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Abstract 

 

The primary objective of this study was to use linear stochastic modeling approach to 

investigate parameters which may be sensitive enough to detect and quantify the changes in 

postural instability (PI) related to the progression in Parkinson’s disease (PD). Data collected in a 

previous study were analyzed in the current study. Participants with mild PD (n=13), moderate PD 

(n=10) and age range match healthy controls (HC, n=21) were instructed to stand in a comfortable 

self-selected natural stance on a force platform in both eyes open (EO) and eyes closed (EC) 

conditions. The foot-floor reaction forces were used to calculate the center of pressure (COP) time 

series. This COP time series was fitted by two different linear stochastic models: 1) an 

autoregressive (AR), and 2) an autoregressive moving average (ARMA) model.  The postural 

control system was modeled as an inverted pendulum to describe pure body mechanics and a 

proportional, derivative and integral (PID) strategy was assumed for balance regulation. Swiftness, 

damping and stiffness parameters were extracted from the AR model. Natural frequency and 

damping ratio were extracted from the ARMA model.  

The statistical analysis (ANOVA) of these parameters revealed significant differences in 

stiffness and swiftness parameters between the HC and moderate PD population in the EO 

condition. These three parameters showed trends with progression of PD. The swiftness parameter 

showed decreasing mean values as PD severity increased, indicating that PD caused slower 

reactions to small deviations from equilibrium when compared to healthy controls. The mild and 

moderate PD, compared to HC, demonstrated by higher mean values of stiffness, suggesting a 

more rigid control strategy. The analysis of damping parameter revealed that the PD, compared to 

HC, may have a reduced ability to attenuate sway velocity during quiet stance as indicated by 

lower mean values of damping parameter and damping ratio. The natural frequency did not show 

significant trends in EO condition, but revealed an increasing trend with progression of PD. This 

could indicate that the PD could have larger number of deviations of COP from equilibrium. The 

analysis of effect of condition (EO, EC) revealed significant differences in all the five parameters. 

The stiffness, damping parameter and damping ratio had higher mean values for EO, compared to 

the EC condition, indicating the vital role that the visual feedback plays in detecting small 

perturbations from equilibrium leading to a better posture regulation in EO condition. The 

swiftness parameter and natural frequency indicated higher mean values in EC, compared to the 
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EO condition, suggesting that the various sensory cues might be weighted differently in EO and 

EC conditions.   

Future studies should investigate the sensitivity of these calculated parameters to changes 

in PI in PD using a larger sample size and longer duration of trials. Also the variations in these 

parameters in response to dynamic tasks such as gait initiation and balance recovery should be 

considered in future studies.   
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CHAPTER ONE: INTRODUCTION 

 

Background and motivation. 

  Postural Instability (PI) is one of the most debilitating challenges in Parkinson’s disease 

(PD) due to the associated increase in falls, fractures, nursing home placements and loss of 

confidence in PD patients. This disease in North America alone is estimated to affect around 1.5 

million people [1, 2]. There is no current treatment to slow or halt the neurodegenerative 

progression of this disease. The total deaths resulting from PD in 2013 alone was estimated to be 

around 103,000 [3]. Falls related to PD are severe and lead to hip fractures and other injuries. 

These sustained injuries after a fall can have significant impact on the person’s mobility, lifestyle 

and confidence. Therefore it is important to understand the changes in postural control with the 

progression of PD.  

Analyzing the whole body center of pressure (COP) is one of the most commonly 

employed methods for studying postural dynamics. Several studies in the past have explored 

postural sway and its control related to the central nervous system through using different task 

conditions such as balance recovery and gait initiation [4, 5, 6], movable platforms to evoke 

perturbation [7, 8], multisensory fusion methods [9, 10, 11, 12] and quiet stance approaches [13, 

14, 15, 16, 17]. While these past studies have helped describe human postural control, the timing 

of the onset of PI and its subsequent changes with PD progression related to the COP time series 

remains unclear. A thorough understanding of the changes in the COP time series with increasing 

PD severity could result in sensitive measures which could not only help in early clinical diagnosis 

of PI, but can also indicate its subsequent progression in PD.  

The oscillating behavior inherent in the COP measure even during quiet standing presents 

a unique challenge in analyzing the postural dynamics. Therefore the study of the COP time series 

by traditional averaged COP measures alone may be insufficient. Using linear stochastic models 

and its parameters could present a more in depth understanding of the changes in the COP time 

series in terms of physical parameters. These physical measures can also help improve 

understanding of the differences in the control strategies adopted between healthy controls, mild 
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PD and moderate PD subjects.  Lastly these measures in the long run could help in early PI 

detection and its subsequent progression with PD. 

Specific aims.  

The analysis of COP time series data by using linear stochastic models have been proven 

to yield physical parameters which could potentially be used for assessing the ability to maintain 

posture [18]. Motivated by this fact, the current study aimed at calculating various physical 

parameters by fitting two different linear stochastic models to the COP time series data collected 

during postural sway (quasi-static quiet stance). These calculated parameters were then used for 

analyzing the changes in the COP time series associated with increasing PD severity. It was 

hypothesized that some parameters would be able to represent differences in control strategy 

adopted by the three groups (healthy controls, mild PD and moderate PD) in two different 

conditions (eyes open (EO) and eyes closed (EC)). 

Thesis content. This work is organized into four chapters. Chapter 1 consists of an introduction to 

the area of study. Chapter 2 consists of extensive background and literature review concerning the 

relevant works published. Chapter 3 consists of the current study in the form of a manuscript 

reporting the background, methods and results of the analysis using the linear stochastic models 

applied to COP time series. Chapter 4 consists of a brief summary of this study, conclusion and 

future work.  
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CHAPTER TWO: BACKGROUND 

 

Significance of Parkinson’s disease 

Parkinson’s disease (PD) is a neurodegenerative progressive disorder that affects the motor control 

system, causing postural instability (PI), slowed movement, rigidity, tremors and subsequently an 

increase in fall risk in the affected population. The motor related symptoms of PD result from 

death of cells which are responsible for the production of dopamine in the central portion of the 

brain called substantia nigra. Postural instability (PI) is one of the most debilitating challenges in 

PD because it causes an increase in falls, which results in fractures, nursing home placements and 

loss of confidence in PD patients. In North America alone it is estimated to affect around 1.5 

million people [1, 2].  The severity of PD symptoms worsen with disease duration.  There is no 

treatment to slow or halt the neurodegenerative progression of this disease. In 2013 alone PD was 

the cause for approximately 103,000 deaths [3]. Hence there is a need to understand PI and 

determine parameters which are sensitive to detect the onset and the progression of PI in PD. Early 

detection of PI can help clinicians to better assist and provide the necessary therapy for prevention 

of falls and fall related consequences.  

Postural Instability 

Postural control is maintained by the central nervous system with the help of proprioceptive, 

vestibular, loco motor system and integrated visual feedback [5]. The death of the neurons caused 

as PD progresses leads to impairment of postural control and equilibrium. It is estimated that 

approximately 60-70% of the neurons in the substantia nigra are lost at the onset of clinically 

significant PD symptoms [6].  The study of postural control can be done using three parameters 

namely the base of support (BOS), center of pressure (COP) and center of mass (COM). The base 

of support (BOS) is basically characterized by the area of the surface supporting the body. In the 
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case of quiet standing, the BOS is the area circumscribed by the feet. The COP is a dynamic 

measure which indicates the point of application of the ground reaction force vector of the body 

obtained from a force platform. The COM of the body is the point location at which the entire 

mass of the system is concentrated. The most commonly used measure for balance and gait studies 

is the COP. The location of the COP at any point in time for the human body during quiet standing 

should be within the area defined by the BOS. In healthy populations the central nervous system 

makes use of the various sensory systems and ensures that the COP does not move outside of the 

base of support [7]. The estimation of the COP position in the anterior-posterior direction is done 

by using the following equation:   

𝐶𝑂𝑃 =  √(−
𝑀𝑦+𝐹𝑥∗𝑑𝑧

𝐹𝑧
)

2

+  (
𝑀𝑥−𝐹𝑦∗𝑑𝑧

𝐹𝑧
)

2

 . 

Within this equation, 𝐹𝑥 and 𝐹𝑦 are the forces acting in the anterior-posterior (AP) and medial-

lateral (ML) directions parallel to the top surface of the force plates, 𝐹𝑧 is the force acting in the 

perpendicular direction to the top surface of force plates, 𝑀𝑥 and 𝑀𝑦 are the moments acting in the 

AP and ML directions parallel to the top of the force plates, 𝑑𝑧 is the distance below the force plate 

top surface where the reference origin is located. The location of the net force vector applied by 

the body on the force platform depends on the foot placement and the control of the muscles 

producing moments about the joints of the body controlling posture (e.g. ankle, knee, hip, etc.).  

The information about the movement of head in space is provided by the vestibular system which 

has organs located in the inner ear. The information about the pain, touch, pressure, temperature 

and proprioception are provided by the skin and deep pressure sensors in the human body [4, 8]. 

For healthy gait and postural control, all the above mentioned signals must be appropriately 
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utilized to compensate for deviations from the equilibrium by the central nervous system. PD 

impairs this process and thus eventually results in PI symptoms.  

Since the COP is a non-stationary measure, the oscillating behavior of the body sway is irregular 

and stochastic by nature [5]. Hence the study of postural sway by traditional statistical analysis 

methods alone may be insufficient. Therefore it is useful to analyze the output COP data using 

model based analysis methods that consider the brain as the controller. It is also beneficial if a 

description of PI can be characterized in terms of physical parameters such as stiffness or damping 

in order to help in PI detection and subsequent progression in PD.  

Previous methods used to analyze postural dynamics 

Disturbance Mechanisms. In order to accurately detect postural dynamics, a reliable and 

reproducible method is necessary. Several methods have been implemented in various studies and 

are described in the following paragraphs.  

To study the COP response to visually induced postural sway, several movable platform methods 

have been used to assess the effects of vestibular impairments or aging [9, 10]. In these studies a 

moving posture platform with an embedded force plate and a controlled visual field were utilized 

to assess the effects of surface translation and vision on the whole body COP. The visual field was 

controlled using a frontal wall and two lateral walls encompassing the entire visual periphery of 

the subject. Participants stood on a force platform driven sinusoidally by a servo motor at a certain 

frequency and a peak to peak amplitude displacement. The COP response was recorded with the 

platform stationary and then later made to move at a predetermined frequency for the rest of trial 

duration. The output COP data [see [11] for detailed description of COP estimation] were analyzed 

with various spectral analysis methods such as discrete Fourier transform and several statistical 

measures such as average frequency, average frequency at each time and the standard deviation in 
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frequency at each time. Statistical analysis revealed that there was time dependent and frequency 

dependent differences between the healthy and patients with vestibular impairment during visual 

perturbation. However there were no significant differences in the average frequency of sway and 

the spread about the frequency during quiet standing. Also there were differences in relative energy 

levels of sway prior to the stimulus [9]. In the study assessing young versus elderly subjects [10], 

there were no relative significant differences in the COP response except that the elderly showed 

a greater overall sway during quiet standing.  

 

Induced stimulus or vibration methods. These methods use external devices capable of producing 

stimulus at the required frequency and amplitude in order to instigate postural sway [5, 36]. In an 

induced vibration postural stay study by Johansson et al., participants stood on a force platform 

and a stimulus was applied through a device attached to the calf muscles. The application of the 

stimulus frequency was done pseudo randomly. The sagittal perturbation and the corresponding 

posture control was modeled based on the “ankle strategy”. The system was then described using 

an inverted pendulum to explain pure body mechanics with a proportional integral derivative (PID) 

control model to investigate balance regulation. The proportional (k), derivative (η) and integral 

(ρ) coefficients were determined from an auto regressive moving average (ARMA) model transfer 

function denominator. The normalized form of the transfer function derived from the inverted 

pendulum dynamics results in three output parameters namely swiftness, stiffness and damping. 

These parameters are used to quantitatively describe the postural sway in terms of one swiftness 

parameter and two stability parameters (stiffness and damping). They showed that these 

parameters could be potentially used to describe the human postural control.  
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Multisensory fusion methods. In order to better understand the stochastic structure of postural 

sway, several multisensory fusion methods have been employed [12, 13, 14, 15]. In a study by 

Kiemel et al., [12] the effect of four sensory conditions namely light touch, vision, light touch and 

vision, and neither touch nor vision on postural sway was explored. A visual display capable of 

displaying the computer generated whole field patterns consisting of random dots was placed in 

front of the subject during quiet stance. A horizontal touch plate was placed at the hip level of the 

subject on which the subject would place the tip of the finger. A sensor which is used to track the 

position of the body center of mass was attached to the hip of the subject. The sensor data in the 

ML direction were measured using an ultrasound position tracking system. An auto regressive 

moving average (n, n) (ARMA (n, n)) model was used to fit the ML data using the maximum 

likelihood method based on a predefined probability density function. The Eigen values and the 

coefficients were calculated by defining an auto covariance function. The significant findings of 

this study showed that the properties of postural sway would largely change if all sensory 

information related to velocity were eliminated. 

Jeka et al. [14] sought to understand the effects of changing contact forces at the finger tip of the 

subject on postural sway. Subjects stood on a force platform and a touch plate is placed at the hip 

level of the subject. The torque generated by a servo motor was used to oscillate the touch plate 

parallel to the front plane of the subject at various predetermined frequencies and a linear second 

order model was fitted to the output data. This study showed that postural control parameters are 

not fixed but vary depending on the moving frame of reference and that the spatial position and 

velocity information are provided by the somatosensory system.    
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Stationary quiet stance approach. Several different approaches have been used to study the 

control strategy adopted by the human body during quiet standing in both eyes open and closed 

conditions [16, 17, 18, 37, 38, 39]. Didier et al. [16] used fractal analysis methods such as 

detrended fluctuation analysis (DFA), stabilogram diffusion analysis (SDA) and spectral analysis 

methods to understand the persistent and anti-persistent correlations in the postural sway data. An 

auto regressive first order model (AR (1)) model was fitted to the COP velocity data.  The study 

results suggest that the COP velocity is usually bounded between upper and lower limits and that 

the control action is activated based on the velocity data crossing a certain threshold value. Further, 

they demonstrated that DFA analysis on the velocity data revealed a crossover that was previously 

not visible with DFA applied to position data.  However, the results also show that the conclusions 

drawn from such analysis methods are strongly dependent on the specific algorithms and procedure 

used for the analysis. 

Sabatini et al., [17] used a fractional autoregressive integrated moving average (FARIMA) model 

to fit COP data from quiet standing (postural sway). They showed that postural sway could be 

modeled as a self-similar, random walk process with anti-persistent correlation obtained by 

summing the non-Gaussian random variables. The correlation between these variables is shaped 

by the linear time invariant (LTI) low pass filter at small time lags. Several quantitative parameters 

were introduced, namely strength of stochastic driving, root mean square value of time differenced 

COP motion, damping ratio, DC gain, natural frequency of the filter and an anti-persistent 

magnitude or factor called the Hurst exponent [see 19 or 20 for description of Hurst exponent]. 

They also argue that the healthy subject groups can be divided into two separate groups depending 
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on the sensory cues adopted by the particular subject (i.e. some healthy subjects rely more on 

visual feedback and some others rely on non-visual feedback such as touch or feel .). 

Previous methods used for COP data analysis 

Sway parameters and statistical analysis methods.  In addition to looking at the influence of 

different postural sway tasks and the effects of age or vestibular function, several studies have 

assessed biomechanical tasks in order to understand how motor control and balance are affected 

by neurophysiological diseases. Specifically, to study the effect of Parkinson's disease (PD) on 

balance recovery and postural sway, several traditional statistical analysis methods has been 

employed. These studies involve extracting several biomechanical parameters in both quasi-static 

(quiet standing) and dynamic tasks (such as gait initiation or balance recovery) and then used to 

detect the onset of PI prior to clinical presentation and also to check if these measures persist with 

PD progression [7, 18, 20, 21]. In studies by McVey et al. and King et al. [7, 21], they investigated 

the differences in balance recovery strategy between healthy young versus healthy elderly [21] and 

healthy controls versus mild parkinsonian subjects [7]. Both studies utilized a backward pull and 

release strategy to study the COP response in balance recovery. Several measures related to 

kinematic, temporal and kinetic parameters were extracted from the response.  Specifically, step 

length, step height, ankle angle, reaction time, weight shift time, step duration etc. were extracted 

to determine if group differences (i.e. young versus old or healthy versus PD) were present in the 

balance recovery response. 

Stylianou et al.  [20] assessed whole body COP quiet standing (postural sway) to extract the Hurst 

exponent [see 19 or 22 for details on Hurst exponent] in addition to postural sway parameters that 

characterized the overall COP trace. Several differences in the output measures related to the COP 

were found between the healthy controls and PD groups in both ML and AP directions.  
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Barnds et al [18] analyzed COP data using principal component analysis (PCA) in order to 

determine if a combination of traditional postural sway COP measures could differentiate 

preclinical PI and its changes with PD progression. Correlation matrix PCA models with COP and 

clinical parameter inputs were utilized for selection of sensitive parameters in analyzing the PI 

between healthy, mild and moderate PD subjects. The resultant PCA models were able to 

significantly differentiate both preclinical onset of PI as well as changes with increasing clinical 

disease progression.  

 

However, a significant drawback of averaging the COP measures as argued by Newel et al. [26] 

is that averaged measures can conceal the underlying control principles for the observed postural 

dynamics. Hence emphasis is laid on the time series approaches.  

 

Fractal analysis techniques. One of the challenges in dealing with COP data is its property as a 

non-stationary signal (i.e. frequency content changes with time). In order to deal with this, several 

fractal analysis techniques such as de-trended fluctuation analysis (DFA) and stabilogram 

diffusion analysis (SDA) have been applied to analyze COP postural sway data [16]. Both SDA 

and DFA are used for characterizing the serial correlation properties in the time series data. They 

depend mainly on the diffusion properties of a time series and are based on a scaling law [see 16 

for details]. The SDA mainly calculates the mean variance of COP sway displacement relative to 

the time interval. A bi-logarithmic diffusion plot is generated and the slope of which is used to 

assess the correlations. DFA is also similar to SDA except that the time series is first integrated 

and the mean standard deviation of this integrated series is determined as a function of time 

interval. Then a parameter such as the average absolute maximal velocity (AAMV) is calculated 
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to show the empirical threshold for the postural sway. Delignières et al [16] suggested that postural 

control is mainly based on COP velocity and that the control system (brain) regulates the posture 

once the COP velocity attains a value beyond a certain threshold value. However other studies [24, 

25] have asserted that when the above methods are applied to COP data (i.e. DFA and SDA), the 

postural sway control is based on position rather than velocity. They showed that sway 

displacements are unchecked until the displacements exceed a certain predetermined threshold 

value. Therefore the conclusions drawn from the above techniques are largely dependent on the 

particular properties of algorithms and the procedures used.  

 

Wavelet analysis techniques.  Wavelet analysis is used to study the postural sway by decomposing 

the COP signal into multiple time scales. Two different variations of the wavelet analysis are 

commonly used, namely continuous wavelet transform (CWT) and discrete wavelet transform 

(DWT) [see [33] for details]. The CWT expresses the signal in terms of wavelet coefficients for a 

certain time scale and time shift. However this requires large computational resources. Therefore 

DWT is often employed. The DWT involves repeated filtering of the signal using two different 

filters. The DWT decomposes a signal into two constituent signals, namely, an approximation 

signal and a detail signal. The approximation signal is obtained by passing the signal through a 

low pass filter and the detail component of the signal is obtained by passing the signal through a 

high pass filter. These filters are derived from the wavelet function and a scaling function [see [34] 

appendix for details on wavelet transforms]. The obtained approximation signals are further 

decomposed into approximate and detail components. This process is done iteratively until a set 

of approximation signals are obtained at different scales along with a final gross approximation of 

the signal. Chagdes et al. [32] used DWT to assess the COP during quiet postural sway. After 
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applying the DWT, the energy content at different time scales was calculated and several 

parameters such as average energy percentage, average energy percentage change in both eyes 

open and eyes closed conditions were calculated. The study results suggested that the vision 

controls postural sway at lower frequencies.   

 

System identification approaches.  Parametric system identification methods have been employed 

by several studies to understand PI [5, 12, 13, 27, 37, 40]. The basic principle behind these methods 

is that a COP time series data is fitted to parametric models such as autoregressive (AR), 

autoregressive moving average (ARMA), or autoregressive integrated moving average (ARIMA) 

models (see [28] for detail descriptions of such models) of a certain order. This order is either 

determined by using auto correlation (ACF) and partial auto correlation plots (PACF) or by using 

several information criterions available such as Akaike’s information criterion (AIC) [30], 

Bayesian information criterion (BIC) [29] or by using maximum likelihood methods after defining 

a probability density function. These model parameters are then used to identify differences in the 

postural sway time series data.  

Johansson et al., [5] applied both non parametric and parametric identification methods. For the 

non-parametric approach, methods such as auto spectrum analysis, cross spectrum analysis and 

coherence analysis were used. In the parametric system identification approach, an ARMA system 

of third order was fitted to the data and three parameters namely swiftness, stiffness and damping 

were determined from the ARMA model transfer function denominator by assuming inverted 

pendulum dynamics. A PID control strategy was assumed for postural control. They showed that 

these three parameters identified from the ARMA model transfer function could be potentially 

used for the assessment of postural sway.  
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Specifically, Kiemel et al. [12] used an ARMA (n, n) model to fit postural sway data by application 

of a maximum likelihood estimation technique. This technique involves defining a likelihood 

function based on the product of conditional probability densities. The best order for the model is 

determined by subjecting the models to a pairwise maximum likelihood ratio test at a significance 

level of 0.05. Once the order is identified, an auto covariance function is defined. The eigenvalues 

and coefficients of the auto covariance functions were used to define certain parameters such as 

slow decay fraction, eigen frequency, slow decay parameter etc.   

Jeka et al.  [13] also used a parametric identification method by fitting an ARMA (n, n-1) model 

to the COP data to obtain measures of postural sway in different experimental conditions (fixed, 

foam, sway). The method of maximum likelihood was employed for fitting the parameters to the 

model.  Again an auto covariance function was defined and the eigenvalues and coefficients were 

used to define certain parameters such as eigen frequency, damping, slow decay rate etc.  

Kowalczyk et al. [27] also employed an ARMA modelling approach to study of postural sway. In 

this study, the postural sway data was generated from a linear time invariant system (LTI) and 

non-linear models of human balance. The outputs of these processes were then analyzed using the 

ARMA models. Also, the power spectrum obtained from experimental data (quiet postural sway) 

was fitted by using ARMA models of low order. This order was determined by application of 

Akaike’s information criterion (AIC), where a lower AIC value reflects a better fit model [30].  

[31]. The study results suggest that both intermittent (switched) systems and linear continuous 

systems can be modeled using the ARMA model approach.  

