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Abstract 

 I employed multidisciplinary approaches for understanding distributions of marine fishes 

in the present, past, and future, and for considering more broadly the historical role of primary 

research in policy decisions. In chapter 1, I generated ecological niche models (ENMs) for 

Latimeria chalumnae using two different modeling algorithms; these models anticipated 

occurrences of L. chalumnae’s sister species, L. menadoensis, but sample sizes were not large 

enough to assess the statistical significance of these species’ niche similarity. Furthermore, the 

range of coelacanths may extend beyond their presently known distributions; future exploration 

may reveal additional populations of these elusive fishes. In chapter 2, I developed a holistic 

biogeographic history of codfishes in the subfamily Gadinae. I found both ecological niche and 

geographic distributions of gadine fishes to be largely conservative, but two clades, tomcods and 

crown cods, included both Pacific and Atlantic species. Divergence in both clades was estimated 

to have begun in the Pliocene; environmental tolerance reconstructions support temperate origins 

of both clades, and cyclical Arctic ice formation may have driven divergence. In chapter 3, I 

addressed the role of general circulation model (GCM) bias as a significant source of uncertainty 

in estimates of species’ potential distributional responses to climate change. ENMs of 15 gadine 

species calibrated using an observation-based dataset and a dataset derived from the CCSM4 

GCM showed areas of disagreement concordant with known GCM biases. Consciousness of bias 

in GCM data will allow researchers and policy makers to identify areas of particular concern for 

biodiversity more realistically. Finally, in chapter 4, I explored the evolution of the relationship 

between policy makers and researchers through the lens of the U.S. Fisheries Service. Building 

cooperative capacity between these two groups led to a more systematic understanding of the 

oceans, and thus to success in reducing numbers of overfished stocks. 
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Introduction 

 Species’ geographic distributions are the result of both short term and long-term 

ecological, geological, climatological, and evolutionary processes. Through modeling species’ 

distributions and calibrating and re-calibrating these models to empirical data, it is possible to 

develop a better understanding of broad-scale macroecological and evolutionary drivers of 

geographic biodiversity patterns. This approach includes inference of species’ present potential 

distributions, as well as assessment of effects of past and future climate change on species’ 

distributions, and, consequently, their evolutionary histories. It is only by unraveling these 

complex patterns and processes that we may begin to understand how ongoing climate change 

will reshape biodiversity. The purpose of this thesis is to incorporate and integrate multiple 

sources of data, including occurrence data in the form of georeferenced museum collections, 

field observations, and fisheries records; molecular phylogenetics; and observed and modeled 

climate data at multiple time scales to develop synthetic understanding of present, past, and 

future fish distributions.  

 For the past 20 years, the hypothesis that species’ abiotic ecological niche tolerances are 

evolutionarily conservative has been a driving theme in the growing literature on distributional 

ecology. Ecological niche models of one species are often able to predict occurrences of closely 

related species (Peterson et al. 1999), implying that ecological niches of species are 

evolutionarily conserved among lineages and through evolutionary time. Many subsequent 

studies have tested this hypothesis, with mixed positive and negative results (Peterson 2011). In 

the first chapter of my dissertation, I explored the idea of niche conservatism in the critically 

endangered and enigmatic West Indian Ocean and Indonesian coelacanths, and identified 

potentially suitable and accessible habitat for these species. This work also sought to understand 
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environmental variables that associate with potential distributions of coelacanths and potentially 

to facilitate discovery of additional populations in the future. Although sample sizes of locality 

information for both species were far too small to assess the degree to which ecological niche in 

the genus Latimeria is conserved statistically, qualitative assessment suggested that I could not 

reject the hypothesis of niche conservatism in this study. 

 Recently, ecological niche conservatism has also become a key component of total-

evidence macroecological analysis as a potential mechanism underlying patterns of change in 

species’ distributions through history. In the second chapter of my dissertation, I investigated the 

evolutionary role of ecological niche tolerance limits in shaping species’ biogeographic histories 

using comparative phylogenetic methods. Synthetic approaches like these are quite novel and are 

in only the early stages of widespread use. However, they have significant potential to unite 

pattern- and process-based macroecology under multiple lines of evidence; my study was the 

first application of these unified methods in a marine system. My results showed that ecological 

niches of gadine codfishes are largely conservative; reconstructed ancestral environmental 

tolerances supported a temperate origin of the clade, with a single specialization of the Arctic 

and Polar cod clade to Arctic habitats. This study was the also the first of its kind to incorporate 

comparative phylogenetic methods to test for evolutionary signal in ecological niche traits; 

thermal tolerance measures were more phylogenetically significant than other environmental 

tolerances. This result suggested evolution of thermal tolerance played a key role in the 

diversification of gadine fishes, possibly in conjuction with Pleistocene climate change. This 

study is also the first to suggest that cyclical glaciation has not only played a role in structuring 

populations of gadine codfishes, but also may have been a driver of speciation through cyclical 

changes in the availability of suitable cod habitat in the Arctic. 
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 In the course of my dissertation work, I also strove to provide improvements to methods 

and interpretations of ecological modeling (e.g. Manthey et al. 2015, Owens et al. 2013, Saupe et 

al. 2012) with the goal of better characterizing the assumptions behind these methods and 

uncertainty in niche inferences. In the third chapter of my dissertation, I investigated the biases 

inherent in using general circulation model (GCM) data as a source for environmental variables 

applied in ecological niche modeling. This study began with work I did as an intern at the 

National Center of Atmospheric Research in Boulder, Colorado, where I processed raw GCM 

outputs into climate layers that were usable by ENM algorithms. Although many studies have 

used GCM data to project potential suitable habitat for species in both the past and future, my 

study compared results of ENMs calibrated using present-day observational data with those 

calibrated using GCM data. The results indicated strong spatial biases in model projections that 

coincided with known GCM accuracy biases, which is a source of error that has not been 

considered in previous studies that have sought to anticipate the effects of climate change on 

species’ future distributions.  

 Predicting potential future distributions of species is particularly vital for developing 

local, national, and international policies that will shape approaches to conservation and natural 

resource management strategies for adaptation and mitigation to ongoing climate change. In the 

final chapter of my dissertation, I reviewed the history of the relationship between fishery 

research and resource management policy in the United States as an illustration of the 

consequences of relationships between researchers as producers and policy makers as consumers. 

I concluded that, to shape appropriate responses to climate change in the future, a need exists for 

strong, collaborative relationships between scientists and policy makers.  



 xviii 

 These four chapters are interdisciplinary, incorporating methods and data from 

comparative phylogenetics, geographic ecology, climate modeling, and historical analysis. 

However, they represent necessary parts in the construction of a holistic understanding of the 

drivers and contexts of species’ distributions. Species’ distributions are not only a reflection of 

the optimal combinations of abiotic and biotic factors, but also their evolutionary history. By 

comprehending better the interplay of these factors, it is my sincere hope that we will better 

appreciate how humans will shape the future of biodiversity, and appropriately measure our 

actions to serve as better stewards of our planet. 
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Chapter 1*  

Predicting suitable environments and potential occurrences for coelacanths (Latimeria spp.) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Owens, HL, AC Bentley, AT Peterson. 2012. Predicting suitable environments and potential 
occurrences for coelacanths (Latimeria spp.). Biodiversity and Conservation 21: 577-587. doi: 
10.1007/s10531-011-0202-1. 
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Abstract 

 Extant coelacanths (Latimeria chalumnae) were first discovered in the western Indian 

Ocean in 1938; in 1998, a second species of coelacanth, Latimeria menadoensis, was discovered 

off the north coast of Sulawesi, Indonesia, expanding the known distribution of the genus across 

the Indian Ocean Basin. This study uses ecological niche modeling techniques to estimate 

dimensions of realized niches of coelacanths and generate hypotheses for additional sites where 

they might be found. Coelacanth occurrence information was integrated with environmental and 

oceanographic data using the Genetic Algorithm for Rule-set Production (GARP) and a 

maximum entropy algorithm (Maxent). Resulting models were visualized as maps of relative 

suitability of sites for coelacanths throughout the Indian Ocean, as well as scatterplots of 

ecological variables. Our findings suggest that the range of coelacanths could extend beyond 

their presently known distribution and suggests alternative mechanisms for currently observed 

distributions. Further investigation into these hypotheses could aid in forming a more complete 

picture of the distributions and populations of members of genus Latimeria, which in turn could 

aid in developing conservation strategies, particularly in the case of L. menadoensis. 
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Introduction 

 The order Coelacanthiformes, notable as an apparent link between lungfishes and 

tetrapods, was originally known only from fossils that were more than 80 million years old 

(Holder et al. 1999). In 1938, the first known specimen of an extant species of coelacanth, 

Latimeria chalumnae, was discovered off the east coast of Africa (Smith 1939). Latimeria 

chalumnae is now known to inhabit a range encompassing the east coast of Africa from Kenya to 

South Africa, and extending east to Madagascar and the Comoros Islands. In 1997, a second 

species of coelacanth, L. menadoensis, was discovered off the northeast coast of Sulawesi, 

Indonesia (Erdmann et al. 1998). Latimeria menadoensis cannot be differentiated conclusively 

from its African sister species on the basis of morphology, but the species diverge substantially 

enough in their genetics that they are recognized as unique lineages (Holder et al. 1999). The 

IUCN currently lists L. chalumnae as critically endangered and L. menadoensis as vulnerable 

(IUCN 2011). Further investigations into the evolutionary relationships, biogeography, life 

history and appropriate conservation status of this genus are hampered by their rarity in their 

natural environment and their inaccessibility: coelacanths typically live at depths of 100–300 m 

in underwater caves on steep, rocky cliffs, emerging only at night to feed (Fricke and Hissmann 

2000). 

