
USBWall: A Novel Security Mechanism to Protect Against
Maliciously Reprogrammed USB Devices

Myung-gu Kang

M.S., Computer Science, University of Kansas, 2015

Submitted to the graduate degree program in Electrical Engineering & Computer
Science and the Graduate Faculty of the University of Kansas in partial fulfillment of

the requirements for the degree of Master of Science.

Hossein Saiedian, Ph.D.,
Professor and Thesis Advisor

Bo Luo, Ph.D.,
Professor

Fengjun Li, Ph.D.,
Professor

Date Defended

The Thesis Committee for Myung-gu Kang certifies that
this is the approved version of the following thesis:

USBWall: A Novel Security Mechanism to Protect Against
Maliciously Reprogrammed USB Devices

Hossein Saiedian, Ph.D.
Professor and Thesis Adviser

Date Approved

ii

Abstract

Universal Serial Bus (USB) is a popular choice of interfacing computer systems with

peripherals. With the increasing support of modern operating systems, it is now

truly plug-and-play for most USB devices. However, this great convenience comes

with a risk which can allow a device to perform arbitrary actions at any time while it

is connected. Researchers have confirmed that a simple USB device such as a mass

storage device can be disguised to have an additional function such as a keyboard.

An unauthorized keyboard attachment can compromise the security of the host by

allowing arbitrary keystrokes to enter the host. This undetectable threat differs

from traditional virus that spreads via USB devices due to the location it is stored

and the way it behaves. Therefore, it is impossible for current file-level antivirus

to be aware of such risk. Currently, there is no commercially available protection

for USB devices other than mass storage devices. We propose a novel way to pro-

tect the host via a software/hardware solution we named a USBWall. USBWall uses

BeagleBoard Black (BBB), a low-cost open-source computer, to act as a middleware

to enumerate the devices on behalf of the host. We developed a program to assist

the user to identify the risk of a device. We present a simulated USB device with

malicious firmware to the USBWall. Based on the results, we confirm that using

the USBWall to enumerate USB devices on behalf of the host eliminates risks to the

hosts.

iii

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Dr.

Hossein Saiedian, for his guidance, caring, discipline, and patiently correcting my

writing throughout the research. Thank you for giving me the freedom to pursue

the subject of my interest. I would also like to thank my committee Dr. Bo Luo and

Dr. Fengjun Li for their valuable time and patience.

I would like to thank Mr. Dominic Spill and Mr. Karsten Nohl, who were more

than willing to discuss about my questions and the ideas of their findings during

their busy work hours.

This project would have been impossible without the support of Ellis Foundation

and my employer Ward/Kraft, Inc. I would like to thank Mr. Roger Kraft for his gen-

erous support and genuinely believing in me. I would like to thank Mrs. Dana Ruhl,

who has supported me throughout my thesis with her patience and understanding

while I often miss work for research.

I would also like to thank my parents Sukchang Kang and Myungsoon Song, for

their unending love and encouragement with their best wishes.

Finally, I would like to thank my lovely wife, Taewon Kim, and my daughter,

Sophia Kang. Thank you. Thank you for always being there to cheer me up at hard

times and allowing me time away to research and write.

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 1

1.1 Problem Statement: Trust in USB Standards 1

1.2 Significance of Sandboxed USB Transaction 3

1.3 Research Methodology . 6

1.4 Validation and Evaluation . 8

1.5 Thesis Organization . 9

2 Related Work in Authenticated USB Uses 11

2.1 The Inherent Trust of USB Standard . 11

2.2 Non-technical Measures . 12

2.2.1 Policy Enforcement . 12

2.2.2 Public Awareness . 13

2.2.3 Proposed Standards to Secure USB Standard: IEEE 1667 14

2.3 Software Measures . 15

2.3.1 G Data Keyboard Guard . 15

2.3.2 Enhanced Storage Access by Microsoft 16

v

2.4 Hardware Measures . 16

2.4.1 Lack of Hardware Protection Against USB Devices with Malicious

Firmware . 16

2.5 USB: Time to Untrust . 17

2.6 Summary . 17

3 USBWall: An Effective Middleware Protection 20

3.1 Identification and Characteristics of BadUSB Devices 21

3.1.1 USB Enumeration and Plug-n-Play 21

3.1.2 Identification of BadUSB Devices . 23

3.1.3 Behavioral Characteristics of BadUSB Devices 23

3.2 Design and Operation of USBWall . 24

3.2.1 Design of USBWall . 24

3.2.2 Operations of USBWall . 25

3.2.3 Expected Protection . 28

3.3 Summary . 30

4 Validation for Sandboxed USB Enumeration 31

4.1 Experiment Environment . 32

4.2 Experiment Results . 33

4.2.1 BadUSB Devices with Commercially Available Antivirus 34

4.2.2 BadUSB Devices with USBWall . 37

4.2.3 Performance Test . 40

4.3 Validation Conclusions . 42

4.4 Hardware and Software Considerations . 43

4.5 Summary . 44

vi

5 Contributions and Future Work 46

Appendix 1: A Picture of USBWall 48

Appendix 2: Rubber Ducky Script HID Example 49

Appendix 3: VB.NET Source Code of USBWall UI 51

Appendix 4: Sample Result of lsusb -v on Test BadUSB Device 57

vii

List of Figures

1.1 Diagram of USB Flash Drive Components 6

1.2 USBProxy Architecture [20] . 7

2.1 PCI DSS Self-Assessment Questionnaires v2.0 Sample 13

2.2 G DATA USB Keyboard Guard Notification 15

3.1 USB Enumeration Process . 22

3.2 Diagram of USBWall's Components . 25

3.3 Sequence Diagram of USBWall . 26

3.4 Middleware Front End (UI) on Windows host 27

3.5 USBWall's Snippet of Issuing and Parsing lsusb 29

4.1 Screenshot of Successful Launch of HID Payload Launch 33

4.2 BadUSB HID Payload Launched with AVG Antivirus 35

4.3 BadUSB HID Payload Launched with avast! Antivirus 36

4.4 BadUSB HID Payload Launched with Windows Defender 37

4.5 USBWall Detection of Psychson-Applied Sample BadUSB Device 39

4.6 USBWall Detection of BadAndroid-Activated Mobile Phone 40

4.7 ps -ef of BBB While Transferring . 42

5.1 Picture of Physical Implementation of USBWall 48

viii

List of Tables

4.1 Specifications of Components Used in Testing 34

4.2 CrystalDiskMark Result (Read, 100MB, MB/s) 41

4.3 CrystalDiskMark Result (Write, 100MB, MB/s) 41

4.4 Comparison of Protections against Sample BadUSB Devices 43

ix

Chapter 1

Introduction

1.1 Problem Statement: Trust in USB Standards

As the Universal Serial Bus (USB) interface gained popularity thanks to its plug-and-

play capability and small form factor, operating systems have started to support

more types of devices. Most USB devices have hot-swapping and plug-and-play ca-

pability, which allows for rapid device initialization as soon as it is plugged in.

Combined with the size of the NAND flash and native support which allows it to be

activated without additional software, the flash drive became the most popular USB

device [1] [16].

To provide plug-and-play, the underlying protocol is designed to minimize user

interaction in dynamically allocating system resources [9]. Meanwhile, during this

time, the host must trust the device's initial information to which it initializes. How-

ever, leveraging on the large driver base of modern operating systems and along

with user's inaccurate models of threat possibilities that make users believe they

are safer than they actually are [33], a new threat appeared. The threat, coined as

BadUSB by Security Research Lab, exploits the trusting nature of the current USB

1

specification to allow a device present itself as a different, potentially malicious,

type of device [15] [20].

For example, a flash drive may establish the USB handshake as a keyboard. Ex-

ploiting user's inaccurately perceived sense of safety, seemingly small USB drive

would appear more safer device than a physical keyboard. Being granted of keystroke

access to a system effectively adds an attack surface by allowing the attacker to run

arbitrary commands with the privilege of the currently logged in user [20]. This is

particularly alarming finding because of the widespread support of USB in every-

day devices. Not only computers, but also all USB-enabled devices that support USB

connectivity are susceptible to this attack. The added attack surface is significant

because it is platform-independent. As the attack takes advantage of the USB stan-

dards itself, it can potentially affect all USB-capable devices such as automobile,

home appliances, and any other devices with USB port. When exploited, it can cause

unintended behaviors ranging from annoying to compromised security measures.

This discovery differs from traditional security vulnerabilities like Stuxnet, which

used USB drives as one of the primary means to propagate [10]. In the case of

Stuxnet, the virus hides within the storage area of the device. BadUSB, on the other

hand, is affected and executed within the firmware area of the device. Therefore,

no commercially available antivirus can detect the existence of malicious firmware.

Since the firmware exploits the low level USB transaction, this new vulnerability

can affect all USB-capable devices. Primary methods of protection against virus on

removable devices have been to scan the files before read and write operations.

Therefore, there is currently no available protection for USB devices with malicious

firmware.

Potential vulnerabilities of the USB specifications have been well-discussed, such

as lack of USB attestation [36] and leaking confidential confirmation using unin-

2

tended channels [6] [7]. Due to the risks, many organizations resort to well-written

legal policies and try to shape employees' behavior. Although such policies prohibit

the usage of non-trusted devices, and they do not totally stop non-trusted devices,

they usually give the organization legal rights after an incident happens [33].

This thesis focuses on developing countermeasures against the BadUSB devices,

and evaluating their effectiveness. As the attack takes place at the lower level op-

erations of the USB controller, no measure exists for the host operating system to

distinguish the infected re-enumerating from physical plugin events. Therefore,

we developed USBWall as a novel way to add a protection layer with an additional

middleware between the host and devices.

1.2 Significance of Sandboxed USB Transaction

In the world of cybersecurity arm race that is growing rapidly [29], our research

explores a practical method to counter the newly found threat of USB devices with

malicious firmware. Due to the nature of the vulnerability which operates in low

level of USB standard, the threat can potentially affect all USB-capable devices. We

believe that the current standard implies too much trust when initializing the de-

vice, and the trust must be displaced to achieve the secure USB environment.

Although there are not many existing studies regarding this new risk of USB

devices with malicious firmware, other risks of user devices including USB storage

device (Transient Storage Device, TSD) are well-discussed. In this section, we discuss

the existing studies about the user devices’ risk as well as proposed standards which

attempted to make USB interfacing safer by authorizing and authenticating USB

devices. Several proposals were submitted and approved. However, they were not

implemented in the mainstream operating systems to offer effective protection for

3

users.

