
E' Neverita duplicata <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
‘é Oliva sayana <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
O Terebra dislocata <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
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Results
Model verification exercises suggest that ENMs are statistically significant for each

time period and species (P < 0.05, see Table S2.1.2 in Appendix S2.1); model depictions are
presented in Fig. 2.1 and Figs. S2.1.1-S2.1.2 in Appendix S2.1. Together, the suite of niche
comparisons (360 in total) indicates these species’ niches are stable across millions of years.
Of the ten ecologically diverse species, nine show niche similarity for the majority of the
comparisons. Probabilistically, this result would be obtained only 1% of the time assuming
equal likelihood for evolution versus stability. Bulla occidentalis is the only species with
non-significant results across the comparisons, such that its niche dynamics cannot be
adequately assessed. We obtain evidence of niche similarity for tests on both principle
component analyses (PCAs) and raw variables. Moreover, minimum and maximum

temperature tolerances are generally conserved through time.
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Environmental comparisons.
Comparisons on multi-dimensional niches indicate overwhelming signals of niche

stability across time slices. Three analyses were performed to this effect: (1) comparisons on
the first two axes of a PCA applied to all six environmental variables, (2) comparisons on the
first two axes of a PCA applied to the three most important variables (i.e., maximum and
minimum surface temperature, and maximum surface salinity), and (3) two-dimensional
comparisons of maximum surface temperature and average bottom temperature (see
Appendix S2.3). Of these 180 comparisons, 149 indicate significant similarity, and no
comparison finds evidence of niche evolution.

Comparisons considering all six environmental variables indicate niches are
statistically similar for virtually all species and time slices (46 of 60 comparisons) (Table 2.1).
When niche dimensionality was reduced to the most important variables, nine species show
statistically similar niches for all comparisons, with the exception of one or two inconclusive
tests for C. fornicata, D. robustum, L. pensylvanica, and N. duplicata (49 of 60 comparisons;
Fig. 2.2 and Table 2.1). Bulla occidentalis is the only species with non-significant tests across
the time slices. Niches also show stability when raw variables are considered. Seven of the
ten species have statistically similar niches across all time comparisons (42 of 60
comparisons; Table 2.1). Two other species, O. sayana and C. virginica, have statistically
similar niches with the exception of one or two inconclusive tests, respectively. Quantifying
niche similarity for B. occidentalis proves more difficult, as three of six niche comparisons

are non-significant.
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We also tested whether species conserved their upper and lower thermal tolerance
limits, an important consideration for marine ectotherms as temperatures warm (Sunday et al.,
2011; Aratjo et al., 2013). To this effect, we tested whether species exhibited similarity in
their maximum and minimum surface temperature preferences across three million years,
resulting in 120 comparisons (see Appendix S2.3). Species seem to conserve their upper
thermal tolerance limits; however, results are less conclusive for minimum temperature
tolerances (Table 2.2). Across the suite of species, the majority of comparisons are
statistically more similar with regard to maximum surface temperature, although five species
have one or two comparisons that are inconclusive (B. occidentalis, D. robustum, L.
pensylvanica, N. duplicata, O. sayana, and T. dislocata). There is no apparent pattern as to
which tests are inconclusive (Table 2.2). Comparisons are also statistically similar with
regard to minimum temperature tolerances. However, the structure of this variable changes
significantly through time, making it difficult to quantify similarities or differences.
Consequently, many comparisons are statistically insignificant (Table 2.2). For example, all
mPWP—LIG comparisons are inconclusive with the exception of N. duplicata, and half of

the comparisons for B. occidentalis and L. pensylvanica are also inconclusive.

Geographic comparisons.
We also tested for similarity and differences using the geographic projections of

niches, rather than comparing niches entirely in environmental space. Results from these
analyses mirror those from the environmental comparisons. Niches are statistically similar for
seven of the ten species across all comparisons (42 of 60 comparisons; Table 2.1 and
Appendix 2.3). Crassostrea virginica and L. pensylvanica have one comparison that is
inconclusive (LIG—mPWP and PI—mPWP, respectively), while the niche of B. occidentalis
is significantly dissimilar for the LIG—mPWP comparison and non-significant for the PI—

mPWP comparison.
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Table 2.2 P-values for comparison tests on (1) maximum surface temperature tolerances; and
(2) minimum surface temperature tolerances. Comparisons were performed using the
framework of (Broennimann et al. (2012). Bold values indicate non-significant results. All
other comparisons are statistically more similar than expected given the environmental
background of the variable in question. See Appendix S2.3 for graphical depictions of
similarity tests.

Species/Comparison |mPWP—LIG LIG—mPWP|PI—LIG LIG—PI  |mPWP—PI PI—mPWP
Environmental comparison: maximum surface temperature
Anomia simplex 0.04 0.00 0.00 0.00 0.00 0.00
.g Crassostrea virginica 0.00 0.00 0.00 0.02 0.01 0.00
T>u Dinocardium robustum 0.03 0.00 0.00 0.00 0.09 0.00
@ Lucina pensylvanica 0.00 0.00 0.00 0.00 0.81 0.42
Mercenaria campechiensis 0.01 0.00 0.00 0.03 0.00 0.00
w Bulla occidentalis 0.00 0.00 0.02 0.60 0.96 0.02
-§_ Crepidula fornicata 0.00 0.00 0.00 0.00 0.01 0.00
© Neverita duplicata 0.01 0.00 0.00 0.06 0.00 0.00
z Oliva sayana 0.00 0.00 0.01 0.15 0.54 0.00
O Terebra dislocata 0.03 0.00 0.00 0.02 0.43 0.02
Environmental comparison: minimum surface temperature
Anomia simplex 0.21 0.00 0.00 0.00 0.00 0.00
.g Crassostrea virginica 0.91 0.05 0.00 0.03 0.01 0.00
T>u Dinocardium robustum 0.11 0.00 0.00 0.00 0.00 0.00
@ Lucina pensylvanica 0.68 0.00 0.00 0.00 0.77 0.22
Mercenaria campechiensis 0.82 0.00 0.00 0.00 0.01 0.00
w Bulla occidentalis 0.66 0.00 0.09 0.10 0.85 0.10
B Crepidula fornicata 0.17 0.00 0.01 0.00 0.44 0.00
§' Neverita duplicata 0.50 0.00 0.05 0.00 0.00 0.00
g Oliva sayana 0.07 0.00 0.03 0.00 0.29 0.00
O Terebra dislocata 0.18 0.00 0.00 0.00 0.05 0.00
Discussion

Our statistical tests find no support for niche evolution. Instead, we observe niche
stability across three million years of considerable environmental changes, from extreme
warmth during the mPWP to glacial cycles during the Pleistocene (Cronin, 1988; Haug &
Tiedemann, 1998; Dowsett et al., 2009). These species were either shifting their niche
preferences in response to changing conditions at scales too rapid to be detected by our
analyses, which seems unlikely, or their preferences remained stable across this temporal
interval. Taking our results at face value, niche stability has profound implications for

understanding conservation priorities and for elucidating macroevolutionary dynamics.
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Implications for survival of taxa during times of change.
These results impact our understanding of how species respond to climate change on

both long and short time scales. As climate continues to change, species that are unable to
adapt to new conditions face two futures: extinction or shifting distributions to follow
suitable areas. Already, both responses have been documented or predicted as a result of
current climate changes. Marine and terrestrial species are forecast to experience climate-
driven extinctions into the 22nd century (Sinervo et al., 2010; Maclean & Wilson, 2011;
Bijma et al., 2013). Indeed, the niche stability we have documented may doom many marine
species to extinction over the next 100+ years, particularly if they live at their thermal
tolerance limits (Tewksbury et al., 2008; Sunday et al., 2012) and are unable to alter upper
thresholds. The target species considered here are predicted to experience severe
distributional reductions by the end of this century when variables other than temperature and
salinity are considered (Saupe et al., In Press), but wholesale extinction is unlikely. This
prediction is supported by their survival in the Pliocene, albeit in geographically-reduced
areas as determined from occurrence data, when conditions were purportedly similar to those
expected at the end of this century (Robinson & Dowsett, 2008). These small areas of
suitability — or micro-refugia — are thought to have played an important role in species’
survival during past episodes of climate change (Cheddadi et al., 2006; Graham et al., 2006;
Willis & MacDonald, 2011).