 This study seeks to contribute to the understanding of distributions of Latimeria by 

generating hypotheses for additional sites where the environment might be suitable for 

coelacanths using ecological niche modeling (ENM). The distribution of a species is limited by 

the interactions between biotic and abiotic factors, as well as dispersal capability— the realized 

niche of a species (Soberón 2007). ENMs ideally arrive at an estimation of the realized niche of a 

species after being trained in a geographic area limited to habitats that are accessible to the may 
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nonetheless be implicitly represented in the model because they strongly correlate with abiotic 

factors, or disappear because such fine scale interactions disappear in large-scale analysis 

(Soberón and Nakamura 2009). Projections of such models into other geographic areas are 

primarily an expression of abiotic niche—the combinations of environmental factors that, based 

on the model’s estimations, are most similar to areas where the species is known to occur. 

 ENM is a technique that has been implemented successfully for prediction and 

subsequent field verification of additional localities of known endangered species (Siqueira et al. 

2009) and to focus searches for new species (Raxworthy et al. 2004). Such studies often are 

subject to very low sample sizes, which pose methodological challenges but are still useful, 

especially if researchers adopt a conservative interpretation of model results as areas similar to 

those from which a species is known (Pearson et al. 2007). While ENM applications to marine 

ecosystem studies are not new (e.g. Wiley et al. 2003), this methodology has yet to be applied 

explicitly to the problem of locating suitable habitat for reclusive marine species. In the present 

case, to the extent that coelacanth niche characteristics are conservative in their evolution (c.f. 

Peterson 2011), such models may help in focusing future searches for new populations—or even 

additional species—of coelacanths. 

 

Methods 

 Occurrence locality records for L. chalumnae were downloaded from the Ocean 

Biogeographic Information System (OBIS) database via the Global Biodiversity Information 

Facility (GBIF) biodiversity information portal (http://www.gbif.org); data were quality 

controlled by removing duplicate records, records sharing cells at the resolution of our data 

layers, and data points which did not fall within the area covered by these layers (e.g. terrestrial 
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records). This information was supplemented with data from submersible sightings (South 

African Institute for Aquatic Biodiversity/African Coelacanth Ecosystem Programme/JAGO-

Team), which were also reduced to unique localities. Two L. menadoensis locality records were 

taken from Erdmann (1999) and Erdmann et al. (1999). All localities used are listed in Table 1.1. 

 To limit over-fitting ENMs (Pearson et al. 2007) the number of environmental variables 

was restricted to 13. Data on world ocean bathymetry were drawn from Amante and Eakins 

(2009); slope and aspect were calculated from bathymetry in ArcGIS 9.3 (ESRI, Redlands, CA) 

to incorporate documented preferences of these fish for steep slopes (Fricke and Hissmann 2000). 

Worldwide sediment thickness estimates, used as a proxy for substrate type, were supplied by the 

National Geophysical Data Center (Divins 2009). Owing to scarcity of detailed knowledge of 

definitive ecological preferences of the species, we used datasets with previously demonstrated 

predictive power for a number of marine fish species (Wiley et al. 2003) summarizing benthic 

temperature, salinity, dissolved oxygen, percent oxygen saturation, apparent oxygen utilization, 

phosphate, silicate, nitrate, and chlorophyll which were derived from NOAA’s World Oceanic 

Atlas 1998 (NOAA 1999). Preliminary ENM runs using parameters as described below were run, 

Table 1.1. Occurrence point statistics. Occurrence points localities are followed by the source of the 
locality: submersible sighting—Sub.; GBIF records—GBIF; or scientific literature—Lit. 
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jackknifing environmental variables to investigate the amount of noise introduced by each 

variable. Suitability scores of each jackknifed model were qualitatively compared to the known 

range of L. chalumnae to assess the degree to which individual variables influenced the model’s 

ability to predict the range of the species.  

 Latimeria chalumnae occurrence data were integrated with environmental data via two 

Common ENM algorithms: a maximum entropy algorithm (Maxent; Phillips et al. 2006) and a 

genetic algorithm (GARP; Stockwell and Peters 1999). Models were trained using a region 

encompassing the western Indian Ocean from the approximate tip of the Indostanic Peninsula in 

the northeast to the Cape of Good Hope in the southwest. The GARP algorithm develops a 

model by choosing a rule iteratively to describe the occurrence-environment relationship, testing 

the rule’s accuracy based on an independent random subset of occurrence points, and 

consequently evolving, accepting, or rejecting that rule. Desktop GARP (ver. 1.1.6; 

www.nhm.ku.edu/desktopgarp, Stockwell and Peters 1999) was used to develop these models, 

deriving 1,000 replicate models with 1,250 pseudoabsence points, a 0.01 convergence limit and a 

maximum of 1,000 iterations. Best subsets of model replicates were selected using 50% of the 

occurrence points for intrinsic model testing, with an omission error tolerance of 0%, producing 

20 models for that omission tolerance and a commission error tolerance of 50%, resulting in a 

sample of 10 models (Anderson et al. 2003). Maxent estimates the suitability of each grid cell by 

generating a probability distribution of maximum entropy from environmental variable layers on 

that map subject to the constraints of observed presences. Maxent (ver. 3.2.19; 

www.cs.princeton.edu/~schapire/maxent, Phillips et al. 2006) models were developed using 

10,000 background points, a maximum of 1,000 iterations, a convergence threshold of 0.00001, 

and a random 50% of the data points set aside for intrinsic testing. Maxent generates an 
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additional layer for ‘‘clamping’’ the model (i.e., extending the terminal values of suitability 

beyond the limits of environmental variables represented in the calibration region), incorporating 

combinations of environmental variables that do not exist in the training region in predictions 

that tends to lead to over-prediction; no clamping was tolerated in generating Maxent ecological 

suitability maps—cells with nonzero clamping scores were removed from the final projection. 

Maxent also calculates a multivariate environmental suitability surface (MESS) map indicating 

areas where environmental variables occur outside the range of values in the training region; 

ENM suitability projections in these regions are unreliable (Elith et al. 2010). ENMs were not 

developed for L. menadoensis owing to paucity of locality information available for this species. 

 As a consequence of the relatively small number of available locality records for L. 

chalumnae, typical independent model validation approaches involving partitioning the data into 

training and testing subsets were inappropriate; instead, we used a jackknife approach to validate 

ENM that is specifically designed for situations of small sample size (Pearson et al. 2007). In this 

method, independent GARP and Maxent models were generated iteratively, excluding one 

locality in each turn. The lowest suitability score of a presence point, or lowest presence 

threshold (LPT), for each model was then used to determine areas of predicted presence. The 

proportion of the training area predicted as present and the failure or success of the model to 

predict jackknifed points were then used to calculate the probability of the observed degree of 

coincidence between independent test data and predicted areas of suitability for L. chalumnae, as 

described by Pearson et al. (2007). 
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Figure 1.1. Map of areas identified as suitable for the species in model projections for L. chalumnae 
projected accross the Indian Ocean Basin, with a detail map of Sulawesi in Indonesia. Latimeria 
chalumnae localities are indicated by a filled dot ( ) and L. menadoensis localities are indicated by a 
hollow dot ( ). Suitability scores are represented by shades of blue, with darker shades indicating greater 
suitability. A rectangle of missing data exists in the East China Sea extending northeast from Taiwan up 
through the Ryuku Islands. 
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 To provide a basis for comparison between our ENMs and previously collected 

ecological information, a coarse-resolution exploration of model rule parameters in 

environmental space for L. chalumnae was visualized by taking a random sample of 5,000 points 

from the training region. At each point, the abiotic variable values and the Maxent and GARP 

suitability scores were extracted, and scatterplot visualizations of the niche of these fish 

developed. Two scatterplots were generated for each model using environmental variables 

measured by Fricke and Hissmann (2000) describing the ecology of L. chalumnae in Jesser 

Canyon off the coast of South Africa: ocean depth versus salinity and temperature versus 

dissolved oxygen concentration. Each point represented a combination of variables that exists in 

the environment and was classified as unsuitable, suitable, or intermediate. For GARP models, 

points in which none of the 10 best models predicted potential for coelacanth occurrence were 

categorized as unsuitable, points in which all of the best models predicted potential for 

coelacanth occurrence were categorized as suitable, and all other points were categorized as 

representing intermediate suitability. For the Maxent model, suitability thresholds were chosen to 

yield the same percentage of each classification as the GARP model—for example, if 95% of the 

points were unsuitable according to GARP suitability scores, the points with the lowest 95% of 

Maxent suitability scores were also characterized as unsuitable. 