As more manufacturing is outsourced to other countries [24], the risk exists

for an unauthorized change to be made to the product design at manufacturing

phase. Even if the product meets all specification requirements, it has a possibility

to operate unexpectedly under certain predefined circumstances. For instance, an

encryption module which are mass-produced in distant factory can carry risks such

as allowing unauthorized parties to access the private key on the chip's memory

[17].

The term hardware trojan refers to an unauthorized change in hardware com-

ponents to allow bypassing or weakening of designed behavior which are manufac-

tured offshore [18]. A device with one or more components which could cause unex-

pected behavior. Increasing number of outsourcing of device fabrication foundries

contribute to the heightened possibilities of malicious circuits inserted [25] [17].

Such attacks would insert unauthorized circuits to be activated at a later time. Such

modifications can cause unexpected behaviors such as a disclosure of secret keys in

encryption module, returning false result, or a complete destruction of the module

itself.

In addition to hot-plug capability and the smaller form factors, USB flash drives

have quickly become the popular choice of removable storage device. While it pro-

vides users portability and convenience, the incorrect user-perceived notions of se-

curity has allowed a worm like Stuxnet to propagate and even reach stations not

connected to the network [33] [10]. Reacting to such viruses like Stuxnet and its

variants, endpoint security programs scan files before reading and writing. This

had been proven its effectiveness in providing protection to operating system from

malicious codes which attempt to execute without user’s consent.

The user is the most important entity because they are ones who have the phys-

4

ical access to the protected systems. The inaccurate idea of a device by a user,

misjudged by its physical appearance, often leads to security threats [33]. For ex-

ample, an iPod may be seen as a music player which needs charging using corporate

computer. However, when it connects, it attempts to establish connections to the

computer, which could lead to company policy violation. A small honest mistake

like this could turn into an organization-wide security threat by adding just enough

attack surface. The innocuousness of a TSD and its portability, along with the in-

accurately perceived sense of security by the user creates a disparity between the

actual and perceived security. This is important context for our research. Our re-

search assumes that the user is aware and suspicious of unknown USB devices.

In addition to the inaccurate model of security notion and general notion of hard-

ware trojan, unintended channels serve to extract data using unusual devices such

as keyboard and USB speakers. Unintended channels utilize the data paths which

are designed to carry control data for the devices [7] [6]. Such features would be

inserted in the manufacturing phase. Then, they would interact with the software

counterpart on the target system to extract data. In Clark's research, a modified

keyboard collects and stores data by tracking the LED state of Num Lock, Caps

Lock, and Scroll Lock turn on and off. Although visible, this data path is gener-

ally not monitored by security softwares. Unsuspicious device like a USB speaker

can also be used to extract data. By utilizing non-audible data channel such as

WAVEFORMATEXTENSIBLE, it is also possible to steal data via a set of speakers.

It is not only the owner's device that poses risk. An innocuous request from

others of plugging in their USB device to charge could be just as risky as plugging

in a flash drive with Stuxnet. Similar to the incorrect model of security in previous

section, users often consent to plugging in unchecked USB devices based on the re-

lationship with the requestor. For example, a proof-of-concept named Pod Slurping

5

was released to public in 2005 [34]. The concept of Pod Slurping effectively proves

that an innocuous device such as a music player can have a malicious intent pro-

gramed so that the attacker can access the data on a protected system. Leveraging

on the inaccurate model of security notion [33], consented use of user devices pose

great threat to computing safety.

Figure 1.1: Diagram of USB Flash Drive Components

We propose a novel way to sandbox USB enumeration which are the root cause

of the vulnerability on which the malicious firmware attack depend. The attack ex-

ploits the nature of USB devices as shown in Figure 1.1. Only mass storage area is

visible to the user and the operating system. The attack executes at the firmware

level, making it impossible to detect before the malicious code is executed. Beagle-

Bone Black (BBB) embedded computer is used as a hardware platform and an open

source project USBProxy is used as a software platform to enable a complete USB

sandbox environment.

1.3 Research Methodology

The threats arising from maliciously reprogrammed USB devices are possible be-

cause of unnecessary and excessive trusts placed on devices by host, as well as the

automatic install of common device drivers. We believe that reducing the implied

trust is the key to protecting the host. To test the effective ways to break the trust

between the host operating system and USB devices, the current USB specification

6

is discussed in detail to precisely locate the best layer to displace the trust. To

decrease the level of trust, we develop a set of programs called USBWall which au-

tomate several operating system's native commands and open-source projects such

as USBProxy. These programs are designed to eliminate the implied trust between

the host operating system and the device. Figure 1.2 shows how USBProxy [31] op-

erates on BeagleBone Black (BBB), which is one of the key parts of the USBWall. A

crucial part of the USBWall which handles the actual data is USBProxy by Dominic

Spill. USBProxy relays USB data traffic from a device to host using gadgetFS. US-

BProxy is launched with parameter of the device’s VID and PID. Therefore, if the

device attempts to re-enumerate, USBProxy needs to relaunch. The flow is termi-

nated automatically.

A test BadUSB-like device, the current project developed a BadUSB device by

using Harman's program [15]. The device will have a different firmware from the

manufacturer's. It will be presented to a host in several configurations. Test result

will be gathered by comparing the product, USBWall, with other commercially avail-

able antivirus products.

Figure 1.2: USBProxy Architecture [20]

7

1.4 Validation and Evaluation

The success of BadUSB attack hinges on the automatic enumeration and trusting its

result to initialize the device. To lessen the implicit trust by automatic enumeration

placed between host and device without significant operating system modification,

we develop a program called USBWall using Visual Basic .NET for protected host.

USBWall issues lsusb -v command to BeagleBone Black (BBB) middleware to obtain

enumeration results. The results are transmitted back to the host via SSH session.

The transmitted result is parsed by USBWall on the host to allow user to assess the

intention of the device. We believe having device enumeration results beforehand

eliminates the vulnerabilities BadUSB relies on to launch a successful attack. It

integrates steps to monitor USB devices which are connected to the middleware

(BBB).

The efficacy of USBWall is tested by measuring the rate of execution of a sam-

ple BadUSB device with various commercially available antivirus software. We use

Psychson's HID Payload sample to emulate a BadUSB device. [15] Once the device

is plugged in, we observe if the device's preset keystrokes are typed. We determine

the protection insufficient if it runs. We test three major antivirus which are freely

available at the time of writing. We observe that only USBWall alerts the user with

yellow and red highlighted entries when a BadUSB device is connected. In addition,

we test the effect of introducing an additional node in USB data path. We test the

data throughput using CrystalDiskMark with 100 MB data transfer for sequential,

512 KB, and 4 KB. We use the average value of five test results for better confidence.

8

1.5 Thesis Organization

The rest of the thesis is organized as follow. Chapter 2 discusses related work in

authenticated USB uses. USB standard is briefly explained to establish the inherent

trust which exists in communication between the host and the device. We argue that

the amount of trust is excessive and needs to be displaced. In addition, the chapter

discusses the existing measures including non-technical, software, and hardware

measures that can potentially hinder the malicious firmware attack. Based on the

analysis, we attempt to theorize ways to deter the attack.

Chapter 3 discusses the design of the proposed solution and the expected pro-

tection for the host. We discuss the ways to identify BadUSB devices, and its behav-

ioral characteristics. The process of USB enumeration is discussed to pinpoint the

phase at which a BadUSB attack occurs. we reiterate that the need exists to reduce

the amount of trust in USB interfacing. USBWall integrates series of shell commands

and open source projects to achieve the untrusted environment while maintaining

the ability enumerate the device. We expect that the risk is greatly reduced thanks

to the sandboxed enumeration.

Chapter 4 validates the efficacy of USBWall. We expose USBWall and other com-

mercially available antivirus products to two sample BadUSB devices. The result is

collected on whether each protection is effective against two BadUSB devices. Addi-

tionally, as USBWall is an additional node introduced on USB data path, we test the

data performance via USBWall to assess if there is any decrease in throughput while

using USBWall.

Chapter 5 discusses about the limitations of the current version of USBWall and

potential improvement for even broader protection. We summarize the contribution

USBWall brings into the computing community for a safer USB interfacing. Future

9

works that could be done in the extension of our work is also discussed.

10

Chapter 2

Related Work in Authenticated USB Uses

Attack scenarios originating from user devices are well-known. From floppy disks,

iPods, to USB devices, the full potentials of computer peripherals are also well rec-

ognized by security professionals while most ordinary computer users are unaware

[2]. Historically, user devices have always carried risks of executing unexpected

behavior to the host device. As modern technology develops at a stunning rate to

reduce the physical size of user devices, the capacity and capabilities of the devices

become more sophisticated. What was merely a medium on which to hold bits are

now small reprogrammable computers with interfacing capability to its embedded

storage flash chip.

2.1 The Inherent Trust of USB Standard

USB specification is written with the intention of minimizing the user intervention

during the device initialization [9]. Consequently, the complexity of hardware re-

quired to be USB-compliant electronics became more sophisticated than older inter-

faces such as DB-9 and DB-25. While the handshake transactions of older interfaces

11

are handled at the application level, USB specifications mandate the host controller

and slave controller to establish the initial contact using a predefined series of elec-

tronic signals handled at the hardware level. More details about USB enumeration

are discussed in chapter 3. In addition to allowing for easier device initialization, to

support wider range of peripherals, the slave controller must be versatile enough

to accommodate different types of transactions. This means that there must be a

controller on host side to determine the type of connected devices. Host controller

initializes the device to the type of device solely based on the information received

from the device.

Unfortunately, the current USB specification implies the trust between host and

device by not specifying a way to attest or authenticate the device. We argue that the

properly placed trust is imperative to achieve safer computing. There exist several

existing standards which can affect the plausibility of the malicious firmware attack.

We categorize them in non-technical, software, and hardware measures.

2.2 Non-technical Measures

2.2.1 Policy Enforcement

A very limited number of countermeasures that mitigate this newly found threat

exists. However, there are non-technical controls such as the payment card industry

data security standard (PCI DSS) which could help reduce the exposure from devices

with malicious firmware by mandating certain physical controls. PCI DSS disallows

mostly all external computer interface except when it is absolutely necessary and

no other alternative interfacing is available. In such case, compensating control

must be declared and approved [26]. Figure 2.1 shows the example of PCI DSS's

12

self-assessment questionnaire mandating the policy reviews.