If species are able to keep pace with the changing environment, distributional shifts,
rather than extinctions, are expected (Warren et al., 2013). Under this scenario, dispersal
ability becomes an important parameter predicting species’ responses to climate change
(Trakhtenbrot et al., 2005). Present-day elevational, latitudinal, and bathymetric shifts
(Hickling et al., 2006; Sorte et al., 2010; Chen et al., 2011) have already been observed in
response to current warming patterns, and, indeed, the fossil record provides abundant

evidence for habitat tracking during rapid Pleistocene climate cycles (Roy ef al., 1996; Hof et
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al., 2011). In support of the inadaptability of niches, species followed their climate envelopes
over great distances during the Pleistocene, often creating non-analog community
assemblages (Williams & Jackson, 2007).

The stability of niches also affords some confidence to the methods used to assess
extinction vulnerability and distributional shifts (e.g., ENM or species distribution modeling;
SDM) (Peterson et al., 2011). Consequently, concerns over inaccurate forecasts owing to
niche adaptation are somewhat alleviated (Pearman et al., 2008; Hoffmann & Sgro, 2011).
Nevertheless, ENM or SDM methods typically do not account for dispersal limitations or
altered biotic interactions (Davis et al., 1998), though see (Fordham et al., 2013), nor do they
consider that species can alter their behavior or microhabitat preferences to buffer against

environmental changes (Kearney et al., 2009; Lavergne et al., 2010).

Macroevolutionary implications of stable niches.
We show that species’ distributions are structured by environmental changes, and thus

species themselves are largely controlled by external, abiotic factors (Valentine & Moores,
1970; Vrba, 1985; van Dam et al., 2006; Roy et al., 2009; Jablonski ef al., 2013). Although
species may modify their behavior or resource utilization, large-scale parameters of their
niches do not change. The FN places constraints on species’ interactions with the
environment, which potentially governs speciation and extinction processes over long time
scales (Jablonski et al., 2013; Myers & Saupe, 2013). Some researchers have suggested that
niche stability may promote allopatric speciation (Vrba, 1985; Peterson et al., 1999; Wiens &
Graham, 2005; Kozak & Wiens, 2006); that is, environmental perturbations may separate two
populations, with these populations prevented from merging back together because of FN
constraints, eventually leading to diversification.

Niche stability also provides a potential mechanism for the morphological stasis
observed within species over millions of years (Eldredge et al., 2005). More specifically,

niche stability requires species to track preferred habitats as the environment changes,

64



thereby continuously joining and separating populations on scales < 10,000 years. In this
framework, any localized phenotypic adaptation is unlikely to be fixed across an entire
species, such that no overall net changes are observed for the species as a whole, since

localized changes may cancel one another out (Eldredge ef al., 2005).

Potential caveats.
Although our analyses are quantitatively robust, our study is not without limitations.

First, our models may approximate the potential niche (PN), rather than the FN (Jackson &
Overpeck, 2000; Soberon & Nakamura, 2009), given that FNs are often difficult to
characterize without detailed physiological studies (Peterson et al., 2011; Aratjo et al., 2013).
However, niche estimates were calculated from time-averaged environmental preferences
(Kidwell & Holland, 2002), which will closely approximate real physiological tolerance
limits, particularly since marine ectotherms tend to occupy the full extent of latitudes within
their thermal limits (Tewksbury et al., 2008; Sunday et al., 2012). Second, and related to
accurately characterizing the FN, estimates of present-day and past niches may not be
equivalent and thus not comparable. This, of course, is of lesser concern here since we
documented niche stability rather than niche evolution. Third, we acknowledge that
recognition of ‘species’—especially in the fossil record—is sometimes contentious, and
while these species are diagnosably distinct throughout their duration, they may not
constitute single evolutionary lineages. Nonetheless, if they represent closely-related species
(i.e., species complexes), the fact that we still obtained niche conservatism suggests this
pattern is robust even across speciation events. Fourth, we analyzed data from warm time
periods, as distributional data do not exist for glacial periods (e.g., the last glacial maximum,
~21 Ka). Therefore, our analyses may have missed rapid niche evolution that occurred in
response to these colder conditions. Although possible, the scenario is unlikely because of the
rate at which niche evolution would have had to occur, and because of the paucity of

evidence for physiological adaptations both in the fossil record (Foster ef al., 1990; Roy et al.,
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1996; Hof et al., 2011) and in experimental studies (Arajo et al., 2013). Moreover,
environmental conditions at the mPWP, LIG, and PI differ to a significant degree, such that
we were still able to discern whether species adapted to new conditions or tracked stable
climate envelopes. Finally, and related to this issue, because paleoclimate models were only
available for certain key temporal intervals, we could not capture the entire temporal history

of these species in the context of an ENM framework.

Conclusions

Here, niche evolution is analyzed over millions of years in a synthetic context uniting
both modern and paleontological marine data and paleoclimatic models. We find that niches
remain stable across the duration of species’ lifetimes, even within a context of significant
environmental perturbations. Given their responses to past environmental changes, our results
indicate that species will respond to current and future warming by altering distributions to
track suitable habitat, or, if the pace of change is too rapid, by going extinct. We urge
continued examination of the threats that climate change poses to biodiversity to ensure
proper implementation of conservation measures, and we stress the value of integrating

paleontological and neontological data to explore these issues.
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Chapter 3. Estimating extinction risk as a function of niche breadth and
geographic range size: a case study using Pliocene—recent Atlantic Coastal
Plain mollusks
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Abstract

Determining which species are more prone to extinction is vital for conserving
Earth’s biodiversity and for providing insight into macroevolutionary processes over time.
Here, we utilized the exceptional record of Pliocene—recent Atlantic Coastal Plain mollusks
to test the relative effects of geographic range size and niche breadth on survivorship of
species from the Pliocene to the present-day. We assessed the vulnerability of 93 bivalve and
gastropod species to extinction as a function of both fundamental and realized niche breadths,
and geographic range size. We additionally examined whether extinct species lost more
suitable habitat during the Last Glacial Maximum (~21 Ka) than still-extant species. Contrary
to our expectations, extant species did not have larger fundamental niche breadths than
extinct species. By contrast, the realized niche emerged as a key predictor of extinction risk.
Our results reiterate the well-supported idea that geographic range size is a key predictor of
extinction risk. Similarly, the degree of suitable area lost during the Last Glacial Maximum
predicted survivorship for studied mollusks. A potentially intriguing aspect of these results is
that fundamental niche breadth appears to be decoupled from geographic range size with
regard to extinction risk. In essence, this suggests that occupied environmental breadth (i.e.,
the realized niche) provides a greater buffer against extinction than potential tolerance limits
(i.e., the fundamental niche), and the degree to which species are able to fill their
fundamental niches provides the measure of extinction risk. This information can be used not
only to implement proper conservation policies as we face current extinctions, but also to
understand the properties promoting or inhibiting extinction —and perhaps speciation—

across evolutionary time.
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Introduction

Determining which species are more prone to extinction is vital for conserving
Earth’s biodiversity (McKinney, 1997; Thuiller et al., 2005; Schwartz et al., 2006; Barnosky
et al.,2011; Harnik, 2011; Lee & Jetz, 2011; Barnosky et al., 2012) and for providing insight
into macroevolutionary processes over evolutionary time scales (Eldredge, 1979; Vrba, 1987,
Kiessling & Aberhan, 2007; Payne & Finnegan, 2007; Jablonski, 2008). Although several
traits have been identified as correlating with extinction risk (McKinney, 1997; Mace et al.,
2008; Fritz et al., 2009), one of the most robust is geographic range size, with both
neontological (Purvis et al., 2000; Thomas et al., 2004; Schwartz et al., 2006; Harris & Pimm,
2008) and paleontological (Jablonski & Roy, 2003; Jablonski & Hunt, 2006; Kiessling &
Aberhan, 2007; Liow, 2007; Payne & Finnegan, 2007; Foote ef al., 2008; Stigall, 2010;
Harnik, 2011; Harnik et al., 2012) studies finding that large geographic range size increases
species’ survivorship (although see Stanley [1986b], Norris [1992], Vermeij [1993], and
Myers et al. [2012] for notable exceptions). Fewer studies, however, have focused on species’
environmental niche breadths, and the impact this variable has on extinction risk.

Here, we utilize the exceptional record of Pliocene—recent Atlantic Coastal Plain
mollusks to test the relative effects of geographic range size and niche breadth on
survivorship of species from the Pliocene to the present-day. We assess the vulnerability of
93 diverse bivalve and gastropod species to extinction as a function of both fundamental (FN)
and realized (RN) niche breadth, as well as geographic range size. We additionally examine
whether extinct species lost more suitable habitat during the Last Glacial Maximum (LGM,;
~21 Ka) than still-extant species. We hypothesize that FN breadth determines survivorship to
a greater degree than RN breadth and geographic range size, but that extant species have
larger values for all of these traits.