 

Results 

 Qualitative comparison of preliminary ENM runs in which environmental variables were 

jackknifed with the known range of L. chalumnae indicates that none of the variables 

incorporated introduced a disproportionate amount of noise into model results. Predictions of the 

potential distribution of L. chalumnae in the western Indian Ocean as measured by the Pearson 
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jackknife-based test procedure were significantly better than random expectations (P > 0.01) for 

both GARP and Maxent (Table 1.1). All 10 best subset GARP models trained using L. 

chalumnae occurrence points predicted habitat suitability for all L. chalumnae occurrences, and 

L. menadoensis occurrences were predicted by 3 of the 10 models. Maxent-estimated suitability 

at occurrence points for L. chalumnae ranged from 0.24 to 0.78, while suitability for L. 

menadoensis ranged from 0.63 to 0.64. 

Figure 1.2. Maps of areas identified as suitable for the species in model projections for L. 
chalumnae projected worldwide. 
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 When all L. chalumnae occurrence points were pooled to generate models identifying 

areas of suitable habitat across the Indian Ocean and western Pacific Ocean, these models 

identified potentially suitable sites scattered over the known range of the species where it has not 

as-yet been recorded (Figure 1.1). These areas include most of the east coast of sub-Saharan 

Africa, as well as along the Mascarene Plateau, and the coasts of India, Indonesia, the 

Philippines, and northern Australia. Worldwide projections of suitable habitat (Fig.1.2) also 

indicate areas of suitability far from known coelacanth localities, including off the coasts of 

Argentina and the Lesser Antilles. Environmental differences between the training region and the 

worldwide projections are expressed in the form of a Multivariate Environmental Similarity 

Surface (MESS) map (Fig. 1.3). 

Figure 1.3. MESS map for L. chalumnae. Cells shown in red indicate areas where at least one 
environmental variable value occurs outside the range of values in the training region. 

 

 Ecological suitability maps were similar for both the GARP and Maxent models; 

however, some differences are notable in the suitability ranges of bathymetry, temperature, 

dissolved oxygen concentration, and salinity between the two models (Fig. 1.4). Perhaps most 

notable is the disagreement between Maxent and GARP as to whether low-temperature high-
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oxygen environments were unsuitable or merely 

unlikely habitat for L. chalumnae. Combinations 

of field measurements of these variables 

reported in Fricke and Hissmann’s (2000) study 

of coelacanth ecology were not well represented 

in the sample (six points from bathymetry versus 

salinity plots, none from temperature versus 

dissolved oxygen). 

 

Discussion 

 Species in general occur at sites that 

satisfy three sets of considerations (Soberón & 

Peterson 2005; Pulliam 2000). First, abiotic 

conditions must be suitable—these physical 

characteristics of environments are the focus of 

the analyses in this paper. Second, the biotic 

realm must be appropriate (i.e. the correct suite 

of positive interactor species present, and 

negative interactor species absent)—in this 

paper, because detailed information on biotic 

interactions is lacking, we implicitly assume that 

biotic dimensions will have abiotic correlates. 

Finally, a site must be accessible for dispersal to 

Figure 1.4. Exploration of model rule 
parameters in environmental space for L. 
chalumnae. X’s: environmental combinations at 
intermediate levels of predicted suitability; black 
squares: unsuitable variable combinations; white 
circles: highly suitable variable combinations. 
Gray lines: observed ecological variable ranges 
experienced by L. chalumnae in Jesser Canyon, 
South Africa (Fricke and Hissmann 2000). a, b 
Bathymetry (m) versus salinity (ppt); a GARP, b 
Maxent. c, d Temperature versus dissolved 
oxygen concentration; c GARP, d Maxent.  
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and colonization by the species: sites that are readily accessible will likely be inhabited by 

populations of the same species, while less accessible sites will either be uninhabited or perhaps 

inhabited by related species. 

 Owing to the small sample size of occurrence points used to generate ecological niche 

models, it would be unreasonable to expect these models to describe the complete realized niche 

of L. chalumnae; however, as they do describe dimensions of ecological space in which the 

species is known to occur, they are still of some utility. The models generated herein predict 

areas of suitable habitat well beyond the known localities of the two coelacanth species. Among 

these areas are several previously postulated as harboring coelacanths (although sightings remain 

unconfirmed), including locations off the northern coast of Madagascar and the islands of Mwali 

and Maore in the Comoros (Stobbs 2002). Taking into account projection uncertainty as 

expressed by the MESS map in Figure 1.3, additional areas in the western Indian Ocean that 

show promise as potential coelacanth localities include parts of the Seychelles and the 

Mascarene archipelago, as well as the Malay Archipelago. Further investigation of these 

localities, informed by regional geology (i.e. the presence of caves) may provide insight into 

biotic and accessibility factors that influence the range of the coelacanths. Additional 

information gleaned by these investigations could contribute to a more complete picture of how 

best to conserve the rare Latimeria species. 

 There has been a great deal of speculation in the literature as to the nature of the disjunct 

distribution of the genus Latimeria in the Indian Ocean. Springer (1999) hypothesized that the 

genus had been continuously distributed off the shores of Africa and Eurasia, but that the 

collision of India with Eurasia had led to a vicariance event when the major rivers of India began 

depositing large amounts of silt in the Indian Ocean, rendering those areas of habitat unsuitable. 
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Our findings lend support to Springer’s hypothesis—suitable coelacanth habitat extends almost 

continuously along the coasts of the northern rim of the Indian Ocean, broken up by large areas 

of unsuitable habitat at the mouths of the Ganges and Indus Rivers. 

 When one compares the performance of GARP and Maxent models in predicting both the 

training species, L. chalumnae, and the second species, L. menadoensis, it becomes apparent that 

these algorithms do not behave entirely similarly. All ten GARP models predicted training points 

to be within suitable habitat, whereas only three predicted suitable habitat for L. menadoensis; in 

contrast, Maxent gave a wide range of suitability scores at training points (from 0.24 to 0.95), 

with the L. menadoensis points falling squarely into the suitability range (at 0.63–0.64). Maxent 

was able to predict one more jackknife point successfully than GARP, which echoes a pattern 

from previous studies (Pearson et al. 2007). Unfortunately, the occurrence sample size for L. 

menadoensis is too small to test niche conservatism conclusively in the group, or the differing 

abilities of the algorithms to predict sister species. 

 

Conclusion 

 Coelacanths are rare and reclusive fish about which little is known, so no definitive idea 

of the full extent of the range exists for either L. chalumnae or L. menadoensis. Ecological niche 

model predictions of suitable areas based on occurrence data for L. chalumnae through the 

oceans of the world, combined with rigorous efforts to ground-truth the models, may prove 

useful in searches for new populations of coelacanths.  
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Chapter 2*  

Evolution of codfishes (Teleostei: Gadinae) in geographical and ecological space:  

evidence that physiological limits drove diversification of subarctic fishes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Owens, HL. 2015. Evolution of codfishes (Teleostei: Gadinae) in geographical and ecological 
space: evidence that physiological limits drove diversification of subarctic fishes. Journal of 
Biogeography. DOI: 10.1111/jbi.12483. 
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Abstract  

 The aim of this study was to develop a holistic biogeographical history of codfishes in the 

subfamily Gadinae based on historical relationships, ecological niche, and evolution of 

physiological tolerances. Two alternative diversification scenarios were tested in two co-

distributed, Northern Hemisphere clades: (1) clade ancestors were temperate, and environmental 

niche has been conserved over evolutionary time, implying that speciation was driven by 

vicariance associated with ice sheet formation; and (2) clade ancestors were Arctic, and species 

convergently adapted to temperate environmental conditions, implying that speciation was 

driven by repeated adaption to temperate environments. Fifty-five new sequences of four genes 

from 23 tissue samples were combined with 10 GenBank sequences to generate a time-calibrated 

phylogenetic hypothesis. Combining the phylogeny with information on species’ ecological 

niche tolerances inferred from correlational models, I reconstructed ancestral environmental 

tolerances of each of the focal clades. These results were combined with Bayesian area-based 

biogeographical analysis and regional palaeoclimatic history to develop a holistic 

biogeographical history of Gadinae. Of 18 environmental variables describing species’ 

tolerances to salinity, temperature, sea ice concentration, and mixed layer depth, only mean, 

maximum and minimum sea bottom temperature, and mean and minimum sea surface 

temperature showed phylogenetic signal across Gadinae. Both ecological niche and geographical 

distributions of gadine fishes are largely conservative, but two clades contain both Pacific and 

Atlantic species. Focal clade divergence time estimates suggest a Pliocene origin for both, with 

further Pleistocene divergence. Reconstructed ancestral environmental tolerances of crown cods 

and tomcods support a temperate origin of both groups. The timing of diversification of these 

two clades and the intolerance of temperate species to sea ice suggest that cyclical Arctic ice 
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formation drove divergence. Future sea ice reduction may have dramatic consequences for 

distributions and persistence of commercially important species, when currently allopatric 

temperate species come into secondary contact.  
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Introduction 

 In biogeography, much is made of the ability of geophysical barriers to isolate 

populations, leading to allopatric speciation (Coyne & Orr, 2004). However, effects of 

geophysical barriers may be closely tied to environmental gradients coincident with such 

barriers, to the extent that species’ environmental tolerance limits may be important drivers for 

the diversification of lineages (e.g. elevational gradients, Graham et al. 2004; bathymetric 

gradients, Quattrini et al. 2013). Fishes of the subfamily Gadinae present an ideal group within 

which to investigate interconnected roles of geophysical barriers and physiological tolerance in 

allopatric diversification. Gadines are broadly distributed across Northern Hemisphere oceans, 

mostly in sub-Arctic to temperate waters; several Pacific species are separated from their 

putative closest relatives in the Atlantic by the Arctic Ocean (Coulson et al. 2006). However, 

Boreogadus and Arctogadus are euryhaline and eurythermal (Cohen et al. 1990). Both genera are 

associated with Arctic sea ice, and Boreogadus can also be found along Arctic coasts and in 

brackish lagoons and estuaries (Cohen et al. 1990). The ability of the Arctic Ocean to serve as 

both a barrier and an endemic habitat to gadine fishes makes its role in gadine biogeographical 

history uncertain – does it serve primarily as a geophysical barrier to temperate species, or as an 

environmental barrier that may have been more permeable in a warmer past? 