A brief description of AR and ARMA models 

Generally in order to study the behavior of a system from the measured output data, it is beneficial 

to identify a parametric model for the system. Using the identified model, several parameters can 

be calculated which can be used to understand a particular process. There are several models used 
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to describe a random or stochastic process. For example,  auto regressive (AR), moving average 

(MA), auto regressive moving average (ARMA), auto regressive integrated moving average 

(ARIMA), and Box Jenkins models are commonly used. The details of these models can be found 

in references [28], [31] and [36]. Two of the above mentioned models (AR and ARMA) that are 

used in the current study will be explained briefly in the following section.  

Auto regressive (AR) model. An auto regressive (AR) process is a parametric description of a 

random process which assumes that the output of a stochastic system depends linearly on its own 

previous states or values. The general difference equation of an AR (n) process where ‘n’ 

represents the order of the process is as follows: 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + 𝑎2𝑦(𝑡 − 2) + ⋯ +  𝑎𝑛𝑦(𝑡 − 𝑛) =  𝑒(𝑡)   (2.1) 

 Where, 

𝑦(𝑡) is the output of the process at a time ‘t’. 

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 are the auto regressive (AR) coefficient terms. 

𝑒(𝑡) is the white noise term. 

Rewriting the above equation using the back shift operator we get: 

𝑦(𝑡) +  𝑎1𝑞−1𝑦(𝑡) +  𝑎2𝑞−2𝑦(𝑡) + ⋯ +  𝑎𝑛𝑞−𝑛𝑦(𝑡)  =  𝑒(𝑡).   (2.2) 

 Using the following substitution in equation (2.2): 

𝐴(𝑞) = 1 + 𝑎1𝑞−1 + 𝑎2𝑞−2 + ⋯ + 𝑎𝑛𝑞−𝑛              

The equation becomes: 
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𝑨(𝒒)𝒚(𝒕) = 𝒆(𝒕)         (2.3)  

Equation (2.3) gives the general representation of the AR (n) model. Here 𝐴(𝑛) terms are called 

auto regressive (AR) terms. Thus from equation (2.3) it can be seen that an AR (n) model can be 

viewed as an all pole system with white noise as its input. In the study that is the subject of this 

thesis, there was no externally applied stimulation or signal during the data collection process 

(quiet postural sway). Hence we do not have a particular mathematical description of the input. 

Thus an AR (n) model with white noise as the input was used for the first method of the study.  

Auto regressive moving average (ARMA) model. A parametric model which depends on not only 

the previous states of the system but also on the previous shocks or errors is termed as an ARMA 

(n, m) process. Where ‘n’ and ‘m’ are the orders of auto regressive (AR) and moving average (MA) 

terms respectively. The difference equation of an ARMA (n, m) model is given below: 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + 𝑎2𝑦(𝑡 − 2) + ⋯ +  𝑎𝑛𝑦(𝑡 − 𝑛) =  𝑐1𝑒(𝑡 − 1) +  𝑐2𝑒(𝑡 − 2) +

⋯ + 𝑐𝑚𝑒(𝑡 − 𝑚) + 𝑒(𝑡).         (2.4) 

In which: 

𝑦(𝑡) is the output of the system at time ‘t’, 

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 are the auto regressive (AR) coefficient terms, 

𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑛 are the moving average (MA) coefficient terms, and 

𝑒(𝑡) is the white noise term. 

Rewriting the above equation by employing the back shift operator we get: 
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𝑦(𝑡) +  𝑎1𝑞−1𝑦(𝑡) +  𝑎2𝑞−2𝑦(𝑡) + ⋯ +  𝑎𝑛𝑞−𝑛𝑦(𝑡)  =  𝑒(𝑡) +  𝑐1𝑞−1𝑒(𝑡) +

 𝑐2𝑞−2𝑒(𝑡) + ⋯ +  𝑐𝑚𝑞−𝑚𝑒(𝑡).       (2.5) 

Using the following substitutions in equation (2.5): 

𝐴(𝑞) = 1 + 𝑎1𝑞−1 + 𝑎2𝑞−2 + ⋯ + 𝑎𝑛𝑞−𝑛              

𝐶(𝑞) = 1 + 𝑐1𝑞−1 + 𝑐2𝑞−2 + ⋯ + 𝑐𝑚𝑞−𝑚 

We get: 

𝑨(𝒒)𝒚(𝒕) = 𝑪(𝒒)𝒆(𝒕)        (2.6) 

It can be seen from equation (2.6) that the ARMA (n, m) process provides adequate freedom for 

describing the process in terms of the previous outputs or states and the disturbance term.  For this 

study an ARMA (2, 1) model was used to study characteristics of postural sway in terms of modal 

properties of the ARMA system such as damping ratio and natural frequency. The method used 

for estimation of ARMA parameters is the prediction error (PE) method [see [28] chapter 7 for 

detailed description of PE methods]. The main principle behind the PE methods is estimating the 

error obtained by comparing the observed data and the model output. This error obtained is then 

minimized by defining a quadratic norm. This iterative procedure is done till the error is less than 

a set tolerance value or if sufficient improvement is not observed from one step to the next.       

Significance of the current study. Currently, there is an unmet need in PD research to better 

characterize the onset and progression of PI with PD progression. A robust method that can 

accurately detect the onset of PI and can quantify the progression of PI in terms of physical 

parameters could be used to help delay the onset of falls and reduce fall risk through the use of an 

intervention. An accurate screening method could not only help clinicians better assist in reduction 
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of falls in PD patients but also could help the clinicians to determine whether a treatment prescribed 

has had a positive or negative impact on the patients motor functions.  While past studies have 

helped describe human postural control, the timing of the onset of PI and its subsequent 

progression related to the COP time series remains unclear. Hence a method which can quantify 

and indicate the changes in COP time series in terms of physical parameters is necessary. Therefore 

the current pilot study is aimed at evaluating a method in which the long term goal is to potentially 

quantify and aid in understanding the changes in COP time series between healthy controls and a 

range of PD severities. The results from this study could also help to improve our understanding 

in whether linear system identification methods can be used to extract parameters that are sensitive 

to the clinical progression of PD.  
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CHAPTER THREE: STUDY 

 

Background. Postural instability (PI) increases with Parkinson’s disease (PD) progression. 

Quantifying PI with PD progression remains an unmet need. We applied system identification 

methods to the center of pressure (COP) time series data and utilized model parameters to quantify 

the changes in PI. We hypothesized that the stiffness and natural frequency parameters would 

increase, while damping and swiftness parameters would decrease with PD progression.   

Methods. Postural sway was previously measured using force plates in healthy controls (HC, 

n=21), participants with mild PD (n=13) and moderate PD (n=10) in both eyes open (EO) and 

closed (EC) conditions. The COP data were used in the current study to fit an auto regressive (AR) 

model and an auto regressive moving average (ARMA) model. We extracted damping, swiftness 

and stiffness (AR); and damping ratio and natural frequency (ARMA). ANOVA was used to 

investigate the effects of group (HC, Mild-PD, Moderate-PD) and condition (EO, EC). 

Results. AR model: Damping and swiftness decreased and stiffness increased with PD 

progression. No condition effects were found in the damping and swiftness parameters. Within the 

EO condition, the stiffness parameter was significantly different between HC and moderate PD, 

but not between mild and moderate PD. Within the EC condition, no group effects were found.  

ARMA model: Damping ratio and natural frequency showed no significant group efects, although 

the condition effect was significant. EO, compared to EC, had a larger damping ratio and a smaller 

natural frequency.   

Conclusions. Increase in stiffness and swiftness parameter values from HC to mild PD, and from 

mild to moderate PD suggests that the PD may results in a higher ankle joint rigidity and offer 

slower response to small deviations from equilibrium. The decrease in damping with PD 

progression suggests that there is a decrease in the ability of the controller to attenuate sway 

velocity. The natural frequency and damping ratio parameters obtained through ARMA model 

indicate a larger and faster deviations of COP measure from equilibrium and a decreased ability to 

provide adequate damping to perturbations in mild and moderate PD, compared to HC. The 

significant differences in the parameters based on condition (EO vs EC) indicates that the visual 

feedback plays a crucial role in balance regulation by detecting the fine deviations from 
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equilibrium which could aid in attenuation of body sway in EO condition. Future studies with 

longer duration of trials and larger group sample size could help in better understanding of the 

effect of PD progression in terms of the calculated parameters.  

1. Introduction 

Parkinson’s disease is a neurodegenerative disorder which affects the motor control functions of 

the human body. The prominent effects of this disease are postural instability (PI), tremors, slowed 

movement, and increased rigidity, resulting in an increase fall risk. In North America alone 

approximately 1.5 million people are diagnosed with PD [1, 2].  Human posture is maintained by 

the central nervous system with the help of feedback systems such as proprioceptive, loco motor, 

vestibular system and visual. The death of the dopamine producing neurons caused by PD leads to 

impairment of postural control and equilibrium. It is estimated that approximately 60-70% of the 

neurons in the substantia nigra are lost at the onset of clinically significant PD symptoms [3]. The 

early detection of PI and its subsequent development with PD progression is one of the most 

significant unmet challenges and an ongoing need in PD. A sensitive quantitative assessment in 

detection and progression of PI with disease progression will help reduce fall risk by enabling 

clinicians to implement fall reducing therapies before the first fall occurs.  

The study of PI is commonly assessed through analyzing the whole body center of pressure (COP) 

time series. One important challenge in the study of PI is understanding the oscillating behavior 

of the system during quiet stance. This COP oscillating behavior is irregular and stochastic by 

nature. Hence to better understand postural dynamics and the correlations between biological and 

control variables responsible for PI, it is beneficial to apply model based identification methods to 

the COP time series.  

Numerous experimental methods have been applied for studying postural control. Several 

disturbance mechanisms such as moving platforms and visual surround methods [4, 5] have been 

employed to evoke perturbations in body sway to study the time varying characteristics of postural 

sway. Multisensory fusion techniques [6, 7, 8, 9] have been applied to study the effect of different 

sensory conditions such as touch, vision, etc. on postural control. Johansson et al. [10] used a 

vibration or induced stimulus on calf muscles during quiet standing to identify feedback 

parameters useful in maintaining postural control. They showed that postural sway can be modeled 

as a linear third order stochastic system. Several studies [16, 17, 18] also utilized a quiet stationary 
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stance to analyze the COP displacement and velocity to understand the postural dynamics during 

postural sway.  

Different analysis methods have been employed for analyzing COP displacement and velocity. 

Traditional statistical analysis and sway parameter approaches (i.e. discrete COP measures: sway 

path length, sway path range) [13, 14, 15, 16] have been employed to understand the COP behavior 

in both quiet standing (postural sway) and dynamic tasks such as gait initiation. Techniques such 

as Principal Component Analysis (PCA) and Hurst exponent analysis, along with calculation of 

postural sway parameters, are used to determine biomechanical markers aimed at helping with 

detection and progression of PI in PD. One drawback of averaging the COP measures, as argued 

by Newell et al. [17], is that averaging could conceal the underlying control principles of the 

observed postural dynamics. Therefore, several fractal analysis techniques have been applied such 

as detrended fluctuation analysis (DFA) and stabilogram diffusion analysis (SDA) [18, 19, 20]. 

Both SDA and DFA characterize the serial correlation properties in the time series data. They 

depend mainly on the diffusion properties of a time series and are based on a specific scaling law.  

Didier et al. [11] indicates that the conclusions drawn from DFA and SDA are largely dependent 

on the particular properties of the algorithms and procedures used.  

Wavelet analysis techniques have been employed to decompose the COP time series signals into 

multiple time scales in order to study postural sway [21, 22]. Chagdes et al. [21] applied discrete 

wavelet transform (DWT) techniques to decompose the COP signal into different time scales and 

energy content at such time scales. System identification methods have been used to analyze 

postural sway data [10, 6, 7, 23]. Johansson et al.  [10] showed that postural sway can be modeled 

by a linear third order stochastic system. Kiemel et al. [6] and Jeka et al. [7] used linear stochastic 

models to fit the COP data to study the effect of various sensory conditions and the sensory 

information fusion from various modalities for upright stance. Kowalczyk et al. [23] used system 

identification methods to show that both intermittent (switched) systems and linear continuous 

systems can be modeled using the auto regressive moving average (ARMA) modelling approach.  

The current study applies the linear stochastic modelling approach to study changes in COP time 

series associated with PD. The current study investigates the COP time series during postural sway 

through modeling the postural control system in terms of an inverted pendulum model with 

torsional spring and viscous damping [10]. The approach is similar to that used by Johansson et 
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al. [10] in order to identify feedback parameters useful in evaluating posture control in young 

healthy subjects.  

Toward this goal, we fit two different models, an auto regressive (AR) and an auto regressive 

moving average (ARMA) model, to the COP times series data. The Laplace transform method is 

used for input/output transfer function analysis. The coefficients of the two models are estimated 

by application of the prediction error (PE) method. The models are selected based on best fit 

percentage and test of autocorrelation of residuals. From the AR model transfer function 

denominator, three parameters namely stiffness, swiftness and damping are extracted by 

comparing it with the derived inverted pendulum dynamics. From the ARMA model poles, the 

damping and natural frequency are calculated. Group (healthy, mild PD and moderate PD) and 

condition (EO or EC) effects are investigated using the ANOVA analysis (MATLAB, Natick, MA, 

USA). The obtained results are also compared with the similar previous studies published. Finally 

a power analysis on select parameters is done to demonstrate the required sample size for the 

application of these two models for studying COP time series changes with PD progression.   

 

2. Methods 

2.1. Subjects. The participant’s demographic details and methods used have been explained in 

detail in previously published work [13, 14, 15].  A brief description is given here. Twenty one 

age-range matched healthy controls (mean age 66 ±7.5 years), thirteen subjects with mild PD 

(mean age 62 ± 8.2 years) and ten subjects with moderate PD (mean age 68 ±3.9 years) participated 

in this study after providing written consent as approved by the University’s institution review 

board. The PD patients were recruited from the Kansas University Medical Center Parkinson’s 

disease and movement disorders clinic. PD patients had their diagnosis confirmed by a movement 

disorder specialist. They could stand without external help and had no significant depression, 

dementia or any other neurological disorders unrelated to PD. The PD patients were asked to 

maintain their regular medication for the experiment. The healthy subjects did not have any 

significant head trauma, neurological disease or any musculoskeletal impairments. Table 3.1 

shows the details of the subjects for this study. 

 

2.2. Tasks. Participants were instructed to stand in a comfortable self-selected natural stance on a 

force platform with their arms in a relaxed position at their sides. A total of 6 trials were conducted 
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in both eyes open (EO) and eyes closed (EC) conditions (3 trials per condition) in a random order. 

The duration of each trial was 30 seconds. During the eyes open (EO) trials the participants were 

asked to focus on a fixed target six feet in front of them.   

 

2.3. Experimental setup and data collection. The foot/floor reactions were collected using a six 

channel AMTI force plates (Advanced Mechanical Technology Inc., Watertown, MA, USA). Data 

collection was done at 1000 Hz using a 16 bit A/D data acquisition system (National Instruments, 

Austin, TX, USA). Video recording of the trials were also done to verify task compliance of each 

participant.  

 

2.4. Modelling of postural control system. The postural control system was modelled using 

inverted pendulum dynamics in the anterior-posterior (AP) direction [10]. The human postural 

control system is often modelled using two different approaches, an ankle strategy and the hip 

strategy [24]. The ankle strategy involves the application of a balancing torque by the leg muscles 

about the ankle joint to maintain balance. The hip strategy uses the hips and knee muscles to 

stabilize the body. The hip strategy is usually utilized when COP leaves the base of support (BOS) 

as the result of an external balance perturbation. In the current study no external balance 

perturbations were introduced, so the COP was maintained within the BOS, resulting in an ankle 

strategy being sufficient to counteract the small perturbations from equilibrium during quiet 

standing. Therefore a single link inverted pendulum model including the ankle strategy was used 

for the model (Figure 3.1). 

The human postural control system during quiet standing is characterized by small perturbations 

from equilibrium [25]. This is represented by a disturbing torque term (Td) with equilibrium for 

the inverted pendulum at an angle of Ɵ = 0 degrees. Therefore, an active correction or balancing 

torque (Tbal) acting at the ankle joint is needed to restore the system to its equilibrium point. The 

balance control system is also assumed to have a damping (η) and a stiffness (k) to help counteract 

the small perturbations from equilibrium.  

The detailed model assumptions can be found in [10]. A summary of the most relevant model 

assumptions are provided here. The balancing torque (Tbal) is assumed to be regulated by a 

proportional, derivative and integral control strategy (PID). It is assumed that either an internal or 

external disturbing torque (Td) is acting on the system to destabilize it. The transfer function 
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derivation adopted here is based on Laplace transform similar to Johansson et al. [10], with the 

primary difference being the absence of the input stimulus to the calf muscles in our model. The 

simplified form of the transfer function model derived is shown below: 

 

𝑇𝑏𝑎𝑙(𝑠)

𝑇𝑑(𝑠)
=  −

(η𝑠2+(𝑘+
𝑔

𝑙
 )𝑠+ρ)

𝑠3+η𝑠2+𝑘𝑠+ρ
      (3.1) 

  

The derivation of equation (3.1) can be found in the appendix A.1. It can be inferred from equation 

(3.1) that the description of postural control system can be given in terms of three coefficients: 𝑘, 𝜂 

and ρ, describing the controller properties. The proportional constant (𝑘) represents the balancing 

torque related to the angular position error signal. The derivative (𝜂) and integral (ρ) constants 

represents the derivative and integral of this angular position error signal, respectively. Hence the 

derivative term (𝜂) controls the damping of the system and the integral term (ρ)  controls the 

angular position steady state error of the system.  

Naturally a good system will have higher values of spring effect (𝑘) and the dashpot effect (η). 

The normalization done with respect to swiftness parameter (𝑓) as done by [10] gives: 

 

𝑇𝑏𝑎𝑙(𝑠)

𝑇𝑑(𝑠)
=  −

(η(
𝑠

𝑓
)

2
+(𝑘+

𝑔

𝑙
 )

𝑠

𝑓
+1)

(
𝑠

𝑓
)

3
+η(

𝑠

𝑓
)

2
+𝑘(

𝑠

𝑓
)+1

     (3.2) 

In which:  

Swiftness (𝑓) =  √ ρ3
 (rad/sec)        (3.3) 

Stiffness (𝐾) = 
𝑘

𝑓2         (3.4)  

Damping (𝛲) = 
𝜌

𝑓
         (3.5) 

From equation (3.2) three parameters can be extracted namely, swiftness (rad/sec), stiffness 

(dimensionless) and damping (dimensionless). The swiftness term represents the largest angular 

frequency component of the disturbance for which the identified model provides adequate 

correction and the damping and stiffness are dimensionless quantities which are not related to 

swiftness parameter.  
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2.5. Analysis. The data were down sampled to 50 Hz and a low pass, zero phase shift, 4th order 

Butterworth filter with a cut off frequency of 10 Hz was applied. The resulting 50 Hz COP signal 

represents a time step of 0.02 seconds. Using a relatively higher time step reduces the effect of low 

amplitude and high frequency components in the postural sway trajectories [7].  The data was 

processed and analyzed using MATLAB (Mathworks, Natick, MA, USA). A typical COP AP 

displacement time series is as shown in figure 3.13. Two linear stochastic models are used to fit 

the COP time series data, namely an auto regressive model (AR) and an auto regressive moving 

average (ARMA) model. From this point forward, for the purpose of convenience, we will refer 

to the AR model as model 1 and ARMA model as model 2. 

 

2.5.1. Model 1.The difference equation of an AR (n) model is given as follows: 

 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + 𝑎2𝑦(𝑡 − 2) + ⋯ +  𝑎𝑛𝑦(𝑡 − 𝑛) =  𝑒(𝑡)   (3.6) 

 

Using the backshift operator we can write: 

 

𝑨(𝒒)𝒚(𝒕) = 𝒆(𝒕)         (3.7) 

 

Where, 

𝐴(𝑞) = 1 + 𝑎1𝑞−1 + 𝑎2𝑞−2 + ⋯ + 𝑎𝑛𝑞−𝑛      (3.8) 

 

Where 𝑎𝑖 are the autoregressive coefficient terms, 𝑒(𝑡) is the white noise term, and 𝑦(𝑡) is the 

output of the model at time ‘t’. For each subject, the COP time series data from all three trials were 

used to fit the AR (n) model, treating each trial as an individual experiment for each subject. The 

prediction error (PE) method was used for fitting the model to time series data. This method 

involves the estimation of one step ahead prediction of the model and comparing it with the 

observed experiment output data to determine the error in prediction. Then this error is minimized 

by defining a quadratic norm. The prediction error is given as, 

𝑦(𝑡, Ɵ) = 𝑦(𝑡) −   𝛷𝑇(𝑡, Ɵ)        (3.9) 
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Where, 

𝛷(𝑡, Ɵ) is the vector of regressors for the respective models. 

The least squares criterion used is a quadratic function in Ɵ. It is shown below, 

𝑉𝑁(Ɵ, z𝑁) =  
1

𝑁
∑

1

2
[𝑦(𝑡) −   𝛷𝑇(𝑡, Ɵ)]2𝑁

𝑡=1        (3.10) 

The minimization of 𝑉𝑁(Ɵ, z𝑁) gives the desired least squares estimate (See [26] chapter 7 for 

detailed description of PE methods). Models of order one to five were fitted to the COP time series 

data. The best fit percentages for one step ahead prediction were calculated. Models of order three 

and higher gave good fit percentages (>95 %). The AIC [31] values were calculated for each of 

these models. The orders 3, 4 and 5 give larger negative AIC values than models of order 1 and 2 

and the values did not change by a large margin between model orders 3, 4 and 5. A test of 

autocorrelation of residuals was done on the models. The residuals show that the 3rd, 4th and 5th 

order models describe the data well when compared to 1st and 2nd order models.  The model with 

the smallest order which has the best fit for COP time series data was a 3rd order model. Hence 

the selected model is an AR (3) model. The one step ahead prediction and the best fit percentage 

of the 3rd order model for trial 1 of the healthy subject #1 in EO condition is as shown in figure 

3.2. The autocorrelation of residuals is shown in figure 3.3. Also an important factor affecting the 

order selection in our study is the fact that an AR (3) model has a transfer function denominator in 

the form of a cubic polynomial. When the discrete AR (3) model is converted to a continuous time 

form, the coefficients of the polynomial can be compared directly to the constants 𝑘,  η and ρ. 

Hence this facilitates the extraction of the three parameters namely damping (𝑃), stiffness (𝐾) and 

swiftness (𝑓).  