The FN is defined as the set of all combinations of abiotic environmental variables in

which a species can survive (Soberon & Nakamura, 2009; Peterson et al., 2011), and has

76



been posited to be a species-level trait that is stable within and across lineages (Martinez-
Meyer & Peterson, 2006; Myers & Saupe, 2013; Strubble et al., 2013; Saupe et al., in
review). As climate changes, we suggest that this suite of tolerances (i.e., the FN) contributes
to a species’ ability to survive environmental changes. In contrast, the RN is a subset of the
FN that a species occupies at a given time, and which can be constrained for reasons relating
to resource use, biotic factors such as competition, and/or dispersal barriers (Pearman et al.,
2008; Peterson et al., 2011; Aratjo & Peterson, 2012).

The Neogene Atlantic Coastal Plain molluscan record provides a well-characterized
system in which to analyze the dynamics of niche breadth and geographic range over time for
several reasons. Molluscan remains are abundant and particularly well studied with respect to
patterns of extinction, species turnover, and ecological change across this interval (Allmon et
al., 1993; Todd et al., 2002; Vermeij, 2005; Klaus ef al., 2011). Moreover, both bivalves and
gastropods have proven excellent study systems for analyzing diversity dynamics through
time (Jablonski & Hunt, 2006; Crampton et al., 2010; Nurnberg & Aberhan, 2013). Climatic
changes from the Pliocene to the recent have also been well characterized using global
climate models (Haywood ef al., 2011).

Potential difficulties arise in testing the relative effect of niche breadth and
geographic range size on diversity dynamics because their relationship is complex and often
not monotonic (Gaston, 2003; Peterson et al., 2011; Myers & Saupe, 2013). In particular,
they frequently co-vary, such that the effects of geographic range are not easily decoupled
from those of niche breadth. With that said, species with large geographic range sizes can
have small niche breadth if the underlying environment is homogeneous, whereas species
with broad niche breadths can have small geographic ranges if they are limited by dispersal,
biotic or other geographic barriers (Eldredge, 1979; Gaston, 2003; Aralijo & Peterson, 2012;
Myers & Saupe, 2013).

Niche breadth is often considered an inverse measure of ecological specialization
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(Smith, 1982). Indeed, specialist species (stenotopes) have long been thought to be more
prone to extinction than generalist species (eurytopes), especially during times of
environmental change (Simpson, 1944; Eldredge, 1979; Vrba, 1987; Brown ef al., 1995;
McKinney, 1997; Fernandez & Vrba, 2005). To date, both paleontological (Kammer et al.,
1997; Keller et al., 1997; Heim & Peters, 2011; Harnik ef al., 2012; Nurnberg & Aberhan,
2013) and neontological (Thuiller et al., 2005; Broennimann et al., 2006; Colles et al., 2009;
Devictor et al., 2010; Boulangeat et al., 2012) studies have examined the influence of RN
breadths on extinction probability, with the general conclusion that broader niche breadths
increase species’ longevity. Here, we use ecological niche modeling (ENM) to compare both
FNs and RNs. We acknowledge that accurately estimating FNs without mechanistic studies is
difficult (Kearney & Porter, 2009), and our results may approximate the existing FN (also
known as the potential niche), or some version of >RN (Jackson & Overpeck, 2000; Peterson
et al., 2011). Recent biophysical approaches, however, have suggested that FNs can be
represented by limited sets of parameters like temperature (Kearney et al., 2010; Kearney et
al.,2013), and we additionally use model parameters that match known physiological
response curves of species (Austin, 1985; Austin ef al., 1994; Hooper et al., 2008; Angilletta,
2009). Thus, obtained estimates may at least be congruent with species’ potential suitable
area.

Ultimately, identification of the traits that promote or inhibit extinction provides
insight into the causal mechanisms generating patterns of diversity over evolutionary time
scales (Eldredge, 1989; Stanley, 1990; Kammer et al., 1997; Jablonski, 2008). The fossil
record provides a ledger of such evolutionary winners and losers, which can be used to
generate a list of threat factors leading to species’ extinctions. These rule sets are important,
because of the time-intensive nature of estimating extinction risk for individual species and
populations, and because of the rising concerns over the future of marine ecosystems and

biodiversity (Worm et al., 2006; Hendriks et al., 2010; Russell ef al., 2012; Jones et al.,
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2013; Saupe et al., 2014).

Material and Methods

Study extent.
All analyses were conducted within the Atlantic Coastal Plain. Models were

calibrated within a region bounded by the Americas and 34°W longitude, and 48°N and 44°S
latitude. We sought the union of the area sampled by researchers and which was most likely
accessible to the species during the Pliocene (Phillips et al., 2009; VanDerWal et al., 2009;

Peterson et al., 2011).

Taxa.
We selected target taxa from 30 genera of gastropods classified within eight families

(Bursidae, Conidae, Fasciolariidae, Muricidae, Personidae, Ranellidae, Strombidae, and
Tonnidae) and 71 genera of bivalves classified within six families (Arcidae, Cariidae,
Carditidae, Lucinidae, Tellinidae, and Veneridae) in the Digital Atlas of Neogene Life
(Hendricks et al., 2013). We utilized all species having Pliocene presences in the Digital
Atlas, with the exception of those with poor sampling, extreme micro-endemism, or poor
model quality, detailed below. We eliminated species with very restricted distributions to
account for potential artifacts that might arise from sampling bias by using a two-step
process: we retained species with > four spatially unique occurrence points at 2.5 arc-minute
(~4.5 km) resolution; and we also excluded species with only one spatially unique occurrence
point at 1.25° resolution (i.e., the scale of the environmental data). This procedure ensured
that poorly sampled species were removed from niche estimations. A total of 47 extinct (of
80) and 46 extant (of 65) species remained after eliminating poorly sampled species as well
as those with non-significant niche models (see niche modeling sections below for details),
resulting in a total of 16 gastropod genera and 50 bivalve genera. Many extant species have
fossil records that extend into the Pliocene (~3.1 Ma), as most marine invertebrates have

durations > 3 million years (Stanley, 1979; Eldredge et al., 2005; Patzkowsky & Holland,
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2012). Pliocene records for these extant species were verified by examination of museum

collections and literature survey.

Distributional data.
We considered fossil distributional data from Pliocene (~3.264-3.025 Ma) strata of

the Atlantic Coastal Plain, USA. Distributional records were primarily obtained from the
Florida Museum of Natural History (FLMNH), with additional records from the Academy of
Natural Sciences of Drexel University, Paleontological Research Institution, Yale Peabody
Museum, and Virginia Museum of Natural History, for ten viable stratigraphic units
identified using the database of Saupe et al. (in review) (Table 3.2). The holdings of the
FLMNH represent the largest collection of Neogene Atlantic Coastal Plain mollusks, with
extensive distributional coverage for hundreds of species across the eastern seaboard (Fig.
3.1). For each species, we subsampled distributional data to leave one record per
environmental pixel (Tables 3.1.1 and 3.1.2). This was done to prevent certain localities with
multiple records from being unduly weighted in niche modeling analyses (Royle ef al., 2012;
Yackulic et al., 2013), and did not affect the resultant overall distribution of the species. The
spatial resolution of the environmental data (1.25 x 1.25°, described below) limited the
number of spatially unique occurrence points available per species. We retained species with
> two spatially unique occurrence points at 1.25° resolution whose models were significant
and congruent with those constructed using more occurrence data (Tables 3.1.1 and 3.1.2).
Moreover, all species possessed at least four spatially unique occurrence points at 2.5 arc-
minute resolution, a number shown to be statistically robust for modern species (Hernandez
et al., 2006; Pearson et al., 2007). The frequency distribution of occurrences per species
retained in the analyses was right-skewed on a normal plot (Fig. 3.2), a pattern found for
many other extant terrestrial and marine taxa (Gaston, 1998; Gaston & He, 2002). This

indicates our data are commensurate with neontological data, which are presumably unbiased
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with regard to sampling. Additional corrections for potential sampling biases are described in

ecological niche modeling protocols.
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Family Genus Species Author Extinction # of p?s 2.5 #of fts P-value
status arc-minute 1.25