 Several gadine fishes, including Atlantic and Pacific cod and Alaska pollock (Gadus 

morhua, Gadus macrocephalus, and Gadus chalcogrammus), are commercially important: in 

2011, 5.7 million tonnes of gadine fish were harvested from marine fisheries (FAO 2013). 

Additionally, gadine fishes are a key trophic link in northern ocean ecosystems, both as 

consumers and as prey (Link & Garrison 2002; Gradinger & Bluhm 2004). As a result of their 

ecological and commercial importance, many aspects of gadine biology have seen detailed study. 
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Resolving gadine phylogenetic relationships and inferring their biogeographical history has been 

an area of particular ongoing effort (e.g. Carr et al. 1999; Pogson & Mesa 2004; Coulson et al. 

2006; Roa-Varón & Ortí 2009). While numerous population-level studies of gadine species’ 

biogeography have been conducted (e.g. Bigg et al. 2008; Canino et al. 2010), species-level 

phylogenetic studies have differed in taxon sampling and gene locus selection, leading to 

uncertainty over placement of Arctic species and their biogeographical history. The group is 

thought to have originated in the North Atlantic (Svetovidov, 1948; Carr et al. 1999), with 

lineages dispersing across the Arctic to the Pacific twice (Pogson & Mesa, 2004; Coulson et al. 

2006) or four times (Carr et al. 1999).  

 These biogeographical inferences were based on phylogenetic patterns in the context of 

changing ocean currents, connectivity, temperature and salinity. However, no study has used 

statistical methods to reconstruct the biogeographical history of Gadinae or explicitly considered 

how evolution of tolerances with respect to coarse-grained environmental characteristics 

(Grinellian ecological niches; Grinnell, 1917) have contributed to moulding current and past 

distributional patterns. Given the dramatic changes in both Arctic and temperate oceans of the 

Northern Hemisphere, beginning with global cooling in the Miocene, the physiological limits of 

species were probably important factors in the dispersal and vicariance of codfishes.   

 A promising approach to investigating the effects of complex climatic factors on 

biogeographical history of organisms is through uniting historical, pattern-based analysis 

methods with ecological, process-based methods. One particularly fruitful line of enquiry has 

been to assess species’ tolerances to abiotic environmental factors via correlational ecological 

niche models and, using comparative phylogenetic methods, to reconstruct the evolutionary 

history of environmental tolerances of a clade. These analyses have provided insights into how 
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changes in ecology and climate may have driven distributional patterns and lineage divergence 

(Yesson & Culham 2006a; Evans et al. 2009). The extension of these methods using range-based 

biogeographical reconstructions adds an explicit geographical dimension to such analyses, 

especially because the changeable nature of Earth’s climate means that suitable past 

environments may have occupied geographical distributions differing from those in which they 

are currently found. While such techniques have been used to investigate the role of niche 

evolution in the biogeographical history of terrestrial plants (e.g. Yesson & Culham 2006a,b; 

Evans et al. 2009; Smith & Donoghue 2010), frogs (Graham et al. 2004), salamanders (Vieites et 

al. 2009), birds (Nyári & Reddy 2013) and other groups, they have yet to be implemented in a 

marine fish system. 

 In this study, I tested two alternative 

scenarios thought to have produced current 

amphiboreal distribution patterns in two key 

gadine clades, the crown cods ((Arctogadus + 

Boreogadus) Gadus) and tomcods 

((Microgadus proximus + Eleginus gracilis) 

M. tomcod) (Fig. 2.1): (1) the ancestor of each 

key clade was temperate; (2) the ancestor of 

each key clade was Arctic. If the ancestor of a 

key clade was temperate, dispersal across the 

Arctic Ocean may have been possible only 

episodically. In this case, progenitors of 

modern species may have tracked temperate 

Figure 2.1. Results of phylogenetic inference of 
relationships among codfishes in the subfamily 
Gadinae (Beast consensus tree). Circles at nodes 
indicate support: left half indicates Bayesian 
inference posterior probabilities, right half 
indicates maximum likelihood bootstrap support. 
Black shading denotes posterior probability of 
1.0/100% bootstrap support, grey shading 
probability > 0.7/ > 70% support, white shading 
probability < 0.7/ < 70% support. Outgroups 
omitted for simplicity, branch lengths not to scale. 
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climatic conditions back and forth from the Atlantic to the Pacific, with glacial periods 

increasing sea ice extent in Arctic waters and isolating populations. While this model of 

diversification through periodic isolation and reconnection (Haffer 1969), commonly referred to 

as the glacial speciation pump, has been invoked in terrestrial (Weir & Schluter 2004), 

freshwater (April et al. 2013; Houston et al. 2014), and marine systems (Bigg et al. 2008; Maggs 

et al. 2008; Canino et al. 2010), it has yet to be applied in the context of diversification above the 

species level in gadine fishes. Alternatively, if a clade’s ancestor was Arctic, a rapid Arctic 

radiation followed by dispersal southwards to current distributional areas may have been more 

likely. In this situation, increased sea ice could have served as a bridge between the Atlantic and 

Pacific, instead of a barrier. To explore these competing hypotheses, I reconstructed niche 

tolerances of tomcod and crown cod ancestors, and compared reconstructions to modern 

temperate and Arctic conditions. These results were compared with biogeographical range 

reconstructions benefitting from recent advances in biogeographical model testing (Matzke 

2013a) to develop a fully integrated pattern and process analysis of the biogeographical history 

of gadine fishes. 

 

Methods 

Phylogeny of Gadinae. To estimate the phylogeny of the Gadinae for this study, I used 

sequences from 17 of the 22 currently recognized species in the clade (Nelson 2006). Lota lota, 

Molva molva and Gaidropsarus ensis were employed as outgroups based on their phylogenetic 

proximity to Gadinae (Roa-Varón & Ortí 2009). Because Theragra finnmarchica and 

Arctogadus borisovi are considered junior synonyms of Gadus chalcogrammus and Arctogadus 

glacialis, respectively (Jordan et al. 2003; Byrkjedal et al. 2008), they were excluded from 
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sampling. Eleginus navaga, Gadiculus argenteus and Micromesistius australis were not included 

because of lack of available tissue or sequence data in GenBank.  

 DNA was extracted from muscle tissue stored at −20 °C with a non-commercial 

guanidine thiocyanate method (Esselstyn et al. 2008). Two mitochondrial loci, 12S (Li & Ortí 

2007) and CYTB (Coulson et al. 2006), and two nuclear loci, ZIC1 (Li et al. 2007) and RAG1 (Li 

& Ortí 2007), were amplified using polymerase chain reactions. PCR profiles to amplify CYTB, 

12S and ZIC1 followed those used in corresponding primer citations (Coulson et al. 2006; Li & 

Ortí 2007; Li et al. 2007); a custom profile was used to amplify both nested primer sets of RAG1. 

Further details are provided in Appendix I.  

 The resulting sequences were assembled using consensus by plurality, combined with 

data from GenBank (Appendix II.A), and aligned and inspected visually using Sequencher (Gene 

Codes, Ann Arbor, MI, USA). New sequences derived for this study are available on GenBank 

under accession numbers KP644319-KP644396 (Appendix II.A). Seven data partitions were 

analysed using the following models: HKY+I+G for full codons of 12S, HKY+G for CYTB 

codon positions 1+2 and 3, and HKY for RAG1 and ZIC1 codon positions 1+2 and 3 (Appendix 

II.B). Phylogenetic analyses were conducted using Bayesian inference (BI) and maximum 

likelihood (ML), as implemented in BEAST 1.7.5 (Drummond et al. 2012) and GARLI 2.0 (Zwickl 

2006), respectively. The BI of ultrametric species tree topologies was estimated using unlinked 

gene trees and an uncorrelated lognormal relaxed molecular clock model for all loci except the 

slowly evolving RAG1, for which a strict clock model was applied. The BI phylogeny was scaled 

using a mutation rate of 1.93% per million years, as measured in Gadus morhua (Árnason 2004), 

to provide rough estimates of clade divergence times: further details are provided in Appendix I 

and Appendix II.B. The ML search settings included 50 attachments per taxon, generation 
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threshold for topoterm 5000, and score threshold for termination 0.001. Phylogenetic trees are 

available on TreeBASE under study number 15969 

(http://purl.org/phylo/treebase/phylows/study/TB2:S15969). 