 

2.5.2. Model 2. The second model fitted to the time series data is the ARMA (n, n-1). The 

difference equation for an ARMA (n, n-1) is given below in equation (3.9): 

 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + 𝑎2𝑦(𝑡 − 2) + ⋯ +  𝑎𝑛𝑦(𝑡 − 𝑛) =  𝑐1𝑒(𝑡 − 1) +  𝑐2𝑒(𝑡 − 2) +

⋯ + 𝑐𝑛−1𝑒(𝑡 − (𝑛 − 1)) + 𝑒(𝑡)        (3.11) 

Using the backshift operator we can write: 

𝑨(𝒒)𝒚(𝒕) = 𝑪(𝒒)𝒆(𝒕)        (3.12) 
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Where, 

𝐴(𝑞) = 1 + 𝑎1𝑞−1 + 𝑎2𝑞−2 + ⋯ + 𝑎𝑛𝑞−𝑛       (3.13) 

𝐶(𝑞) = 1 + 𝑐1𝑞−1 + 𝑐2𝑞−2 + ⋯ + 𝑐𝑛−1𝑞−(𝑛−1)   (3.14) 

Equation (3.12) gives the general representation of an ARMA (n, m) model. Here 𝐴(𝑞) and 𝐶(𝑞) 

are the autoregressive and the moving average coefficients, respectively. In this study, models of 

orders ‘n’ from 1 to 5 were fitted to the COP time series data. The model of least order which fit 

the COP time series data satisfactorily was a 2nd order model (n = 2). Our main model validation 

criterion was the best fit percentage. Hence an ARMA (2, 1) model was used for the analysis.  The 

one step ahead prediction and the best fit percentage are as shown in figure 3.4.  The 

autocorrelation of residuals is shown in figure 3.5. Using the transfer function poles of the ARMA 

(2, 1) model, the natural frequency (𝑤0) and damping ratio (𝜁) are calculated for each subject.  

 

2.5.3. Statistical analysis. For both AR (3) and the ARMA (2, 1) models, three way Analysis of 

variances (ANOVA) was used to investigate the effects of group (healthy controls, Mild PD and 

Moderate PD), condition (eyes open, eyes closed) and group-by-condition on each parameter. 

Significance was defined as p<0.05 for all tests. A Post-Hoc Tukey Kramer test was performed to 

identify the group(s) responsible for any significant main effect in group. If trends existed that 

missed significance, a power analysis was performed to determine the number of samples needed 

for group differentiation. Due to the pilot nature of this study, in all the identified parameters 

(Swiftness, Stiffness, Damping, Damping ratio and Natural frequency) a standard value of the 

overall group ‘mean ± 3*Standard Deviation’ was used to identify and remove the outliers before 

the statistical analysis. All statistical analyses were done using “Statistics and Machine Learning 

Toolbox” (MATLAB, Mathworks, Natick, MA, USA).  

 

3. Results 

The results based on condition factor and group factor separately are presented in this section. The 

group*condition factor was not significant for any of the parameters analyzed, therefore it will not 

be considered further.  
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3.1. Model 1. The parameters that were extracted from the AR (3) model are the swiftness (𝑓), 

stiffness (𝐾) and damping (𝑃). The results of the statistical analysis of these three parameters are 

presented in the following sections.  

 

3.1.1. Swiftness (𝒇). The Swiftness parameter tends to decrease with PD progression, with a 

significant difference (P < 0.05) between HC and moderate PD, but no significant differences 

between HC-to-mild PD and mild-to-moderate PD in EO condition. There were no significant 

group differences in swiftness parameter in the EC condition. The effect of condition was 

significant (P < 0.01), with the swiftness parameter being higher for the EO, compared to the EC 

condition. The means and standard deviations of the swiftness parameter for the three groups are 

shown in figure 3.6. The power analysis indicates that a sample size of 34 would help to accurately 

assess the sensitivity of swiftness parameter in distinguishing the mild and moderate PD in the EO 

condition.  

 

 

3.1.2. Damping (𝑷). The damping parameter showed a decreasing trend with PD progression with 

no significant group differences. The condition effect was significant (P < 0.01) for the damping 

parameter, which was higher in EO, compared to EC condition. The means and standard deviations 

of damping parameter for healthy controls, mild and moderate PD subjects are shown in figure 

3.7.  

 

3.1.3. Stiffness (𝑲). The stiffness parameter trended towards higher values with PD progression. 

The effect of group was significant (P < 0.05), with stiffness values of moderate PD being higher 

than HC, but no significant difference were found between HC to mild PD and between mild PD 

to moderate PD. The effect of condition was significant (P < 0.01), with the stiffness in EO being 

larger than EC condition. Table 3.2, 3.3 and 3.4 show the values of swiftness parameter (𝑓), 

damping parameter (𝑃) and the stiffness parameter (𝐾) along with their means and standard 

deviations for the three groups in both EO and EC conditions. The means and standard deviations 

of the stiffness parameter for HC, mild and moderate PD subjects are shown in figure 3.8. The 

power analysis suggests that a sample size of 80 would help to accurately assess the sensitivity of 

stiffness parameter in differentiating the mild and moderate PD groups in EO condition. 
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The comparison of the three extracted parameters for EO versus EC trials are shown in figure 3.9. 

The means and standard deviation values for the swiftness, damping and stiffness parameters are 

given in table 3.2. 

 

3.2. Model 2 results. Using the poles of the identified ARMA (2, 1) transfer function, natural 

frequency and damping ratio were calculated. The statistical analysis of these two parameters are 

presented in the following paragraphs. 

 

3.2.1. Natural frequency (𝒘𝟎). The natural frequency showed no significant group differences in 

both EO and EC conditions, with an increasing trend shown in the EC condition only. The 

condition effects were significant (P < 0.01) for natural frequency with a higher mean value in EC, 

compared to EO condition. The means and standard deviations of natural frequency for healthy 

controls, mild and moderate PD subjects are shown in figure 3.10.  

 

 

3.2.2. Damping ratio (𝜻). The damping ratio did not show any significant group differences in 

both EO and EC conditions. The condition effect was significant (P < 0.01) with higher values in 

EO, compared to EC condition. The means and standard deviations of damping ratio for HC, mild 

and moderate PD subjects are shown in figure 3.11. The mean values of natural frequency and 

damping ratio for EO versus EC conditions for the total population are shown in figure 3.12. 

 

4. Discussion 

4.1. Model 1 results discussion. The swiftness and damping parameter values obtained from HC 

in our study were comparable to the values published for HC by Johansson et al [10]. The stiffness 

parameter values obtained in our study for HC are slightly higher than that obtained Johansson et 

al. This may be due to the fact that the age groups of the HC subjects were significantly different 

between the two studies. Our HC group are older compared to young HC group who participated 

in the Johansson study.  Secondly, there was no application of external stimulus in our study to 

evoke perturbation. Johansson used pseudorandom application of controlled vibrations to the calf 

muscles during upright stance.  
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4.1.1. Swiftness parameter (𝒇). The swiftness parameter is basically extracted from the integral 

constant of the PID control model. The swiftness is described as the parameter which governs the 

rapid compensation for small deviations from the equilibrium position of the subject [10]. The 

higher the value of swiftness, the faster the subject is able to react to perturbations from 

equilibrium. Our results show that the HC have a higher swiftness parameter mean value in both 

the EO and EC condition, compared to the mild and moderate PD groups. The significantly higher 

swiftness of HC, compared to moderate PD in the EO condition, could indicate that the control 

system of healthy subjects is able to integrate the signals received from the different sensory 

sources (visual, proprioception etc.) faster and offer a quicker response or compensation for the 

small perturbation or deviations from the equilibrium. The lower mean value of swiftness in the 

mild and moderate PD groups, compared to HC, could be due to the loss of the ability of the control 

system to compensate or eliminate the bias action of the angular position of the system with respect 

to equilibrium.  

 

Higher mean values of the swiftness parameter in the EC condition, compared to the EO condition, 

suggests that the absence of visual feedback effects the compensative action in a way which causes 

the other senses to become more dominant contributors to alerting the control system of small 

deviations. Sabatini [12] suggests that the groups of subjects may depend differently on visual 

feedback, and the various sensory cues are weighted differently for various subjects. Some subject 

may be more dependent on the visual feedback and the other subjects may be largely dependent 

on other sensory information sources independent of visual feedback. Therefore in providing the 

sensory information regarding the small deviations from the equilibrium, the proprioceptive and 

other sensory cues might be weighted more heavily compared to visual feedback. This could 

explain the higher values of swiftness parameter even in the absence of visual feedback in EC, 

compared to the EO condition.  

 

4.1.2. Damping parameter (𝑷). The decreasing trend in mean values of the damping parameter 

from HC to mild to moderate PD could indicate that progression of PD is related to decreases in 

the ability of the control system to provide necessary attenuation of sway velocity. A higher 

damping parameter value indicates a better ability of the system to attenuate the sway velocity in 

HC. In the PD group, there could be decreased ability of the control system to regulate muscle 
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activity at the ankle joint which is required to provide necessary damping when deviations from 

equilibrium are detected. The observed differences in the means of the damping parameters across 

groups were not statistically significant. However, a power analysis done on the damping 

parameter suggests that an accurate assessment could be made with higher sample size 

(approximately, 190 for healthy controls to mild PD and 260 for mild to moderate PD in EO 

condition). 

The means of the damping parameter between the total populations in EO and EC conditions were 

significantly different. Larger mean values of the damping parameter in EO, compared to the EC 

condition, suggests that the visual feedback information could be aiding in attenuation of the rate 

change in position. The proprioceptive, visual and tactile sensors of the body are taught to rely 

more on velocity information rather than position [7, 8, 11]. Hence it can be hypothesized that 

when the visual feedback is eliminated, one of the sensory cues sensitive to changes in sway 

velocity is absent or not available for the control system, and thus can lead to a decrease in the 

ability to provide adequate damping of sway velocity during quiet standing in the EC condition. 

In the previous study by Barnds et al. [13] done on healthy controls, mild PD and moderate PD 

subjects, the PD group, compared to the healthy controls, showed a greater mean sway speed. This 

also supports our inference that PD progression may affect the ability of the control system to 

provide adequate attenuation in sway velocity.  

 

4.1.3. Stiffness parameter (𝑲). The stiffness parameter showed increasing trends between the HC, 

mild and moderate PD groups in both EO and EC conditions. The higher the value of stiffness, the 

smaller are the deviations from equilibrium [10]. Thus, the higher stiffness could indicate a more 

rigid control strategy. Higher values of stiffness in mild and moderate PD groups, compared to 

HC, may be due to higher rigidity of muscle fibers. A study done by Jaroslaw et al. [27] showed 

that PD subjects have a higher muscle passive stiffness when compared to HC measured by the 

application of Myotonometry. Carpenter et al. [28] showed that the PD patients had a decreased 

trunk rotation and smaller ankle torques when subjected to rotational perturbations, indicating that 

the PD subjects may have a higher muscle stiffness. Our results also show that the PD groups, 

compared to HC, could tend to adopt a more rigid control strategy due to the higher values of 

stiffness.  
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When comparing the effects of condition (EO versus EC), the results show that the mean value of 

the stiffness parameter is higher for the EO, compared to the EC condition. This could be due to 

the fact that in the EO condition, the participants were focused on a fixed target. This visual 

fixation could have led the control system to adopt a stiffer strategy. Sabatini et al. [12] suggests 

that the main aim of the control system in EO condition is to stabilize the head movement in space. 

Hence in our study we can hypothesize that the task restriction placed on the participants could 

have led to the higher values of stiffness in EO, compared to the EC condition (where in EC the 

movement of the head was not controlled). Carpenter et al. [29] suggested that the visual feedback 

could play an important role in increasing the ankle stiffness when balance confidence is 

compromised.  Therefore it can also be said that the heightened awareness in EO condition due to 

available feedback led to decreased movement away from equilibrium. However the current higher 

mean value in stiffness for EO, compared to the EC condition, could be one of the limitations of 

our study which did not control the head position in space during EC trials.  

 

4.2. Model 2 results discussion. The natural frequency values obtained for the EC condition were 

comparable to the undamped natural frequency values obtained by Winter et al. [30] in the EC 

condition with 100% width stance. But the natural frequency values obtained for EO condition 

were less than that calculated by Winter et al. [30] in 100% width stance EO condition. This may 

be due to the difference in experiment protocol in EO condition. In the Winter study, it is unclear 

whether the participants in EO condition were asked to focus on a fixed target when in quiet stance. 

But in our study the participants were focused on a fixed target in EO condition. The damping ratio 

values obtained in our study for HC are comparable to that obtained for HC by Sabatini et al. [12] 

in EO and EC conditions obtained by non-Gaussian FARIMA stochastic model during quiet 

standing. 

 

4.2.1. Natural frequency (𝒘𝟎). The increasing trend in mean values of 𝑤0 in the EC condition 

with PD progression could indicate that the COP oscillates with higher frequencies for the PD 

groups, compared to HC. The absence of significant effect of the group factor could suggest that 

𝑤0 may not be sensitive to changes in PI with PD progression. However the significantly higher 

values of mean 𝑤0 for the total population between the EO and EC condition could indicate the 

prominent role of visual feedback in regulating the COP sway. In the EC condition, the absence 
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of visual sensory information may lead to higher dependence on proprioceptive muscle feedback 

at the ankle joint. This could result in a larger and faster sway of the COP from the equilibrium 

position.  

 

4.2.2. Damping ratio (𝜻). The damping ratio in both EO and EC conditions did not show any 

significant differences across the three groups. However the significantly higher value of  𝜁 in  EO, 

compared to the EC condition, could indicate that the visual sensory information plays a vital role 

in attenuating the sway velocity. The previous study [13] between the EO and EC conditions using 

the PCA measures of COP indicate a higher mean peak sway speed value for EC than for EO 

condition. This again supports the results in our current study where the mean 𝜁 values are lower 

for the EC condition allowing for a larger sway velocity. 

 

This study has a few limitations. The simple linear stochastic models and analysis based on 

inverted pendulum dynamics do not describe the effect of various forms of sensory information on 

the PI in PD. The quiet stance approach used in the current study does not challenge the postural 

control system and hence it cannot give insights into the changes in these parameters during an 

active task such as responding to a small postural perturbation without a change in the base of 

support (BOS), or during tasks requiring a change in the BOS such as gait initiation and taking a 

step in response to a large balance disturbance. The sample size used for this study is small and a 

need for larger sample sizes is shown by the preliminary power analysis done on the extracted 

parameters.   

 

Conclusions. This study was aimed at using system identification methods to understand the 

changes in COP time series data with progression of PI in PD. This was accomplished by fitting 

two different linear stochastic models to the COP time series data. The statistical analysis on the 

extracted parameters revealed the following. First, the decreasing trend in the swiftness parameter 

with PD progression could indicate the slower compensation for small deviations from equilibrium 

in the mild and moderate PD population. Second, the smaller mean values of damping in the PD 

group, compared to the HC, may indicate the loss in ability of the controller to provide adequate 

attenuation of sway velocity in PD. Third, the increasing mean stiffness values with PD 

progression could indicate that the mild and moderate PD patients could offer a higher ankle joint 
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rigidity when compared to HC. Last, the natural frequency and damping ratio analysis results may 

indicate larger and faster deviations of COP from the equilibrium and a reduced ability of the 

controller to provide necessary damping of sway velocity in the mild and moderate PD groups.  

 

Overall the following features of the current study are worthy of mention. The study gave an 

interpretation of the changes in PI with the severity of PD in terms of swiftness, damping and 

stiffness parameter with swiftness and stiffness parameter able to differentiate between HC and 

moderate PD groups. The extracted parameters showed that they could serve as potential measures 

of the changes in COP time series with PD progression. Future studies should further investigate 

the changes in the above mentioned parameters with a larger sample size and longer duration of 

trials in order to accurately determine the sensitivity of these parameters in characterizing PI with 

PD progression. Also studies should be performed with these parameters as applied to dynamic or 

balance recovery tasks such as gait initiation or the backward pull test in order to examine the 

behavior of these parameters in a dynamic task environment.   
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Figure 3. 1. Schematic of the inverted pendulum model for posture control during upright 

stance 
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Figure 3. 2. One step ahead prediction of the AR (3) model for healthy subject 1 EO trial 1 

 

Figure 3. 3Autocorrelation of residuals of the AR (3) model for healthy subject 1 EO trial 1. 

The yellow region indicates the 99% confidence interval. 
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Figure 3. 4. One step ahead prediction of the ARMA (2, 1) model for healthy subject 1 EO 

trial 1 

 

Figure 3. 5. Autocorrelation of residuals of the ARMA (2, 1) model for healthy subject 1 

EO trial 1. The yellow region highlighted indicates 99% confidence interval. 
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Table 3. 1. Mean ± SD, Demographic for Parkinsonian subjects and healthy controls 

 Gender Age (years) ± 

SD 

Height (m) ± 

S.D 

Weight (kg) 

Male Female 

Healthy 

controls 

15 8 66 ± 8 1.71 ± .08 79 ± 28 

Mild PD 7 6 65 ± 7 1.70 ± .09 85 ± 17 

Moderate PD 8 2 62 ± 8 1.67 ± .08 74 ± 11 

Total PD 

subjects 

17 8 68 ± 4 1.73 ± .10 95 ± 15 

SD - Standard Deviation 
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Table 3. 2. Mean ± Standard Deviations of extracted parameters from model 1 and model 2 

for healthy controls, mild and moderate PD subjects 

 Healthy controls Mild PD subjects Moderate PD subjects 

EO EC EO EC EO EC 

Swiftness parameter* 

(rad/sec) 

5.21 ± 

0.85 

 

 

 

5.39 ± 

0.79 

 

 

4.83 ± 

1.14 

 

 

5.33 ± 

0.92 

 

 

4.09 ± 

1.01 

 

 

5.31 ± 

1.03 

 

 

Damping parameter* 4.08 ± 

1.68 

 

 

2.88 ± 

1.19 

 

 

3.64 ± 

1.39 

 

 

2.57 ± 

0.87 

 

 

3.33 ± 

2.49 

 

 

2.50 ± 

2.10 

 

 

 

Stiffness parameter* 11.98 ± 

7.07 

 

 

8.71 ± 

3.27 

 

 

17.14 ± 

16.16 

 

 

9.89 ± 

5.84 

 

 

23.75 ± 

18.29 

 

 

13.00 ± 

6.42 

 

Natural frequency** 

(Hz) 

0.39 ± 

0.18 

 

 

0.51 ± 

0.18 

 

 

0.36 ± 

0.23 

 

0.56 ± 

0.18 

 

0.33 ± 

0.17 

 

0.58 ± 

0.39 

 

Damping ratio** 0.72 ± 

0.24 

 

 

0.54 ± 

0.31 

 

0.70 ± 

0.38 

 

0.47 ± 

0.26 

 

0.74 ± 

0.25 

 

0.60 ± 

0.34 

 

EO – Eyes open condition, EC – Eyes closed condition, * - Model 1, ** - Model  
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*- Significant difference (P < 0.05) 

Figure 3. 6. Mean values of swiftness parameter for healthy controls, mild and moderate 

PD. 

 

 

Figure 3. 7. Mean values of damping parameter for healthy controls, mild and moderate 

PD. 
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*- Significant difference (P < 0.05) 

Figure 3. 8. Mean values of stiffness parameter for healthy controls, mild and moderate 

PD. 
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*- Significant difference (P < 0.05) 

Figure 3. 9. Mean values of swiftness, damping and stiffness for healthy controls, mild and 

moderate PD. 
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Figure 3. 10. Mean values of Natural frequency for healthy controls, mild and moderate 

PD. 

 

 

Figure 3. 11. Mean values of damping for healthy controls, mild and moderate PD. 
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*- Significant difference (P < 0.05) 

Figure 3. 12. Mean values of damping for healthy controls, mild and moderate PD. 
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Figure 3. 13. A typical detrended COP AP time series data for healthy subject 5 trial 1 in 

EO condition 
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CHAPTER FOUR: SUMMARY 

 

Summary of study 

The primary goal of this study was to investigate the changes in COP time series data with 

severity of PD. Twenty one healthy controls, thirteen mild PD and ten moderate PD subjects were 

asked to stand in a comfortable stationary stance with their arms at their sides on a force platform. 

The COP displacement was later calculated using the force and moments extracted from the force 

platform. This COP time series was fitted by two different linear stochastic models namely an AR 

(3) system (model 1) and an ARMA (2, 1) (model 2) system. Using the coefficients of the identified 

model 1, three parameters were calculated namely swiftness, damping and stiffness. There were 

significant differences in the mean values in swiftness and stiffness parameter between the healthy 

and moderate PD population in EO condition. There was an increasing trend with mean stiffness 

values from healthy to mild to moderate PD. The mean swiftness values showed a decreasing trend 

with the severity of PD.  The values of damping parameter did not show any significant differences 

between the three groups but did show a decreasing trend with progression of PD. As a total 

population the three parameters were significantly different between the EO and EC conditions. 

The statistical analysis of stiffness parameter revealed that the subjects with mild and 

moderate PD could adopt a more rigid control strategy when compared to healthy controls. The 

analysis of damping parameter showed that PD (mild and moderate PD) may cause a reduced 

ability to provide necessary damping of sway velocity. Swiftness parameter analysis revealed that 

the healthy controls could have a better ability to integrate the information from various sensory 

cues and react faster to small deviations from the equilibrium. 

The parameters calculated from the model 2 were natural frequency and damping ratio. 

The two parameters did not show any significant differences across the three groups. However the 

mean natural frequency values showed an increasing trend in EC condition between the three 

groups. The damping ratio did not show any particular trends across the three groups. As a total 

population, the mean values for natural frequency and damping ratio were significantly different 

between EO and EC conditions. The natural frequency tended to increase with absence of visual 

feedback indicating that the visual feedback could play a vital role in sensing small perturbations 

from the equilibrium position.  Damping ratio showed a significantly lower value for EC when 
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compared to EO condition.  This indicated that the absence of visual sensory information could 

make the control system less sensitive to deviations from equilibrium leading to lower damping of 

sway velocity.   

Conclusions and recommendations 

 This study revealed several trends indicating sensitiveness of the calculated physical 

parameters to changes in COP time series with severity of PD. The higher mean values of stiffness 

parameter indicated a more rigid control strategy in mild and moderate PD subjects, compared to 

healthy controls. Higher mean values of swiftness parameter revealed that the PD may result in a 

slower reaction to deviations from equilibrium. The lower values of damping parameter and 

damping ratio in mild and moderate PD, compared to healthy controls, could represent the loss of 

ability to provide necessary attenuation of sway velocity with progression of PD. The higher values 

of natural frequency in EO, compared to EC, for mild and moderate PD could mean a larger 

number of deviations from equilibrium in PD subjects. The power analysis done on these subjects 

revealed that with larger sample size, several of the parameters analyzed could potentially 

differentiate the three groups with significant accuracy in the EO condition. Hence future studies 

with larger sample sizes and longer duration of trials is need to accurately assess the sensitiveness 

of these calculated parameters to changes in COP time series with PD progression.  