Anomiidae Anomia simplex d'Orbigny, 1853 Extant 48 12 <0.001
Arcidae Anadara megarata Olsson & Harbison, 1953 Extinct 5 2 NA
Arcidae Anadara notoflorida Vokes, 1969 Extinct 6 2 NA
Arcidae Anadara idonea Conrad, 1832 Extinct 6 2 NA
Arcidae Arca wagneriana Dall, 1898 Extinct 18 3 <0.001
Arcidae Barbatia irregularis Dall, 1898 Extinct 5 2 NA
Arcidae Scapharca scalarina Heilprin, 1886 Extinct 21 6 <0.001
Cardiidae  Acrosterigma  dalli Heilprin, 1886 Extinct 4 2 NA
Cardiidae  Dallocardia muricata Linnaeus, 1758 Extinct 31 9 <0.001
Cardiidae  Dinocardium  robustum Lightfoot, 1786 Extant 22 7 <0.001
Cardiidae Laevicardium  mortoni Conrad, 1831 Extant 110 19 <0.001
Cardiidae  Papyridea semisulcata Gray, 1825 Extant 4 3 0.025
Cardiidae  Planicardium  virginianum Conrad, 1839 Extinct 6 3 0.033
Cardiidae  Planicardium  acutilaqueatum Conrad, 1839 Extinct 13 6 <0.001
Cardiidae  Trachycardium egmontianum  Shuttleworth, 1853 Extant 12 4 <0.001
Cardiidae  Trachycardium evergladeensis Mansfield, 1931 Extinct 7 3 0.026
Cardiidae  Trachycardium oedalium Dall, 1900 Extinct 11 5 <0.001
Cardiidae  Trigoniocardia willcoxi Dall, 1900 Extinct 13 3 <0.001
Carditidae Cardita olga Mansfield, 1939 Extinct 7 2 NA
Carditidae Carditamera  tamiamiensis ~ Mansfield, 1931 Extinct 5 3 <0.001
Carditidae Carditamera  dasytes Olsson, 1967 Extinct 8 3 <0.001
Carditidae Carditamera  floridana Conrad, 1838 Extant 4 4 <0.001
Carditidae Carditamera  arata Conrad, 1832 Extinct 29 11 <0.001
Carditidae Cyclocardia granulata Say, 1824 Extinct 29 11 <0.001
Carditidae Pleuromeris tridentata Say, 1826 Extant 22 9 <0.001
Carditidae Pteromeris perplana Conrad, 1841 Extant 18 8 <0.001
Carditidae Pteromeris abbreviata Conrad, 1841 Extinct 10 7 <0.001
Lucinidae  Anodontia schrammi Crosse, 1876 Extant 7 4 <0.001
Lucinidae  Anodontia alba Link, 1807 Extant 25 5 <0.001
Lucinidae  Armimiltha disciformis Heilprin, 1886 Extinct 15 3 <0.001
Lucinidae  Callucina keenae Chavan, 1971 Extant 24 11 <0.001
Lucinidae  Cavilinga blanda Dall, 1901 Extant 17 8 <0.001
Lucinidae Codakia orbicularis Linnaeus, 1758 Extant 19 4 <0.001
Lucinidae Ctena orbiculata Montagu, 1808 Extant 10 3 <0.001
Lucinidae  Divalinga quadrisulcata  d'Orbigny, 1846 Extant 23 12 <0.001
Lucinidae Lucina pensylvanica Linnaeus, 1758 Extant 37 6 <0.001
Lucinidae Lucinisca nassula Conrad, 1846 Extant 16 7 <0.001
Lucinidae  Miltha caloosaensis Dall, 1898 Extinct 19 3 <0.001
Lucinidae Parvilucina crenella Dall, 1901 Extant 11 5 <0.001
Lucinidae Pleurolucina  amabilis Dall, 1898 Extinct 7 3 <0.001
Lucinidae Stewartia floridana Conrad, 1833 Extant 22 5 <0.001
Ostreidae Crassostrea virginica Gmelin, 1791 Extant 21 7 <0.001
Tellinidae Arcopagia fausta Pulteney, 1799 Extant 7 4 <0.001
Tellinidae  Eurytellina alternata Say, 1822 Extant 29 7 <0.001
Tellinidae Laciolina magna Spengler, 1798 Extant 8 4 <0.001
Tellinidae Leporimetis magnoliana Dall, 1900 Extinct 21 8 <0.001
Tellinidae Macoma arctata Conrad, 1843 Extinct 5 4 0.0082
Tellinidae  Merisca aequistriata Say, 1824 Extant 16 8 <0.001
Tellinidae Tellidora cristata Récluz, 1842 Extant 15 4 <0.001
Tellinidae Tellinella listeri Roding, 1798 Extant 4 3 0.009
Veneridae Chione erosa Dall, 1903 Extinct 36 7 <0.001
Veneridae Chionopsis cribraria Conrad, 1843 Extinct 11 8 <0.001
Veneridae Dosinia discus Reeve, 1850 Extant 8 2 NA
Veneridae Dosinia elegans Conrad, 1843 Extant 21 7 <0.001
Veneridae Globivenus rigida Dillwyn, 1817 Extant 4 2 NA
Veneridae Lirophora latilirata Conrad, 1841 Extant 41 13 <0.001
Veneridae Macrocallista  nimbosa Lightfoot, 1786 Extant 32 4 <0.001
Veneridae Macrocallista maculata Linnaeus, 1758 Extant 28 8 <0.001
Veneridae Mercenaria campechiensis  Gmelin, 1791 Extant 48 12 <0.001
Veneridae Panchione ulocyma Dall, 1895 Extinct 19 6 <0.001
Veneridae Petricolaria pholadiformis ~ Lamarck, 1818 Extant 5 4 <0.001
Veneridae Timoclea grus Holmes, 1858 Extant 13 6 <0.001
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Table 3.1.2 Studied gastropod species, including their extinction status, number of spatially
unique occurrence points at 2.5 arc-minutes and 1.25°, and significance level of the niche
model under the jackknife test of Pearson et al. (2006). This test was not possible for species
with two points, and in theses cases, models were deemed significant when they did not omit
either point after thresholding.

Extinction # of pts 2.5 # of pts

Family Genus Species Author status are-minute 1.25° P-value
Bullidae Bulla occidentalis A. Adams, 1850 Extant 22 5 <0.001
Calyptraeidae Crepidula fornicata Linnaeus, 1758 Extant 56 14 <0.001
Conidae Conus delessertii Récluz, 1843 Extant 6 3 0.025
Conidae Conus haytensis Sowerby I, 1850 Extinct 5 2 NA
Conidae Conus yaquensis Gabb, 1873 Extinct 9 2 NA
Conidae Conus bassi Petuch, 1991 Extinct 8 3 <0.001
Conidae Conus miamiensis Petuch, 1986 Extinct 9 3 0.026
Conidae Conus paranobilis Petuch, 1991 Extinct 4 3 <0.001
Conidae Conus daucus Hwass, 1792 Extant 5 3 <0.001
Conidae Conus marylandicus Green, 1830 Extinct 15 9 <0.001
Conidae Conus oniscus Woodring, 1928 Extinct 22 6 <0.001
Conidae Conus adversarius Conrad, 1840 Extinct 56 14 <0.001
Fasciolariidae Cinctura rhomboidea  Rogers & Rogers, 1839  Extinct 45 11 <0.001
Fasciolariidae Fasciolaria  okeechobensis Tucker & Wilson, 1932  Extinct 6 4 <0.001
Fasciolariidae Heilprinia florida Olsson & Harbison, 1953 Extinct 10 4 <0.001
Fasciolariidae Heilprinia carolinensis Dall, 1892 Extinct 5 4 0.0020
Fasciolariidae Heilprinia caloosaensis  Heilprin, 1886 Extinct 15 5 <0.001
Fasciolariidae Pliculofusus scalarinus Heilprin, 1886 Extinct 24 4 <0.001
Fasciolariidae Triplofusus  giganteus Kiener, 1840 Extant 31 8 <0.001
Muricidae Calotrophon ostrearum Conrad, 1846 Extant 32 9 <0.001
Muricidae Chicoreus shirleyae Vokes, 1966 Extinct 6 3 0.016
Muricidae Chicoreus floridanus Vokes, 1965 Extinct 33 5 <0.001
Muricidae Dermomurex alabstrum A. Adams, 1864 Extant 7 3 <0.001
Muricidae Ecphora bradleyae Petuch, 1988 Extinct 4 2 NA
Muricidae Ecphora quadricostata  Say, 1824 Extinct 28 9 <0.001
Muricidae Eupleura metae Petuch, 1994 Extinct 6 3 0.015
Muricidae Eupleura caudata Say, 1822 Extant 9 5 <0.001
Muricidae Eupleura leonensis Mansfield, 1930 Extinct 12 4 <0.001
Naticidae Neverita duplicata Say, 1822 Extant 51 15 <0.001
Olividae Oliva sayana Ravenel, 1834 Extant 16 9 <0.001
Terebridae Terebra dislocata Say, 1822 Extant 21 9 <0.001