Figure 2.1: PCI DSS Self-Assessment Questionnaires v2.0 Sample

Furthermore, employees handbook and acceptable use policy are also used to

limit the physical access to the protected system to only authorized individuals.

Such policies attempt to minimize the likelihood of unknowingly plugging in an

unauthorized USB device. However, those policies fail to provide technical measure

that prevent such attack to execute, although they provide sound legal ground to

assist with legal proceeding.

2.2.2 Public Awareness

The possibility of the exploitation from USB devices with malicious firmware is an-

nounced at Black Hat USA 2014. At Security Research Labs (SRL)'s presentation

urged the USB controller manufacturers to mitigate the problem. They demon-

strated the possible use cases of the vulnerability if a USB device is infected with

a malicious firmware. The devices with malicious firmware, named a BadUSB, is

13

shown to appear as a completely different type of device than its physical char-

acteristics. They did not disclose the details of how their demonstration BadUSBs

were created at the time. Notwithstanding such gesture, the problem remained

unattended.

Later that year, Harman made the code to reprogram the firmwares of certain

types of USB flash drives available to the public at SchmooCon 2014 [15]. He con-

fidently announced that his action hopes to bring manufacturers to fix the vul-

nerability quicker. He believes that the public awareness is the key to resolving

the issue. Although this approach does not provide a technical means to protect

against BadUSB, Harman's presentation made many users aware of the possibilities.

These announcements were covered by several news outlets, alerting more general

audience to be aware of the risk [5, 21, 30].

2.2.3 Proposed Standards to Secure USB Standard: IEEE 1667

To mitigate the risks from TSDs as well as unintended channels, a number standards

and modifications of USB were proposed to attempt to authenticate and authorize

a device [13, 28, 35, 36]. Authentication in USB means host and device can validate

each other, and authorization means host only accepts a pre-defined functionality

from devices. Current practice of using vendor ID (VID) and product ID (PID) only

provide limited means of protation as they are easy to spoof, and only provide

the device and manufacturer information. IEEE 1667 describes a complete way to

provide both features. For example, using a concept of silos, an IEEE 1667-compliant

host only accepts pre-authenticated devices. As such, IEEE 1667 was proposed and

approved in 2007 [13]. However, it is hardly used in modern operating systems and

devices. Although it was proposed and announced to be implemented to Windows

14

7 in 2008, there does not seem to be any IEEE 1667-compliant devices in the general

market.

2.3 Software Measures

2.3.1 G Data Keyboard Guard

Shortly after the discovery of the risk of devices with malicious firmware at Black

Hat USA 2014 [20], G DATA published a program that traps USB keyboard insert

events [12]. The program monitors all USB insert event, then the program is acti-

vated if the new device inserted is a HID keyboard. A pop-up notification as shown

in Figure 2.2 appears for the user to decide. Depending on the choice, the insert

Figure 2.2: G DATA USB Keyboard Guard Notification

event is either allowed or blocked by the console user. If allowed, the new hardware

is uninterrupted and result in a successful device initialization. If not allowed, the

15

new keyboard is not initialized and blocked for future insert. While the Keyboard

Guard offers an excellent protection without any modification to Windows operating

system, its protection is limited to HID keyboards inserted to Windows only. Con-

sidering that reprogrammed USB can pose as any device to any operating system,

it does not offer a full protection for users against devices with malicious firmware

posing other than a keyboard.

2.3.2 Enhanced Storage Access by Microsoft

The implementation of IEEE 1667 standard manifested in certain Windows product

under the name of Enhanced Storage Access [22]. However, the standard is rarely

known to general users. Other than the lack of IEEE 1667-compliant devices in the

market, we are unable to conclude why it was not fully accepted and implemented

by operating system manufactures.

2.4 Hardware Measures

2.4.1 Lack of Hardware Protection Against USB Devices with Mali-

cious Firmware

Unfortunately, extensive research in databases of ACM and IEEE Xplore digital li-

brary yield no result of hardware protection against USB devices with malicious

firmware. We believe that it is due to the nature of the vulnerability which executes

at the low level layer of USB specification. Also, checking the validity of the USB

device firmware might be overlooked by the security community.

16

2.5 USB: Time to Untrust

There still exists a need for a technical solution which protects from all types of

devices with malicious firmware. Focusing on the layer and stage of the USB hand-

shake at which the BadUSB exploit it, we believe that the only effective way to inspect

a device for the presence of malicious firmware is to prevent the host USB controller

from handling the enumeration until it is deemed safe.

Therefore, we propose a novel way to protect the host operating system by dis-

allowing the enumeration yet allowing the enumeration details to be gathered. US-

BWall uses BeagleBoard Black (BBB) [8], a low-cost open-source computer, to act as

middleware to enumerate the devices on behalf of the host. Like G Data Keyboard

Guard [12], a newly inserted device is confirmed by the user before it is initialized.

Unlike G Data Keyboard Guard, USBWall will read all types of USB devices. All USB

devices remain uninitialized until the user verifies and confirms a specific device.

At the small expense of the inconvenience of delayed initialization, we achieve great

security and protection against BadUSB devices. By not trusting all newly plugged

in devices, a firmware must present its intentions before the user accepts to use

it. While similar protocols have been proposed [13] [36], they require significant

changes within the operating system and the devices. The solution discussed in

this thesis requires no changes to the operating system or the device.

2.6 Summary

In this chapter, we discussed about BadUSB devices' difference from previously

known threats from user devices. As the bad code resides in the firmware area,

rather than a storage area which are accessible, it is difficult to have a universal way

17

to scan to confirm the validity of the firmware. Thankfully, the findings were made

public by insightful researchers. It is now up to the security community to come up

with a good way to detect BadUSB attacks.

By exploiting the excessive implicit trust placed between host and USB devices,

BadUSB can launch an attack by posing as a different device. A device which user

would not expect from its physical appearance. The current USB specification is

designed to accept the enumeration parameters provided by the device without

verifying it. Therefore, this vulnerability remains largely unsolved.

There are, however, a few countermeasures that are applicable to the findings.

PCI DSS standards, corporate acceptable use policy, and physical control can be

used to increase the difficulty of BadUSB's success rate. PCI DSS offers some pro-

tection to limit the insertion of unauthorized devices by mandating to include such

clause in company policy. Also, organization's acceptable use policy tries to en-

force similar restriction. However, these policies do not offer technical protections

to deter the attack from executing. As they are non-technical measures, they do

not provide a proactive protection. At SchmooCon 2014, the tool to make a BadUSB

device became available to public. By doing so, Harman aims to raise the public

awareness, and force the manufacturers to improve their products [15]. IEEE 1667

is also standardized in 2007 [13], however, it remains largely unimplemented.

A very limited number of software and hardware countermeasures exist. Key-

board Guard by G Data protects Windows host operating system from a HID key-

board attack. Keyboard Guard monitors new device event and get user confirmation

if it is a keyboard. While this is effective in protecting from a keyboard, it does not

extend its protection outside of keyboard and Windows operating system. Enhanced

Storage Access by Microsoft supports IEEE 1667-compliant devices to mitigate the

issue completely. However, IEEE 1667-compliant devices are not found in the mar-

18

ket. After extensive research in several sources, we concluded that the hardware

measures are non-existent due to the level of layer at which the attack happens.

With hardware countermeasure lacking completely, we argue that the existing work

is inadequate to provide safe and reliable USB interfacing.

Therefore, we suggest that the amount of trust must be lessened. By not trust-

ing any devices, we believe that host is protected from a device with malicious

firmware. Although similar standards have been proposed, they were hardly imple-

mented. However, thanks to the USB specification which requires device to advertise

its capabilities in order to be effective, we believe that monitoring the result of enu-

meration process will provide users a chance to block it from launching its attack.

To aid the security threat from user devices, we propose USBWall. A way to iden-

tify a device’s intention before connecting, without any changes on the operating

system.

19

Chapter 3

USBWall: An Effective Middleware

Protection

USB devices infected with malicious firmware, BadUSB, can only be detected by its

discrepant intention at the enumeration stage. Due to the inherent risk user devices

carry, several non-technical measures already exist that hinder the BadUSB-type at-

tack. While some attempt to mitigate the risk from user devices by disallowing the

external devices entirely, some try to educate the public of the risks. With a precise

understanding of the key stage of which BadUSB takes advantage, offering the user

a chance to verify about the suspicious device can effectively prevent the BadUSB

attack. As the device initialization can never take place on the protected host com-

puter, the malicious firmware is not executed. This chapter discusses about USBWall

in detail, a middleware solution that offers technical protection while maintaining

the usability of USB interface.

20

3.1 Identification and Characteristics of BadUSB Devices

As more research on USB controller's potential capability progresses, researchers

found that the new threat of an innocuous USB device. Unlike Stuxnet which resides

in the storage area of a device, the new threat lives in the firmware area. For exam-

ple, by reprogramming the firmware, a USB flash drive can act a different type of

devices such as keyboard or network adapter. As only firmware is modified, BadUSB

is not at all distinguishable by its physical appearance. In a world with higher risk

of hardware trojan as more manufacturing is outsourced [17], this poses a great

threat to the users and render current anti-virus approach entirely useless because

the infected firmware storage is inaccessible. The transactions which occur, albeit

reprogrammed, remain legitimate in USB specifications. Therefore, operating sys-

tem is unable to tell the difference between physical plugin and re-enumerating, and

will attempt to accommodate the device a matching driver. The threat discussed in

this thesis was first publicized by Security Research Labs [20]. At Black Hat USA

2014, Nohl demonstrated that masquerading as a different device was possible [20].

The details of how the device was reprogrammed was not released at the time. Nohl

suggests the firmware signing to prevent unauthorized change. However, this ap-

proach will render the device unusable upon unauthorized change of the code. In

this chapter, we discuss possible methods to determine if a device is BadUSB. Using

the method, we hope to further develop a way to protect a host operating system

before it is exposed to the device.

3.1.1 USB Enumeration and Plug-n-Play

When a USB device is plugged in, a series of transactions happen between the host

controller and the device [11]. Figure 3.1 shows the order of events which happens

21

Figure 3.1: USB Enumeration Process

during the handshake. For our research, we focus on what happens after the host

controller assigns the address.

Once the device has an address, it advertises itself to the host controller of its

capabilities. Assuming a proper driver exists, the device is ready to be initialized.