Study limitations 

While the study showed trends in the calculated parameters between the healthy controls, mild and 

moderate PD, due to a small sample size used in this pilot study it is difficult to assess the 

sensitivity of these parameters with changes in COP time series with clinical PD progression. The 

short trial duration of 30 seconds used in our pilot study could be too short, hence future studies 

should include longer duration of trials. Lastly the experimental procedure used is that of quasi-

static quiet stance which does not challenge the postural control system by a significant margin. 

Hence it is difficult to determine the effects of various sensory information on the postural control 

system in response to dynamic tasks. 
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Future studies 

A logical next step for future studies would be to consider a larger sample size. Having 

longer duration of each trial would possibly give insights into modelling the long term control 

strategy used by the central nervous system.  Application of the linear stochastic methods used in 

this study on COP time series obtained through tasks such as gait initiation, backward pull and 

release strategy, moving platform methods etc. could reveal the changes in these parameters in 

response to these dynamic tasks.  

This study also revealed that the identified parameters are sensitive to the presence or 

absence of visual feedback. Our study showed that the calculated parameters are more sensitive in 

the EO condition rather than EC condition. This could have a significant impact in assessing the 

presence of PI and its subsequent progression in PD. Hence further investigation with experiments 

designed to challenge the postural control system using variations in visual feedback could reveal 

the effectiveness of this method in analyzing the influence of visual feedback on posture 

regulation.   
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APPENDICES 

Appendix A: Details of modelling and analysis 

A.1. Transfer function description of inverted pendulum model 

The method of transfer function analysis used here is that of Laplace transforms. The detail 

description of this transfer function model is already presented in the previously published work 

by Johansson et al. 1988[1]. The main difference between our study and theirs is that there is no 

external stimulus vibration applied to calf muscles in our study to evoke perturbation. The figure 

3.1 gives the schematic of an inverted pendulum model. It is assumed that the environment tries 

to apply a disturbing torque (Td) on the system. To compensate for this a balancing torque (Tbal) is 

assumed to be applied by the controller using a PID control strategy. The description of the 

proportional, derivative and integral constants are as given below: 

Proportional constant: The proportional term is assumed to compensate for the gravitational term 

as well as provide necessary correction in deviation angle (Ɵ). The form assumed by the 

proportional term becomes: 

P:  −𝒎𝒈𝒍 𝒔𝒊𝒏Ɵ(𝒕) − 𝒌 𝑱 Ɵ(𝒕) 

Where 𝒌 is the proportional constant.  

Integral constant: The form assumed by the integral constant is as shown below: 

I: −𝝆𝑱 ∫ Ɵ(𝒕)  𝒅𝒕
𝒕

𝒕𝒐
 

Derivative constant: The form assumed by the derivative constant is as shown below: 

D: −𝜼𝑱Ɵ̇(𝒕) 

Where 𝜼 is the derivative constant. 

The balancing torque then becomes: 

𝑻𝒃𝒂𝒍(𝒕) =  −𝒎𝒈𝒍 𝒔𝒊𝒏Ɵ(𝒕) − 𝒌 𝑱 Ɵ(𝒕) − 𝝆𝑱 ∫ Ɵ(𝒕)  𝒅𝒕
𝒕

𝒕𝒐
− 𝜼𝑱Ɵ̇(𝒕)   (A1.1) 

 

The net torque acting at the joint is, 

𝛕𝒏𝒆𝒕 = 𝑱Ɵ ̈ (𝒕)          (A1.2) 

___________________________________________________________________ 

 [1] Johansson, R., M. Magnusson, and M. Akesson. "Identification of Human Postural Dynamics." IEEE Transactions 

on Biomedical Engineering, 1988, 858-69. 
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Where, 

𝑱 – Angular moment of inertia 

Ɵ ̈ (𝒕) – Angular acceleration  

Also the torque applied by the gravity can be written as, 

𝛕𝒏𝒆𝒕 = 𝒎𝒈𝒍 𝒔𝒊𝒏Ɵ(𝒕)        (A1.3) 

Here 𝒍 is the length of the pendulum. 

For equilibrium the equation (A1.2) and (A1.3) must be equal. Therefore, 

𝑱Ɵ ̈ (𝒕) = 𝒎𝒈𝒍 𝒔𝒊𝒏Ɵ(𝒕)        (A1.4) 

The complete equation for the pendulum which includes Td and Tbal can be written as, 

𝑱Ɵ ̈ (𝒕) = 𝒎𝒈𝒍 𝒔𝒊𝒏Ɵ(𝒕) + 𝑻𝒃𝒂𝒍(𝒕) + 𝑻𝒅(𝒕)     (A1.5) 

Substituting for 𝑻𝒃𝒂𝒍(𝒕) from equation (A1.1) into the equation (A1.5). We get, 

𝑱Ɵ ̈ (𝒕) = 𝒎𝒈𝒍 𝒔𝒊𝒏Ɵ(𝒕) − 𝒎𝒈𝒍 𝒔𝒊𝒏Ɵ(𝒕) − 𝒌 𝑱 Ɵ(𝒕) − 𝝆𝑱 ∫ Ɵ(𝒕)  𝒅𝒕

𝒕

𝒕𝒐

− 𝜼𝑱Ɵ̇(𝒕) + 𝑻𝒅(𝒕) 

Reduces to, 

𝑱Ɵ ̈ (𝒕) = −𝒌 𝑱 Ɵ(𝒕) − 𝝆𝑱 ∫ Ɵ(𝒕)  𝒅𝒕
𝒕

𝒕𝒐
− 𝜼𝑱Ɵ̇(𝒕) + 𝑻𝒅(𝒕)    (A1.6) 

Taking Laplace transform on both sides we get, 

𝑱𝒔𝟐Ɵ(𝒔) = −𝒌 𝑱 Ɵ(𝒔) −
𝝆𝑱Ɵ(𝒔)

𝒔
− 𝜼𝑱𝒔Ɵ(𝒔) + 𝑻𝒅(𝒔)    (A1.7) 

Simplifying, 

Ɵ(𝒔)

𝑻𝒅(𝒔)
=

𝒔(
𝟏

𝑱
)

𝒔𝟑+𝜼𝒔𝟐+𝒌𝒔+𝝆
        (A1.8) 

 

At the equilibrium point i.e. at Ɵ ≈ 0. We can approximate the 𝑠𝑖𝑛Ɵ ≈ Ɵ. 

Therefore the equation (A1.5) can be written as, 

𝑱Ɵ ̈ (𝒕) = 𝒎𝒈𝒍 Ɵ(𝒕) + 𝑻𝒃𝒂𝒍(𝒕) + 𝑻𝒅(𝒕) 

Applying Laplace transform we get, 

𝑱𝒔𝟐Ɵ(𝒔) = 𝒎𝒈𝒍 Ɵ(𝒔) + 𝑻𝒃𝒂𝒍(𝒔) + 𝑻𝒅(𝒔) 
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Rearranging we get, 

𝑻𝒃𝒂𝒍(𝒔) = (𝑱𝒔𝟐 − 𝒎𝒈𝒍)Ɵ(𝒔) −  𝑻𝒅(𝒔)       (A1.9) 

Substituting equation (A1.8) in equation (A1.9) we get, 

𝑻𝒃𝒂𝒍(𝒔) = (𝑱𝒔𝟐 − 𝒎𝒈𝒍) (
𝒔(

𝟏

𝑱
).𝑻𝒅(𝒔) 

𝒔𝟑+𝜼𝒔𝟐+𝒌𝒔+𝝆
) − 𝑻𝒅(𝒔)               (A1.10) 

Simplifying we get the final transfer function, 

𝑻𝒃𝒂𝒍(𝒔)

𝑻𝒅(𝒔)
=

𝜼𝒔𝟐+(𝒌+
𝒈

𝒍
)𝒔+𝝆

𝒔𝟑+𝜼𝒔𝟐+𝒌𝒔+𝝆
                             (A1.11) 

Equation (A1.11) gives the inverted pendulum transfer function used for this study. For model 1 

analysis the denominator of the equation (A1.11) can be compared to the denominator of the AR 

(3) model transfer function in continuous form. For example the denominator of AR (3) model 

transfer function in continuous form obtained for healthy subject 1 in EO condition is, 

𝑨(𝒔)  =  𝒔𝟑  +  𝟏𝟖. 𝟓𝟖 𝒔𝟐  +  𝟐𝟏𝟎 𝒔 +  𝟏𝟏𝟑. 𝟑                  (A1.12) 

It can be seen from equation (A1.12) that the coefficients can be compared to the three parameters 

from the transfer function denominator (𝜂, 𝑘 , 𝜌). For instance, from the equation (A1.12) the three 

constants are, 

𝜂 = 18.58 

𝑘 = 210 

𝜌 = 113.3 

From the above constants the swiftness (𝑓), damping parameter (𝑃) and stiffness parameter (𝐾) 

are calculated as shown below, 

Swiftness, 𝑓 = √113.3
3

= 4.838 rad/sec 

Damping parameter, 𝑃 =
18.58

4.838
= 3.8404  

Stiffness parameter, 𝐾 =
210

(4.838)2 = 8.971  

These above three parameters are used for analyzing the postural control system.  
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A1.2. Fit percentage of the model. The fit percentage for the identified models using the measured 

data is calculated by using the following equation: 

 𝑭𝒊𝒕 % = (𝟏 −
|𝒚− 𝒚̂|

|𝒚− 𝒚̅|
) ∗ 𝟏𝟎𝟎                 (A1.13) 

Where, 

𝑦 – Observed experimental output at a time ‘t’. 

𝑦̂ – Model output obtained by the identified system at time ‘t’. 

𝑦̅ – Mean of the observed experimental data for the entire trial duration. 

 

A.2. Model 2 analysis. The determination of natural frequency (𝒘𝟎) and damping ratio (𝜻) was 

done as follows: 

For a second order transfer function the standard form is written as, 

𝑋(𝑠)

𝑈(𝑠)
=

𝐺. 𝑤𝑜
2

𝑠2+2 𝑠 𝑤𝑜ζ + 𝑤𝑜
2                  (A1.14) 

        

The transfer function denominator obtained from ARMA (2, 1) model has the same form as the 

denominator of the equation (A1.14). For instance the denominator of the transfer function 

obtained from the ARMA (2, 1) model identified for healthy subject 1 in EO condition is, 

𝑠2  +  3.012 𝑠 +  6.136                             (A1.15) 

From this we get, 

 𝑤𝑜  =  √6.136 = 2.477 rad/sec 

Or 𝑤𝑜  = 0.39 Hz 

For damping ratio we get, 

2 𝑤𝑜ζ = 3.012                    (A1.16) 

Hence simplifying we get, 
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ζ = 0.6079   

These two parameters are used for analyzing the COP time series data using the ARMA (2, 1) 

model. 
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Appendix B. Tables 

Table B.1. Swiftness, stiffness and damping parameters extracted from AR (3) model for 

healthy controls in EO condition. 

Subject number 

Swiftness, 𝒇 

(rad/sec) 

Stiffness 

parameter (𝑲) 

Damping 

parameter (𝑷) 

1 4.84 8.97 3.84 

2 4.32 23.12 4.06 

3 4.54 11.74 4.65 

4 4.09 14.00 4.11 

5 3.79 11.17 4.33 

6 5.31 9.63 2.37 

7 5.98 9.17 2.39 

8 4.87 8.30 1.88 

9 5.28 8.20 3.26 

10 7.16 7.19 5.15 

11 4.90 33.24 8.75 

12 4.39 10.41 6.22 

13 5.14 8.38 2.31 

14 5.89 14.37 6.32 

15 4.44 26.55 2.87 

16 6.20 7.59 5.34 

17 6.28 5.93 2.03 

18 5.48 8.56 2.96 

19 5.43 7.75 4.09 

20 6.24 7.39 4.86 

21 4.80 9.90 3.98 

Mean 5.21 11.98 4.08 

Standard Deviation 
(SD) 0.85 7.07 1.68 
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Table B.2. Swiftness, stiffness and damping parameters extracted from AR (3) model for 

Mild PD subjects in EO condition. 

Subject number 

Swiftness, 𝒇 

(rad/sec)  

Stiffness 

parameter (𝑲) 

Damping 

parameter (𝑷) 

1 3.66 12.61 3.84 

2 5.24 5.51 1.49 

3 2.88 65.06 3.14 

4 5.19 6.65 2.74 

5 4.86 8.58 3.04 

6 5.95 10.99 5.60 

7 4.89 7.83 2.39 

8 4.22 10.26 4.74 

9 4.20 28.89 2.07 

10 4.44 28.39 5.93 

11 7.60 12.00 3.93 

12 5.23 13.84 5.26 

13 4.40 12.24 3.17 

Mean 4.83 17.14 3.64 

Standard Deviation 
(SD) 1.14 16.16 1.39 

 

Table B.3. Swiftness, stiffness and damping parameters extracted from AR (3) model for 

Moderate PD subjects in EO condition. 

Subject number 

Swiftness, 𝒇 

(rad/sec) 

Stiffness 

parameter (𝑲) 

Damping 

parameter (𝑷) 

1 3.2334 54.73 3.16 

2 4.5502 4.29 1.36 

3 5.8047 5.17 2.10 

4 4.8582 9.59 7.65 

5 3.5343 9.53 0.43 

6 4.6944 34.07 7.41 

7 3.6029 23.30 2.08 

8 4.119 27.70 2.41 

9 2.4053 45.36 1.88 

10   4.80 

Mean 4.09 23.75 3.33 

Standard Deviation 
(SD) 1.01 18.29 2.49 
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Table B.4. Swiftness, stiffness and damping parameters extracted from AR (3) model for 

healthy controls in EC condition. 

Subject number 
Swiftness, 𝒇 

(rad/sec)  

Stiffness 

parameter (𝑲) 

Damping 

parameter (𝑷) 

1 4.98 7.93 2.33 

2 5.27 15.84 2.94 

3 5.88 4.63 2.61 

4 4.08 13.47 2.26 

5 4.84 7.49 3.98 

6 4.70 12.92 2.33 

7 6.25 5.59 1.95 

8 4.75 6.83 1.33 

9 5.95 6.41 2.08 

10 6.26 8.20 5.00 

11 4.19 7.17 4.55 

12 4.68 5.11 1.50 

13 6.58 13.97 5.38 

14 5.25 11.35 1.76 

15 6.06 4.63 2.98 

16 6.66 7.22 1.88 

17 5.11 8.39 2.18 

18 5.29 10.00 3.40 

19 5.90 7.21 4.41 

20 6.14 9.92 2.75 

21 4.44     

Mean 5.39 8.71 2.88 

Standard 
Deviation (SD) 0.79 3.27 1.19 

 

 

 

 

 

 

 

 

 



A-9 

Table B.5. Swiftness, stiffness and damping parameters extracted from AR (3) model for 

Mild PD subjects in EC condition. 

Subject number 

Swiftness, 𝒇 

(rad/sec)  

Stiffness 

parameter (𝑲) 

Damping 

parameter (𝑷) 

1 4.23 9.90 2.68 

2 6.19 4.09 0.98 

3 4.74 23.60 1.49 

4 4.61 7.93 2.01 

5 5.59 6.12 2.31 

6 5.92 5.58 3.74 

7 5.37 6.36 1.87 

8 4.81 5.07 3.31 

9 4.42 18.67 2.51 

10 6.16 13.01 4.01 

11 7.50 5.11 2.89 

12 4.78 11.03 3.19 

13 4.98 12.05 2.41 

Mean 5.33 9.89 2.57 

Standard Deviation 
(SD) 0.92 5.84 0.87 

 

Table 3.7. Swiftness, stiffness and damping parameters extracted from AR (3) model for 

Moderate PD subjects in EC condition. 

Subject number 

Swiftness, 𝒇 

(rad/sec)  

Stiffness 

parameter (𝑲) 

Damping 

parameter (𝑷) 

1 6.47 12.47 2.11 

2 5.52 4.34 0.76 

3 5.02 8.39 2.00 

4 4.03 10.35 7.16 

5 7.40 14.29 0.45 

6 4.28 15.05 5.33 

7 5.55 14.41 1.69 

8 4.37 6.09 2.03 

9 5.01 26.72 1.51 

10 5.44 17.88 1.92 

Mean 5.31 13.00 2.50 

Standard Deviation 
(SD) 1.03 6.42 2.10 
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Table B.6. Natural frequency and damping ratio extracted from ARMA (2, 1) model for 

Healthy controls in EO condition. 

Subject number 

Natural frequency 

(Hz)  

Damping 

ratio 

1 0.39 0.61 

2 0.16 1.00 

3 0.34 0.83 

4 0.32 0.86 

5 0.30 0.61 

6 0.56 0.46 

7 0.62 0.54 

8 0.57 0.32 

9 0.48 0.48 

10 0.52 0.94 

11 0.04 1.00 

12 0.29 0.99 

13 0.55 0.39 

14 0.11 1.00 

15 0.18 1.00 

16 0.28 1.00 

17 0.72 0.33 

18 0.52 0.59 

19 0.43 0.68 

20 0.47 0.81 

21 0.40 0.69 

Mean 0.39 0.72 

Standard Deviation 

(SD) 0.18 0.24 
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Table B.7. Natural frequency and damping ratio extracted from ARMA (2, 1) model for 

Mild PD controls in EO condition. 

Subject number 

Natural frequency 

(Hz)  

Damping 

ratio 

1 0.30 0.58 

2 0.70 0.17 

3 0.15 1.00 

4 0.51 0.35 

5 0.44 0.47 

6 0.20 1.00 

7 0.52 0.32 

8 0.32 0.65 

9 0.52 0.93 

10 0.07 1.00 

11 0.31 1.00 

12 0.18 1.00 

13 0.42 0.58 

Mean 0.36 0.70 

Standard Deviation 
(SD) 0.18 0.31 

 

Table 3.10. Natural frequency and damping ratio extracted from ARMA (2, 1) model for 

Moderate PD controls in EO condition. 

Subject number 

Natural frequency 

(Hz)  

Damping 

ratio 

1 0.10 1.00 

2 0.62 0.11 

3 0.64 0.24 

4 0.12 1.00 

5 0.05 0.22 

6 0.53 1.00 

7 0.37 0.94 

8 0.38 0.91 

9 0.18 1.00 

10   1.00 

Mean 0.33 0.74 

Standard Deviation 
(SD) 0.23 0.38 
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Table B.8. Natural frequency and damping ratio extracted from ARMA (2, 1) model for 

Healthy controls in EC condition. 

Subject number 

Natural frequency 

(Hz)  

Damping 

ratio 

1 0.54 0.35 

2 0.51 0.93 

3 0.58 0.28 

4 0.44 0.49 

5 0.38 0.54 

6 0.46 0.59 

7 0.70 0.30 

8 0.64 0.20 

9 0.66 0.32 

10 0.46 0.88 

11 0.04 1.00 

12 0.33 0.63 

13 0.86 0.22 

14 0.16 1.00 

15 0.69 0.56 

16 0.62 0.40 

17 0.59 0.30 

18 0.59 0.38 

19 0.53 0.73 

20 0.47 0.75 

21 0.44 0.44 

Mean 0.51 0.54 

Standard Deviation 
(SD) 0.18 0.26 
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Table B.9. Natural frequency and damping ratio extracted from ARMA (2, 1) model for 

Mild PD controls in EC condition. 

Subject number 

Natural frequency 

(Hz)  

Damping 

ratio 

1 0.42 0.41 

2 1.00 0.11 

3 0.63 0.75 

4 0.52 0.28 

5 0.61 0.29 

6 0.51 0.44 

7 0.64 0.24 

8 0.43 0.28 

9 0.49 0.72 

10 0.33 1.00 

11 0.72 0.42 

12 0.43 0.63 

13 0.52 0.56 

Mean 0.56 0.47 

Standard Deviation 
(SD) 0.17 0.25 

 

Table B.10. Natural frequency and damping ratio extracted from ARMA (2, 1) model for 

Moderate PD controls in EC condition. 

Subject number 

Natural frequency 

(Hz)  

Damping 

ratio 

1 0.68 0.72 

2 1.00 0.08 

3 0.59 0.31 

4 0.21 1.00 

5 1.58 0.39 

6 0.25 1.00 

7 0.71 0.55 

8 0.50 0.20 

9 0.65 0.93 

10 0.62 0.79 

Mean 0.68 0.60 

Standard Deviation 
(SD) 0.39 0.34 
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Table B.11. ANOVA results of swiftness parameter 
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Table B.12. ANOVA results of damping parameter 
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Table B.13. ANOVA results of stiffness parameter 
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Table B.14. ANOVA results of natural frequency  
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Table B.15. ANOVA results of damping ratio  

 

 

Table B.16. Power analysis results representing the number of sample required in EO 

condition 

 
Healthy controls - mild 

PD 

Mild PD - Moderate 

PD 

Swiftness 

parameter 67 34 
Stiffness 

parameter 27 80 
Damping 

parameter 190 260 

Natural frequency 313 17 

Damping ratio 1399 592 
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Table B.17. Power analysis results representing the number of sample required in EC 

condition 

 
Healthy controls - mild 

PD 

Mild PD - Moderate 

PD 

Swiftness 

parameter 2026 19913 
Stiffness 

parameter 328 48 
Damping 

parameter 414 1810 

Natural frequency 194 27 

Damping ratio 194 53 
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Table B.18. Akaike’s final prediction error for the two models  

  Model 1 (AR (3)) Model 2 (ARMA (2,1)) 

Subject 

number EO EC EO EC 

1 1.94E-03 2.49E-03 1.51E-03 2.33E-03 

2 2.41E-03 3.25E-03 1.86E-03 2.64E-03 

3 1.07E-03 1.37E-03 7.67E-04 1.11E-03 

4 1.42E-03 2.07E-03 1.20E-03 2.24E-03 

5 1.00E-03 9.42E-04 8.26E-04 7.31E-04 

6 2.00E-03 4.11E-03 1.69E-03 3.69E-03 

7 1.84E-03 2.29E-03 1.54E-03 2.06E-03 

8 1.81E-03 4.38E-03 1.93E-03 5.79E-03 

9 1.20E-03 1.86E-03 8.79E-04 1.58E-03 

10 4.86E-03 5.72E-03 3.15E-03 3.64E-03 

11 5.10E-03 4.80E-03 3.14E-03 3.04E-03 

12 1.69E-03 2.01E-03 1.29E-03 1.61E-03 

13 1.94E-03 5.89E-03 1.75E-03 5.66E-03 

14 2.33E-03 2.56E-03 1.53E-03 1.72E-03 

15 3.33E-03 1.02E-02 2.85E-03 9.13E-03 

16 9.96E-04 1.43E-03 7.73E-04 1.14E-03 

17 1.68E-03 2.59E-03 1.53E-03 2.60E-03 

18 1.38E-03 2.18E-03 1.12E-03 1.97E-03 

19 1.64E-03 3.53E-03 1.22E-03 2.41E-03 

20 1.81E-03 2.02E-03 1.23E-03 1.41E-03 

21 2.56E-03 3.93E-03 2.01E-03 3.47E-03 

22 1.58E-03 2.09E-03 1.35E-03 1.96E-03 

23 4.37E-03 1.54E-02 4.86E-03 2.02E-02 

24 6.47E-03 1.60E-02 6.60E-03 1.92E-02 

25 2.26E-03 3.11E-03 1.86E-03 3.14E-03 

26 3.02E-03 5.80E-03 2.36E-03 4.63E-03 

27 1.77E-03 2.37E-03 1.19E-03 1.76E-03 

28 6.33E-03 1.60E-02 5.25E-03 1.43E-02 

29 1.86E-03 2.34E-03 1.33E-03 1.83E-03 

30 2.47E-03 2.92E-03 2.66E-03 2.64E-03 

31 1.63E-03 1.62E-03 1.11E-03 1.12E-03 

32 1.03E-02 2.07E-02 6.66E-03 1.43E-02 

33 4.77E-03 5.71E-03 3.26E-03 4.66E-03 

34 3.80E-03 3.94E-03 3.06E-03 3.34E-03 

35 6.60E-03 5.69E-02 6.25E-03 4.23E-02 

36 3.34E-03 1.78E-02 4.76E-03 3.17E-02 

37 3.71E-03 1.36E-02 3.05E-03 1.21E-02 

38 1.71E-03 2.12E-03 1.32E-03 1.56E-03 

39 4.51E-02 4.21E-02 8.82E-02 9.97E-02 
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40 1.81E-03 2.64E-03 1.14E-03 1.68E-03 

41 4.81E-03 1.13E-02 4.75E-03 1.09E-02 

42 1.23E-02 1.01E-02 1.29E-02 1.03E-02 

43 1.21E-02 2.09E-02 1.37E-02 2.39E-02 

44 6.09E-03 1.14E-02 5.23E-03 1.04E-02 
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Appendix C. Figures 

The following figures from figure C.1 to C.11 represent the Post-Hoc Tukey Kramer results 

graphically.  