Environmental data.
Environmental data were derived from the coupled atmosphere-ocean HadCM3

global climate model (GCM) (Gordon et al., 2000; Pope et al., 2000) for the mid-Pliocene
Warm Period (mPWP; 3.264-3.025 Ma). Model results were also projected to the Last
Glacial Maximum (LGM; ~ 21 Ka). Boundary conditions for the mPWP GCM used the

alternate PRISM3D PlioMIP dataset described in Haywood et al. (2011), and boundary
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conditions for the LGM GCM used those in Singarayer & Valdes (2010) and Singarayer ef al.
(2011). All experiments were run for 500 model years, and environmental parameters were
derived from the final 30 years of each experiment at 1.25 x 1.25° resolution (~140 x 140 km
at the equator). Where ocean data were unavailable (i.e., sites presenting macrofossil data but
where the GCM indicated land), we used an inverse-distance weighted algorithm to
extrapolate model data.

We converted the monthly salinity and temperature outputs from the GCMs to
maximum, minimum, and average yearly coverages for both surface and bottom conditions
using ArcGIS 10.1. We centered and standardized data in each of these 12 coverages,
performing a principal components analysis (PCA) on the correlation matrix using the
PCARaster function in the ENMGadgets package in R (Barve & Barve, 2014). Data were
transformed in order to create new axes that summarized variation in fewer, independent
dimensions, and to reduce co-linearity among variables. We retained the first four principle
components, which explained cumulatively > 97% of the variance in the dataset, for model
calibration. The PCA structure for the Pliocene was enforced for the LGM using the
PCAProjections function in the ENMGadgets package in R (Barve & Barve, 2014).

Ideally, we would use an ensemble-modeling approach that considered multiple
GCMs (Fordham et al., 2012). However, model output was available to us only from
HadCM3, with this GCM having been successfully used within a large range of Quaternary

and pre-Quaternary modeling studies.

Table 3.2 Potential mPWP formations (~3.1 Ma) for species’ occurrence data used in
analyses.
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mPWP (~3.1 Ma) Formations

Duplin Jackson Bluff
Goose Greek Mare

Guaiguaza Raysor

Hopegate Tamiami/Pinecrest
Intracoastal Yorktown

Ecological niche modeling.
ENMs were generated using a maximum entropy algorithm, Maxent v. 3.3.3 (Phillips

et al., 2006). Maxent estimates environmental suitability for a species when the null
expectation is equivalent to uniform (Elith ez al., 2011), with results often similar to those
under general linear models (Fithian & Hastie, 2012; Renner & Warton, 2013). We enabled
only the linear and quadratic features in Maxent to produce realistic response curves that
match those known from physiological experiments of plants and animals (Austin, 1985;
Austin et al., 1994; Hooper et al., 2008; Angilletta, 2009). To correct for biases in fossil
distributional data, we implemented a ‘bias file’ within Maxent. The bias file describes the
probability that an area was sampled; thus, regions with rock outcrop (i.e., areas where
species may actually be detected or sampled) were weighted twice as heavily as regions
without rock outcrop. Maxent will then factor out this bias during the modeling process
(Dudik et al., 2005). This method essentially accounts for incomplete knowledge of a species
distribution (Svenning et al., 2011). Pliocene models were projected to LGM conditions to
determine if extinct species retained suitable area during glacial times. To avoid inaccurate
projections as a result of novel environmental conditions, we deactivated clamping and

allowed for extrapolation following Owens et al. (2013).

Potential niche characterizations.
The modeling process produces continuous suitability surfaces, which require

interpretation to determine limits of suitability for a species. This process is usually done via
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thresholding, wherein models are converted to binary output (i.e., I=suitable; O=unsuitable).
We used the mean model suitability score as the threshold, given this method provides
greater independence from input occurrence data and performs well with low and varying
prevalence data (Liu et al., 2005; Freeman & Moisen, 2008). We recognize that choice of
threshold can affect model results (Liu ez al., 2005; Jiménez-Valverde & Lobo, 2007);
however, the threshold method we employed does not constrict suitability as severely as
traditional methods like least training presence (LTP) or MaxSSS (Pearson et al., 2007; Liu
et al., 2013), which often produce approximations closer to the realized niche (RN), rather

than the potential niche (PN) or the fundamental niche (FN) (Peterson ef al., 2011).

Niche breadth calculations.
We consider niche breadth in the classic Grinnellian sense (Grinnell, 1917) of abiotic

environmental variables, defined by Hutchinson (1957) as a hyper-volume in multi-
dimensional space, within which a species can maintain viable populations. Niche breadths
were calculated using NicheA (Qiao ef al., 2012). From thresholded niche models, we
quantified niche volumes from the first three principle component axes within environmental
space, which explained > 89% of the variance in the dataset (Fig. 3.3). To increase the
potential resilience of our results, we used two different methods to calculate niche volumes:
minimum volume complex polyhedrons (CPH) around suitable area in three-dimensional
environmental space (Cornwell et al., 2006; Monahan & Tingley, 2012), and minimum
volume ellipsoids (MVE) around suitable area in three-dimensional environmental space
(Van Aelst & Rousseeuw, 2009). To our knowledge, this represents one of the first times
niches have been quantified in three dimensions, although see Cornwell et al. (2006) and

Blonder et al. (2014).

Geographic area calculations.
Again, to increase the potential resilience of our results, geographic area occupied by

a species was calculated in two ways: summing the number of suitable pixels from projected

86



niche models, and creating minimum convex polygons around the unfiltered (all) occurrence
data for each species. To calculate the latter, we used the minimum bounding geometry
function in ArcGIS 10.1 and calculated polygon areas using the USA Contiguous Albers
Equal Area Conic map projection (Gaston & Fuller, 2009) (Fig 3.1). We also calculated
amount of area projected to remain suitable for these species during the LGM (~21 Ka) by

counting suitable pixels in model projections.

Realized niche characterizations.
To examine whether the breadth of environment occupied by species (a species’ RN)

impacts extinction selectivity, we calculated CPH and MVE niche breadth volumes for
species’ occurrence data in environmental space. Moreover, we tested the sensitivity of these
calculations to potential sampling biases by degrading the available fossil record to the same
number of occurrence points (lowest number) for all species exceeding this two-point
occurrence prevalence. We calculated niche breadth as the environmental distance between
the two points on the first principle component layer, which explained ~ 39% of the variance
in the dataset, following approaches similar to those employed by Colwell & Futuyma (1971)
and Essl et al. (2009). We used the median value from the 100 replicates as the niche breadth
for a species. Niche breadths for species with only two occurrence points were calculated in
the same fashion, without bootstrap replication. This process is similar to rarefaction, which
is commonly utilized for paleontological data, and attempts to correct for differing abundance
values (Miller & Foote, 1996; Barnosky et al., 2005; Kiessling & Aberhan, 2007). Finally,
we thresholded obtained niche models using the LTP method (Pearson ef al., 2007), which
constricts estimates of suitability to the lowest value associated with an occurrence point.
Essentially, the process only predicts suitable environments that a species has occupied (i.e.,
estimates closer to the RN). In this study, the mean number of pixels predicted suitable across

all species decreased over 200% using a LTP threshold compared to a mean threshold.
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Niche model significance testing.
For the majority of species, we assessed statistical significance of the niche models

using a jackknife procedure of Pearson et al. (2007) (Tables 3.1.1 and 3.1.2). For those
species with only two spatially explicit occurrence points, models that correctly predicted
both occurrence points were deemed significant (note that both points will always be
correctly predicted under a LTP threshold). Species were eliminated if models were not

significant using either of these approaches.