In such case, the device is initialized at that point with no user interaction. The fact

that a device can have more than one feature (interface), and they can be initialized

with none to very limited amount of user intervention enables BadUSB to be effective

on most systems today. For example, an innocuous USB storage device can turn into

a keyboard when a predefined criteria are met. Thus, we seek for a way to obtain

the device information to allow users to view, and decide whether or not to initialize

with user's explicit consent.

22

3.1.2 Identification of BadUSB Devices

In order to reliably assess the risk of a suspected BadUSB device, actual enumera-

tion process must occur. However, most operating systems, if matching driver is

available, loads the driver automatically. This is precisely what BadUSB attempts

to achieve. For example, by emulating as a keyboard, a suspected device can start

sending keystrokes as soon as the operating system finishes loading the driver.

Identification of a BadUSB device may be possible if an unexpected device be-

havior is observed after inserting. Any behaviors inconsistent with the physical

appearance of the device must be considered for possible BadUSB device. For ex-

ample, if a flash drive is shown as a keyboard, the device is presenting itself to the

host as a keyboard. We must suspect whether the device might be maliciously re-

programmed. Currently, the identification of BadUSB devices can only be achieved

after the device is enumerated by the host.

3.1.3 Behavioral Characteristics of BadUSB Devices

At the time of enumeration, all of the intended features of the device must be de-

clared for host controller’s approval. Therefore, BadUSB cannot be effective until

intended feature is recognized and initialized by host controller. If a device wants

to add a feature which was not declared at the previous enumeration, it must reenu-

merate. As such, we identify the enumeration stage to be protected for BadUSB

attack.

Among many example interface such as network adapter, video device, and hu-

man input device (HID), a keyboard is easy to simulate because of its relatively low

hardware requirements. Launching arbitrary commands with currently logged on

user is a significant threat. Therefore, it is a suspicious event for the operating sys-

23

tem when a keyboard is trying to enumerate when the plugged in device is physically

not.

Also, a potential BadUSB device might attempt to avoid detection by appearing

as its original features initially, then reenumerate at a later point of time. Although

valid legitimate use cases exist, such as a cellular modem which contains drivers in

itself, we believe that it is still considered suspicious.

3.2 Design and Operation of USBWall

In this section, we discuss the high level design of the USBWall. USBWall operates

on two hardware components. In addition to the host's USB controller, BBB is con-

nected to the host with two types of cables. We use CAT5e cable for control channel,

and a mini-USB cable for actual USB traffic. Second, we discuss the operation of US-

BWall in detail. BBB handles the enumeration of a newly connected USB devices. The

host, then, issues a lsusb command to inquire of all connected devices' enumera-

tion details. BBB relays the information to the host to be parsed and be shown via

USBWall's UI. We also show the benefits of enumerating a USB device on a separate

device. Finally, in expected protection section, we speculate the realized benefit of

USBWall by enumerating USB devices in a sandboxed environment.

3.2.1 Design of USBWall

With the realization that the current USB specification places excessive trust when

initializing a device, we propose a middleware solution to decrease the trust be-

tween the host and devices. USBWall utilizes two major components, BeagleBone

Black (BBB) [8] and User Interface (UI) which runs on host machine. BBB is an open-

24

source embedded computer that runs Debian 3.12.0-bone8 operating system. Pow-

ered by 5V 2A DC power supply, BBB is connected to both the host computer and

the suspected device. BBB provides the hardware platform for USB connectivity be-

tween the host's USB controller and BBB's.

Figure 3.2: Diagram of USBWall's Components

USBWall requires a network connectivity between the host and BBB. Since the

control session is via SSH, BBB must be reachable via TCP port 22. Via SSH, USB-

Wall UI issues and obtains the information of the suspected device to display to the

user. USBWall UI uses the SSH.NET library to handle lsusb -v command to BBB

[27]. BBB, in turn, relays the enumeration details to host. Once the host receives the

details, USBWall will parse the result of lsusb into more readable format. Example

structure of lsusb -v is in Appendix 4. It is important to note that the entire enu-

meration processes take place solely on BBB. The host's USB controller is unaware

of the process until the user confirms via the UI, which sends a command over SSH.

Although the implemented USBWall runs on Windows 7, because of the universal

nature of the control channel (SSH), it is a platform-independent solution which can

run on multiple systems.

3.2.2 Operations of USBWall

For proper operation of USBWall, it must be placed and operated between the host

and the suspected USB devices. When a device in question is plugged into BBB, the

25

device automatically goes through enumeration process. BBB retains the informa-

tion until requested by USBWall UI from the host. When the user launches the UI,

it inquires about the device's enumeration details to BBB using lsusb -v via SSH.

Once USBWall's UI receives the device details from BBB, the UI parses the result, and

displays it in a tree format. Figure 3.4 shows a screenshot of the USBWall's user

interface.

Figure 3.3: Sequence Diagram of USBWall

26

Figure 3.4: Middleware Front End (UI) on Windows host

Since BBB’s USB enumeration is isolated and independent of the host's USB con-

troller, the device detail is obtained without the involvement of the host. If the

suspected device is designed to send preset keystrokes, any attempt of keystrokes

from the bogus device is not transmitted to the host. In other words, when the

enumeration at BBB is completed, the device will try sending keystrokes to the host

in which the device is plugged. In this case, BBB is the host. BBB's local console, to

which the device’s input is directed, remains at the linux's standard login screen.

Therefore, any keystroke attempts sent to the host is directed to BBB instead, which

ignores unless the keystroke precisely matches the login information of a user who

has a shell access. This provides an additional protection layer for the middleware

27

itself.

After receiving the enumeration details, the user checks whether the device

matches the physical characteristics. To assist with the decision, the UI will color-

code certain entries of a device' details. The user is prompted by an option to choose

which device to connect to the host and start relaying.

When a device is chosen and the user clicks the connect button, the UI issues the

sudo -S usb-mitm -v ’VID’ -p ’PID’ & command to BBB. VID and PID are the

vendor ID and Product ID of the device, respectively. Usb-mitm is the filename of

the binary of USBProxy. USBProxy [31], an open source project by Dominic Spill,

is used to emulate the function of the device on BBB's host-facing interface using

gadgetfs linux subsystem. USBProxy is launched with the PID and VID of the device

to ensure only the selected device is relayed. To emulate the device functionalities,

USBProxy utilizes gadgetFS, which is part of BBB's Debian 3.12.0-bone8 operating

system.

3.2.3 Expected Protection

Using BBB's USB controller along with USBProxy, USBWall provides the user suffi-

cient information to decide whether the device is safe to use. By issuing the lsusb

command to BBB via SSH terminal, the UI obtains the information of the device

plugged in before it is has a chance to present to the host. USBWall parses and

highlights parameters such as bNumInterface and bInterfaceClass to help users

assess the risk quickly. Those parameters are key items when assessing the likeli-

hood of the device being malicious. Figure 3.5 shows the source code that issues

the lsusb -v command to BBB to obtain USB devices' information from BBB to the

host. The result is parsed and stored into a structure for later display.

28

Figure 3.5: USBWall's Snippet of Issuing and Parsing lsusb

By effectively separating the host and a suspected device while maintaining the

user's ability to interact with the device, we expect that the separation will provide

sufficient displacement of trust to block any devices with malicious firmware to

launch an attack by posing as a different device than its physical form factor. The

ability to assess the device's intention without exposing the host's USB controllers

effectively protects the host from reprogrammed firmware attacks. The risks orig-

inating from unknown user devices is greatly reduced. Furthermore, the concept

of USBWall that allows the protection without any substantial changes to the kernel

makes USBWall an easy candidate to be ported to different operating systems.

29

3.3 Summary

This chapter discussed the identification and characteristics of USB devices with

malicious firmware. Close analysis of USB enumeration process reveals that the

vulnerability exists in low level transactions which are handled by the controllers of

the host and the device. Absence of the universal access to the device's firmware

storage adds the complexity to the vulnerability. Devices with malicious firmware

can be identified when they appear as a different type of device than its physical

characteristics, such as posing as a keyboard when it is a flash storage device.

Reacting to the discovery that this new attack can only be detected after USB

enumeration occurs, we design USBWall to enumerate the device on behalf of the

host. USBWall protects the host by delegating the USB enumeration process to BBB

middleware. The suspected device is plugged into the BBB, then the enumeration

details are stored to be sent to the host. Such sandboxed operation offers an effec-

tive separation between the host and the suspected device. USBWall itself is also

protected from the attack as its local console, to which any malicious firmware at-

tack execution is directed, waiting for the login details. Unless the input matches

precisely with the username and the password of the local user, no action is exe-

cutable at BBB. When USBWall UI receives the enumeration details from the BBB, it

parses the information and color-codes certain entries to highlight the features of

the device so that the user can decide easily. After the user reviews the information

of the suspected device, user can choose to connect the device using USBWall UI. We

expect the protection to be effective due to independent enumeration transactions,

as well as the BBB's ability to protect itself from malicious devices.

30

Chapter 4

Validation for Sandboxed USB

Enumeration

This chapter discusses the results and analyzes of the effectiveness of USBWall

against USB devices with malicious firmware. To simulate an attack scenario, BadUSB

and BadAndroid devices are connected to a Windows 7 host computer with USBWall

installed. First, we compare the protection efficiency of commercially available an-

tivirus products with USBWall. The suspected devices are presented to a protected

host by each commercially available antivirus program. We use a USB storage de-

vice with Psychson's HID payload applied to simulate a BadUSB to test whether the

arbitrary code successfully runs. The HID payload is designed to launch a series

of keystrokes which will cause a Windows machine to run the notepad application,

then type predefined characters [3]. If a notepad opens without any user interac-

tion upon plug-in, we consider it a successful attack. If the notepad does not open,

and the user is notified of the risk, we consider it an unsuccessful attack as well

as a successful protection. In each case, we verify whether the host is protected

from BadUSB attack. Second, we will compare BBB's effect on the data throughput.

31

Using a publicly available tool CrystalDiskMark [19], we test 100 MB data transfer

throughput for sequential, 512 KB, and 4 KB. We use the average value of five test

results for better confidence.

4.1 Experiment Environment

USBWall is developed in Linux, and the Windows user interface portion is written in

Visual Studio 2012 professional on Windows 7 64-bit version. Linux is used on BBB,

which runs a debian distribution to facilitate the middleware functionality. An open-

source project, USBProxy, is also used to relay the USB data. On the host computer,

the UI is developed using Visual Basic 2012 Professional. A Toshiba TransMemory

16GB PFU016U-1BCK is chosen as a test BadUSB device. The drive is applied with

HID-emulating firmware using Harman's tool [15].