 

Group 1- Healthy controls, Group 2 - Mild PD, Group 3 - Moderate PD 

Figure C.1. Post Hoc Tukey Karmer test results for damping parameter represented 

graphically 
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Group 1- Healthy controls, Group 2 - Mild PD, Group 3 - Moderate PD 

Figure C.2. Post Hoc Tukey Karmer test results for stiffness parameter represented 

graphically 
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Figure C.3. Post Hoc Tukey Karmer test results for swiftness parameter represented 

graphically 
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Figure C.4. Post Hoc Tukey Karmer test results for damping parameter represented 

graphically between EO and EC conditions for total population 
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Figure C.5. Post Hoc Tukey Karmer test results for stiffness parameter represented 

graphically between EO and EC conditions for total population 
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Figure C.6. Post Hoc Tukey Karmer test results for swiftness parameter represented 

graphically 
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Figure C.7. Post Hoc Tukey Karmer test results for damping ratio represented graphically 

 

 



A-29 

 

Figure C.8. Post Hoc Tukey Karmer test results for natural frequency represented 

graphically 
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Figure C.9. Post Hoc Tukey Karmer test results for damping ratio represented graphically 

between EO and EC conditions for total population 
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Figure C.10. Post Hoc Tukey Karmer test results for natural frequency represented 

graphically between EO and EC conditions for total population 
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Figure C.11. Post Hoc Tukey Karmer test results for swiftness parameter represented 

graphically between EO and EC conditions for total population 
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Figure C.12. Scatter plot for stiffness vs swiftness parameter (EO) 

 

Figure C.13. Scatter plot for damping vs swiftness parameter (EO) 
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Figure C.14. Scatter plot for stiffness vs damping parameter (EO) 

 

Figure C.15. Scatter plot for stiffness vs swiftness parameter (EC) 
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Figure C.16. Scatter plot for damping vs swiftness parameter (EC) 

 

Figure C.17. Scatter plot for stiffness vs damping parameter (EC) 
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Figure C.18. Scatter plot for the three parameters in EO condition 

 

Figure C.19. Scatter plot for the three parameters in EC condition 
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Figure C.20. Typical output power spectrum of AR (3) models for healthy control, 

mild PD and moderate PD subjects in EO condition 
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Figure C.21. Typical output power spectrum of AR (3) models for healthy, mild PD 

and moderate PD subjects in EC condition 
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Figure C.22. Schematic of the experimental setup for postural sway study. This figure 

represents a subject standing on a force plate setup used for data recording. 

Reprinted from “Biomechanical markers as indicators of postural instability 

progression in Parkinson’s disease” (p. 105, appendix), by Barnds, Annaria. N. 2015, 

The university of Kansas, Reprinted with permission. 
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Appendix D. COP calculations 

The following are the parameters obtained from the force plate: 

1. Forces (𝐹𝑥, 𝐹𝑦, 𝐹𝑧) 

2.  Moments (𝑀𝑥, 𝑀𝑦, 𝑀𝑧). 

 

The couple for two force vectors acting in the opposite directions in a non-collinear manner is 

calculated by using the following equation, 

𝑴 =  𝒓 . 𝑭 

 

Where, 

𝑟 - A vector connecting the lines of action of the two force vectors. 

𝐹 - The second force vector. 

 

Moment of force is calculated as follows, 

 

𝑴𝒐 =  𝒓 . 𝑭 

Where, 

𝑟 - The vector connecting the origin of the line of action of the force vector  

𝐹 - The force vector 

 

The total moment about the axis normal to the x, y and z-axis of the force plate is given by, 

 

𝑴𝒙  =  −𝑭𝒛 . 𝒚 +  𝑭𝒚 . 𝒅𝒛 +  𝑻𝒙 

 

𝑴𝒚  =  −𝑭𝒛 . 𝒙 + 𝑭𝒙 . 𝒅𝒛 +  𝑻𝒚 

 

𝑴𝒛  =  −𝑭𝒙 . 𝒚 +  𝑭𝒚 . 𝒙 + 𝑻𝒛 

Where, 

𝑑𝑧 – The distance below the top surface of the force plate below which the origin is located 
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As the subjects just stand on the force plate, there are no 𝑇𝑥, and 𝑇𝑦 torques acting. Hence the 

equations for the 𝐶𝑂𝑃𝑥 and 𝐶𝑂𝑃𝑦 can be simplified into the following, 

𝑪𝑶𝑷𝒙 = (−
𝑴𝒚 + 𝑭𝒙 ∗ 𝒅𝒛

𝑭𝒛
) 

𝑪𝑶𝑷𝒚 =  (
𝑴𝒙 − 𝑭𝒚 ∗ 𝒅𝒛

𝑭𝒛
) 

Therefore the 𝐶𝑂𝑃 equation becomes, 

 

𝑪𝑶𝑷 =  √(−
𝑴𝒚 + 𝑭𝒙 ∗ 𝒅𝒛

𝑭𝒛
)

𝟐

+  (
𝑴𝒙 − 𝑭𝒚 ∗ 𝒅𝒛

𝑭𝒛
)

𝟐
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Appendix E. MATLAB codes for the study 

E.1. Code 1. Program for analysis using the AR (3) modelling approach (Model 1). 

%Program to analyze the COP time series data in AP direction using the AR 
%modelling approach 
%Author: Chandrashekara Kaushik Gandur Balagangadhara 
clc; 
clear all; 
close all; 
cd('C:\Kaushik\Research\Data\COP_Data_100Hz');     %Set the directory 

containing the data 
%% 
% EYES OPEN CONDITION DATA 
%Analysis for eyes open condition 
%Healthy controls year 1 
data_struc1{1,1} = load('1_1001_EO1.mat'); 
data_struc1{2,1} = load('1_1001_EO2.mat'); 
data_struc1{3,1} = load('1_1001_EO3.mat'); 
data_struc1{1,2} = load('1_1003_EO1.mat'); 
data_struc1{2,2} = load('1_1003_EO2.mat'); 
data_struc1{3,2} = load('1_1003_EO3.mat'); 
data_struc1{1,3} = load('1_1006_EO1.mat'); 
data_struc1{2,3} = load('1_1006_EO2.mat'); 
data_struc1{3,3} = load('1_1006_EO3.mat'); 
data_struc1{1,4} = load('1_1007_EO1.mat'); 
data_struc1{2,4} = load('1_1007_EO2.mat'); 
data_struc1{3,4} = load('1_1007_EO3.mat'); 
data_struc1{1,5} = load('1_1008_EO1.mat'); 
data_struc1{2,5} = load('1_1008_EO2.mat'); 
data_struc1{3,5} = load('1_1008_EO3.mat'); 
data_struc1{1,6} = load('1_1009_EO1.mat'); 
data_struc1{2,6} = load('1_1009_EO2.mat'); 
data_struc1{3,6} = load('1_1009_EO3.mat'); 
data_struc1{1,7} = load('1_1010_EO1.mat'); 
data_struc1{2,7} = load('1_1010_EO2.mat'); 
data_struc1{3,7} = load('1_1010_EO3.mat'); 
data_struc1{1,8} = load('1_1011_EO1.mat'); 
data_struc1{2,8} = load('1_1011_EO2.mat'); 
data_struc1{3,8} = load('1_1011_EO3.mat'); 
data_struc1{1,9} = load('1_1012_EO1.mat'); 
data_struc1{2,9} = load('1_1012_EO2.mat'); 
data_struc1{3,9} = load('1_1012_EO3.mat'); 
data_struc1{1,10} = load('1_1013_EO1.mat'); 
data_struc1{2,10} = load('1_1013_EO2.mat'); 
data_struc1{3,10} = load('1_1013_EO3.mat'); 
data_struc1{1,11} = load('1_1014_EO1.mat'); 
data_struc1{2,11} = load('1_1014_EO2.mat'); 
data_struc1{3,11} = load('1_1014_EO3.mat'); 

  
%Healthy year 2 
data_struc1{1,12} = load('2_1001_EO1.mat'); 
data_struc1{2,12} = load('2_1001_EO2.mat'); 
data_struc1{3,12} = load('2_1001_EO3.mat'); 
data_struc1{1,13} = load('2_1002_EO1.mat'); 
data_struc1{2,13} = load('2_1002_EO2.mat'); 
data_struc1{3,13} = load('2_1002_EO3.mat'); 
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data_struc1{1,14} = load('2_1003_EO1.mat'); 
data_struc1{2,14} = load('2_1003_EO2.mat'); 
data_struc1{3,14} = load('2_1003_EO3.mat'); 
data_struc1{1,15} = load('2_1004_EO1.mat'); 
data_struc1{2,15} = load('2_1004_EO2.mat'); 
data_struc1{3,15} = load('2_1004_EO3.mat'); 
data_struc1{1,16} = load('2_1005_EO1.mat'); 
data_struc1{2,16} = load('2_1005_EO2.mat'); 
data_struc1{3,16} = load('2_1005_EO3.mat'); 
data_struc1{1,17} = load('2_1006_EO1.mat'); 
data_struc1{2,17} = load('2_1006_EO2.mat'); 
data_struc1{3,17} = load('2_1006_EO3.mat'); 
data_struc1{1,18} = load('2_1007_EO1.mat'); 
data_struc1{2,18} = load('2_1007_EO2.mat'); 
data_struc1{3,18} = load('2_1007_EO3.mat'); 
data_struc1{1,19} = load('2_1008_EO1.mat'); 
data_struc1{2,19} = load('2_1008_EO2.mat'); 
data_struc1{3,19} = load('2_1008_EO3.mat'); 
data_struc1{1,20} = load('2_1009_EO1.mat'); 
data_struc1{2,20} = load('2_1009_EO2.mat'); 
data_struc1{3,20} = load('2_1009_EO3.mat'); 
data_struc1{1,21} = load('2_1010_EO1.mat'); 
data_struc1{2,21} = load('2_1010_EO2.mat'); 
data_struc1{3,21} = load('2_1010_EO3.mat'); 

  
%Load Mild PD data 
data_struc1{1,22} = load('1_3001_EO1.mat'); 
data_struc1{2,22} = load('1_3001_EO2.mat'); 
data_struc1{3,22} = load('1_3001_EO3.mat'); 
data_struc1{1,23} = load('1_3002_EO1.mat'); 
data_struc1{2,23} = load('1_3002_EO2.mat'); 
data_struc1{3,23} = load('1_3002_EO3.mat'); 
data_struc1{1,24} = load('1_3003_EO1.mat'); 
data_struc1{2,24} = load('1_3003_EO2.mat'); 
data_struc1{3,24} = load('1_3003_EO3.mat'); 
data_struc1{1,25} = load('1_3004_EO1.mat'); 
data_struc1{2,25} = load('1_3004_EO2.mat'); 
data_struc1{3,25} = load('1_3004_EO3.mat'); 
data_struc1{1,26} = load('1_3005_EO1.mat'); 
data_struc1{2,26} = load('1_3005_EO2.mat'); 
data_struc1{3,26} = load('1_3005_EO3.mat'); 
data_struc1{1,27} = load('1_3006_EO1.mat'); 
data_struc1{2,27} = load('1_3006_EO2.mat'); 
data_struc1{3,27} = load('1_3006_EO3.mat'); 
data_struc1{1,28} = load('1_3008_EO1.mat'); 
data_struc1{2,28} = load('1_3008_EO2.mat'); 
data_struc1{3,28} = load('1_3008_EO3.mat'); 
data_struc1{1,29} = load('1_3009_EO1.mat'); 
data_struc1{2,29} = load('1_3009_EO2.mat'); 
data_struc1{3,29} = load('1_3009_EO3.mat'); 
data_struc1{1,30} = load('1_3010_EO1.mat'); 
data_struc1{2,30} = load('1_3010_EO2.mat'); 
data_struc1{3,30} = load('1_3010_EO3.mat'); 
data_struc1{1,31} = load('1_3011_EO1.mat'); 
data_struc1{2,31} = load('1_3011_EO2.mat'); 
data_struc1{3,31} = load('1_3011_EO3.mat'); 
data_struc1{1,32} = load('1_3013_EO1.mat'); 
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data_struc1{2,32} = load('1_3013_EO2.mat'); 
data_struc1{3,32} = load('1_3013_EO3.mat'); 
data_struc1{1,33} = load('1_3014_EO1.mat'); 
data_struc1{2,33} = load('1_3014_EO2.mat'); 
data_struc1{3,33} = load('1_3014_EO3.mat'); 
data_struc1{1,34} = load('2_4009_EO1.mat'); 
data_struc1{2,34} = load('2_4009_EO2.mat'); 
data_struc1{3,34} = load('2_4009_EO3.mat'); 

  
%Moderate PD data 
data_struc1{1,35} = load('2_4001_EO1.mat'); 
data_struc1{2,35} = load('2_4001_EO2.mat'); 
data_struc1{3,35} = load('2_4001_EO3.mat'); 
data_struc1{1,36} = load('2_4002_EO1.mat'); 
data_struc1{2,36} = load('2_4002_EO2.mat'); 
data_struc1{3,36} = load('2_4002_EO3.mat'); 
data_struc1{1,37} = load('2_4004_EO1.mat'); 
data_struc1{2,37} = load('2_4004_EO2.mat'); 
data_struc1{3,37} = load('2_4004_EO3.mat'); 
data_struc1{1,38} = load('2_4005_EO1.mat'); 
data_struc1{2,38} = load('2_4005_EO2.mat'); 
data_struc1{3,38} = load('2_4005_EO3.mat'); 
data_struc1{1,39} = load('2_4006_EO1.mat'); 
data_struc1{2,39} = load('2_4006_EO2.mat'); 
data_struc1{3,39} = load('2_4006_EO3.mat'); 
data_struc1{1,40} = load('2_4007_EO1.mat'); 
data_struc1{2,40} = load('2_4007_EO2.mat'); 
data_struc1{3,40} = load('2_4007_EO3.mat'); 
data_struc1{1,41} = load('2_4008_EO1.mat'); 
data_struc1{2,41} = load('2_4008_EO2.mat'); 
data_struc1{3,41} = load('2_4008_EO3.mat'); 
data_struc1{1,42} = load('2_4012_EO1.mat'); 
data_struc1{2,42} = load('2_4012_EO2.mat'); 
data_struc1{3,42} = load('2_4012_EO3.mat'); 
data_struc1{1,43} = load('2_4010_EO1.mat'); 
data_struc1{2,43} = load('2_4010_EO2.mat'); 
data_struc1{3,43} = load('2_4010_EO3.mat'); 
data_struc1{1,44} = load('2_4010_EO1.mat'); 
data_struc1{2,44} = load('2_4011_EO2.mat'); 
data_struc1{3,44} = load('2_4011_EO3.mat'); 

  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% EYES CLOSED CONDITION DATA 
data_struc2{1,1} = load('1_1001_EC1.mat'); 
data_struc2{2,1} = load('1_1001_EC2.mat'); 
data_struc2{3,1} = load('1_1001_EC3.mat'); 
data_struc2{1,2} = load('1_1003_EC1.mat'); 
data_struc2{2,2} = load('1_1003_EC2.mat'); 
data_struc2{3,2} = load('1_1003_EC3.mat'); 
data_struc2{1,3} = load('1_1006_EC1.mat'); 
data_struc2{2,3} = load('1_1006_EC2.mat'); 
data_struc2{3,3} = load('1_1006_EC3.mat'); 
data_struc2{1,4} = load('1_1007_EC1.mat'); 
data_struc2{2,4} = load('1_1007_EC2.mat'); 
data_struc2{3,4} = load('1_1007_EC3.mat'); 
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data_struc2{1,5} = load('1_1008_EC1.mat'); 
data_struc2{2,5} = load('1_1008_EC2.mat'); 
data_struc2{3,5} = load('1_1008_EC3.mat'); 
data_struc2{1,6} = load('1_1009_EC1.mat'); 
data_struc2{2,6} = load('1_1009_EC2.mat'); 
data_struc2{3,6} = load('1_1009_EC3.mat'); 
data_struc2{1,7} = load('1_1010_EC1.mat'); 
data_struc2{2,7} = load('1_1010_EC2.mat'); 
data_struc2{3,7} = load('1_1010_EC3.mat'); 
data_struc2{1,8} = load('1_1011_EC1.mat'); 
data_struc2{2,8} = load('1_1011_EC2.mat'); 
data_struc2{3,8} = load('1_1011_EC3.mat'); 
data_struc2{1,9} = load('1_1012_EC1.mat'); 
data_struc2{2,9} = load('1_1012_EC2.mat'); 
data_struc2{3,9} = load('1_1012_EC3.mat'); 
data_struc2{1,10} = load('1_1013_EC1.mat'); 
data_struc2{2,10} = load('1_1013_EC2.mat'); 
data_struc2{3,10} = load('1_1013_EC3.mat'); 
data_struc2{1,11} = load('1_1014_EC1.mat'); 
data_struc2{2,11} = load('1_1014_EC2.mat'); 
data_struc2{3,11} = load('1_1014_EC3.mat'); 

  
%Healthy year 2 
data_struc2{1,12} = load('2_1001_EC1.mat'); 
data_struc2{2,12} = load('2_1001_EC2.mat'); 
data_struc2{3,12} = load('2_1001_EC3.mat'); 
data_struc2{1,13} = load('2_1002_EC1.mat'); 
data_struc2{2,13} = load('2_1002_EC2.mat'); 
data_struc2{3,13} = load('2_1002_EC3.mat'); 
data_struc2{1,14} = load('2_1003_EC1.mat'); 
data_struc2{2,14} = load('2_1003_EC2.mat'); 
data_struc2{3,14} = load('2_1003_EC3.mat'); 
data_struc2{1,15} = load('2_1004_EC1.mat'); 
data_struc2{2,15} = load('2_1004_EC2.mat'); 
data_struc2{3,15} = load('2_1004_EC3.mat'); 
data_struc2{1,16} = load('2_1005_EC1.mat'); 
data_struc2{2,16} = load('2_1005_EC2.mat'); 
data_struc2{3,16} = load('2_1005_EC3.mat'); 
data_struc2{1,17} = load('2_1006_EC1.mat'); 
data_struc2{2,17} = load('2_1006_EC2.mat'); 
data_struc2{3,17} = load('2_1006_EC3.mat'); 
data_struc2{1,18} = load('2_1007_EC1.mat'); 
data_struc2{2,18} = load('2_1007_EC2.mat'); 
data_struc2{3,18} = load('2_1007_EC3.mat'); 
data_struc2{1,19} = load('2_1008_EC1.mat'); 
data_struc2{2,19} = load('2_1008_EC2.mat'); 
data_struc2{3,19} = load('2_1008_EC3.mat'); 
data_struc2{1,20} = load('2_1009_EC1.mat'); 
data_struc2{2,20} = load('2_1009_EC2.mat'); 
data_struc2{3,20} = load('2_1009_EC3.mat'); 
data_struc2{1,21} = load('2_1010_EC1.mat'); 
data_struc2{2,21} = load('2_1010_EC2.mat'); 
data_struc2{3,21} = load('2_1010_EC3.mat'); 

  
%Load Mild PD data 
data_struc2{1,22} = load('1_3001_EC1.mat'); 
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data_struc2{2,22} = load('1_3001_EC2.mat'); 
data_struc2{3,22} = load('1_3001_EC3.mat'); 
data_struc2{1,23} = load('1_3002_EC1.mat'); 
data_struc2{2,23} = load('1_3002_EC2.mat'); 
data_struc2{3,23} = load('1_3002_EC3.mat'); 
data_struc2{1,24} = load('1_3003_EC1.mat'); 
data_struc2{2,24} = load('1_3003_EC2.mat'); 
data_struc2{3,24} = load('1_3003_EC3.mat'); 
data_struc2{1,25} = load('1_3004_EC1.mat'); 
data_struc2{2,25} = load('1_3004_EC2.mat'); 
data_struc2{3,25} = load('1_3004_EC3.mat'); 
data_struc2{1,26} = load('1_3005_EC1.mat'); 
data_struc2{2,26} = load('1_3005_EC2.mat'); 
data_struc2{3,26} = load('1_3005_EC3.mat'); 
data_struc2{1,27} = load('1_3006_EC1.mat'); 
data_struc2{2,27} = load('1_3006_EC2.mat'); 
data_struc2{3,27} = load('1_3006_EC3.mat'); 
data_struc2{1,28} = load('1_3008_EC1.mat'); 
data_struc2{2,28} = load('1_3008_EC2.mat'); 
data_struc2{3,28} = load('1_3008_EC3.mat'); 
data_struc2{1,29} = load('1_3009_EC1.mat'); 
data_struc2{2,29} = load('1_3009_EC2.mat'); 
data_struc2{3,29} = load('1_3009_EC3.mat'); 
data_struc2{1,30} = load('1_3010_EC1.mat'); 
data_struc2{2,30} = load('1_3010_EC2.mat'); 
data_struc2{3,30} = load('1_3010_EC3.mat'); 
data_struc2{1,31} = load('1_3011_EC1.mat'); 
data_struc2{2,31} = load('1_3011_EC2.mat'); 
data_struc2{3,31} = load('1_3011_EC3.mat'); 
data_struc2{1,32} = load('1_3013_EC1.mat'); 
data_struc2{2,32} = load('1_3013_EC2.mat'); 
data_struc2{3,32} = load('1_3013_EC3.mat'); 
data_struc2{1,33} = load('1_3014_EC1.mat'); 
data_struc2{2,33} = load('1_3014_EC2.mat'); 
data_struc2{3,33} = load('1_3014_EC3.mat'); 
data_struc2{1,34} = load('2_4009_EC1.mat'); 
data_struc2{2,34} = load('2_4009_EC2.mat'); 
data_struc2{3,34} = load('2_4009_EC3.mat'); 