Statistical tests.
We performed binary logistic regressions using both geographic range and niche

breadths to determine if variables are correlated with respect to survival or extinction. No
significant results were obtained using these multivariate tests. Consequently, we performed
univariate analyses. Since area and volume calculations were not normally distributed, we log
transformed all variables and used one-way nonparametric Mann-Whitney U tests for
analyses (Table 3.3). We tested four hypotheses: (i) whether extant species had greater niche
breadths than extinct species, (ii) whether extant species had larger geographic ranges than
extinct species, (iii) whether extant species occupied broader realized environmental space
than extinct species, and (iv) whether extant species had more suitable area remaining during
the LGM than extinct species. We performed ten Mann-Whitney U tests, because we
calculated FN breadth in two ways, RN breadth in five ways, and geographic area in two

ways, in order to test the resiliency of our results to differing estimation methods (see Table

3.3).
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Results

Contrary to our original hypothesis, extant species did not have significantly larger
niche breadths than extinct species, although values are close to alpha (a) level of 0.05 (P =
0.071 and P = 0.088 for CPH and MVE calculations, respectively) (Table 3.3). Extant species,
however, did have significantly larger geographic ranges than extinct species, both when
considering suitable area predicted by the model (P = 0.030) and area calculated from
polygons (P = 0.002). Consequently, there does not seem to be a one-to-one correspondence
between niche breadth predicted by the models and amount of suitable area available

geographically (Table 3.3).
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Figure 3.2 Histogram of number of occurrences per species at 1.25° resolution in the mPWP.
Note the right-skewed nature of the frequency distribution, which mirrors that for many
extant taxa (Gaston, 1998; Gaston & He, 2002).
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The RN, however, does seem to be a significant predictor of extinction (Table 3.3).
Extant species occupy significantly larger volumes of environmental space than extinct
species, using estimates based on both the occurrence data (P = 0.006 and P = 0.009 for CPH
and MVE calculations, respectively) and the LTP niche models (P =0.011 and P = 0.018 for
CPH and MVE calculations, respectively). Moreover, these results are robust to the bootstrap
resampling tests (P = 0.044).

When niche models are projected to glacial conditions (LGM; ~21 Ka), extinct
species lose more suitable area than extant species (P = 0.022) (Table 3.3). This result holds
when change (percent decrease) in suitable area from the Pliocene to the LGM is calculated;
in other words, extinct species lose more suitable area, on average, than extant species (P <
0.01).

We tested four hypotheses with respect to the FN, RN, geographic range size, and
amount of area lost during the LGM. Given that hypotheses were tested a priori, correction
for multiple comparisons is not required. However, conservatively, all previously-significant
tests remained significant for the lowest p-value for each estimation method applying a
Holm—Bonferroni correction (Holm, 1979; Ludbrook, 1998), which performs well while still
controlling the family-wise type 1 error rate.. Furthermore, although we were interested in
using a one-tailed test to assess whether extant species had greater values for niche breadths
and geographic range size, a more stringent two-tailed test still provides significant results for
all analyses, with the exception of the rarefaction RN breadth method and geographic area
under the mean niche model (see “Two-tailed test” results in Table 3.3). We further stress
tested our results by running all analyses using species with > 3 spatially unique points at
1.25° resolution. Again, we obtained the same patterns of significance, with the exception of
the MVE and rarefaction calculations for RN breadth and geographic area under the mean

niche model (see “> 3 points” results in Table 3.3).
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Table 3.3 Results from Mann-Whitney U tests. Tests assessed: (i) whether extant species had
greater niche breadths than extinct species, (ii) whether extant species occupied broader
realized environmental space than extinct species, (iii) whether extant species had larger
geographic ranges than extinct species, and (iv) whether extant species had more suitable
area remaining during the LGM than extinct species. Results from both the one-tailed and
more conservative two-tailed tests are provided, as well as those from one-tailed tests using
only species with > 3 spatially unique points at 1.25° resolution.

Calculation One-tailed test Two-tailed test > 3 points
Analysis

method w P-value W P-value W P-value
FN breadth
Mean niche model CPH 1272.5 0.071 1272.5 0.142 970.5 0.106
Mean niche model MVE 1257.5 0.088 1257.5 0.176 962.5 0.120
RN breadth
Occurrences CPH 1406  0.006 1406  0.012 1023  0.041
Occurrences MVE 1389  0.009 1389 0.018 1011 0.052
LTP niche model CPH 1380 0.011 1380 0.021 1035 0.032
LTP niche model MVE 1354 0.018 1354  0.036 1011  0.052
Rarefaction Distance 1302.5 0.044 1302.5 0.089 1006.5 0.057
Geographic area
Polygons analyses Area (sq km) 1452  0.002 1452  0.004 1052  0.022

Mean model projection Pixel count 1325 0.030 1325 0.061 1011 0.052
LGM projection
Amount of suitable area Pixel count 1343.5 0.022 1343.5 0.044 1024  0.040
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Laciolina magna - CPH Laciolina magna - MVE

Merisca aequistriata - CPH Merisca aequistriata - MVE

Figure 3.3 Representations of niche volumes in three-dimensional principle component
space for the same two representative species, Laciolina magna and Merisca aequistriata.
The left column depicts the minimum volume complex polyhedrons (CPH) for both
thresholded mean niche models (FN; light pink) and LTP niche models (RN; dark pink). The
right column depicts the minimum volume ellipsoids (MVE) for thresholded mean niche
models (FN; light pink) and LTP niche models (RN; dark pink).

Discussion

Our initial hypothesis that extant species have greater FN breadths than extinct
species was not supported. Indeed, FN breadth appears to be decoupled from geographic

range size, with only the latter a significant predictor of extinction risk. By contrast, along
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with geographic range size, the RN emerged as a key predictor of extinction risk, as did the
degree of suitable area lost during the LGM. These results suggest that occupied
environmental breadth (i.e., RN) provides a greater buffer against extinction than potential
tolerance limits (i.e., the FN). In a way, this makes intuitive sense, although the pattern is
counter to our original predictions. That is, the degree to which species are able to fill their
FNs is what provides a measure of extinction risk.

Our results are congruent with previous studies that find evidence for a positive
relationship between niche breadth and species’ longevity (Kammer et al., 1997; Keller et al.,
1997; Nurnberg & Aberhan, 2013). Namely, most studies have analyzed RN dynamics using
estimates derived from areas occupied by a species or genus. Taken together, these findings
necessitate a reformulation of the argument that specialist species are more prone to
extinction: being a generalist or specialist sensu stricto appears secondary to the unique
historical, dispersal, and biotic constraints that dictate species’ occupation of suitable
environments at a particular time. Note that this argument, in and of itself, assumes species
are often in disequilibrium with the environment (Aratijo & Pearson, 2005; Varela et al.,
2009). Species’ population dynamics and dispersal ability have been stressed previously as
important to estimating extinction risk (Pulliam, 2000; Kotiaho et al., 2005; Anderson et al.,
2009; Fordham et al., 2012; Fordham et al., 2013), as has the importance of biotic constraints
(Davis et al., 1998; Aratijo & Luoto, 2007; Van der Putten ef al., 2010).

Large geographic ranges have long been considered a factor promoting species’
longevity, and our results provide additional support for this relationship (Jablonski & Roy,
2003; Jablonski & Hunt, 2006; Kiessling & Aberhan, 2007; Liow, 2007; Payne & Finnegan,
2007; Foote et al., 2008; Stigall, 2010; Harnik, 2011; Harnik ef al., 2012). Geographic range
is usually considered a buffer against extinction for three reasons. First, species with large
geographic ranges are unlikely to experience environmental perturbations across their entire

distributional area, and consequently will survive such disturbances, irrespective of their
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tolerances. This argument is primarily geographic in nature. Conversely, a second argument
equates large geographic range size with large environmental tolerances. The assumption is
that generalist species will have enhanced survival, since environmental changes are unlikely
to exceed their broad tolerance limits. This explanation, however, blurs the distinction
between geographic area and environmental tolerance as the primary controller of extinction
selectivity. Finally, species with larger geographic ranges are frequently assumed to be more
abundant (Lawton ef al., 1994). Since extinction ultimately occurs when a species’
population size is reduced to zero, abundance is often considered important in gauging
extinction risk (Stanley, 1986b; Johnson, 1998; Purvis et al., 2000; Mace et al., 2008).
However, geographic range size and abundance are not always positively related: rare species
can be widespread and vice versa (Lavergne et al., 2004). Studies attempting to decouple
abundance from geographic range size have found that local abundance has little effect on
extinction risk, whereas geographic range size does (Kiessling & Aberhan, 2007; Harnik et
al., 2012; although see Stanley [1986b] and Powell [2007] for exceptions).

Certainly, species’ geographic ranges are controlled by their RNs and, ultimately, by
their FNs. Indeed, disentangling the effect of these variables is challenging (Barve et al.,
2011; Harnik, 2011; Peterson et al., 2011; Nurnberg & Aberhan, 2013). Still, the fact that we
recovered a signal for RN breadth and geographic range size, and not for FN breadth,

indicates there is some independence in these measures.