We compare USBWall's protection with AVG, avast!, Windows Defender, and with

no antivirus installed for control. [4, 23, 32] The test firmware is written to launch

a notepad using Rubber Ducky script [14]. If a notepad launches and keystrokes are

entered without any user intervention, we consider the protection to be ineffective

as it allowed the device to run a arbitrary keystrokes. Figure 4.1 shows the notepad

launched on the host with no antivirus when a test device is plugged in. Upon plug-

ging in, notepad is opened. Without any further user actions, keys are typed into

the notepad. We use this scenario to determine if the each protection is effective

against BadUSB attack.

File transfer throughput is also measured by performing benchmark tests with

CrystalDiskMark (CDM) [19]. CDM performs read and write operations in a prede-

fined size of data at different sizes of blocks. We run tests five times and average

the result. To test the throughput when USBWall is in use, we first connect a USB

32

Figure 4.1: Screenshot of Successful Launch of HID Payload Launch

device to BBB. BBB is connected to the host USB port via Mini-USB cable. USBWall UI

is launched on the host computer to initiate the transfer. CDM is launched with var-

ious data block size choices. While CDM is performing the test, we monitor the CPU

usage on BBB via ps -ef command on BBB on Putty v0.60. CPU data is collected on

the Windows 7 64-bit host computer without any antivirus program to ensure the

integrity of results.

4.2 Experiment Results

We test the efficacy of USBWall by comparing whether the sample BadUSB device

successfully launches an attack on different host configurations with currently avail-

able antivirus solutions. If the test script runs, we conclude that the protection is

ineffective. Later, we test the same sample device with USBWall.

33

Type Sub Type Specifications

CPU IntelÉCore™2 Q9650 3.00GHz

RAM 8 GB

Host Storage 1 TB

Computer
Operating

System
Windows 7 Professional 64-bit

USB Controller Intel X48 Chipset with ICH9R

CPU Sitara XAM3359AZCZ 1GHz

RAM 512MB

USBWall Storage 2GB eMMC

(BBB, Middleware)
Operating

System
Debian 3.12.0-bone8

Power Supply 5V 2A with 5.5mm x 2.1mm Plug

Development Tool User Interface Visual Studio 2012 Professional

Sample
Psychson-Applied

Simulated BadUSB Drive

Toshiba TransMemory

16GB PFU016U1BCK

USB Devices BadAndroid-v0.1 Device Samsung SPH-D700

Table 4.1: Specifications of Components Used in Testing

4.2.1 BadUSB Devices with Commercially Available Antivirus

To test and compare the effectiveness of different protections, a Psychson HID pay-

load example [15] BadUSB device is presented to hosts with different antivirus pro-

tections which are commercially available at the time of writing. Selected antivirus

software include AVG Free, avast! Free, and Windows Defender. The test device

is inserted into the host while running each antivirus program with full protection

options. If the notepad opens and text is typed, we consider the protection ineffec-

tive against BadUSB attack as it allowed the BadUSB's firmware to launch its preset

keystrokes. The results show no commercially available protections detect or block

the test BadUSB devices.

34

Config 1: Control - No Antivirus

As a control, the sample HID payload is plugged into a host without any type of virus

protection installed. Expectedly, the firmware flawlessly runs on the host, opening

a notepad and typing preset keystrokes. This result is compared to other test cases

with antivirus softwares.

Config 2: AVG by AVG Technologies

The host is equipped with AVG Free antivirus with the most recent database pat-

tern at the time of writing [32]. (Database version 4306/9296, AVG Antivirus FREE

2015.0.5751) Even with all real-time protection offered by the antivirus is enabled,

BadUSB is able to run without any user interaction. Figure 4.2 shows the successful

launch of the firmware's preset texts with AVG running.

Figure 4.2: BadUSB HID Payload Launched with AVG Antivirus

35

Config 3: avast! by Avast

Next, the host is equipped with avast! antivirus software by Avast. The antivirus is

then allowed to update to the most recent database pattern at the time of writing [4].

(Database version 150313-2, Avast Free Antivirus 2015.10.2.2214) The test BadUSB

device is plugged in, and is able to run without any user interaction. Figure 4.3

shows the successful launch of the firmware's preset texts with avast! running.

Figure 4.3: BadUSB HID Payload Launched with avast! Antivirus

Config 4: Windows Defender by Microsoft

Last, the host is prepared with Windows Defender by Microsoft. The sample BadUSB

device is plugged in after Windows Defender was updated to the most recent database

pattern at the time of writing. (Database Version of 1.193.2482.0, Windows De-

fender 6.1.7600.16385) Even with all real-time protection enabled, BadUSB is able

to run without any user interaction. Figure 4.4 shows the successful launch of the

firmware's preset texts with Windows Defender running.

36

Figure 4.4: BadUSB HID Payload Launched with Windows Defender

4.2.2 BadUSB Devices with USBWall

The previous tests show that the current antivirus approach is ineffective in prevent-

ing the BadUSB attack. This is not only due to the nature of the attack that exploits

the process during enumeration, but also to the access to the malicious firmware

storage area that is proprietary. Lacking a standard way to access the firmware stor-

age area, it remains largely impossible to antivirus to scan the firmware of devices.

Instead, USBWall focuses on the key fact that the BadUSB's actions, whether legiti-

mate or malicious, remain valid within USB specifications. In this section, we test

USBWall's efficacy against two types of BadUSB devices. Psychson is the name of

Harman's public project [15]. Secondly, a proof-of-concept BadAndroid-v0.1 script

published by SRL is presented to USBWall. In both cases, USBWall is effective in

showing the user the detailed intention of each device while maintaining the host's

USB controller isolated.

37

Psychson Devices with USBWall

Toshiba TransMemory 16GB is a small flash drive which appears harmless. However,

when the Psychson-applied device with HID payload is connected to USBWall, the

user can easily tell that the device presents itself as a HID Keyboard. User launches

USBWall by double-clicking the icon on the desktop after plugin of the suspected

device. At startup of USBWall, it shows the tree list of connected devices as shown

in Figure 4.5, obtained by BBB using lsusb -v command.

As shown in Figure 4.5, it is not only possible, but also easier, to pinpoint the

device's intent. USBWall highlights the entries of the suspected device's properties

in different colors. USBWall highlights the detail of Kingston Technology Company's

(VID 13FE and PID 5201) two interfaces. The device's intentions include a keyboard.

Upon reading the result, the user immediately realizes that the device may not be

presenting itself and suspects of BadUSB attack. As the USB handshake only hap-

pened at the protected level of BBB, user can disconnect the device safely.

Although we assume all device as unsafe, we believe that user must have a way

to override the warning and initiate the device. Therefore, user still has the permis-

sion to proceed connecting the device if the user believes that it is a valid intent.

The device is connected when the user gives an explicit permission using the UI by

selecting the entry, then clicking the Connect button.

BadAndroid Devices with USBWall

BadAndroid script made available by SRLabs turns an android phone into a net-

work adapter for Man-in-the-Middle (MITM) attack [20]. The script is launched on

Samsung SPH-D700 Android phone before connecting the microUSB cable to BBB.

When BadAndroid-enabled mobile device is presented to a Windows 7 host with

38

Figure 4.5: USBWall Detection of Psychson-Applied Sample BadUSB Device

no protection, Remote Network Driver Interface Specification (RNDIS) devices are

automatically installed and initialized with no user interaction.

We test the same scenario with USBWall. When the suspected device is connected

via USBWall, the UI shows the user the intention of the device. As with the previous

test, the user launches USBWall by double-clicking the icon on the desktop. At

startup of USBWall, it shows the tree list of connected devices as shown in Figure

4.6, obtained by BBB using lsusb -v. Now that the user is notified of the details

of the device. The user has an option to connect the device to host if it is a valid

device insertion. Figure 4.6 shows the detection of the device with VID of 04E8 and

PID of 6863 is presenting itself as a RNDIS device.

As with the previous test, the user still has the right to proceed connecting the

device despite of the warnings provided by USBWall. User simply needs to click the

device, and click the connect button. If the user decides not to use the device, the

user can simply disconnect it without worrying about the safety of the host.

39

Figure 4.6: USBWall Detection of BadAndroid-Activated Mobile Phone

4.2.3 Performance Test

While USBWall protects the host and relays the USB data, it must introduce an over-

head to the traffic path as it is an additional node. Therefore, we believe that it is

worthwhile to measure the difference in the data throughput. If the overhead causes

significant negative effect on the usability of the device, it would make USBWall less

appealing to the user.

In this test, we use JD Secure II+ 2GB by Lexar with CrystalDiskMark (CDM) to

test the read and write performance. We test the read-and-write throughput using

CDM with 100 MB data transfer. 100 MB data is transferred to the device in 512 KB,

4 KB, and sequentially with and without USBWall.

As shown in Table 4.2 and 4.3, there are clear differences in transfer speed be-

tween a direct connection and via USBWall. We believe that the decreased perfor-

mance is due to the overhead introduced to the data path, mainly due to the limited

processor capability of BBB which is responsible for relaying the data. The copying

40

Type Test Size 1 2 3 4 5 Average

via Sequential 1.975 1.977 1.977 1.950 1.952 1.966

USBWall 512K 1.956 1.981 1.981 1.936 1.955 1.962

4K 1.421 1.449 1.419 1.428 1.433 1.430

Sequential 21.19 21.27 21.15 21.23 21.18 21.20

Direct 512K 21.28 21.35 21.23 21.24 21.13 21.25

4K 5.560 5.564 5.586 5.532 5.510 5.550

Table 4.2: CrystalDiskMark Result (Read, 100MB, MB/s)

Type Test Size 1 2 3 4 5 Average

via Sequential 1.890 1.886 1.889 1.907 1.906 1.896

USBWall 512K 1.159 1.145 1.173 1.147 1.088 1.142

4K 0.023 0.022 0.023 0.023 0.022 0.023

Sequential 6.797 6.775 6.823 6.771 6.970 6.827

Direct 512K 2.140 2.122 1.947 2.034 2.093 2.067

4K 0.024 0.023 0.023 0.024 0.023 0.023

Table 4.3: CrystalDiskMark Result (Write, 100MB, MB/s)

of USB data traffic involves interacting with the device as well as relaying to the

host at the same time. One process must wait for the other while the transaction is

finished. To support the analysis, Figure 4.7 shows the CPU utilization on BBB while

data transfer test is in progress. It shows that the USBProxy process, usb-mitm,

takes nearly 90% of the processor. We believe this is purely a technical limitation of

BBB and USBProxy. Hence, we believe that this will be resolved with a faster middle-

ware platform. While it affects the speed of the data, it does not affect the integrity

of the data transmitted.