 

Ecological niche modelling. Occurrence data were first downloaded from the Global 

Biodiversity Information Facility (GBIF; http://www.gbif.org/) and the Ocean Biogeographic 

Information System (OBIS; http://www.obis.org/). When downloaded occurrence points were 

compared with documented broad-scale distributions of each species, sampling in the Eastern 

Hemisphere Arctic Ocean was found to be particularly sparse; consequently, I sought out 

additional data from the Zoological Institute at the Russian Academy of Sciences (ZIN; 

Balushkin & Prirodina 2008) and the Natural History Museum in London (NHMUK; Appendix 

II.C) to fill perceived sampling gaps. Further data quality control steps included the removal of 

duplicate records and records judged to be inaccurate based on known distributions of species; 

occurrence data were then downsampled to match the spatial resolution of environmental data 

using ENMTools v1.3 (Warren et al. 2010). Calibration regions (Fig. 2.2) were designed for each 

species to reflect the distribution of known occurrences, as well as dispersal capabilities of 

species, to approximate species’ capability to sample suitable and unsuitable environments 

(Barve et al. 2011).  
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Figure 2.2. Maxent ecological niche modelling results for each species in the subfamily Gadinae. The 
extent of the orange shaded area indicates the region used to train each model; darker orange indicates 
relatively higher habitat suitability within the training region. Image Gadus morhua. 
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 Environmental data were derived from a variety of sources. Climatic and topographic 

data were downloaded from NOAA’s National Geophysical Data Center at 1° resolution: 

bathymetric data were derived from the ETOPO-1 Global Relief Model 

(http://www.ngdc.noaa.gov/mgg/global/; Amante & Eakins 2009); salinity and temperature data 

were derived from the 2009 World Ocean Atlas 

(http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html; Antonov et al. 2010; Locarnini et al. 

2010). Layers summarizing maximum, minimum and mean surface and bottom salinity and 

temperature were derived from climatology depth layers. Maximum, minimum and mean mixed 

layer depth were derived from salinity and temperature data. Maximum, minimum and mean sea 

ice concentration data were downloaded from NOAA’s National Snow and Ice Data Center 

(http://nsidc.org/data/G02172). After preliminary modelling runs, during which variable 

contributions were examined, I determined that mean sea ice concentration could be omitted 

from every species’ model (maximum and minimum sea ice concentration were retained). 

 Ecological niche models (ENMs) were calibrated for each species using the maximum 

entropy algorithm Maxent v3.3.3k (Phillips et al. 2006). Ten bootstrap replicate runs with a 

maximum of 10,000 iterations were conducted using a random seed with 50% of occurrence 

points. To avoid extrapolation in model features, no clamping, extrapolation, or threshold or 

hinge features were permitted (see Owens et al. 2013). Models were projected across the 

Northern Hemisphere to allow direct comparisons of niche tolerances among species. 

 

Ancestral niche reconstruction and hypothesis testing. I used the BioGeoBEARS likelihood 

framework (Matzke 2013b) to perform biogeographical range analyses using dispersal–

extinction–cladogenesis (DEC), DIVA-like [a likelihood interpretation of the dispersal–
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vicariance analysis (DIVA) model; Ronquist & Sanmartín 2011], and BAYAREA-like (a 

simplified likelihood interpretation of the BAYAREA model; Landis et al. 2013) using the 

phylogenetic tree topology recovered using Bayesian inference. The three models all have free 

dispersal and extinction parameters, but differ in their treatment of cladogenetic events in which 

ancestral and daughter ranges overlap (Matzke 2013a). BAYAREA assumes ranges to be 

conserved at cladogenesis (i.e. the daughter lineages of a widespread lineage will have an 

identical range when they diverge), whereas DEC assumes one daughter lineage range will 

always have a range limited to a single biogeographical area (i.e. a scenario in which a 

widespread lineage diverged into two widespread daughters is disallowed). DIVA does not allow 

daughter ranges to overlap with each other unless they are identical to a limited-range ancestor. 

 To assess the most likely model, I compared the results of DEC, DIVA-like and 

BAYAREA-like by comparing their log-likelihoods and results of biogeographical range state 

reconstructions. I used the BI ultrametric tree and limited maximum number of allowable areas a 

species could occupy to two, with four possible geographical areas: north-eastern Atlantic, north-

western Atlantic, Arctic and Pacific (Appendix II.D). Additionally, I investigated the effects of 

using a model with unconstrained dispersal versus a model requiring dispersal through the Arctic 

for taxa to shift from the Atlantic to the Pacific or vice versa. 

 Ancestral character state reconstruction began with generating predicted niche occupancy 

profiles with respect to each environmental variable used to develop ENMs. Median Northern 

Hemisphere projections of niche suitability were integrated with Northern Hemisphere 

environmental variable data and divided into 10 equal-width bins using PHYLOCLIM (Heibl 2011) 

in R (R Core Team, http://www.r-project.org/) to create a predicted niche occupancy (PNO) 

profile (e.g. Appendix III.A). The mean for each environmental variable weighted by ENM 
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suitability was then used to test for phylogenetic signal using Blomberg’s K (Blomberg et al. 

2003) as implemented in phytools (Revell 2012) in R; variables with non-significant 

phylogenetic signal (i.e. P > 0.05) were eliminated from further analysis. For each remaining 

environmental variable, 100 weighted samples of suitable variable space were drawn from the 

PNO profile of each tip species. For each draw, ancestral character states were estimated using 

maximum likelihood under a Brownian motion model of evolution on a sample of 1600 

ultrametric trees from the posterior distribution of the BEAST tree search. Mean results for each 

draw were calculated to derive final character reconstructions for each environmental variable; 

this procedure was performed using phyloclim. Script and data for this analysis can be found in 

the DRYAD repository http://doi.org/10.5061/dryad.352th). 

 Finally, I tested whether ancestral crown cod and tomcod environmental tolerances were 

consistent with present-day Arctic or temperate cod niches. Occurrence records for all gadine 

species were lumped into a single null dataset and used to draw values from the environmental 

data layer set. Points were categorized as ‘Arctic’ or ‘temperate’ according to Longhurst 

biogeographical provinces (VLIZ 2009). The Wilcoxon rank sum test as implemented in R was 

used to test whether distributions of environmental values in the two biogeographical provinces 

were significantly different, and to calculate nonparametric confidence intervals for each 

environmental variable in the Arctic and temperate datasets. Reconstructed mean tolerances of 

ancestors of the crown cods and the tomcods were then compared to 95% confidence intervals 

characterizing Arctic and temperate habitats to test between the two hypotheses. Script and data 

for this analysis can be found in the DRYAD repository 

(http://doi.org/10.5061/dryad.352th). 
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Results 

 Sequences of five genes yielded a data matrix of 3488 aligned bases (CYTB 1161, 12S 

695, RAG1 819, ZIC1 813). Of these bases, 891 were variable (CYTB 478, 12S 129, RAG1 186, 

ZIC1 98) and 534 were parsimony informative (CYTB 349, 12S 64, RAG1 88, ZIC1 33). BI 

recovered a tree topology most congruent with that of Coulson et al. (2006) (Fig. 2.1). The tree 

topology inferred by ML was congruent with that of BI, but with lower resolution (Fig. 2.1). 

 The modelled geographical extent of suitable habitat for each species was congruent with 

known ranges (Fig. 2.2; Cohen et al. 1990). Trisopterus species co-occur and are restricted to the 

north-eastern Atlantic. Microgadus tomcod is limited to the western Atlantic south of 

Newfoundland, whereas M. proximus is found in the eastern Pacific south of the Bering Sea, and 

is replaced allopatrically by its sister species, Eleginus gracilis, in the Bering and Chukchi seas. 

Merlangius merlangus is restricted to the north-eastern Atlantic, while sisters Melanogrammus 

aeglefinus and Micromesistius poutassou co-occur across the eastern and western Atlantic. 

Pollachius species co-occur in the eastern Atlantic; the distribution of P. virens extends to the 

western Atlantic, whereas P. pollachius does not. Arctogadus glacialis is fully Arctic, with the 

northernmost distribution of any gadine, and is replaced allopatrically by its sister, Boreogadus 

saida, to the south. Finally, two sister lineages in Gadus are distributed across the northern 

Pacific (G. chalcogrammus and G. macrocephalus) and northern Atlantic (G. morhua and G. 

ogac). 

 The unconstrained-dispersal DIVA-like model had the best fit to the data, with a log-

likelihood of −35.5 (dispersal, d = 2.11; extinction, e = 0.0), followed by unconstrained-dispersal 

DEC, with a log-likelihood of −38.0 (d = 1.87, e = 0.0), and unconstrained BAYAREA-like, 

with a log-likelihood of −45.5 (d = 1.35, e = 5.0). Constrained dispersal models resulted in much 
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lower log-likelihoods: −48.3, 54.6 and −55.6 for DIVA-like, DEC and BAYAREA-like, 

respectively. Comparing ancestral state reconstructions under the various models further 

supports use of the unconstrained DIVA-like model for biogeographical range evolution in 

gadine fishes, as this model led to the least ambiguous reconstructions (Fig. 2.3, Appendix III.B). 

 Under this model, it is ambiguous whether the tomcod ancestor is more likely to have 

originated in the western Atlantic or Pacific before expanding in range to inhabit both of these 

areas and experiencing a vicariance event that split the Pacific ancestor of Eleginus gracilis and 

Microgadus proximus from Microgradus tomcod. The crown cod ancestor was most probably 

Arctic, expanding to encompass the Pacific at the time of cladogenesis; the ancestor of 

Boreogadus and Arctogadus subsequently retreated into the Arctic, while the ancestor of Gadus 

probably retracted into the Pacific. Results further suggest that G. morhua and G. ogac dispersed 

to the Atlantic independently from the Pacific, but both sister pairs of Atlantic/Pacific Gadus 

probably had ancestors that dispersed across the Pacific and Western Atlantic, possibly bridging 

via the Arctic.   