Study considerations.
We focused on the impact of niche breadth and geographic range size on extinction

patterns in Pliocene—recent Atlantic Coastal Plain mollusks. Nutrient declines, however,
have often been implicated in biotic turnover in the region during this time, with the relative
role of temperature and nutrient levels in producing extinction much debated (Stanley, 1986a;

Vermeij, 1989; Allmon et al., 1993; Jackson et al., 1999; Roopnarine & Beussink, 1999;

95



Allmon, 2001). Many have argued that declining nutrients disrupted species’ habitat, which
subsequently enhanced speciation and extinction post-mPWP. The formation of the Central
American Isthmus around ~3.5 Ma was thought to precipitate these nutrient declines by
changing oceanic circulation across the western Atlantic (Allmon, 2001). Although we found
that both RN breadth and geographic range size are predictors of extinction risk, our results
do not exclude nutrient decline as a significant factor in observed biotic turnover.

Mechanistically, our results warrant consideration in other respects. For instance, as
with any paleontological or modern ENM analysis, sampling biases may lead to incorrect
geographic range and niche breadth estimates. Our results, however, hold when more
stringent rules for species’ prevalence are enforced. Sampling biases may also skew the taxa
included in our analysis. In other words, species with genuinely small FNs may not be
detectable in the fossil record, potentially explaining why the FN was not recovered as a
significant predictor of extinction risk. This argument is not particularly compelling here,
though, given that we analyzed species with very small to very large geographic range sizes
(644 to 691,023 km?) and niche volumes (40.6 to 560 and 14.7 to 192 for MVE and CPH
calculations, respectively). Moreover, the frequency distribution for species’ prevalence data
is similar to those for extant taxa (Gaston, 1998; Gaston & He, 2002), indicating our data are
commensurate with neontological data, which are presumably biologically valid data sources
(Fig. 3.2).

Age-area effects may plague analyses that consider geographic range size dynamics
through time (Gaston, 1998; Myers et al., 2012; Jablonski et al., 2013), such that newer
species have yet to achieve full distributional extent, and older species have artificially
shrunken distributions. Neither of these scenarios, however, appears to bias analyses herein.
First, origination times did not vary dramatically between species that are still extant and
those that are now extinct. In other words, studied species originated anywhere from the

Miocene to the Pliocene, irrespective of whether they are now extinct or still extant. Second,
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species that went extinct primarily survived past the late Pliocene and early Pleistocene,
indicating they were not ‘already on their way out’ during the mPWP.

In conclusion, our results provide a mechanism for assessing extinction risk, and
highlight the importance of both RN breadth and geographic range size as extinction
predictors. This information will be vital as we attempt to stem massive biodiversity losses
predicted in the coming decades (Thomas et al., 2004; Tewksbury et al., 2008; Barnosky et
al., 2011; Barnosky et al., 2012). Macroevolutionarily, the argument that specialist species
have higher extinction (and origination) rates still holds (Vrba, 1987; Eldredge, 1989;
McKinney, 1997; Nurnberg & Aberhan, 2013), but must be tempered by additional factors,
such as ease of dispersal to suitable environmental areas and biotic factors such as
competition. We show that the FN does not impact extinction probabilities, which leads to
additional consideration of the arguments presented by Myers and Saupe (2013).
Relationships between the FN, RN, and geographic range size are complex, and a variety of
data inputs, including ecological parameters pertaining to competition and dispersal abilities,
may be required to produce a truly synthetic view of the factors driving macroevolutionary
patterns. Of course, the results presented here come from a particular set of taxa and a
particular geographic region during a climatically distinctive interval of geologic time, and
additional data are required from other taxa and study systems to determine whether our

results can be extrapolated more broadly.
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Appendix S1.1

Appendix S1.1 (a) Maps of distributional data for each of 14 species of marine mollusks in
the western Atlantic Ocean (Fig. S1.1.1-S1.1.4). (b) Results from RCP 2.6 (conservative)
scenario of future change, including suitability maps (Figs S1.1.5-1.1.8), comparison of
models to previously published distributional descriptions (Table S1.1.1), and cumulative
potential suitable area lost and gained (Fig. S1.1.9). (¢) Results from RCP 4.5 & 8.5 scenarios,
with figures depicting latitudinal extent changes (Figs S1.1.10 & S1.1.11), and cumulative
potential suitable area lost and gained for these scenarios (Figs S1.1.12 & S1.1.13). (d)
Nomenclatural note on C. anabathrum.
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Appendix S1.1a. Species distributional data

Figure S1.1.1 Distributional data for Anomia simplex, Bulla occidentalis, Conus anabathrum

and Conus spurius.

A. simplex

C. anabathrum

.09

B. occidentalis

C. spurius
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Figure S1.1.2 Distributional data for Crassostrea virginica, Crepidula fornicata,
Dinocardium robustum and Lucina pensylvanica.

\P‘%S C.virginica \’\%j ] C. fornicata

\N‘%:;/ D. robustum \»’g L. pensylvanica
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Figure S1.1.3 Distributional data for Melongena corona, Mercenaria campechiensis,
Neverita duplicata and Oliva sayana.

< M. corona 1? M. campechiensis
= 2 2
Sy ‘:; %

&

\r%}/ N. duplicata \’g O.sayana
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Figure S1.1.4 Distributional data for Strombus alatus and Terebra dislocata.

\jg‘j S. alatus \kg T. dislocata
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Appendix S1.1b. Niche modeling results for RCP 2.6

Figure S1.1.5 Niche modeling results for A. simplex, B. occidentalis, C. anabathrum and C.
spurius. Four time slices are shown: present day (1991-2010) and three future projections
(2021-2040, 2041-2060 and 2081-2100) from the most conservative scenario of future
change (RCP 2.6). A threshold has been applied, allowing for a maximum of 5% omission
error based on presence data.
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Figure S1.1.6 Niche modeling results for C. virginica, C. fornicata, D. robustum and L.
pensylvanica. Four time slices are shown: present day (1991-2010) and three future
projections (2021-2040, 2041-2060 and 2081-2100) from the most conservative scenario of
future change (RCP 2.6). A threshold has been applied, allowing for a maximum of 5%
omission error based on presence data.
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Figure S1.1.7 Niche modeling results for M. corona, M. campechiensis, N. duplicata and O.
sayana. Four time slices are shown: present day (1991-2010) and three future projections
(2021-2040, 2041-2060 and 2081-2100) from the most conservative scenario of future
change (RCP 2.6). A threshold has been applied, allowing for a maximum of 5% omission
error based on presence data.
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Figure S1.1.8 Niche modeling results for S. alatus and T. dislocata. Four time slices are
shown: present day (1991-2010) and three future projections (2021-2040, 2041-2060 and
2081-2100) from the most conservative scenario of future change (RCP 2.6). A threshold has
been applied, allowing for a maximum of 5% omission error based on presence data.

Present 2021 -2040 2041 -2060 2081 -2100

Strombus alatus
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Table S1.1.1 Comparison of models to previously published distributional descriptions. We
included multiple descriptions only if they conflicted. Models are congruent if all areas
occupied by a species are predicted as suitable. We were less concerned about areas predicted
suitable but not thought to be occupied by species, as these regions may be habitable, but the
species is prevented from occupying them due to biological or dispersal limitations.
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Figure S1.1.9 Cumulative potential suitable area loss and gain over three time slices (2021—
2040, 2041-2060 and 2081-2100) for the lowest-emission scenario of future change (RCP
2.6). Darker reds indicate higher potential suitable area loss or gain. Results are derived from
binary model output and have been normalized based on present-day suitability.

2021-2040 2041-2060 2081-2100

Newly unsuitable

Newly suitable

Qo
e
@
=
=
®
c
=
>
=
()
pd

Newly suitable

119



Appendix S1.1c. Results from RCP 4.5 and 8.5 scenarios

Poleward range shifts.
Even under the higher-emission scenarios (RCP 4.5 & 8.5), there appear to be few

genuine poleward range shifts (Figs S1.1.10 & S1.1.11). For those species whose centroids
are predicted to shift polewards (e.g. Conus anabathrum and Dinocardium robustum for RCP
4.5 or Anomia simplex, C. anabathrum, Crassostrea virginica and D. robustum for RCP 8.5),
the shifts primarily occur due to overall reductions in suitable area — the reductions still
transpire within the former absolute extent of suitability for the species. The average change
in centroid position is 3.46 (MAXENT) and 4.14 (GARP) for RCP 4.5, and 4.37 (MAXENT) and
3.7 (GARP) for RCP 8.5 in an equatorward direction (Table 1.2). As with the RCP 2.6
scenario, predictions for species vary as to how the absolute extent and centroid position

change, which emphasizes the idiosyncratic nature of predicted responses.