41

Figure 4.7: ps -ef of BBB While Transferring

4.3 Validation Conclusions

In this chapter, the implementation of USBWall is explained, and tested with Psy-

chson and BadAndroid devices. AVG Free, avast! Free and Windows Defender are

tested against the sample BadUSB devices. We showed that no existing antivirus pro-

tections are capable of blocking or detecting the presence of the malicious firmware.

We assess that the difficulty of existing approach comes from the fact that the ma-

licious firmware resides in the firmware storage, which are generally inaccessible to

the user. Also, the access to firmware storage of a USB devices are mostly propri-

etary. Lacking the universal way to access the firmware storage area, the antivirus

programs have no way to distinguish whether firmware's behavior is legitimate or

malicious.

We show the effectiveness of USBWall with Psychson-applied HID sample BadUSB

42

and BadAndroid-v0.1 devices by SRL. For both sample devices, USBWall successfully

shows the user the intentions of the sample devices. As the USB handshake only

happened at the protected level of BBB, the user can disconnect the device safely

without affecting the host's integrity.

While the conventional antivirus protections have shown to be completely in-

effective, USBWall successfully isolates the devices from the host and notifies the

user of the intentions of connected devices. The test results are summarized in

Table 4.4.

AVG Free

2015.0.5751

Avast Free

Antivirus

2015.10.2.2214

Windows

Defender

6.1.7600.16385

USBWall v1.3

Psychson-HID No No No Yes

BadAndroid No No No Yes

Table 4.4: Comparison of Protections against Sample BadUSB Devices

4.4 Hardware and Software Considerations

USBWall utilizes BeagleBone Black (BBB) Rev. A5A to act as a gateway and a proxy

to enumerate and relay the details of the connected devices. While it provides the

host the protection from any USB devices with malicious firmware, we find that the

data transfer speed is reduced than compared to direct connection. Although the

BBB has a 1GHz Siatara XAM3359AZCZ processor [8], a performance degradation

is inevitable when it comes to the data throughput. This is because USBProxy [31]

operates at a software layer utilizing gadgetFS as well as the inherent delays in the

added nodes. We believe that the enhanced throughput is attainable with upgraded

BBB with faster hardware. Nevertheless, the integrity of transmitted data is not af-

43

fected. Therefore, we believe USBWall's effectiveness against BadUSB devices still

remain valid. Although USBWall UI is currently developed only for Windows host

with .NET framework 4.5, it can be easily ported to other operating systems thanks

to the universal underlying protocol, SSH. To port USBWall to other platforms, only

the UI needs to be rewritten because the back-end communication and USB enumer-

ation is done on BBB independently.

4.5 Summary

This chapter discussed the result of USBWall against the USB devices with mali-

cious firmware. HID payload test sample and BadAndroid script are used to test the

efficacy of each protection. Under various commercially available protections in-

cluding AVG Free, avast!, and Windows Defender, the malicious firmwares executed

successfully. We conclude that currently existing antivirus protects are inadequate

to provide sufficient protection due to the nature of the USB standard. The lower

level transaction is manipulated by the firmware, which are not visible by the op-

erating system. USBWall, however, successfully prohibits the malicious firmware

from launching by enumerating the device in a sandboxed environment. Through

the protection environment, the host can safely retrieve the detailed information

about the device to decide whether or not to accept the device. USBProxy is used to

bridge the connection and introduce the device to the host.

We also test the file transfer throughput to measure the impact of having an

additional node on the USB data path. After analyzing the CPU utilization on Bea-

gleBone Black (BBB), we find that the BBB's limited processing power affects the

performance negatively. However, the efficacy of the protection remains effective

as the data integrity is not affected. For USBWall protection on other operating sys-

44

tems than Windows, we believe the porting effort is minimal because only the user

interface needs to be ported.

45

Chapter 5

Contributions and Future Work

The system discussed in this thesis protects the computers from BadUSB devices by

introducing a middleware, BBB, to relay the device enumeration information before

host is exposed to the device. Although many creative methods are used in the cur-

rent design, there exists possibilities to enhance the system further. For example,

due to the lack of serial number enforcement by the current USB specification, it is

impossible for high level kernel entities to distinguish one device from one another.

However, with BBB's access to the hardware-level information, it may be possible to

fingerprint a device based on its electrical characteristics such as delays and power

consumption patterns during the enumeration.

Secondly, USBProxy uses gadgetFS. After lsusb is displayed and the user de-

cides to connect, USBProxy relays the data using gadgetFS subsystem. Although

it is capable of viewing the properties of all devices, if a type is not supported

by gadgetFS subsystem, it will fail to relay. As more device types are added to

gadgetFS in the future, such as wireless dongles and other physically small de-

vices, we anticipate wider device support in USBWall.

Third, consider BBB's overhead affecting performance in chapter 4.2.3. Not only

46

is the performance restricted to USB 2.0, but also to the capability of the CPU which

decreases the performance further. As a newer BBB is released with faster hardware,

we anticipate better performance.

Last, we strongly believe that the concept of introducing a middleware for a phys-

ical computer peripherals is a powerful candidate for offering protection against

user devices. Especially with the emerging risks from hardware trojans [7] [6], the

approach of USBWall can be extended to more interfaces than USB.

All scenarios above make an excellent candidate for works to be explored. By

filling in the gaps of current restrictions, such as IEEE 1667 [13]. We firmly believe

that it will contribute to safer computing from malicious user devices. We believe

where IEEE 1667 has failed to reach, USBWall will reach to larger user base thanks

to the minimal changes required on operating systems.

47

Appendix 1: A Picture of USBWall

Figure 5.1: Picture of Physical Implementation of USBWall

48

Appendix 2: Rubber Ducky Script HID

Example

1 REM Lock Me 0.3 − Script opens Notepad and types a message concerning locking
the computer − by SurfKahuna (RJC)

GUI r
3 DELAY 200

STRING notepad . exe
5 ENTER

DELAY 300
7 STRING , ,\ , ’ \ , ’ \ , ’ \ ,\ ,

ENTER
9 STRING , ,\/ \ ’ ‘ ’ ‘ ’ / |

ENTER
11 STRING |\/ |

ENTER
13 STRING : |

ENTER
15 STRING : |

ENTER
17 STRING | |

ENTER
19 STRING | |

ENTER
21 STRING : −. _ |

ENTER
23 STRING : \ ‘ .

ENTER
25 STRING | ________ : ______\

ENTER
27 STRING : , ’o / o ,

ENTER
29 STRING : \ , ’−−−−−./

ENTER
31 STRING _ ‘−−.−− ’)

ENTER
33 STRING , ‘ ‘ . ,−−− ’ |

ENTER
35 STRING : ‘ |

49

ENTER
37 STRING ‘ ,− ’ |

ENTER
39 STRING / ,−−−. , ’

ENTER
41 STRING ,− ’ ‘−,−−−−−− ’

ENTER
43 STRING ‘ . ,−− ’

ENTER
45 STRING ‘−. ____/

ENTER
47 STRING \

ENTER
49 ENTER

STRING I wi l l learn to lock my computer .
51 ENTER

STRING I wi l l learn to lock my computer .
53 ENTER

STRING I wi l l learn to lock my computer .
55 ENTER

STRING I wi l l learn to lock my computer .
57 ENTER

STRING I wi l l learn to lock my computer .
59 ENTER

STRING I wi l l learn to lock my computer .
61 ENTER

STRING I wi l l learn to lock my computer .
63 ENTER

STRING I wi l l learn to lock my computer .
65 ENTER

STRING I wi l l learn to lock my computer .
67 ENTER

STRING I wi l l learn to lock my computer .
69 ENTER

ENTER
71 STRING There , just l ike Bart Simpson .

ENTER
73 ENTER

STRING Please remember to lock your computer when you step away from your desk .
75 ENTER

ENTER
77 STRING Thank you .

ENTER
79 DELAY 100

ALT SPACE
81 STRING x

50

Appendix 3: VB.NET Source Code of

USBWall UI

1 Imports System . Text . RegularExpressions
Imports Renci . SshNet

3 Public Class Form1
Private Structure str_lsusb

5 Public EasyDesc As String
Public idVendor As String

7 Public idProduct As String
Public bNumInterfaces As Integer

9 Public bInterface () As str_bInterface ’ redim when bNumInterfaces is
known.
End Structure

11 Private Structure str_bInterface
Public bInterfaceClass As String

13 Public bInterfaceSubClass As String
Public bInterfaceProtocol As String

15 End Structure

17 Dim sshhost As String = "192.168.123.110"
Dim sshuser As String = " debian "

19 Dim sshpass As String = "temppwd"
Dim sshclient = New SshClient (sshhost , sshuser , sshpass)

21 Dim shellstream As ShellStream

23 Dim isUSBPrunning As Boolean = False

25 Private Sub sshinit () ’ set ssh env , start session
Dim reply As String = String . Empty

27 sshclient . connect ()

29 shellstream = sshclient . CreateShellStream ("vt100 " , 80 , 24 , 640, 480,
1024)

reply = shellstream . Expect ("$" , New TimeSpan(0 , 0 , 10))
31 ’ wait for $ for 10 secs .