  
%Moderate PD data 
data_struc2{1,35} = load('2_4001_EC1.mat'); 
data_struc2{2,35} = load('2_4001_EC2.mat'); 
data_struc2{3,35} = load('2_4001_EC3.mat'); 
data_struc2{1,36} = load('2_4002_EC1.mat'); 
data_struc2{2,36} = load('2_4002_EC2.mat'); 
data_struc2{3,36} = load('2_4002_EC3.mat'); 
data_struc2{1,37} = load('2_4004_EC1.mat'); 
data_struc2{2,37} = load('2_4004_EC2.mat'); 
data_struc2{3,37} = load('2_4004_EC3.mat'); 
data_struc2{1,38} = load('2_4005_EC1.mat'); 
data_struc2{2,38} = load('2_4005_EC2.mat'); 
data_struc2{3,38} = load('2_4005_EC3.mat'); 
data_struc2{1,39} = load('2_4006_EC1.mat'); 
data_struc2{2,39} = load('2_4006_EC2.mat'); 
data_struc2{3,39} = load('2_4006_EC3.mat'); 
data_struc2{1,40} = load('2_4007_EC1.mat'); 
data_struc2{2,40} = load('2_4007_EC2.mat'); 
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data_struc2{3,40} = load('2_4007_EC3.mat'); 
data_struc2{1,41} = load('2_4008_EC1.mat'); 
data_struc2{2,41} = load('2_4008_EC2.mat'); 
data_struc2{3,41} = load('2_4008_EC3.mat'); 
data_struc2{1,42} = load('2_4012_EC1.mat'); 
data_struc2{2,42} = load('2_4012_EC2.mat'); 
data_struc2{3,42} = load('2_4012_EC3.mat'); 
data_struc2{1,43} = load('2_4010_EC1.mat'); 
data_struc2{2,43} = load('2_4010_EC2.mat'); 
data_struc2{3,43} = load('2_4010_EC3.mat'); 
data_struc2{1,44} = load('2_4010_EC1.mat'); 
data_struc2{2,44} = load('2_4011_EC2.mat'); 
data_struc2{3,44} = load('2_4011_EC3.mat'); 

  

  
%Load EO data 
for i = 1:44 
    for j = 1:3 
        data1{j,i} = data_struc1{j,i}.dt_COPAP_COPML;   %Store the data in 

the a cell named 'data1' for EO condition 
        t_EO{j,i} = data1{j,i}(:,1);                    %Store time data for 

EO condition 
        AP_EO{j,i} = data1{j,i}(:,2);                   %Anterior-Posterior 

EO data 
        ML_EO{j,i} = data1{j,i}(:,3);                   %Medio-Lateral EO 

data 
    end 
end 

  
%Load EC data 
for i = 1:44 
    for j = 1:3 
        data2{j,i} = data_struc2{j,i}.dt_COPAP_COPML;   %Store the data in 

the a cell named 'data1' for EC condition 
        t_EC{j,i} = data2{j,i}(:,1);                    %Store time data for 

EC condition 
        AP_EC{j,i} = data2{j,i}(:,2);                   %Anterior-Posterior 

EC data 
        ML_EC{j,i} = data2{j,i}(:,3);                   %Medio-Lateral EC 

data 
    end 
end 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% 
%Filter the data AP direction EO data 

  
for i = 1:44 
    for j = 1:3 
        [xfiltered_EO{j,i},yfiltered_EO{j,i}] = LPF(100, 

30,AP_EO{j,i}(:,1),ML_EO{j,i}(:,1));   %Filter the AP and ML data for EO 

condition 
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        detrendedsig_AP_EO{j,i} = detrend(xfiltered_EO{j,i});                                   

%Detrend the AP COP time series data in the EO condition 
    end 
end 

  
for i = 1:44 
    for j = 1:3 
        detrendedsig_AP_EO{j,i} = downsample(detrendedsig_AP_EO{j,i},2);                        

%Downsample the detrended signal for EO condition from 100Hz to 50Hz 
    end 
end 

  
%Filter the data AP direction EC data 

  
for i = 1:44 
    for j = 1:3 
        [xfiltered_EC{j,i},yfiltered_EC{j,i}] = LPF(100, 

30,AP_EC{j,i}(:,1),ML_EC{j,i}(:,1));    %Filter the AP and ML data for EC 

condition 
        detrendedsig_AP_EC{j,i} = detrend(xfiltered_EC{j,i});                                    

%Detrend the AP COP time series data in the EC condition 
    end 
end 

  
for i = 1:44 
    for j = 1:3 
        detrendedsig_AP_EC{j,i} = downsample(detrendedsig_AP_EC{j,i},2);                         

%Downsample the detrended signal for EC condition from 100Hz to 50Hz 
    end 
end 

  
%% 
%Merge the three trials for AP data EO 

  
Position_Final_EO = cell(1,44);                                                 

%Create a cell of size 1*44 for storing time series data (EO trials) 
for i = 1:44 
    for j = 1:3 
        Position_AP_EO{j,i} = iddata(detrendedsig_AP_EO{j,i},[],0.02);          

%Store the time series data trials in the form of separate experiments (EO 

trials) 
    end 
end 

  
%Merge the three trials for AP data EC 

  
Position_Final_EC = cell(1,44);                                                 

%Create a cell of size 1*44 for storing time series data (EC trials) 
for i = 1:44 
    for j = 1:3 
        Position_AP_EC{j,i} = iddata(detrendedsig_AP_EC{j,i},[],0.02);          

%Store the time series data trials in the form of separate experiments (EC 

trials) 
    end 
end 
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%% 
%AP data EO & EC 
for i = 1:44 
    Position_Final_EO{1,i} = 

merge(getexp(Position_AP_EO{1,i},1),getexp(Position_AP_EO{2,i},1),getexp(Posi

tion_AP_EO{3,i},1));  %Store the data in the form of three columns for the 

different trials (EO) 
    Position_Final_EC{1,i} = 

merge(getexp(Position_AP_EC{1,i},1),getexp(Position_AP_EC{2,i},1),getexp(Posi

tion_AP_EC{3,i},1));  %Store the data in the form of three columns for the 

different trials (EC) 
end 

  
%% 
%System identification for position data using 
%arma system for AP direction 
for i = 1:44 
    for o = 1:4                                                             

%This is only used for determining the best order for the system. (i.e. 

replace the order of the system in the next line with the variable 'o' and 

run the loop. find AIC and determine the best model. 
         Opt = armaxOptions;                                                

%Set the options for prediction error method 
         armasysp_EO{1,i} = armax(Position_Final_EO{1,i},[3 0], Opt);       

%System identification using an AR(3) model for EO data 
         tfarmap_EO{1,i} = tf(armasysp_EO{1,i}.c,armasysp_EO{1,i}.a,0.02);  

%Transfer function form of the identified model for EO condition 
         z_EO{1,i} = d2c(armasysp_EO{1,i});                                 

%Convert the transfer function from discrete to continuous form using 'ZOH' 

method for EO data 
         AIC_EO(1,i) = aic(armasysp_EO{1,i});                               

%Calculate the AIC values for EO data models identified 

          
         Opt = armaxOptions;                                                

%Set the options for prediction error method 
         armasysp_EC{1,i} = armax(Position_Final_EC{1,i},[3 0], Opt);       

%System identification using an AR(3) model for EC data 
         tfarmap_EC{1,i} = tf(armasysp_EC{1,i}.c,armasysp_EC{1,i}.a,0.02);  

%Transfer function form of the identified model for EC condition 
         z_EC{1,i} = d2c(armasysp_EC{1,i});                                 

%Convert the transfer function from discrete to continuous form using 'ZOH' 

method for EC data 
         AIC_EC(1,i) = aic(armasysp_EC{1,i});                               

%Calculate the AIC values for EC data models identified 
    end 
end 

  
%% 
%Akaike's final prediction error for the two models 
for i = 1:44 
    ak_EO(i,1) = fpe(armasysp_EO{1,i});                                     

%Calculate the final prediction errors for the ARMA models identified using 

EO COP AP data 
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    ak_EC(i,1) = fpe(armasysp_EC{1,i});                                     

%Calculate the final prediction errors for the ARMA models identified using 

EC COP AP data 
end 
%% 
%Storing the coefficients 
for i = 1:44 
    eta_EO{1,i} = z_EO{1,i}.A(1,2);                                         

%Extract the 'eta' coefficients from the TF denominators of the identified 

models for EO condition 
    k_EO{1,i} = z_EO{1,i}.A(1,3);                                           

%Extract the 'k' coefficients from the TF denominators of the identified 

models for EO condition 
    rho_EO{1,i} = z_EO{1,i}.A(1,4);                                         

%Extract the 'rho' coefficients from the TF denominators of the identified 

models for EO condition 
end 

  
for i = 1:44 
    eta_EC{1,i} = z_EC{1,i}.A(1,2);                                         

%Extract the 'eta' coefficients from the TF denominators of the identified 

models for EC condition 
    k_EC{1,i} = z_EC{1,i}.A(1,3);                                           

%Extract the 'k' coefficients from the TF denominators of the identified 

models for EC condition 
    rho_EC{1,i} = z_EC{1,i}.A(1,4);                                         

%Extract the 'rho' coefficients from the TF denominators of the identified 

models for EC condition 
end 
%% 
%Coefficients for EO condition 
w_EO = cell(1,44);                                %Create a cell for storing 

w values in EO condition 
for i = 1:44 
w_EO{1,i} = (nthroot(rho_EO{1,i},3));             %w(omega) gives the 

swiftness (rad/sec) for EO condition models 
w_new_EO{1,i} = (nthroot(rho_EO{1,i},3)); 
end 

  
%Coefficients for EC condition 
w_EC = cell(1,44);                                %Create a cell for storing 

w values in EC condition 
for i = 1:44 
w_EC{1,i} = (nthroot(rho_EC{1,i},3));             %w_EC(omega) gives the 

swiftness (rad/sec) for EC condition models 
w_new_EC{1,i} = (nthroot(rho_EC{1,i},3)); 
end 

  
w_EO = cell2mat(w_EO);                            %Cell to matrix conversion 

for swiftness EO condition 
w_EC = cell2mat(w_EC);                            %Cell to matrix conversion 

for swiftness EC condition 

  
%% 
%Stiffness and damping for EO data 
for i = 1:length(w_EO) 
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st_EO{1,i} = ((k_EO{1,i})/((w_EO(1,i))^2));          %Stiffness coefficient 

in EO condition 

  
d_EO{1,i} = ((eta_EO{1,i})/(w_EO(1,i)));             %Damping coefficient in 

EO condition 

  
end 

  
%Stiffness and damping for EC data 
for i = 1:length(w_EC) 
st_EC{1,i} = ((k_EC{1,i})/((w_EC(1,i))^2));          %Stiffness coefficient 

in EC condition 

  
d_EC{1,i} = ((eta_EC{1,i})/(w_EC(1,i)));             %Damping coefficient in 

EC condition 

  
end 

  
%% 
%Compressing the data coefficients into one single matrix 
%Exclude the values which have values more or less than mean+-(3*SD) 
    M = mean(w_EO)+(3*std(w_EO));                   %Calculate the value of 

mean + 3*S.D, EO trials                    
    deletethese = (w_EO >= M);                      %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EO trials 
    W1 = w_EO(~deletethese);                        %Update the matrix W1 
 %%    
    M = mean(w_EC)+(3*std(w_EC));                   %Calculate the value of 

mean + 3*S.D, EC trials 
    deletethese = (w_EC >= M);                      %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EC trials 
    W1_EC = w_EC(~deletethese);                     %Update the matrix W1_EC 
 %%    
%     d_EO = cell2mat(d_EO);                          %Cell to matrix 

conversion for d_EO  
%     d_EC = cell2mat(d_EC);                          %Cell to matrix 

conversion for d_EC  
    M = mean(d_EO)+(3*std(d_EO));                   %Calculate the value of 

mean + 3*S.D, EO trials   
    deletethese = (d_EO >= M);                      %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EO trials 
    d1 = d_EO(~deletethese);                        %Update the matrix d1_EO 

and store it in d1 
   %%  
    M = mean(d_EC)+(3*std(d_EC));                   %Calculate the value of 

mean + 3*S.D, EC trials   
    deletethese = (d_EC >= M);                      %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EC trials     
    d1_EC = d_EC(~deletethese);                     %Update the matirx d1_EC 
    %% 
    st_EO = cell2mat(st_EO);                        %Cell to matrix 

conversion for st_EO  
    st_EC = cell2mat(st_EC);                        %Cell to matrix 

conversion for st_EC 
    M = mean(st_EO)+(3*std(st_EO));                 %Calculate the value of 

mean + 3*S.D, EO trials   
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    deletethese = (st_EO >= M);                     %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EO trials   
    s1 = st_EO(~deletethese);                       %Update the matrix s1_EO 
    %% 
    M = mean(st_EC)+(3*std(st_EC));                 %Calculate the value of 

mean + 3*S.D, EO trials  
    deletethese = (st_EC >= M);                     %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EC trials   
    s1_EC = st_EC(~deletethese);                    %Update the matrix s1_EC 

  
%% 
W = W1';                                          %Put the swiftness values 

into a column matrix for EO condition 
W(44:87) = W1_EC';                                %Update the swiftness 

values into a column matrix for EC condition 
%% 
STF = s1';                                        %Put the stiffness values 

into a column matrix for EO condition 
STF(44:86) = s1_EC';                              %Put the stiffness values 

into a column matrix for EC condition 
%% 
DAMP = d1';                                       %Put the damping values 

into a column matrix for EO condition 
DAMP(45:87) = d1_EC';                             %Put the damping values 

into a column matrix for EC condition 
%% 
W = cell2mat(W);                                    %Cell to matrix 

conversion of 'W' 
STF = cell2mat(STF);                                %Cell to matrix 

conversion of 'STF' 
DAMP = cell2mat(DAMP);                              %Cell to matrix 

conversion of 'DAMP' 

  
    M = mean(w_EO)-(3*std(w_EO));                   %Calculate the value of 

mean + 3*S.D, EO trials                    
    deletethese = (w_EO <= M);                      %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EO trials 
    W1 = w_EO(~deletethese);                        %Update the matrix W1 
    %%    
    M = mean(w_EC)-(3*std(w_EC));                   %Calculate the value of 

mean + 3*S.D, EC trials 
    deletethese = (w_EC <= M);                      %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EC trials 
    W1_EC = w_EC(~deletethese);                     %Update the matrix W1_EC 
    %%    
    M = mean(d_EO)-(3*std(d_EO));                   %Calculate the value of 

mean + 3*S.D, EO trials   
    deletethese = (d_EO <= M);                      %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EO trials 
    d1 = d_EO(~deletethese);                        %Update the matrix d1_EO 

and store it in d1 
   %%  
    M = mean(d_EC)-(3*std(d_EC));                   %Calculate the value of 

mean + 3*S.D, EC trials   
    deletethese = (d_EC <= M);                      %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EC trials     
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    d1_EC = d_EC(~deletethese);                     %Update the matirx d1_EC 
    %% 
    M = mean(st_EO)-(3*std(st_EO));                 %Calculate the value of 

mean + 3*S.D, EO trials   
    deletethese = (st_EO <= M);                     %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EO trials   
    s1 = st_EO(~deletethese);                       %Update the matrix s1_EO 
    %% 
    M = mean(st_EC)-(3*std(st_EC));                 %Calculate the value of 

mean + 3*S.D, EO trials  
    deletethese = (st_EC <= M);                     %Create a matrix which 

alots '1's to those values whic are > mean + 3* S.D, EC trials   
    s1_EC = st_EC(~deletethese);                    %Update the matrix s1_EC 

    
%%    
%ANOVA analysis for EO & EC data 
%ANOVA for swiftness parameter 
%Create a group factor matrix for use in ANOVA analysis 
Group_Factor = 

[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;3;3;3;3;

3;3;3;3;3;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2

;3;3;3;3;3;3;3;3;3;3;];  
%Create a condition matrix (EO and EC) for use in ANOVA analysis 
Condition_Factor = 

{'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'

EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO

';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EC';'EC';'EC';

'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'E

C';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC'

;'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';}; 
%% 
varnames = {'Group','Condition'};                                                                           

%Give the two factors defined before certain variable names to identify them 
figure(2); 
[pW, tblW, statsW, termsW] = anovan(W,{Group_Factor 

Condition_Factor},'varnames',varnames,'model', 'full'); %Perform the ANOVA 

analysis based on groups, conditiona and group*condition ineraction for EO 

condition for swiftness parameter 
figure(2); 
filename = sprintf('Swiftness_Parameter.pdf');                                                              

%Save the ANOVA table in PDF format 
print(figure(1),filename,'-dpdf'); 
close all; 
%% 
%Post-Hoc Tukey Krammer test for swiftness parameter 
figure(2); 
cW = multcompare(statsW,'Dimension',[1 2]); 
title('Swiftness of the systems (rad/sec)'); 
filename = sprintf('Swiftness_Parameter_Post_Hoc.pdf');                                                     

%Save the Post-Hoc results figure in PDF format 
print(figure(2),filename,'-dpdf');                                                                           
close all; 

  
%% 
%ANOVA for stiffness parameter 
%Create a group factor matrix for use in ANOVA analysis 



A-54 

Group_Factor = 

[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;3;3;3;3;

3;3;3;3;3;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;3

;3;3;3;3;3;3;3;3;3;]; 
%Create a condition matrix (EO and EC) for use in ANOVA analysis 
Condition_Factor = 

{'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'

EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO

';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EC';'EC';'EC';

'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'E

C';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC'

;'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';}; 
%% 
[pS, tblS, statsS, termsS] = anovan(STF,{Group_Factor 

Condition_Factor},'varnames',varnames,'model', 'full');%Perform the ANOVA 

analysis based on groups, conditiona and group*condition ineraction for EO 

condition for stiffness parameter 
filename = sprintf('Stifness_Parameter.pdf');                                                                

%Save the ANOVA table in PDF format 
print(figure(1),filename,'-dpdf'); 
close all; 

  
%% 
%Post-hoc Tukey Krammer test for stiffness parameter 
figure(4); 
cS = multcompare(statsS,'Dimension',[1 2]);                                                                  
title('Stiffness parameter of the systems'); 
filename = sprintf('Stiffness_Parameter_Post_Hoc_EO_EC.pdf');                                               

%Save the Post-Hoc results figure in PDF format                           
print(figure(4),filename,'-dpdf'); 
close all; 

  
%% 
%ANOVA for damping parameter 
%Create a group factor matrix for use in ANOVA analysis 
Group_Factor = 

[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;3;3;3;3;

3;3;3;3;3;3;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2

;3;3;3;3;3;3;3;3;3;3;]; 
%Create a condition matrix (EO and EC) for use in ANOVA analysis 
Condition_Factor = 

{'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'

EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO

';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EC';'EC';

'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'E

C';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC'

;'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';}; 
%% 
[pD, tblD, statsD, termsD] = anovan(DAMP,{Group_Factor 

Condition_Factor},'varnames',varnames,'model', 'full');%Perform the ANOVA 

analysis based on groups, conditiona and group*condition ineraction for EO 

condition for damping parameter 
figure(5); 
filename = sprintf('Damping_Parameter.pdf');                                                                  

%Save the ANOVA table in PDF format 
print(figure(1),filename,'-dpdf'); 



A-55 

close all; 
%% 
figure(6); 
cD = multcompare(statsD,'Dimension',[1 2]);                                                                   

%Post-hoc Tukey Krammer test for damping parameter 
title('Damping parameter of the systems'); 
filename = sprintf('Damping_Parameter_Post_Hoc.pdf');                                                         

%Save the Post-Hoc results figure in PDF format     
print(figure(6),filename,'-dpdf'); 
close all; 

  
%% 
%Power analysis 
%Find the means and standard deviations for the three parameters 
w_h_EO = mean(W(1:21)); 
w_mild_EO = mean(W(22:34)); 
w_moderate_EO = mean(W(35:43)); 

  

  
w_h_EC = mean(W(44:64)); 
w_mild_EC = mean(W(65:77)); 
w_moderate_EC = mean(W(78:87)); 

  
st_h_EO = mean((STF(1:21))); 
st_mild_EO = mean((STF(22:34))); 
st_moderate_EO = mean((STF(35:43))); 

  
st_h_EC = mean((STF(44:63))); 
st_mild_EC = mean((STF(64:76))); 
st_moderate_EC = mean((STF(77:86))); 

  
d_h_EO = mean((DAMP(1:21))); 
d_mild_EO = mean((DAMP(22:34))); 
d_moderate_EO = mean((DAMP(35:44))); 

  
d_h_EC = mean((DAMP(45:64))); 
d_mild_EC = mean((DAMP(65:77))); 
d_moderate_EC = mean((DAMP(78:87))); 

  
n_h_mild_swift = sampsizepwr('t',[w_h_EO std(w_EO(1:21))],[w_mild_EO 

std(w_mild_EO)],0.95)          %Power analysis using both means and S.D 's of 

the healthy - mild PD data EO condition (Swiftness parameter) 
n_h_mild_stiff = sampsizepwr('t',[st_h_EO std((st_EO(1:21)))],[st_mild_EO 

std(st_mild_EO)],0.95)    %Power analysis using both means and S.D 's of the 

healthy - mild PD data EO condition (Stiffness parameter) 
n_h_mild_damp = sampsizepwr('t',[d_h_EO std((d_EO(1:21)))],[d_mild_EO 

std(d_mild_EO)],0.95)         %Power analysis using both means and S.D 's of 

the healthy - mild PD data EO condition (Damping parameter) 

  
n_h_mm_swift = sampsizepwr('t',[w_mild_EO std(w_EO(22:34))],[w_moderate_EO 

std(w_moderate_EO)],0.95)        %Power analysis using both means and S.D 's 

of the mild - moderate PD data EO condition (Swiftness parameter) 
n_h_mm_stiff = sampsizepwr('t',[st_mild_EO 

std((st_EO(22:34)))],[st_moderate_EO std(st_moderate_EO)],0.95)  %Power 
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analysis using both means and S.D 's of the mild - moderate PD data EO 

condition (Stiffness parameter) 
n_h_mm_damp = sampsizepwr('t',[d_mild_EO std((d_EO(22:34)))],[d_moderate_EO 

std(d_moderate_EO)],0.95)       %Power analysis using both means and S.D 's 

of the mild - moderate PD data EO condition (Damping parameter) 