 Of the 18 environmental variables used to construct ecological niche models, 5 had 

significant phylogenetic signal (P < 0.05): mean, maximum and minimum bottom temperature, 

and mean and minimum surface temperature (Table 2.1). For each variable with phylogenetic 

signal, Arctic and temperate gadine locality characteristics were significantly different (P < 

0.05). Reconstructed mean tolerances of crown cod and tomcod were not consistent with the 

characteristics of Arctic habitat: i.e. temperature variable mean values were higher than, and 

outside the confidence interval of, Arctic conditions. Reconstructed mean tolerances for both 

tomcod and crown cod ancestors were closer to confidence intervals for modern temperate 

conditions than for Arctic conditions in all cases. Mean ancestral crown cod tolerance was within 
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Figure 2.3. Biogeographical range reconstructions using Bayesian inference tree topology under the 
DIVA-like model with unconstrained dispersal. First four colours in key represent single regions; last 
six colours represent combinations of two of first four regions. Boxes at tree tips represent species’ 
current distributional areas; pie charts at nodes represent relative probabilities of biogeographical range at 
cladogenesis; pie charts on branches represent relative probabilities of each daughter lineage’s 
biogeographical range. Branch lengths not to scale.  
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95% confidence intervals of mean, maximum and minimum temperate surface temperatures; 

however, no mean ancestral tomcod tolerance fell within confidence intervals for gadine-specific 

modern temperate environments (Table 2.1).  

 

Discussion 

 The phylogeny of codfishes presented herein is the most taxonomically complete 

hypothesis presented to date. As had been suggested by Carr et al. (1999) and Roa-Varón & Ortí 

(2009), this analysis contributes additional support for monophyly of the tomcods (Fig. 2.1), 

adding further evidence for merging Eleginus into Microgadus. Additionally, the results support 

previous evidence that Gadus chalcogrammus is sister to G. morhua and thence to the G. 

macrocephalus/G. ogac clade; however, as in previous studies, the polytomy among these three 

lineages was not resolved (Carr et al. 1999; Teletchea et al. 2006; Roa-Varón & Ortí 2009). 

Deeper genomic sampling may be required for full resolution.  

 When geographical distributions of gadine fishes estimated from ENMs (Fig. 2.2) are 

examined in the context of the phylogeny (Fig. 2.1), they appear largely conserved, with nine 

species currently co-occurring in the north-eastern Atlantic. Range-based reconstructions (Fig. 

2.3) estimate the north-eastern Atlantic as the most likely range of the most recent common 

ancestor of Gadinae; a North Atlantic origin of Gadinae has long been hypothesized (Svetovidov 

1948; Carr et al. 1999; Pogson & Mesa 2004; Coulson et al. 2006). The role of glacial refugia in 

the north-east Atlantic is often suggested as a driver of genetic diversity in the region (Provan 

2013), but estimated divergence times for gadines presently distributed in the north-east Atlantic 

may pre-date glaciation cycles (O’Regan et al. 2011). Alternatively, the closing of the Strait of 

Gibraltar and subsequent Messinian Salinity Crisis (MSC; between	
  6.0	
  and	
  5.3 Ma), during  
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  Arctic/ 

temperate 
similarity P 

95% Confidence intervals Mean tolerance 
Environmental 
Variable 

Blomberg's 
K Temperate Arctic MEM ABG 

Bathymetry 7.800 X 10-2 1.619 X 10-2 
-1.935 X 102 to     

-1.550 X 102 
-2.345 X 102 to    

-1.955 X 102 N/A N/A 

Maximum sea ice 
concentration 4.430 X 10-1 3.887 X 10-113 

9.750 X 101 to 
9.750 X 101 

1.000 X 102 to 
1.000 X 101 N/A N/A 

Minimum sea ice 
concentration 4.310 X 10-1 1.763 X 10-5 

0.000 X 100 to 
0.000 X 100 

2.250 X 101 to 
9.000 X 101 N/A N/A 

Average mixed 
layer depth 3.930 X 10-1 1.187 X 10-24 

3.807 X 101 to 
4.010 X 101 

2.822 X 101 to 
3.050 X 101 N/A N/A 

Maximum mixed 
layer depth 5.450 X 10-1 3.630 X 10-32 

7.824 X 101 to 
8.310 X 101 

5.092 X 101 to 
5.620 X 101 N/A N/A 

Minimum mixed 
layer depth 8.670 X 10-1 1.269 X 10-60 

1.074 X 101 to 
1.117 X 101 

6.938 X 100 to 
7.332 X 100 N/A N/A 

Average bottom 
salinity 3.080 X 10-1 8.510 X 10-6 

3.409 X 101 to 
3.427 X 101 

3.451 X 101 to 
3.469 X 101 N/A N/A 

Maximum bottom 
salinity 2.800 X 10-1 7.275 X 10-11 

3.425 X 101 to 
3.442 X 101 

3.475 X 101 to 
3.484 X 101 N/A N/A 

Minimum bottom 
salinity 3.340 X 10-1 1.365 X 10-3 

3.395 X 101 to 
3.412 X 101 

3.429 X 101 to 
3.454 X 101 N/A N/A 

Average surface 
salinity 3.120 X 10-1 1.172 X 10-1 

3.2590 X 101 
to 3.280 X 101 

3.212 X 101 to 
3.267 X 101 N/A N/A 

Maximum surface 
salinity 3.090 X 10-1 6.804 X 10-5 

3.299 X 101 to 
3.321 X 101 

3.335 X 101 to 
3.366 X 101 N/A N/A 

Minimum surface 
salinity 3.380 X 10-1 1.207 X 10-12 

3.216 X 101 to 
3.237 X 101 

3.065 X 101 to 
3.149 X 101 N/A N/A 

Average bottom 
temperature 5.000 X 10-3 2.213 X 10-59 

4.607 X 100 to 
5.125 X 100 

1.366 X 100 to 
1.816 X 100 

4.303 
X 100 

3.931 
X 100 

Maximum bottom 
temperature 7.000 X 10-3 5.658 X 10-53 

5.617 X 100 to 
6.281 X 100 

2.185 X 100 to 
2.878 X 100 

4.877 
X 100 

4.393 
X 100 

Minimum bottom 
temperature 5.000 X 10-3 6.222 X 10-51 

3.661 X 100 to 
4.083 X 100 

0.712 X 100 to 
1.204 X 100 

3.565 
X 100 

3.155 
X 100 

Average surface 
temperature 3.600 X 10-2 1.024 X 10-135 

7.540 X 100 to 
7.967 X 100 

1.226 X 100 to 
1.679 X 100 

8.224 
X 100 

7.545 
X 100 

Maximum surface 
temperature 7.700 X 10-2 9.157 X 10-160 

1.318 X 101 to 
1.378 X 101 

4.994 X 100 to 
5.717 X 100 N/A N/A 

Minimum surface 
temperature 5.000 X 10-3 1.422 X 10-83 

3.108 X 100 to 
3.608 X 100 

-1.052 X 100 to    
-0.748 X 100  

4.031 
X 100 

3.373 
X 100 

 

Table 2.1. Results of tests for phylogenetic signal, temperate and Arctic habitat characterization, 
and ancestral character state reconstructions for the crown cod and tomcod clades in the 
subfamily Gadinae. N/A indicates variable was not phylogenetically significant, and reconstruction 
was not done. 
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which the Mediterranean Sea experienced intense desiccation, may have driven gadine 

vicariance. Indeed, the MSC has already been suggested as a driver of speciation within the 

genus Trisopterus (Gonzalez	
  et	
  al.	
  2012).  

 In the late Miocene or early Pliocene, tomcods and crown cods began to diversify (Fig. 

2.4) and disperse into their modern-day amphiboreal distributions. These distributions, 

considered in the context of the estimated diversification timing of the groups, suggest that 

dispersal or vicariance events played a role in shaping present distributions of these species, 

either following a model of Arctic adaptive radiation and dispersal or cycles of vicariance and 

dispersal driven by periodic glaciation. To date, glacial-cycle-driven vicariance has been the 

dominant model of speciation for amphiboreal fish taxa (Mecklenburg et al. 2011), while 

adaptive radiation is more commonly invoked to explain diversity of fish taxa of the Southern 

Ocean (Clarke & Crame 2010). 

 Results of biogeogeographical range analyses provide some clarification of the possible 

model by which present-day gadine diversity and distribution patterns of tomcods, crown cods 

and Gadinae as a whole emerged, with the DIVA-like model being most likely, suggesting that 

Figure 2.4. Time-calibrated 
Bayesian inference 
phylogeny of the subfamily 
Gadinae. An uncorrelated 
lognormal relaxed molecular 
clock model was used for all 
loci except RAG1, for which 
a strict clock model was 
applied. The phylogeny was 
then scaled using a mutation 
rate of 1.93% per million 
years as measured in Gadus 
morhua cytochrome b gene 
(Árnason 2004). Bars 
represent posterior 
distribution of divergence-
time estimates. 
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vicariance events were potentially more significant in the emergence of current-day 

biogeographical patterns than widespread dispersal and cladogenesis within overlapping ranges. 