End Sub
33 Private Function sshruncmd(ByVal cmd As String) ’ runs shel l cmd and return

result

51

Dim reply As String = String . Empty
35 Try

Debug . Print ("cmd: " & cmd)
37 shellstream . WriteLine (cmd)

reply = shellstream . Expect ("$" , New TimeSpan(0 , 0 , 5))
39 Catch ex As Exception

Debug . Print ("cmd unsucessful : " & ex . Message . ToString)
41 Return ex . Message

End Try
43

Return reply
45

End Function
47 Private Sub Button1_Click (sender As Object , e As EventArgs)

’MsgBox(sshruncmd (" ps −ef | grep usb−mitm"))
49 test ()

End Sub
51 Private Function lsusb () ’ returns lsusb in struct in strings

Dim templsusb As String = sshruncmd(" lsusb −v") ’ get lsusb −v result
from BBB

53 Dim arr_lsusb As str_lsusb () ’ i n i t struct
ReDim arr_lsusb (50) ’assume max 50 USB devices

55 Dim templsusbarr As String () = templsusb . Sp l i t (vbCrLf) ’ sp l i t result by
return carriage

Dim i As Integer = −1
57 Dim bIntNumforFor As Integer = 0

For Each l ine As String In templsusbarr
59 I f l ine . Contains (" : ID ") Then

i = i + 1 ’ increment i at header of each device
61 arr_lsusb (i) . EasyDesc = l ine . Substring (23) . Trim

End I f
63 ’we are interested in the following f ie lds

I f l ine . Contains (" idVendor ") Then arr_lsusb (i) . idVendor = l ine .
Substring (22)

65 I f l ine . Contains (" idProduct ") Then arr_lsusb (i) . idProduct = l ine .
Substring (22)

I f l ine . Contains ("bNumInterfaces ") Then arr_lsusb (i) . bNumInterfaces
= CInt (l ine . Substring (20))

67 I f l ine . Contains (" bInterfaceNumber ") Then
bIntNumforFor = CInt (l ine . Substring (24))

69 ReDim Preserve arr_lsusb (i) . bInterface (bIntNumforFor)
End I f

71 I f l ine . Contains (" bInterfaceClass ") Then
arr_lsusb (i) . bInterface (bIntNumforFor) . bInterfaceClass = l ine .

Substring (31)
73 End I f

I f l ine . Contains (" bInterfaceSubClass ") Then
75 arr_lsusb (i) . bInterface (bIntNumforFor) . bInterfaceSubClass =

l ine . Substring (31)
End I f

77 I f l ine . Contains (" bInterfaceProtocol ") Then
arr_lsusb (i) . bInterface (bIntNumforFor) . bInterfaceProtocol =

l ine . Substring (30) . Trim ()
79 End I f

Next

52

81 ReDim Preserve arr_lsusb (i) ’when done , resize array before returning
Return arr_lsusb

83 End Function
Private Sub cmdLsusb_Click (sender As Object , e As EventArgs)

85

End Sub
87 Private Sub lsusbToview ()

treeLsusb . BeginUpdate ()
89

treeLsusb . Nodes . Clear ()
91

Dim lsusbret As str_lsusb ()
93 lsusbret = lsusb ()

Dim i As Integer = −1
95

For Each device As str_lsusb In lsusbret
97 I f device . EasyDesc . ToLower . Contains ("hub ") Then

Continue For
99 End I f

i = i + 1
101 Dim starintcount As String = "OK"

For starwarningcount = 1 To device . bNumInterfaces − 1
103 I f starintcount = "OK" Then starintcount = " "

starintcount = starintcount & " ! "
105 Next

treeLsusb . Nodes .Add(New TreeNode (" (" & starintcount & ") " & device
. EasyDesc))

107 treeLsusb . Nodes (i) . NodeFont = New Font (treeLsusb . Font , FontStyle .
Bold)

treeLsusb . Nodes (i) . Nodes .Add(" idVendor : " & device . idVendor)
109 treeLsusb . Nodes (i) . Nodes .Add(" idProduct : " & device . idProduct)

treeLsusb . Nodes (i) . Nodes .Add(" bNumInterfaces : " & device .
bNumInterfaces)

111

113 Select Case device . bNumInterfaces ’ set color at device desc
Case Is > 3

115 treeLsusb . Nodes (i) . ForeColor = Color . Red
Case Is > 2

117 treeLsusb . Nodes (i) . ForeColor = Color . OrangeRed
Case Is > 1

119 treeLsusb . Nodes (i) . ForeColor = Color . Orange
Case Is = 1

121 treeLsusb . Nodes (i) . ForeColor = Color . Green
End Select

123

125 For j = 0 To device . bNumInterfaces − 1
treeLsusb . Nodes (i) . Nodes .Add(New TreeNode (" Interface " & j))

127 treeLsusb . Nodes (i) . Nodes(3 + j) . NodeFont = New Font (treeLsusb .
Font , FontStyle . Bold)

treeLsusb . Nodes (i) . Nodes(3 + j) . Nodes .Add(" bInterfaceClass : " &
device . bInterface (j) . bInterfaceClass)

129 I f (treeLsusb . Nodes . Item (i) . ToString . Contains ("OK") = False)
Then treeLsusb . Nodes (i) . Nodes(3 + j) . Nodes . Item (0) . ForeColor = Color . Red

53

131 treeLsusb . Nodes (i) . Nodes(3 + j) . Nodes .Add(" bInterfaceSubClass :
" & device . bInterface (j) . bInterfaceSubClass)

treeLsusb . Nodes (i) . Nodes(3 + j) . Nodes .Add(" bInterfaceProtocol :
" & device . bInterface (j) . bInterfaceProtocol)

133 Next

135 Next
’ treeLsusb . ExpandAll ()

137

treeLsusb . EndUpdate ()
139

End Sub
141 Private Sub in i t ()

sshinit ()
143 lsusbToview ()

pkillUSBP ()
145

End Sub
147

Private Sub Form1_FormClosing (sender As Object , e As FormClosingEventArgs)
Handles Me. FormClosing

149 cleanup ()
End Sub

151 Private Sub cleanup ()
pkillUSBP ()

153 sshclient . disconnect ()
sshclient . dispose ()

155

157 End Sub
Private Sub pkillUSBP ()

159 sshruncmd (" echo temppwd | sudo −S pk i l l −f " " usb−mitm" " ")
End Sub

161 Private Sub Form1_Load (sender As Object , e As EventArgs) Handles MyBase .
Load

in i t ()
163 End Sub

165

Private Sub cmdConnect_Click (sender As Object , e As EventArgs) Handles
cmdConnect . Click

167 Dim vid As String
Dim pid As String

169 Dim anchor As Integer = 0

171 anchor = treeLsusb . SelectedNode . FullPath . IndexOf (" : ")
vid = treeLsusb . SelectedNode . FullPath . Substring (anchor − 4 , 4)

173 pid = treeLsusb . SelectedNode . FullPath . Substring (anchor + 1 , 4)

175 runUSBP (vid , pid)
End Sub

177 Private Sub runUSBP (ByVal vid As String , ByVal pid As String)
sshruncmd (" echo temppwd | sudo −S usb−mitm −v " & vid & " −p " & pid &

" &")

54

179 isUSBPrunning = True
cmdConnect . Text = "Connected with " & vid & " : " & pid

181 cmdConnect . Enabled = False
cmdDisconnect . Enabled = True

183

End Sub
185

Private Sub cmdRefresh_Click (sender As Object , e As EventArgs) Handles
cmdRefresh . Click

187 refreshview ()

189 End Sub
Private Sub refreshview ()

191 lsusbToview ()
End Sub

193

Private Sub Button2_Click (sender As Object , e As EventArgs) Handles Button2
. Click

195 Me. Close ()

197 End Sub

199 Private Sub treeLsusb_AfterSelect (sender As Object , e As TreeViewEventArgs)
Handles treeLsusb . AfterSelect

Dim vid As String
201 Dim pid As String

Dim anchor As Integer = 0
203

anchor = treeLsusb . SelectedNode . FullPath . IndexOf (" : ")
205 vid = treeLsusb . SelectedNode . FullPath . Substring (anchor − 4 , 4)

pid = treeLsusb . SelectedNode . FullPath . Substring (anchor + 1 , 4)
207

showselecteddev (vid , pid)
209 enableconnectbtn ()

End Sub
211 Private Sub enableconnectbtn ()

I f isUSBPrunning Then
213 cmdConnect . Enabled = False

cmdDisconnect . Enabled = True
215 Else

cmdConnect . Enabled = True
217 cmdDisconnect . Enabled = False

End I f
219

End Sub
221 Private Sub showselecteddev (ByVal vid As String , ByVal pid As String)

I f isUSBPrunning Then Exit Sub
223 ’ update vid and pid for connect button

cmdConnect . Text = "Connect " & vid & " : " & pid
225

End Sub
227

Private Sub cmdDisconnect_Click (sender As Object , e As EventArgs) Handles
cmdDisconnect . Click

229 stopUSBP ()

55

cmdConnect . Text = " Select Device "
231 cmdConnect . Enabled = False

cmdDisconnect . Enabled = False
233 End Sub

Private Sub stopUSBP ()
235 pkillUSBP ()

isUSBPrunning = False
237 End Sub

End Class

56

Appendix 4: Sample Result of lsusb -v

on Test BadUSB Device

1 debian@arm:~$ lsusb −v

3 Bus 002 Device 002: ID 13fe :5201 Kingston Technology Company Inc .
Couldn ’ t open device , some information wi l l be missing

5 Device Descriptor :
bLength 18

7 bDescriptorType 1
bcdUSB 2.00

9 bDeviceClass 0 (Defined at Interface leve l)
bDeviceSubClass 0

11 bDeviceProtocol 0
bMaxPacketSize0 64

13 idVendor 0x13fe Kingston Technology Company Inc .
idProduct 0x5201

15 bcdDevice 1.10
iManufacturer 0

17 iProduct 0
i S e r i a l 0

19 bNumConfigurations 1
Configuration Descriptor :

21 bLength 9
bDescriptorType 2

23 wTotalLength 71
bNumInterfaces 2

25 bConfigurationValue 1
iConfiguration 0

27 bmAttributes 0x80
(Bus Powered)

29 MaxPower 150mA
Interface Descriptor :

31 bLength 9
bDescriptorType 4

33 bInterfaceNumber 0
bAlternateSetting 0

35 bNumEndpoints 3
bInterfaceClass 8 Mass Storage

57

37 bInterfaceSubClass 6 SCSI
bInterfaceProtocol 80 Bulk−Only

39 i Interface 0
Endpoint Descriptor :

41 bLength 7
bDescriptorType 5

43 bEndpointAddress 0x81 EP 1 IN
bmAttributes 2

45 Transfer Type Bulk
Synch Type None

47 Usage Type Data
wMaxPacketSize 0x0040 1x 64 bytes

49 bInterval 0
Endpoint Descriptor :

51 bLength 7
bDescriptorType 5

53 bEndpointAddress 0x02 EP 2 OUT
bmAttributes 2

55 Transfer Type Bulk
Synch Type None

57 Usage Type Data
wMaxPacketSize 0x0040 1x 64 bytes

59 bInterval 0
Endpoint Descriptor :