  
%% 
n_h_mild_swift = sampsizepwr('t',[w_h_EC std(w_EC(1:21))],[w_mild_EC 

std(w_mild_EC)],0.95)          %Power analysis using both means and S.D 's of 

the healthy - mild PD data EC condition (Swiftness parameter) 
n_h_mild_stiff = sampsizepwr('t',[st_h_EC std((st_EC(1:21)))],[st_mild_EC 

std(st_mild_EC)],0.95)    %Power analysis using both means and S.D 's of the 

healthy - mild PD data EC condition (Stiffness parameter) 
n_h_mild_damp = sampsizepwr('t',[d_h_EC std((d_EC(1:21)))],[d_mild_EC 

std(d_mild_EC)],0.95)         %Power analysis using both means and S.D 's of 

the healthy - mild PD data EC condition (Damping parameter) 

  
%% 
n_h_mm_swift = sampsizepwr('t',[w_mild_EC std(w_EC(22:34))],[w_moderate_EC 

std(w_moderate_EC)],0.95)        %Power analysis using both means and S.D 's 

of the mild - moderate PD data EC condition (Swiftness parameter)     
n_h_mm_stiff = sampsizepwr('t',[st_mild_EC 

std((st_EC(22:34)))],[st_moderate_EC std(st_moderate_EC)],0.95)  %Power 

analysis using both means and S.D 's of the mild - moderate PD data EC 

condition (Stiffness parameter) 
n_h_mm_damp = sampsizepwr('t',[d_mild_EC std((d_EC(22:34)))],[d_moderate_EC 

std(d_moderate_EC)],0.95)       %Power analysis using both means and S.D 's 

of the mild - moderate PD data EC condition (Damping parameter) 

  
%% 
%Scatter plots of the three parameters 
cd('C:\Kaushik\Research\MATLAB_KAUSHIK\Kaushik_Combined_Analysis\Individual 

Analysis\LATEST ANALYSIS\LATEST RESULTS\Scatter Plots'); 

  
%Scatter plots of the three parameters for EO condition  
group1 = 

[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;3;3;3;3;

3;3;3;3;3;3] 

  
figure(1); 
gscatter(W(1:44),STF(1:44),group1,'gbr') 
title('Swiftness VS Stiffness parameter for EO healthy controls, mild PD and 

moderate PD'); 
xlabel('Swiftness parameter(rad/sec)'); 
ylabel('Stiffness parameter'); 
legend('Healhty controls', 'Mild PD', 'Moderate PD'); 
export_fig figure(1) -jpg -r1000 -q100; 

  
%% 
figure(2); 
gscatter(W(1:44),DAMP(1:44),group1,'gbr') 
title('Swiftness VS Damping parameter for EO healthy controls, mild PD and 

moderate PD'); 
xlabel('Swiftness parameter(rad/sec)'); 
ylabel('Damping parameter'); 
legend('Healhty controls', 'Mild PD', 'Moderate PD'); 
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export_fig figure(2) -jpg -r1000 -q100; 

  
%% 
figure(3); 
gscatter(DAMP(1:44),STF(1:44),group1,'gbr') 
title('Damping parameter VS Stiffness parameter for EO healthy controls, mild 

PD and moderate PD'); 
xlabel('Damping parameter'); 
ylabel('Stiffness parameter'); 
legend('Healhty controls', 'Mild PD', 'Moderate PD'); 
export_fig figure(3) -jpg -r1000 -q100; 
close all; 

  
%% 
% Scatter plots for EC condition 
figure(4); 
gscatter(W(45:88),STF(45:88),group1,'gbr') 
title('Swiftness VS Stiffness parameter for EC healthy controls, mild PD and 

moderate PD'); 
xlabel('Swiftness parameter(rad/sec)'); 
ylabel('Stiffness parameter'); 
legend('Healhty controls', 'Mild PD', 'Moderate PD'); 
export_fig figure(4) -jpg -r1000 -q100; 

  
%% 
figure(5); 
gscatter(W(45:88),DAMP(45:88),group1,'gbr') 
title('Swiftness VS Damping parameter for EC healthy controls, mild PD and 

moderate PD'); 
xlabel('Swiftness parameter(rad/sec)'); 
ylabel('Damping parameter'); 
legend('Healhty controls', 'Mild PD', 'Moderate PD'); 
export_fig figure(5) -jpg -r1000 -q100; 

  
%% 
figure(6); 
gscatter(DAMP(45:88),STF(45:88),group1,'gbr') 
title('Damping parameter VS Stiffness parameter for EC healthy controls, mild 

PD and moderate PD'); 
xlabel('Damping parameter'); 
ylabel('Stiffness parameter'); 
legend('Healhty controls', 'Mild PD', 'Moderate PD'); 
export_fig figure(6) -jpg -r1000 -q100; 
close all; 

  
%% 
%3d scatter plot EO condition 
figure(7); 
S = repmat([50],numel(W(1:21)),1); 
C = repmat([1],numel(W(1:21)),1); 
scatter3(W(1:21),STF(1:21),DAMP(1:21),S,C,'og','filled'); 
hold on; 

  
S1 = repmat([50],numel(W(22:34)),1); 
C1 = repmat([2],numel(W(22:34)),1); 
scatter3(W(22:34),STF(22:34),DAMP(22:34),S1,C1,'^b','filled'); 
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S3 = repmat([50],numel(W(35:44)),1); 
C3 = repmat([3],numel(W(35:44)),1); 
scatter3(W(35:44),STF(35:44),DAMP(35:44),S3,C3,'dr','filled'); 

  
title('3d scatter plot for swiftness, stiffness and damping for healthy 

controls, mild PD and moderate PD EO condition'); 
xlabel('Swiftness (rad/sec)'); 
ylabel('Stiffness parameter'); 
zlabel('Damping parameter'); 
legend('Healthy controls EO', 'Mild PD EO', 'Moderate PD EO'); 
%% 
export_fig figure(7) -jpg -r1000 -q100; 

  
%% 
%3d scatter plot EC condition 
figure(8); 
S4 = repmat([50],numel(W(45:65)),1); 
C4 = repmat([1],numel(W(45:65)),1); 
scatter3(W(45:65),STF(45:65),DAMP(45:65),S4,C4,'og','filled'); 
hold on; 

  
S5 = repmat([50],numel(W(66:78)),1); 
C5 = repmat([2],numel(W(66:78)),1); 
scatter3(W(66:78),STF(66:78),DAMP(66:78),S5,C5,'^b','filled'); 

  
S6 = repmat([50],numel(W(79:88)),1); 
C6 = repmat([3],numel(W(79:88)),1); 
scatter3(W(79:88),STF(79:88),DAMP(79:88),S6,C6,'dr','filled'); 

  
title('3d scatter plot for swiftness, stiffness and damping for healthy 

controls, mild PD and moderate PD EC condition'); 
xlabel('Swiftness (rad/sec)'); 
ylabel('Stiffness parameter'); 
zlabel('Damping parameter'); 
legend('Healthy controls EC', 'Mild PD EC', 'Moderate PD EC'); 
hold off; 
%% 
export_fig figure(8) -jpg -r1000 -q100; 
cd('C:\Kaushik\Research\Thesis\Chandrashekara_Thesis\Figures'); 
%% 
e=resid(armasysp_EO{1,1},detrendedsig_AP_EO{1,1},0.95)                                  

%Calculate the auto correlation of residuals of the fitted model          
title('Correlation of the residuals for AR(3) model healthy subject 1 EO 

trial 1'); 

  
%END OF CODE% 
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E.2. Code 2. Program for analysis using the ARMA (2, 1) modelling approach (Model 2). 

%Program to analyze the COP time series data in AP direction using the ARMA 
%modelling approach 
%Author: Chandrashekara Kaushik Gandur Balagangadhara 
clc; 
clear all; 
close all; 
cd('C:\Kaushik\Research\Data\COP_Data_100Hz');     %Set the directory 

containing the data 
%% 
% EYES OPEN CONDITION DATA 
%Analysis for eyes open condition 
%Healthy controls year 1 
%Load the data from the respective directory. 
data_struc1{1,1} = load('1_1001_EO1.mat'); 
data_struc1{2,1} = load('1_1001_EO2.mat'); 
data_struc1{3,1} = load('1_1001_EO3.mat'); 
data_struc1{1,2} = load('1_1003_EO1.mat'); 
data_struc1{2,2} = load('1_1003_EO2.mat'); 
data_struc1{3,2} = load('1_1003_EO3.mat'); 
data_struc1{1,3} = load('1_1006_EO1.mat'); 
data_struc1{2,3} = load('1_1006_EO2.mat'); 
data_struc1{3,3} = load('1_1006_EO3.mat'); 
data_struc1{1,4} = load('1_1007_EO1.mat'); 
data_struc1{2,4} = load('1_1007_EO2.mat'); 
data_struc1{3,4} = load('1_1007_EO3.mat'); 
data_struc1{1,5} = load('1_1008_EO1.mat'); 
data_struc1{2,5} = load('1_1008_EO2.mat'); 
data_struc1{3,5} = load('1_1008_EO3.mat'); 
data_struc1{1,6} = load('1_1009_EO1.mat'); 
data_struc1{2,6} = load('1_1009_EO2.mat'); 
data_struc1{3,6} = load('1_1009_EO3.mat'); 
data_struc1{1,7} = load('1_1010_EO1.mat'); 
data_struc1{2,7} = load('1_1010_EO2.mat'); 
data_struc1{3,7} = load('1_1010_EO3.mat'); 
data_struc1{1,8} = load('1_1011_EO1.mat'); 
data_struc1{2,8} = load('1_1011_EO2.mat'); 
data_struc1{3,8} = load('1_1011_EO3.mat'); 
data_struc1{1,9} = load('1_1012_EO1.mat'); 
data_struc1{2,9} = load('1_1012_EO2.mat'); 
data_struc1{3,9} = load('1_1012_EO3.mat'); 
data_struc1{1,10} = load('1_1013_EO1.mat'); 
data_struc1{2,10} = load('1_1013_EO2.mat'); 
data_struc1{3,10} = load('1_1013_EO3.mat'); 
data_struc1{1,11} = load('1_1014_EO1.mat'); 
data_struc1{2,11} = load('1_1014_EO2.mat'); 
data_struc1{3,11} = load('1_1014_EO3.mat'); 

  
%Healthy year 2 
data_struc1{1,12} = load('2_1001_EO1.mat'); 
data_struc1{2,12} = load('2_1001_EO2.mat'); 
data_struc1{3,12} = load('2_1001_EO3.mat'); 
data_struc1{1,13} = load('2_1002_EO1.mat'); 
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data_struc1{2,13} = load('2_1002_EO2.mat'); 
data_struc1{3,13} = load('2_1002_EO3.mat'); 
data_struc1{1,14} = load('2_1003_EO1.mat'); 
data_struc1{2,14} = load('2_1003_EO2.mat'); 
data_struc1{3,14} = load('2_1003_EO3.mat'); 
data_struc1{1,15} = load('2_1004_EO1.mat'); 
data_struc1{2,15} = load('2_1004_EO2.mat'); 
data_struc1{3,15} = load('2_1004_EO3.mat'); 
data_struc1{1,16} = load('2_1005_EO1.mat'); 
data_struc1{2,16} = load('2_1005_EO2.mat'); 
data_struc1{3,16} = load('2_1005_EO3.mat'); 
data_struc1{1,17} = load('2_1006_EO1.mat'); 
data_struc1{2,17} = load('2_1006_EO2.mat'); 
data_struc1{3,17} = load('2_1006_EO3.mat'); 
data_struc1{1,18} = load('2_1007_EO1.mat'); 
data_struc1{2,18} = load('2_1007_EO2.mat'); 
data_struc1{3,18} = load('2_1007_EO3.mat'); 
data_struc1{1,19} = load('2_1008_EO1.mat'); 
data_struc1{2,19} = load('2_1008_EO2.mat'); 
data_struc1{3,19} = load('2_1008_EO3.mat'); 
data_struc1{1,20} = load('2_1009_EO1.mat'); 
data_struc1{2,20} = load('2_1009_EO2.mat'); 
data_struc1{3,20} = load('2_1009_EO3.mat'); 
data_struc1{1,21} = load('2_1010_EO1.mat'); 
data_struc1{2,21} = load('2_1010_EO2.mat'); 
data_struc1{3,21} = load('2_1010_EO3.mat'); 

  
%Load Mild PD data 
data_struc1{1,22} = load('1_3001_EO1.mat'); 
data_struc1{2,22} = load('1_3001_EO2.mat'); 
data_struc1{3,22} = load('1_3001_EO3.mat'); 
data_struc1{1,23} = load('1_3002_EO1.mat'); 
data_struc1{2,23} = load('1_3002_EO2.mat'); 
data_struc1{3,23} = load('1_3002_EO3.mat'); 
data_struc1{1,24} = load('1_3003_EO1.mat'); 
data_struc1{2,24} = load('1_3003_EO2.mat'); 
data_struc1{3,24} = load('1_3003_EO3.mat'); 
data_struc1{1,25} = load('1_3004_EO1.mat'); 
data_struc1{2,25} = load('1_3004_EO2.mat'); 
data_struc1{3,25} = load('1_3004_EO3.mat'); 
data_struc1{1,26} = load('1_3005_EO1.mat'); 
data_struc1{2,26} = load('1_3005_EO2.mat'); 
data_struc1{3,26} = load('1_3005_EO3.mat'); 
data_struc1{1,27} = load('1_3006_EO1.mat'); 
data_struc1{2,27} = load('1_3006_EO2.mat'); 
data_struc1{3,27} = load('1_3006_EO3.mat'); 
data_struc1{1,28} = load('1_3008_EO1.mat'); 
data_struc1{2,28} = load('1_3008_EO2.mat'); 
data_struc1{3,28} = load('1_3008_EO3.mat'); 
data_struc1{1,29} = load('1_3009_EO1.mat'); 
data_struc1{2,29} = load('1_3009_EO2.mat'); 
data_struc1{3,29} = load('1_3009_EO3.mat'); 
data_struc1{1,30} = load('1_3010_EO1.mat'); 
data_struc1{2,30} = load('1_3010_EO2.mat'); 
data_struc1{3,30} = load('1_3010_EO3.mat'); 
data_struc1{1,31} = load('1_3011_EO1.mat'); 
data_struc1{2,31} = load('1_3011_EO2.mat'); 
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data_struc1{3,31} = load('1_3011_EO3.mat'); 
data_struc1{1,32} = load('1_3013_EO1.mat'); 
data_struc1{2,32} = load('1_3013_EO2.mat'); 
data_struc1{3,32} = load('1_3013_EO3.mat'); 
data_struc1{1,33} = load('1_3014_EO1.mat'); 
data_struc1{2,33} = load('1_3014_EO2.mat'); 
data_struc1{3,33} = load('1_3014_EO3.mat'); 
data_struc1{1,34} = load('2_4009_EO1.mat'); 
data_struc1{2,34} = load('2_4009_EO2.mat'); 
data_struc1{3,34} = load('2_4009_EO3.mat'); 

  
%Moderate PD data 
data_struc1{1,35} = load('2_4001_EO1.mat'); 
data_struc1{2,35} = load('2_4001_EO2.mat'); 
data_struc1{3,35} = load('2_4001_EO3.mat'); 
data_struc1{1,36} = load('2_4002_EO1.mat'); 
data_struc1{2,36} = load('2_4002_EO2.mat'); 
data_struc1{3,36} = load('2_4002_EO3.mat'); 
data_struc1{1,37} = load('2_4004_EO1.mat'); 
data_struc1{2,37} = load('2_4004_EO2.mat'); 
data_struc1{3,37} = load('2_4004_EO3.mat'); 
data_struc1{1,38} = load('2_4005_EO1.mat'); 
data_struc1{2,38} = load('2_4005_EO2.mat'); 
data_struc1{3,38} = load('2_4005_EO3.mat'); 
data_struc1{1,39} = load('2_4006_EO1.mat'); 
data_struc1{2,39} = load('2_4006_EO2.mat'); 
data_struc1{3,39} = load('2_4006_EO3.mat'); 
data_struc1{1,40} = load('2_4007_EO1.mat'); 
data_struc1{2,40} = load('2_4007_EO2.mat'); 
data_struc1{3,40} = load('2_4007_EO3.mat'); 
data_struc1{1,41} = load('2_4008_EO1.mat'); 
data_struc1{2,41} = load('2_4008_EO2.mat'); 
data_struc1{3,41} = load('2_4008_EO3.mat'); 
data_struc1{1,42} = load('2_4012_EO1.mat'); 
data_struc1{2,42} = load('2_4012_EO2.mat'); 
data_struc1{3,42} = load('2_4012_EO3.mat'); 
data_struc1{1,43} = load('2_4010_EO1.mat'); 
data_struc1{2,43} = load('2_4010_EO2.mat'); 
data_struc1{3,43} = load('2_4010_EO3.mat'); 
data_struc1{1,44} = load('2_4010_EO1.mat'); 
data_struc1{2,44} = load('2_4011_EO2.mat'); 
data_struc1{3,44} = load('2_4011_EO3.mat'); 

  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% EYES CLOSED CONDITION DATA 
data_struc2{1,1} = load('1_1001_EC1.mat'); 
data_struc2{2,1} = load('1_1001_EC2.mat'); 
data_struc2{3,1} = load('1_1001_EC3.mat'); 
data_struc2{1,2} = load('1_1003_EC1.mat'); 
data_struc2{2,2} = load('1_1003_EC2.mat'); 
data_struc2{3,2} = load('1_1003_EC3.mat'); 
data_struc2{1,3} = load('1_1006_EC1.mat'); 
data_struc2{2,3} = load('1_1006_EC2.mat'); 
data_struc2{3,3} = load('1_1006_EC3.mat'); 
data_struc2{1,4} = load('1_1007_EC1.mat'); 
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data_struc2{2,4} = load('1_1007_EC2.mat'); 
data_struc2{3,4} = load('1_1007_EC3.mat'); 
data_struc2{1,5} = load('1_1008_EC1.mat'); 
data_struc2{2,5} = load('1_1008_EC2.mat'); 
data_struc2{3,5} = load('1_1008_EC3.mat'); 
data_struc2{1,6} = load('1_1009_EC1.mat'); 
data_struc2{2,6} = load('1_1009_EC2.mat'); 
data_struc2{3,6} = load('1_1009_EC3.mat'); 
data_struc2{1,7} = load('1_1010_EC1.mat'); 
data_struc2{2,7} = load('1_1010_EC2.mat'); 
data_struc2{3,7} = load('1_1010_EC3.mat'); 
data_struc2{1,8} = load('1_1011_EC1.mat'); 
data_struc2{2,8} = load('1_1011_EC2.mat'); 
data_struc2{3,8} = load('1_1011_EC3.mat'); 
data_struc2{1,9} = load('1_1012_EC1.mat'); 
data_struc2{2,9} = load('1_1012_EC2.mat'); 
data_struc2{3,9} = load('1_1012_EC3.mat'); 
data_struc2{1,10} = load('1_1013_EC1.mat'); 
data_struc2{2,10} = load('1_1013_EC2.mat'); 
data_struc2{3,10} = load('1_1013_EC3.mat'); 
data_struc2{1,11} = load('1_1014_EC1.mat'); 
data_struc2{2,11} = load('1_1014_EC2.mat'); 
data_struc2{3,11} = load('1_1014_EC3.mat'); 

  
%Healthy year 2 
data_struc2{1,12} = load('2_1001_EC1.mat'); 
data_struc2{2,12} = load('2_1001_EC2.mat'); 
data_struc2{3,12} = load('2_1001_EC3.mat'); 
data_struc2{1,13} = load('2_1002_EC1.mat'); 
data_struc2{2,13} = load('2_1002_EC2.mat'); 
data_struc2{3,13} = load('2_1002_EC3.mat'); 
data_struc2{1,14} = load('2_1003_EC1.mat'); 
data_struc2{2,14} = load('2_1003_EC2.mat'); 
data_struc2{3,14} = load('2_1003_EC3.mat'); 
data_struc2{1,15} = load('2_1004_EC1.mat'); 
data_struc2{2,15} = load('2_1004_EC2.mat'); 
data_struc2{3,15} = load('2_1004_EC3.mat'); 
data_struc2{1,16} = load('2_1005_EC1.mat'); 
data_struc2{2,16} = load('2_1005_EC2.mat'); 
data_struc2{3,16} = load('2_1005_EC3.mat'); 
data_struc2{1,17} = load('2_1006_EC1.mat'); 
data_struc2{2,17} = load('2_1006_EC2.mat'); 
data_struc2{3,17} = load('2_1006_EC3.mat'); 
data_struc2{1,18} = load('2_1007_EC1.mat'); 
data_struc2{2,18} = load('2_1007_EC2.mat'); 
data_struc2{3,18} = load('2_1007_EC3.mat'); 
data_struc2{1,19} = load('2_1008_EC1.mat'); 
data_struc2{2,19} = load('2_1008_EC2.mat'); 
data_struc2{3,19} = load('2_1008_EC3.mat'); 
data_struc2{1,20} = load('2_1009_EC1.mat'); 
data_struc2{2,20} = load('2_1009_EC2.mat'); 
data_struc2{3,20} = load('2_1009_EC3.mat'); 
data_struc2{1,21} = load('2_1010_EC1.mat'); 
data_struc2{2,21} = load('2_1010_EC2.mat'); 
data_struc2{3,21} = load('2_1010_EC3.mat'); 
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%Load Mild PD data 
data_struc2{1,22} = load('1_3001_EC1.mat'); 
data_struc2{2,22} = load('1_3001_EC2.mat'); 
data_struc2{3,22} = load('1_3001_EC3.mat'); 
data_struc2{1,23} = load('1_3002_EC1.mat'); 
data_struc2{2,23} = load('1_3002_EC2.mat'); 
data_struc2{3,23} = load('1_3002_EC3.mat'); 
data_struc2{1,24} = load('1_3003_EC1.mat'); 
data_struc2{2,24} = load('1_3003_EC2.mat'); 
data_struc2{3,24} = load('1_3003_EC3.mat'); 
data_struc2{1,25} = load('1_3004_EC1.mat'); 
data_struc2{2,25} = load('1_3004_EC2.mat'); 
data_struc2{3,25} = load('1_3004_EC3.mat'); 
data_struc2{1,26} = load('1_3005_EC1.mat'); 
data_struc2{2,26} = load('1_3005_EC2.mat'); 
data_struc2{3,26} = load('1_3005_EC3.mat'); 
data_struc2{1,27} = load('1_3006_EC1.mat'); 
data_struc2{2,27} = load('1_3006_EC2.mat'); 
data_struc2{3,27} = load('1_3006_EC3.mat'); 
data_struc2{1,28} = load('1_3008_EC1.mat'); 
data_struc2{2,28} = load('1_3008_EC2.mat'); 
data_struc2{3,28} = load('1_3008_EC3.mat'); 
data_struc2{1,29} = load('1_3009_EC1.mat'); 
data_struc2{2,29} = load('1_3009_EC2.mat'); 
data_struc2{3,29} = load('1_3009_EC3.mat'); 
data_struc2{1,30} = load('1_3010_EC1.mat'); 
data_struc2{2,30} = load('1_3010_EC2.mat'); 
data_struc2{3,30} = load('1_3010_EC3.mat'); 
data_struc2{1,31} = load('1_3011_EC1.mat'); 
data_struc2{2,31} = load('1_3011_EC2.mat'); 
data_struc2{3,31} = load('1_3011_EC3.mat'); 
data_struc2{1,32} = load('1_3013_EC1.mat'); 
data_struc2{2,32} = load('1_3013_EC2.mat'); 
data_struc2{3,32} = load('1_3013_EC3.mat'); 
data_struc2{1,33} = load('1_3014_EC1.mat'); 
data_struc2{2,33} = load('1_3014_EC2.mat'); 
data_struc2{3,33} = load('1_3014_EC3.mat'); 
data_struc2{1,34} = load('2_4009_EC1.mat'); 
data_struc2{2,34} = load('2_4009_EC2.mat'); 
data_struc2{3,34} = load('2_4009_EC3.mat'); 