However, a great deal of uncertainty remains in estimates of ancestral geographical range shifts 

in Gadinae. It is possible that dispersal may have happened so quickly on a relative geological 

time scale that vicariance merely appears more likely than dispersal and subsequent extinction. 

Indeed, diversification of the genus Gadus may have begun only in the last 2.5 million years 

(Fig. 2.4). By considering processes that underlie patterns of change in biogeographical range, 

such problems may be ameliorated (Crisp et al. 2011). 

 Clarification of the biogeographical history of Gadinae, particularly that of the tomcods 

and crown cods, may be possible when the hypothesized evolution of gadine physiological 

tolerance limits is taken into account. While bathymetry, mixed layer depth, salinity and 

temperature were all informative in generating ENMs, only temperature variables showed 

phylogenetic signal. This pattern may indicate that, for Gadinae, temperature adaptations are 

under higher selective pressure than adaptations to other environmental characteristics of their 

coarse-grained ecological niches. Consequently, these results suggest that physiological 

limitations to survival in extreme temperatures played the most significant role in governing the 

distributions of gadine fishes. A recent analysis comparing distributions of marine fishes with 

their thermal tolerance limits provided evidence that in marine systems, latitudinal distributions 

of fishes tend to conform to their thermal tolerance limits (Sunday et al. 2012). It is also 

important to note that in the present study, evidence suggests temperate species are largely 

intolerant to any but the lowest concentrations of sea ice, regardless of their phylogenetic 

position (Appendix III.A); this may account for lack of phylogenetic signal for sea ice tolerance 



 35 

in the analysis. Conversely, lack of phylogenetic signal in environmental tolerance variables may 

simply be the result of inadequate characterization due to noise in the data.  

 Ancestral tomcod and crown cod niche tolerances were not statistically similar to those of 

modern Arctic cods. Rather, ancestral tolerances of both clades appeared much closer to those of 

modern temperate cods. This result is congruent with the consistently temperate biogeographical 

range reconstruction for the tomcod ancestor, which was probably Western Atlantic, and 

dispersed to include the Pacific at the time of cladogenesis. However, the biogeographical range 

of the crown cod ancestor was reconstructed as Arctic, expanding to the Pacific at the time of 

cladogenesis. This is unlikely, because the crown cods are estimated to have diverged in the 

Pliocene (Fig. 2.4), when proxy estimates of global temperature indicate that the climate was 

cooler than the present day (O’Regan et al. 2011). When viewed in the context of divergence 

time estimates and the palaeoceanographic history of the region, these patterns of ancestral niche 

tolerance suggest that the first emergence of Arctic sea ice may have contributed to 

diversification in these clades. According to the molecular clock estimate, tomcods began to 

diversify between 2.5 and 7.5 Ma, when Arctic ice sheets were first forming (O’Regan et al. 

2011). The crown cods, too, first began to diversify near this time, with further diversification by 

the genus Gadus during the Pleistocene, when fluctuating levels of sea ice may have led to 

episodic ice-free passages between the Atlantic and Pacific (O’Regan et al. 2011). This may 

suggest that cyclical glaciation could have served as a speciation pump; the first time such a 

model has been invoked to elucidate diversification of tomcods and crown cods above the 

species level. 

 It should be noted that caution must be exercised when interpreting phylogenetic 

reconstructions of coarse-grained ecological niches. It is by now well established that correlative 
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niche models (of which Maxent is one) serve to characterize the realized niche of a species; that 

is, the intersection of biotic and abiotic factors which a species can access, and not the 

fundamental niche, which is the full suite of factors in which a species is capable of persisting 

(Soberón & Peterson 2005), unless considerable effort is made to generalize models. In cases 

where the suitable range of a given environmental factor for a species is close to the limits of 

values available for background sampling in the model, it is unlikely that the full fundamental 

niche of the species has been characterized, and any further analysis in which full 

characterization of the fundamental niche is to be assumed must be approached with caution 

(Zurell et al. 2012; Owens et al. 2013).  

 For example, in the present study, the extremes of the surface temperature fundamental 

niche of the eurythermal taxa Arctogadus and Boreogadus, have probably not been fully 

characterized. The lowest surface temperature at which these species can be found is the 

minimum temperature at which water remains liquid, and the environmental layers used to train 

ecological niche models in this study lack the resolution necessary to capture this lower limit. 

This result may bias ancestral state reconstructions on which estimates of the fundamental niche 

of Arctogadus	
  /Boreogadus were based. Indeed, in view of the peripheral nature of their niches 

within their accessible areas, crown cod ancestral coarse-grained niche tolerance minimum and 

mean surface temperature may in reality be lower than that reconstructed in this study (Table 

2.1). However, the effects of such a bias in this study are minimal, as only two environmental 

factors out of the 306 estimated (18 environmental factors for each of 17 species) may not have 

fully characterized fundamental tolerances due to the broad areas across which niches were 

characterized.  
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 The finding that temperature probably drives gadine distributional patterns, with sea ice 

as a possible barrier to contact between Atlantic and Pacific species, suggests potentially 

significant conservation and economic consequences from future climate change. Rapid 

reduction of summer sea ice extent (Overland & Wang 2013) will reduce available nursery 

habitat for the sea-ice associated Arctogadus glacialis and Boreogadus saida. These species are 

essential prey for marine mammals and seabirds. In the Lancaster Sound region alone, 

approximately 148,000 tonnes of Boreogadus saida are consumed annually by ringed seals 

(70,000 tonnes), narwals (23,000 tonnes), belugas (23,000 tonnes), thick-billed murres (12,180 

tonnes), and others (Welch et al. 1992). It is possible that faced with a shortage of gadine prey, 

predators will either suffer reductions in their numbers or shift to other food sources, which 

could in turn have additional consequences. While it is beyond the scope of this study to project 

the future distributions of potential gadine habitat, it is also possible that the geographical ranges 

of many commercially important gadine species will shift to track suitable temperatures. Indeed, 

the ratio of Arctic to subarctic fish and invertebrate species recovered in bottom trawl surveys 

from 1982 to 2006 has declined throughout the Bering Sea (Mueter & Litzow 2008). 

Furthermore, the opening of ice-free Arctic passages may allow Pacific and Atlantic gadines 

once more to disperse freely between the Pacific and Atlantic through the Arctic. 

 This study provides a unique combination of ancestral ecological niche tolerance 

reconstruction with cutting edge methods of ancestral range reconstruction, and thereby opens 

several key insights into gadine evolution and biogeography. However, the specific timing of 

diversification events and contemporaneous climate and geological changes remains unresolved. 

Recent improvements in fossil calibration methods (Heath et al. 2014) may provide a powerful 

tool by which to understand better how well the timing of glaciation and diversification events 
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coincide. Furthermore, using estimates from fossil calibrations, reconstructed ecological niche 

tolerances at key points in the evolution of Gadinae could be projected onto palaeoclimatological 

datasets (Peterson & Nyári 2007) to explore past periods of dispersal and isolation that may 

serve to inform the hypothesis that a glacial cycle speciation pump led to speciation across 

oceans. Understanding the evolutionary history of the Gadinae may provide valuable insight into 

how climate change will affect the future of this economically and ecologically important clade 

of fishes. 
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Chapter 3*  

Predicting future distributions of gadine fishes using global climate model data: 

exploring spatial and environmental variable bias 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Owens, HL, JA Kleypas. Predicting future distributions of gadine fishes using global climate 
model data: exploring spatial and environmental variable bias.  
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Abstract 

 The aim of this study was to anticipate effects of climate change on future distributions of 

suitable conditions for gadine codfishes and analyze challenges inherent in the use of GCM 

climate model data for making such predictions. Using present-day locality data, we generated 

ecological niche models (ENMs) of 15 species of fishes in the subfamily Gadinae based on two 

environmental datasets: an observation-based dataset and a dataset derived from the CCSM4 

general circulation model. Both sets of niche models were projected into modeled future climates 

at 2054 and 2100 based on the RCP 8.5 climate scenario, the most extreme of the RCP scenarios 

for future greenhouse gas emissions. We generated maps of areas of disagreement between 

models based on observational and modeled climate data. Suitable habitat for Arctogadus 

glacialis is predicted to disappear by 2100; other gadine fishes are anticipated to experience 

various degrees of expansion and northward shifts in suitable habitat by 2100. We detected a 

strong spatial bias disagreement between observation- and GCM-based ENMs concordant with 

known GCM biases. Our study explicitly connects spatial bias in ENM results with that of GCM-

derived environmental data inputs. Consciousness of bias in GCM data is key to using ENMs to 

forecast potential future distributions of suitable conditions under which species may persist. 