61 bLength 7
bDescriptorType 5

63 bEndpointAddress 0x83 EP 3 IN
bmAttributes 3

65 Transfer Type Interrupt
Synch Type None

67 Usage Type Data
wMaxPacketSize 0x0008 1x 8 bytes

69 bInterval 0
Interface Descriptor :

71 bLength 9
bDescriptorType 4

73 bInterfaceNumber 1
bAlternateSetting 0

75 bNumEndpoints 2
bInterfaceClass 3 Human Interface Device

77 bInterfaceSubClass 1 Boot Interface Subclass
bInterfaceProtocol 1 Keyboard

79 i Interface 0
HID Device Descriptor :

81 bLength 9
bDescriptorType 33

83 bcdHID 1.01
bCountryCode 0 Not supported

85 bNumDescriptors 1
bDescriptorType 34 Report

87 wDescriptorLength 63
Report Descriptors :

89 * * UNAVAILABLE * *
Endpoint Descriptor :

91 bLength 7

58

bDescriptorType 5
93 bEndpointAddress 0x83 EP 3 IN

bmAttributes 3
95 Transfer Type Interrupt

Synch Type None
97 Usage Type Data

wMaxPacketSize 0x0008 1x 8 bytes
99 bInterval 1

Endpoint Descriptor :
101 bLength 7

bDescriptorType 5
103 bEndpointAddress 0x04 EP 4 OUT

bmAttributes 3
105 Transfer Type Interrupt

Synch Type None
107 Usage Type Data

wMaxPacketSize 0x0008 1x 8 bytes
109 bInterval 1

59

Bibliography

[1] Appavoo, J. and Hui, K. and Soules, C. A. N. and Wisniewski, R. W. and Da Silva,

D. M. and Krieger, O. and Auslander, M. A. and Edelsohn, D. J. and Gamsa, B.

and Ganger, G. R. and McKenney, P. and Ostrowski, M. and Rosenburg, B. and

Stumm, M. and Xenidis, J. Enabling Autonomic Behavior in Systems Software

with Hot Swapping. IBM Systems Journal, 42(1):60–76, 2003.

[2] I. Arce. Bad Peripherals. Security & Privacy, IEEE, 3(1):70–73, 2005.

[3] SurfKahuna at hak5darren. Payload lock your computer mes-

sage. https://github.com/hak5darren/USB-Rubber-Ducky/wiki/

Payload---lock-your-computer-message [Accessed 9/25/2014].

[4] Avast. Avast | The World's #1 Antivirus Software. https://www.avast.com/

index [Accessed 9/25/2014].

[5] R. Brandom. USB Has a Huge Security Problem That Could Take

Years to Fix. http://www.theverge.com/2014/10/2/6896095/

this-published-hack-could-be-the-beginning-of-the-end-for-usb

[Accessed 11/18/2014].

[6] Clark, J. On Unintended USB Communication Channels. Master’s thesis, Royal

Military College of Canada, 2009.

60

https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload---lock-your-computer-message
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload---lock-your-computer-message
https://www.avast.com/index
https://www.avast.com/index
http://www.theverge.com/2014/10/2/6896095/this-published-hack-could-be-the-beginning-of-the-end-for-usb
http://www.theverge.com/2014/10/2/6896095/this-published-hack-could-be-the-beginning-of-the-end-for-usb

[7] Clark, J. and Leblanc, S. and Knight, S. Risks Associated with USB Hardware

Trojan Devices Used by Insiders. In Systems Conference (SysCon), 2011 IEEE

International, pages 201–208, 2011.

[8] Coley, G. BeagleBone Black System Reference Manual Rev A5.6, 2013.

[9] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, Philips. Universal Se-

rial Bus specification v2.0. USB Implementers Forum, Inc., April 2000.

[10] Falliere, N. and Murchu, L. and Chien, E. W32. Stuxnet Dossier. White paper,

Symantec Corp., Security Response, 2011.

[11] Future Technology Devices International Limited (FTDI). Simplified Description

of USB Device Enumeration. FTDI Ltd. Technical Note, 1.0:14, 2009.

[12] G-Data. How to Be Sicher from USB Attacks. https://www.gdatasoftware.

com/en-usb-keyboard-guard [Accessed 9/24/2014].

[13] IEEE 1667 Working Group. IEEE Standard for Authentication in Host Attach-

ments of Transient Storage Devices. IEEE Std 1667-2009 (Revision of IEEE Std

1667-2006), pages 1–125, March 2010.

[14] J. Hall. Duck Toolkit v.2. http://www.ducktoolkit.com/Home.jsp [Accessed

9/25/2014].

[15] Harman, R. Controlling USB Flash Drive Controllers: Expose of Hidden Fea-

tures. In ShmooCon 2014, 2014.

[16] Intel Corporation and Microsoft Corporation. Legacy Plug and Play Guidelines.

A Technical Reference for Legacy PCs and Peripherals for the Microsoft Windows

Family of Operating Systems, 1.0, May 1999.

61

https://www.gdatasoftware.com/en-usb-keyboard-guard
https://www.gdatasoftware.com/en-usb-keyboard-guard
http://www.ducktoolkit.com/Home.jsp

[17] Jin, Y. Trusted Integrated Circuits. Ph.D. Dissertation, Yale University, 2012.

[18] Karabarbounis, L. and Neiman, B. The Global Decline of the Labor Share. Tech-

nical report, National Bureau of Economic Research, 2013.

[19] Kashiwano M. Crystal Dew World. http://crystalmark.info/?lang=en [Ac-

cessed 9/25/2014].

[20] Security Research Labs. Turning USB peripherals into BadUSB. https://

srlabs.de/badusb/ [Accessed 9/24/2014].

[21] A. Mammit. How Bad Is BadUSB? Security Experts Say There Is No

Quick Fix. http://www.techtimes.com/articles/17078/20141004/

how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.

htm [Accessed 11/18/2014].

[22] Microsoft. Introducing Enhanced Storage Access. https://technet.

microsoft.com/en-us/library/Dd560657(v=WS.10).aspx [Accessed

11/18/2014].

[23] Microsoft. Microsoft Security Essentials - Microsoft Windows. http://windows.

microsoft.com/en-us/windows/security-essentials-download [Ac-

cessed 9/25/2014].

[24] Mitra, R. The Information Technology and Business Process Outsourcing In-

dustry: Diversity and Challenges in Asia. Asian Development Bank Economics

Working Paper Series, 365(365), 2013.

[25] Oshri, I. and Kotlarsky, J. and Willcocks, L. The Handbook of Global Outsourcing

and Offshoring 3rd Edition. Palgrave Macmillan, 2015.

62

http://crystalmark.info/?lang=en
https://srlabs.de/badusb/
https://srlabs.de/badusb/
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
https://technet.microsoft.com/en-us/library/Dd560657(v=WS.10).aspx
https://technet.microsoft.com/en-us/library/Dd560657(v=WS.10).aspx
http://windows.microsoft.com/en-us/windows/security-essentials-download
http://windows.microsoft.com/en-us/windows/security-essentials-download

[26] PCI Security Standards Council, LLC. "Payment Card Industry (PCI) Data Secu-

rity Standard: Requirements and Security Assessment Procedures, Version 3.1".

May, 2015.

[27] Renci. SSH.NET Library. https://sshnet.codeplex.com/ [Accessed

9/25/2014].

[28] Rich, D. Authentication in Transient Storage Device Attachments. Computer,

40(4):102–104, 2007.

[29] Rueter, C. The Cybersecurity Dilemma. Master’s thesis, Duke University, 2011.

[30] L. Spector. BadUSB: What You Can Do About Undetectable Mal-

ware on a Flash Drive. http://www.pcworld.com/article/2840905/

badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.

html [Accessed 11/18/2014].

[31] Spill, D. and Stasiak, A. An Open and Affordable USB Man in the Middle Device.

ShmooCon 2014, 2014.

[32] AVG Technologies. AVG Free Antivirus & Malware Protection. http://free.

avg.com/us-en/free-antivirus-download [Accessed 9/25/2014].

[33] Tetmeyer, A. and Saiedian, H. Security Threats and Mitigating Risk for USB

Devices. Technology and Society Magazine, IEEE, 29(4):44–49, 2010.

[34] Usher, A. Pod Slurping. http://www.sharp-ideas.net/pod_slurping.php

[Accessed 9/25/2014].

[35] Verma, S. and Singh, A. Data Theft Prevention & Endpoint Protection from

Unauthorized USB Devices. In Advanced Computing (ICoAC), 2012 Fourth In-

ternational Conference on, pages 1–4, 2012.

63

https://sshnet.codeplex.com/
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://free.avg.com/us-en/free-antivirus-download
http://free.avg.com/us-en/free-antivirus-download
http://www.sharp-ideas.net/pod_slurping.php

[36] Zhaohui, W. and Johnson, R. and Stavrou, A. Attestation & Authentication for

USB Communications. In Software Security and Reliability Companion (SERE-C),

2012 IEEE Sixth International Conference on, pages 43–44, 2012.

64

	Abstract
	Acknowledgments
	Introduction
	Problem Statement: Trust in USB Standards
	Significance of Sandboxed USB Transaction
	Research Methodology
	Validation and Evaluation
	Thesis Organization

	Related Work in Authenticated USB Uses
	The Inherent Trust of USB Standard
	Non-technical Measures
	Policy Enforcement
	Public Awareness
	Proposed Standards to Secure USB Standard: IEEE 1667

	Software Measures
	G Data Keyboard Guard
	Enhanced Storage Access by Microsoft

	Hardware Measures
	Lack of Hardware Protection Against USB Devices with Malicious Firmware

	USB: Time to Untrust
	Summary

	USBWall: An Effective Middleware Protection
	Identification and Characteristics of BadUSB Devices
	USB Enumeration and Plug-n-Play
	Identification of BadUSB Devices
	Behavioral Characteristics of BadUSB Devices

	Design and Operation of USBWall
	Design of USBWall
	Operations of USBWall
	Expected Protection

	Summary

	Validation for Sandboxed USB Enumeration
	Experiment Environment
	Experiment Results
	BadUSB Devices with Commercially Available Antivirus
	BadUSB Devices with USBWall
	Performance Test

	Validation Conclusions
	Hardware and Software Considerations
	Summary

	Contributions and Future Work
	Appendix 1: A Picture of USBWall
	Appendix 2: Rubber Ducky Script HID Example
	Appendix 3: VB.NET Source Code of USBWall UI
	Appendix 4: Sample Result of lsusb -v on Test BadUSB Device