  
%Moderate PD data 
data_struc2{1,35} = load('2_4001_EC1.mat'); 
data_struc2{2,35} = load('2_4001_EC2.mat'); 
data_struc2{3,35} = load('2_4001_EC3.mat'); 
data_struc2{1,36} = load('2_4002_EC1.mat'); 
data_struc2{2,36} = load('2_4002_EC2.mat'); 
data_struc2{3,36} = load('2_4002_EC3.mat'); 
data_struc2{1,37} = load('2_4004_EC1.mat'); 
data_struc2{2,37} = load('2_4004_EC2.mat'); 
data_struc2{3,37} = load('2_4004_EC3.mat'); 
data_struc2{1,38} = load('2_4005_EC1.mat'); 
data_struc2{2,38} = load('2_4005_EC2.mat'); 
data_struc2{3,38} = load('2_4005_EC3.mat'); 
data_struc2{1,39} = load('2_4006_EC1.mat'); 
data_struc2{2,39} = load('2_4006_EC2.mat'); 
data_struc2{3,39} = load('2_4006_EC3.mat'); 
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data_struc2{1,40} = load('2_4007_EC1.mat'); 
data_struc2{2,40} = load('2_4007_EC2.mat'); 
data_struc2{3,40} = load('2_4007_EC3.mat'); 
data_struc2{1,41} = load('2_4008_EC1.mat'); 
data_struc2{2,41} = load('2_4008_EC2.mat'); 
data_struc2{3,41} = load('2_4008_EC3.mat'); 
data_struc2{1,42} = load('2_4012_EC1.mat'); 
data_struc2{2,42} = load('2_4012_EC2.mat'); 
data_struc2{3,42} = load('2_4012_EC3.mat'); 
data_struc2{1,43} = load('2_4010_EC1.mat'); 
data_struc2{2,43} = load('2_4010_EC2.mat'); 
data_struc2{3,43} = load('2_4010_EC3.mat'); 
data_struc2{1,44} = load('2_4010_EC1.mat'); 
data_struc2{2,44} = load('2_4011_EC2.mat'); 
data_struc2{3,44} = load('2_4011_EC3.mat'); 

  

  
%Load EO data 
for i = 1:44 
    for j = 1:3 
        data1{j,i} = data_struc1{j,i}.dt_COPAP_COPML;   %Store the data in 

the a cell named 'data1' for EO condition 
        t_EO{j,i} = data1{j,i}(:,1);                    %Store time data for 

EO condition 
        AP_EO{j,i} = data1{j,i}(:,2);                   %Anterior-Posterior 

EO data 
        ML_EO{j,i} = data1{j,i}(:,3);                   %Medio-Lateral EO 

data 
    end 
end 

  
%Load EC data 
for i = 1:44 
    for j = 1:3 
        data2{j,i} = data_struc2{j,i}.dt_COPAP_COPML;   %Store the data in 

the a cell named 'data1' for EC condition 
        t_EC{j,i} = data2{j,i}(:,1);                    %Store time data for 

EC condition 
        AP_EC{j,i} = data2{j,i}(:,2);                   %Anterior-Posterior 

EC data 
        ML_EC{j,i} = data2{j,i}(:,3);                   %Medio-Lateral EC 

data 
    end 
end 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% 
%Filter the data AP direction EO data 

  
for i = 1:44 
    for j = 1:3 
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        [xfiltered_EO{j,i},yfiltered_EO{j,i}] = LPF(100, 

30,AP_EO{j,i}(:,1),ML_EO{j,i}(:,1));   %Filter the AP and ML data for EO 

condition 
        detrendedsig_AP_EO{j,i} = detrend(xfiltered_EO{j,i});                                   

%Detrend the AP COP time series data in the EO condition 
    end 
end 

  
for i = 1:44 
    for j = 1:3 
        detrendedsig_AP_EO{j,i} = downsample(detrendedsig_AP_EO{j,i},2);                        

%Downsample the detrended signal for EO condition from 100Hz to 50Hz 
    end 
end 

  
%Filter the data AP direction EC data 

  
for i = 1:44 
    for j = 1:3 
        [xfiltered_EC{j,i},yfiltered_EC{j,i}] = LPF(100, 

30,AP_EC{j,i}(:,1),ML_EC{j,i}(:,1));    %Filter the AP and ML data for EC 

condition 
        detrendedsig_AP_EC{j,i} = detrend(xfiltered_EC{j,i});                                    

%Detrend the AP COP time series data in the EC condition 
    end 
end 

  
for i = 1:44 
    for j = 1:3 
        detrendedsig_AP_EC{j,i} = downsample(detrendedsig_AP_EC{j,i},2);                         

%Downsample the detrended signal for EC condition from 100Hz to 50Hz 
    end 
end 

  
%% 
%Merge the three trials for AP data EO 

  
Position_Final_EO = cell(1,44);                                                 

%Create a cell of size 1*44 for storing time series data (EO trials) 
for i = 1:44 
    for j = 1:3 
        Position_AP_EO{j,i} = iddata(detrendedsig_AP_EO{j,i},[],0.02);          

%Store the time series data trials in the form of separate experiments (EO 

trials) 
    end 
end 

  
%Merge the three trials for AP data EC 

  
Position_Final_EC = cell(1,44);                                                 

%Create a cell of size 1*44 for storing time series data (EC trials) 
for i = 1:44 
    for j = 1:3 
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        Position_AP_EC{j,i} = iddata(detrendedsig_AP_EC{j,i},[],0.02);          

%Store the time series data trials in the form of separate experiments (EC 

trials) 
    end 
end 

  
%% 
%AP data EO & EC 
for i = 1:44 
    Position_Final_EO{1,i} = 

merge(getexp(Position_AP_EO{1,i},1),getexp(Position_AP_EO{2,i},1),getexp(Posi

tion_AP_EO{3,i},1));  %Store the data in the form of three columns for the 

different trials (EO) 
    Position_Final_EC{1,i} = 

merge(getexp(Position_AP_EC{1,i},1),getexp(Position_AP_EC{2,i},1),getexp(Posi

tion_AP_EC{3,i},1));  %Store the data in the form of three columns for the 

different trials (EC) 
end 

  

  

  
%% 
%System identification for position data using 
%arma system for AP direction 
for i = 1:44 
    for o = 1:5                                                                

%This is only used for determining the best order for the system. (i.e. 

replace the order of the system in the next line with the variable 'o' and 

run the loop. find AIC and determine the best model. 
        Opt = armaxOptions;                                                    

%Set the options for prediction error method 
        armasysp_EO{1,i} = armax(Position_Final_EO{1,i},[2 1], Opt);           

%System identification using an ARMA (2,1) model 
        tfarmap_EO{1,i} = tf(armasysp_EO{1,i}.c,armasysp_EO{1,i}.a,0.02);      

%Transfer function of the identified model for EO condition 
        z_EO{1,i} = d2c(armasysp_EO{1,i});                                     

%Convert the transfer function from discrete to continuous form using 'ZOH' 

method 

         
        Opt = armaxOptions;                                                    

%Set the options for prediction error method 
        armasysp_EC{1,i} = armax(Position_Final_EC{1,i},[2 1], Opt);           

%System identification using an ARMA (2,1) model 
        tfarmap_EC{1,i} = tf(armasysp_EC{1,i}.c,armasysp_EC{1,i}.a,0.02);      

%Transfer function of the identified model for EC condition 
        z_EC{1,i} = d2c(armasysp_EC{1,i});                                     

%Convert the transfer function from discrete to continuous form using 'ZOH' 

method 
    end 
end 

  
%% 
%Akaike's final prediction error for the two models 
for i = 1:44 



A-67 

    ak_EO(i,1) = fpe(armasysp_EO{1,i});                                         

%Calculate the final prediction errors for the ARMA models identified using 

EO COP AP data 
    ak_EC(i,1) = fpe(armasysp_EC{1,i});                                         

%Calculate the final prediction errors for the ARMA models identified using 

EC COP AP data 
end 

  
%% 
for i = 1:44 
    %         dtfarmap{1,i} = d2c(tfarmap_EO{1,i}); 
    %         den{1,i} = pole(tfarmap_EO{1,i}); 
    %         R_EO{1,i} = den{1,i}; 
    [Wn_EO{1,i},zetan_EO{1,i}] = damp(tfarmap_EO{1,i});                         

%Calculate the natural frequency and damping ratio of the poles of TF 

identified for EO trials 
    [Wn_EC{1,i},zetan_EC{1,i}] = damp(tfarmap_EC{1,i});                         

%Calculate the natural frequency and damping ratio of the poles of TF 

identified for EC trials 

     
end 
%% 
%Getting the characteristic equation 
for i = 1:44 
    %     for j = 1:10 
    %         M_EC{1,i} = min((R_EC{1,i})); 
    %         if min((R_EC{1,i}(j,1)))== M_EC{1,i} 
    %             Selected_eigen_EC{1,i} = R_EC{1,i}(j,1) 
    %         end 
    %     end 

     

     
    w_EO{1,i} = (Wn_EO{1,i}(1,1))/(2*pi);                                       

%Convert Natural frequency from rad/sec to Hz 
    zeta_EO{1,i} = zetan_EO{1,i}(1,1);                                          

%Store the damping ration caluclated in 'zeta_EO' cell for EO trials 
    w_EC{1,i} = (Wn_EC{1,i}(1,1))/(2*pi);                                       

%Convert Natural frequency from rad/sec to Hz 
    zeta_EC{1,i} = zetan_EC{1,i}(1,1);                                          

%Store the damping ration caluclated in 'zeta_EC' cell for EC trials 

     
end 

  
%% 
for i = 1:44 
    w_EO{1,i} = (Wn_EO{1,i}(1,1))/(2*pi);                                       

%Convert Natural frequency from rad/sec to Hz 
    zeta_EO{1,i} = zetan_EO{1,i}(1,1);                                          

%Store the damping ration caluclated in 'zeta_EO' cell for EO trials 
    w_EC{1,i} = (Wn_EC{1,i}(1,1))/(2*pi);                                       

%Convert Natural frequency from rad/sec to Hz 
    zeta_EC{1,i} = zetan_EC{1,i}(1,1);                                          

%Store the damping ration caluclated in 'zeta_EC' cell for EC trials 

     
end 
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%% 
%Exclude the values which have values more or less than mean+-(3*SD) 
w_EO = cell2mat(w_EO);                                                      

%Convert the cell to matrix for W_EO, EO trials 
w_EC = cell2mat(w_EC);                                                      

%Convert the cell to matrix for W_EC, EC trials 
%% 
M = mean(w_EO)+(3*std(w_EO));                                               

%Calculate the value of mean + 3*S.D, EO trials 
deletethese = (w_EO >= M);                                                  

%Create a matrix which alots '1's to those values whic are > mean + 3* S.D, 

EO trials 
W1 = w_EO(~deletethese);                                                    

%Update the matrix W1 
%% 
M = mean(w_EC)+(3*std(w_EC));                                               

%Calculate the value of mean + 3*S.D, EC trials 
deletethese = (w_EC >= M);                                                  

%Create a matrix which alots '1's to those values whic are > mean + 3* S.D, 

EC trials 
W1_EC = w_EC(~deletethese);                                                 

%Update the matrix W1_EC 
%% 
zeta_EO = cell2mat(zeta_EO);                                                

%Cell to matrix conversion of damping ratio matrix for EO condition 
zeta_EC = cell2mat(zeta_EC);                                                

%Cell to matrix conversion of damping ratio matrix for EC condition 
M = mean(zeta_EO)+(3*std(zeta_EO));                                         

%Calculate and store the value for mean + 3* S.D, EO condition 
deletethese = (zeta_EO >= M);                                               

%Create a matrix which alots '1's to those values whic are > mean + 3* S.D, 

EO trials 
d1 = zeta_EO(~deletethese);                                                 

%Update the matrix d1 
%% 
M = mean(zeta_EC)+(3*std(zeta_EC));                                         

%Calculate and store the value for mean + 3* S.D, EC condition 
deletethese = (zeta_EC >= M);                                               

%Create a matrix which alots '1's to those values whic are > mean + 3* S.D, 

EC trials 
d1_EC = zeta_EC(~deletethese);                                              

%Update the matrix d1_EC 
%% 
%For values lower than mean -3* S.D 
M = mean(w_EO)-(3*std(w_EO));                                               

%Calculate the value of mean - 3*S.D, EO trials 
deletethese = (w_EO <= M);                                                  

%Create a matrix which alots '1's to those values whic are < mean - 3* S.D, 

EO trials 
W1 = w_EO(~deletethese);                                                    

%Update the matrix W1 
%% 
M = mean(w_EC)-(3*std(w_EC));                                               

%Calculate the value of mean - 3*S.D, EO trials 
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deletethese = (w_EC <= M);                                                  

%Create a matrix which alots '1's to those values whic are < mean - 3* S.D, 

EC trials 
W1_EC = w_EC(~deletethese);                                                 

%Update the matrix W1_EC 
%% 
zeta_EO = cell2mat(zeta_EO);                                                

%Cell to matrix conversion of damping ratio matrix for EO condition 
zeta_EC = cell2mat(zeta_EC);                                                

%Cell to matrix conversion of damping ratio matrix for EC condition 
M = mean(zeta_EO)-(3*std(zeta_EO));                                         

%Calculate and store the value for mean - 3* S.D, EO condition 
deletethese = (zeta_EO <= M);                                               

%Create a matrix which alots '1's to those values whic are < mean - 3* S.D, 

EO trials 
d1 = zeta_EO(~deletethese);                                                 

%Update the matrix d1 
%% 
M = mean(zeta_EC)-(3*std(zeta_EC));                                         

%Calculate and store the value for mean - 3* S.D, EC condition 
deletethese = (zeta_EC <= M);                                               

%Create a matrix which alots '1's to those values whic are < mean + 3* S.D, 

EC trials 
d1_EC = zeta_EC(~deletethese);                                              

%Update the matrix d1_EC 
%% 
%Anova matrix 
W(:,1) = (W1');                                                                 

%Create a column matrix to store all the values of 'W1' subjectwise (EO 

trials). 
W(44:86,1) = (W1_EC');                                                          

%Update the values from EC condition as well into the 'W1_EC' matrix 

  
DAMP(:,1) = (d1');                                                              

%Create a column matrix to store all the values of 'd1' subjectwise (EO 

trials). 
DAMP(45:88,1) = (d1_EC');                                                       

%Update the values from EC condition as well into the 'd1_EC' matrix 
%% 
%ANOVA analysis for EO and ECS data 

  
%Create a group factor matrix for use in ANOVA analysis 
Group_Factor = 

[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;3;3;3;3;

3;3;3;3;3;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2

;3;3;3;3;3;3;3;3;3;]; 
%Create a condition matrix (EO and EC) for use in ANOVA analysis 
Condition_Factor = 

{'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'

EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO

';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EC';'EC';'EC';

'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'E

C';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC'

;'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';}; 
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varnames = {'Group','Condition'};                                                                           

%Give the two factors defined before certain variable names to identify them 
[pW, tblW, statsW, termsW] = anovan(W,{Group_Factor 

Condition_Factor},'varnames',varnames,'model', 'full'); %Perform the ANOVA 

analysis based on groups, conditiona and group*condition ineraction for EO 

condition 
figure(1); 
filename = sprintf('Natural_Frequency.pdf');                                                                

%Save the ANOVA table in PDF format 
print(figure(1),filename,'-dpdf');                                                                          

%Give it a file name and save figure 
close all; 

  
%% 
figure(2); 
cW = multcompare(statsW,'Dimension',[1 2]);                                                                 

%Post-Hoc Tukey Kramer test on the stats matrix obtained from ANOVA analysis 

for EO condition 
title('Natural Frequency of the systems (Hz)'); 
filename = sprintf('Natural_Frequency_Post_Hoc.pdf');                                                       

%Save the results figure in PDF format 
print(figure(2),filename,'-dpdf');                                                                           
close all; 

  
%% 
%Create a group factor matrix for use in ANOVA analysis 
Group_Factor = 

[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;3;3;3;3;

3;3;3;3;3;3;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2

;2;3;3;3;3;3;3;3;3;3;3;]; 
%Create a condition matrix (EO and EC) for use in ANOVA analysis 
Condition_Factor = 

{'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'

EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO

';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EC';'EC';

'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'E

C';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC'

;'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';}; 

  
varnames = {'Group','Condition'};                                                                               

%Give the two factors defined before certain variable names to identify them 
[pS, tblS, statsS, termsS] = anovan(DAMP,{Group_Factor 

Condition_Factor},'varnames',varnames,'model', 'full');  %Perform the ANOVA 

analysis based on groups, conditiona and group*condition ineraction for EC 

condition 
figure(1); 
filename = sprintf('Damping_Ratio.pdf');                                                                        

%Save the results figure in PDF format 
print(figure(1),filename,'-dpdf');                                                                              

%Give it a file name and save figure 
close all; 

  
%% 
figure(4); 



A-71 

cW = multcompare(statsS,'Dimension',[1 2]);                                                                     

%Post-Hoc Tukey Kramer test on the stats matrix obtained from ANOVA analysis 

for EC condition 
title('Damping ratio of the systems');                                                                          

%Save the results figure in PDF format 
filename = sprintf('Damping_ratio_Post_Hoc.pdf');                                                               

%Give it a file name and save figure 
close all; 
print(figure(4),filename,'-dpdf');                                                                              

%Give it a file name and save figure 
close all; 

  
%% 
cd('C:\Kaushik\Research\Thesis\Chandrashekara_Thesis\Figures');                                                 

%Set directory 
e = resid(armasysp_EO{1,1},detrendedsig_AP_EO{1,1},0.95);                                                       

%Calculate the auto correlation of residuals of the fitted model 
title('Correlation of the residuals for ARMA(2,1) model healthy subject 1 EO 

trial 1'); 

  
%% 
%Power analysis for a 't' test to determine the sample size for the current 
%study 
n_h_mild_w_EO = sampsizepwr('t',[mean(w_EO(1:21)) 

std(w_EO(1:21))],[mean(w_EO(22:34)) std(w_EO(22:34))],0.95)                   

%Power analysis using both means and S.D 's of the healthy - mild PD data EO 

condition (natural frequency) 
n_mild_mod_EO = sampsizepwr('t',[mean(w_EO(22:34)) 

std(w_EO(22:34))],[mean(w_EO(35:44)) std(w_EO(35:44))],0.95)                 

%Power analysis using both means and S.D 's of the mild - moderate PD data EO 

condition(natural frequency) 
n_h_mild_d_EO = sampsizepwr('t',[mean(zeta_EO(1:21)) 

std(zeta_EO(1:21))],[mean(zeta_EO(22:34)) std(zeta_EO(22:34))],0.95)       

%Power analysis using both means and S.D 's of the healthy - mild PD data EO 

condition (Damping ratio) 
n_mild_mod_d_EO = sampsizepwr('t',[mean(zeta_EO(22:34)) 

std(zeta_EO(22:34))],[mean(zeta_EO(35:44)) std(zeta_EO(35:44))],0.95)   

%Power analysis using both means and S.D 's of the mild - moderate PD data EO 

condition(Damping ratio) 

  
%% 
n_h_mild_w_EC = sampsizepwr('t',[mean(w_EC(1:21)) 

std(w_EC(1:21))],[mean(w_EC(22:34)) std(w_EC(22:34))],0.95)                   

%Power analysis using both means and S.D 's of the healthy - mild PD data EC 

condition (natural frequency) 
n_mild_mod_EC = sampsizepwr('t',[mean(w_EC(22:34)) 

std(w_EC(22:34))],[mean(w_EC(35:44)) std(w_EC(35:44))],0.95)                 

%Power analysis using both means and S.D 's of the mild - moderate PD data EC 

condition(natural frequency) 
n_h_mild_d_EC = sampsizepwr('t',[mean(zeta_EC(1:21)) 

std(zeta_EC(1:21))],[mean(zeta_EC(22:34)) std(zeta_EC(22:34))],0.95)       

%Power analysis using both means and S.D 's of the healthy - mild PD data EC 

condition (Damping ratio) 
n_mild_mod_d_EC = sampsizepwr('t',[mean(zeta_EC(22:34)) 

std(zeta_EC(22:34))],[mean(zeta_EC(35:44)) std(zeta_EC(35:44))],0.95)   
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%Power analysis using both means and S.D 's of the mild - moderate PD data EC 

condition(Damping ratio) 
%END OF CODE% 
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Appendix F. Recruitment and Testing Materials 

The details on documentation, scripts, experimental protocol and setup used for this study can be 

found in the appendix of previous works [2, 3]. 

_______________________________________________________________ 

[2] McVey, Molly A. 2007. "Effect of Parkinson's Disease on the Step Response to a Backwards Pull." Order No. 

1447172, University of Kansas. http://search.proquest.com/docview/304833964?accountid=14556. 

[3] Barnds, Annaria. N. “Biomechanical markers as indicators of postural instability progression in Parkinson’s 

disease”, unpublished thesis, 2015, University of Kansas
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