Species-specific versus assemblage responses.
Declines in suitable area are predicted to be more severe under the RCP 4.5 and 8.5

scenarios than under RCP 2.6. Thus, even though the particulars of species’ responses differ,
and some species are predicted to retain or even gain suitable area under RCP 4.5 and 8.5, the
dominant signal is one of declining available suitable environmental conditions for marine
mollusks. In RCP 4.5, 11 (MAXENT) or 14 (GARP) of the 14 species are predicted to undergo
some degree of range contraction by the end of the century, whereas in RCP 8.5, 12
(MAXENT) and 14 (GARP) of the species are predicted to experience reductions in suitable
area by the end of the century (Figs 1.4 & 1.5). When MAXENT without extrapolation is
considered, all species experience declines by 2081-2100 under both RCP 4.5 and 8.5. Of the
species predicted to lose suitable area, average decline in 2081-2100 is 46.4% (MAXENT) and
64.5% (GARP) for RCP 4.5, and 61.0% (MAXENT) and 88.7% (GARP) for RCP 8.5. GARP
predicts 99—100% declines in suitable area for half of the species considered (4. simplex,

Conus anabathrum, Conus spurius, Dinocardium robustum, Lucina pensylvanica,
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Mercenaria campechiensis and Strombus alatus) in 2081-2100 for RCP 8.5; MAXENT
predicts similarly high losses for these species (> 45%), with the exception of C. spurius. The
latter species, however, also loses significant suitable regions under the non-extrapolation
iteration of MAXENT. Furthermore, when MAXENT extrapolation is deactivated, suitability in
the RCP 8.5 2081-2100 projections resembles that predicted for the GARP models across all
species. The two MAXENT iterations differ dramatically because we restricted the ability of
MAXENT to extrapolate to conditions outside those in the training region and, potentially, to
novel combinations of climate. As indicated by our environmental overlap analyses (see
‘Environmental overlap’ section of Appendix S1.3), RCP 8.5 2081-2100 projections contain
pixels with almost entirely novel environmental combinations.

When patterns across all species are considered, losses of suitable conditions are
expected across the entirety of the study region, but are concentrated from 20° N to 4° S
(Figs S1.1.12 & S1.1.13). The Yucatan Peninsula and the east coast of Florida exhibit the
greatest change in suitable conditions through time. Local (to species-wide) extinctions in the
RCP 4.5 and 8.5 scenarios are predicted to intensify through time (Figs S1.1.12 & S1.1.13).

The only species predicted to gain, or at least not lose, suitable conditions through all
time slices in RCP 4.5 are Bulla occidentalis, Crassostrea virginica and Conus spurius with
MAXENT (Figs 1.4 & 1.5). In RCP 8.5, only B. occidentalis and C. virginica retain suitable
area with MAXENT (Figs 1.4 & 1.5). GARP predicts increases in suitable area in the first time
slice for C. virginica under both RCP 4.5 and RCP 8.5, but suitable area for this species
decreases in the remaining time slices. As discussed above, when re-running MAXENT
models with extrapolation deactivated, the disparity between the MAXENT and GARP models
diminishes, with MAXENT predicting declines in suitable area for all of the above species by
the end of this century under both RCP 4.5 and RCP 8.5.

Gains in suitable area remain relatively constant (Figs S1.1.12 & S1.1.13), regardless

of the RCP scenario or time slice. Interestingly, these gains drop off in the 2081-2100 time
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slice under GARP because of the dramatic declines in suitable area predicted for all species.
Unlike the RCP 2.6 scenario, relatively little area is predicted to remain continuously suitable
for the majority of species under RCP 4.5 and 8.5 scenarios. The average geographical area
predicted as continuously suitable in all time slices is 52.3% (MAXENT) and 22.0% (GARP)
for RCP 4.5, and 34.2% (MAXENT) and 8.0% (GARP) for RCP 8.5 (Table 1.3). The values are

expressed as percentages of present-day suitable area.
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Figure S1.1.10 Latitudinal extent (light shading) and change in centroid of suitable
conditions (dark line) from the present (P) to each time slice (2021-2040, 2041-2060 and
2081-2100) for the RCP 4.5 scenario. Note that few species are predicted to undergo
significant shifts in the centroid of their suitable conditions, with the absolute extent of
suitable conditions fairly constant. Those species with centroids that are predicted to shift
polewards (e.g. D. robustum) did so because of an overall reduction in suitable area, but the
reduction occurs within the former absolute extent of suitability for the species.
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Figure S1.1.11 Latitudinal extent (light shading) and change in centroid of suitable
conditions (dark line) from the present (P) to each time slice (2021-2040, 2041-2060 and
2081-2100) for the RCP 8.5 scenario. There is more change in centroid position in this
scenario, but the change occurs, for the most part, within the absolute bounds of suitability
for these species. Note that, for species like D. robustum, the absolute range and centroid of
suitable conditions are predicted to shift slightly northwards, whereas for species like

T. dislocata, the absolute range and centroid of suitable conditions are predicted to shift
slightly southwards. This variability highlights the idiosyncratic nature of predicted
responses of these species to changing environment.
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Figure S1.1.12 Cumulative potential suitable area loss and gain for the moderate-emission
scenario of change (RCP 4.5). Darker reds indicate higher potential suitable area loss or gain.
Results are derived from binary model output and have been normalized based on present-
day suitability.
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Figure S1.1.13 Cumulative potential suitable area loss and gain over three time slices (2021—
2040, 2041-2060 and 2081-2100) for the extreme scenario of change (RCP 8.5). Darker reds
indicate higher potential suitable area loss or gain. Results are derived from binary model

output and have been normalized based on present-day suitability.
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Appendix S1.1d. Nomenclatural note: Conus anabathrum

Conus floridanus Gabb, 1869 is a junior synonym of Conus anabathrum Crosse,
1865. Nevertheless, most museum specimens of this taxon are identified as C. floridanus, and

that is the name we used in our online database searches.
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Appendix S1.2

Appendix S1.2 Supporting information on environmental variables and their contributions to
model development (Figure S1.2.1, Tables S1.2.1-1.2.3).

Sensitivity testing of predictor variables

We examined whether the exclusion of bathymetry alters the conclusions of our
modeling efforts; in other words, without bathymetry, are dramatic reductions in suitable area
still obtained under future climate scenarios. As indicated by the ‘no bathy’ column in Table
S1.2.1, reductions of suitable area are similar to those when bathymetry is included.
However, without bathymetry, some species present a reverse trend from that with
bathymetry. Notably, reverse patterns are predicted for Conus spurius, Crassostrea virginica
and Bulla occidentalis. Conus spurius is projected to gain suitable area rather than lose
suitable area under MAXENT. The opposite is true for C. virginica, which is predicted to lose
suitable area when bathymetry is omitted under both modeling algorithms, but gain suitable
area when all variables are used. Under GARP, B. occidentalis is predicted to suffer declines
in suitable area without bathymetry for RCP 2.6, whereas this species is predicted to gain
suitable area with bathymetry. The same situation is occasioned for the MAXENT RCP 8.5
scenario.

We also assessed whether the number of variables and correlation among them (see
Fig. S1.2.1) artificially induced the declines in suitable area observed under future climate
change scenarios. To do so, we modeled the species using a less correlated subset of the
predictor variables (i.e. bathymetry, diatom phytoplankton concentration, nitrogen concentra-
tion, sea surface temperate and sea surface salinity). For most species, significant declines in
suitable area are still obtained using the reduced variable set, although the losses are often
less dramatic than when all variables are used (as, for example, for Conus anabathrum,
Dinocardium robustum, Oliva sayana and Strombus alatus). The patterns diverge more for

RCP 2.6 than for RCP 8.5. As with models run without bathymetry, Crassostrea virginica
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loses, rather than gains, suitable area under both algorithms. Similarly, Conus spurius gains
rather than loses suitable area using GARP (for RCP 2.6) and MAXENT (for RCP 8.6).
These analyses suggest that the results for Conus spurius and Crassostrea virginica
may be more dependent on variable selection, and that gain and loss in suitable area,
respectively, are likely for these species when a reduced variable set is used and when

bathymetry is excluded.
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