Future reductions in GCM bias, in tandem with careful evaluation of ENM projections, will 

allow policy makers and researchers to more confidently identify areas of particular concern for 

biodiversity. 
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Introduction 

 Distributions of many marine species have shifted over the last few decades, often 

associated with warming temperatures (Perry et al. 2005; Dulvy et al. 2008; Leu et al. 2011; 

Cheung et al. 2013; Vergés et al. 2014), but also in response to changes in fishing pressure 

(Garrison & Link 2000), prey availability (Weijerman et al. 2005), solar constant (Weijerman et 

al. 2005), salinity (Kimura et al. 2001; Weijerman et al. 2005) and sea ice cover (Leu et al. 2011), 

among others. As marine ectotherms tend to occupy the full range of their physiological 

tolerance to temperature, they may be particularly susceptible to changing climatic conditions 

(Sunday et al. 2012). This can manifest as changes in species’ distributions as they track suitable 

climatic conditions (Parmesan & Yohe 2003). Changes in species’ distributions have important 

management and conservation implications for marine fishes, not only because of the geographic 

shifts themselves, but also because of the effects of climate on population dynamics, including 

alterations in spawning stock composition and biomass (Brander 2005; Ottersen et al. 2006), and 

shortened duration of planktonic larval life stages, which may reduce dispersal ability and 

population connectivity (O'Connor et al. 2007; Kristiansen et al. 2014).  

 Cods, pollocks and haddocks of the subfamily Gadinae are among species for which 

climate-change-induced distributional changes have already been documented (Cormon et al. 

2014; Engelhard et al. 2014). These species typically inhabit temperate, continental waters in the 

high latitudes of the Atlantic and Pacific oceans, but Arctic species Arctogadus glacialis and 

Boreogadus saida associate strongly with sea ice, and are among the most northerly-distributed 

marine species in the world (Cohen et al. 1990). Many gadine species are economically 

important wild fishery species: in 2012, 6.1 million tons of gadine fish were harvested (FAO 

2014). Additionally, gadine fishes are key consumers and prey in northern ocean ecosystems 
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(Link & Garrison 2002, Gradinger & Bluhm 2004). Of the 22 recognized species in the clade 

(Nelson 2006), seven have been assessed for conservation status by the International Union for 

the Conservation of Nature; two, Gadus morhua and Melanogrammus aeglefinus, are currently 

ranked as “Vulnerable” (IUCN 2014). Further pressure may be exerted on these and other gadine 

species as high latitudes are expected to undergo the most pronounced climate-change-induced 

alterations over the coming decades (Cheung et al. 2009). Being able to predict how gadine 

distributions may change is vital to building adaptive strategies for management and protection 

of these species. 

 Ecological niche modeling (ENM) is increasingly used to understand factors shaping 

present geographic ranges of species, and to anticipate the effects of climate change on species’ 

distributions. ENM estimates the scenopoetic, or Grinellian, ecological niche of a species 

(Soberón 2007) based on environmental characteristics associated with known occurrences 

(Peterson et al. 2011). Such models then may be transferred onto different landscapes or onto 

estimated environmental conditions in the past or future to infer the distribution of suitable 

habitat for the species of interest. In late January 2015, a search on Google Scholar 

(http://www.scholar.google.com) yielded 195 studies in 2014 alone in which researchers used 

ENM to predict future distributions of species’ suitable habitat using climate model data. 

Predictions of climate change effects on the distribution of species’ suitable habitat are of 

particular interest for conservation planning: by projecting species’ potential distributions into 

future climate scenarios, researchers and policy makers may be able to prioritize critical 

conservation areas by identifying areas where suitable habitats are likely to persist or where new 

areas of conservation importance may emerge (Alagador et al. 2014). 
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 While ENM predictions using climate model data remain a powerful estimator of climate 

change-induced distributional change, their use for making conservation and management 

decisions remains controversial (Sinclair et al. 2010). Such models may erroneously estimate a 

species’ ecological niche owing to factors such as inappropriately defined study areas (Barve et 

al. 2011) and limitations set by competitors (e.g. Troia & Gido 2014) or symbionts (e.g. Mueller 

et al. 2011). Such models are only as good as the environmental data that goes into them (Hall 

2014). Data from different sources, at different scales, and summarizing different aspects of the 

environment may perform in dramatically different ways when identifying species’ potential 

distributions (Peterson & Nakazawa 2007). However, the error deriving from biases in 

environmental variable data remains an under-appreciated source of uncertainty in such models.  

 This study explores a new marine dataset derived from the Community Climate System 

Model version 4.0 (CCSM4) developed by the National Center for Atmospheric Research 

(NCAR). We use these data to predict future distributions of suitable habitat for 15 species of 

gadine fishes. Whereas previous researchers have focused on fine-scale mechanistic modeling of 

the effects of climate change on gadine fishes (e.g. Kristiansen et al. 2014; Mueter et al. 2011), 

this study focuses on broad-scale changes in distributions of suitable scenopoetic niche space for 

gadine fishes. In particular, we consider the implications of uncertainty inherent in climate model 

data when interpreting distributional change in conservationally important species, comparing 

our results with known biases in the CCSM4 climate model. 

 

Methods 

 We developed ENMs for 15 recognized species in the subfamily Gadinae (Nelson 2006) 

(Table 3.1). We eliminated Arctogadus borisovi and Theragra finnmarchica from the dataset, as 
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they are considered junior synonyms of Arctogadus glacialis and Gadus chalcogrammus, 

respectively (Byrkjedal et al. 2008; Jordan et al. 2003). Eleginus navaga, Gadiculus argenteus, 

Micromesistius australis, Trisopterus esmarkii and Trisopterus luscus were not included owing 

to insufficient data. Occurrence data were adapted from a dataset produced for a previous study, 

where details on point acquisition and quality control are provided (Owens 2015); points were 

downloaded from the Global Biodiversity Information Facility (GBIF; http://www.gbif.org/) and 

the Ocean Biogeographic Information System (OBIS; http://www.obis.org/), augmented with 

data from the Zoological Institute at the Russian Academy of Sciences (ZIN; Balushkin & 

Prirodina 2008) and the Natural History Museum in London (NHMUK) for regions not 

represented in GBIF and OBIS. We designed calibration regions to reflect distributions of known 

species occurrences and dispersal capabilities, to approximate each species’ capability to sample 

suitable and unsuitable environments (Barve et al. 2011). 

 The present-day observational climatic and bathymetric dataset (henceforward 

observational dataset) was derived from a variety of sources at a spatial resolution of 1°. 

Species Area 2054 Area 2100

Mean 
Latitude 
2054

Mean 
Latitude 
2100 Area 2054 Area 2100

Mean 
Latitude 
2054

Mean 
Latitude 
2100

Artogadus glacialis 0 0 N/A N/A 449,385 0 76.19 N/A
Boreogadus saida 14,182,652 35,128,678 63.50 68.06 11,927,679 13,037,150 66.50 68.50
Eleginus gracilis 20,260,569 16,711,478 65.76 66.91 1,488,961 2,272,406 64.00 67.00
Gadus chalcogrammus 37,077,118 32,431,453 58.00 60.50 5,887,450 7,965,118 60.53 62.00
Gadus macrocephalus 36,130,504 38,991,828 58.00 60.00 6,431,001 7,134,933 59.32 62.00
Gadus morhua 66,394,880 85,426,166 53.89 54.34 24,294,598 32,138,459 48.50 51.50
Gadus ogac 0 0 N/A N/A 9,376,952 12,556,218 52.88 55.35
Melanogrammus aeglefinus 43,854,802 59,003,488 54.00 56.30 11,886,873 13,242,078 46.02 50.96
Merlangius merlangus 14,975,851 22,844,476 51.45 55.29 3,195,305 3,274,866 49.83 52.04
Microgadus proximus 13,800,782 16,561,752 54.50 58.00 1,597,442 923,112 63.02 65.46
Microgadus tomcod 6,005,362 15,217,461 47.89 57.06 2,527,088 2,351,868 50.95 55.44
Micromesistius poutassou 197,505,618 178,564,169 46.00 48.50 20,740,797 25,844,706 47.95 49.00
Pollachius pollachius 5,090,823 5,571,058 52.65 55.39 1,130,978 484,043 55.61 58.15
Pollachius virens 92,297,640 104,904,189 50.02 53.45 12,879,809 11,173,488 45.50 48.00
Trisopterus minutus 28,750,815 29,160,434 49.34 53.93 4,068,023 4,271,353 50.29 51.78

Observational environmental data ENM GCM environmental data ENM

Table 3.1. Estimated area (km2) and mean latitude of potential distributions of gadine species 
included in this study.  
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Bathymetric data were acquired from the ETOPO-1 Global Relief Model at NOAA’s National 

Geophysical Data Center (http://www.ngdc.noaa.gov/mgg/global/; Amante & Eakins 2009). 

Average decadal climatologies of salinity and temperature from 1955 to 2006 were downloaded 

from the 2009 World Ocean Atlas (http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html; 

Antonov et al. 2010; Locarnini et al. 2010). Layers summarizing maximum, minimum, and mean 

surface and bottom salinity and temperature were derived from the climatology data; maximum, 

minimum, and mean mixed layer depth were calculated based on salinity and temperature data. 

Maximum, minimum, and mean sea ice concentrations were derived from a 1972 to 2007 

climatology from NOAA’s National Snow and Ice Data Center (http://nsidc.org/data/G02172).  

 The general circulation model dataset (henceforward GCM dataset) was derived from 

CCSM4, which couples atmosphere, land, ocean, and sea ice dynamics into a single general 

circulation model (Gent et al. 2011). The ocean-model component is the CCSM2.1.1 Parallel 

Ocean Program (POP2), which has a nominal 1° horizontal resolution (constant at 1.125° in 

longitude and varying from 0.27° at the equator to about 0.64° in latitude) and 60 vertical levels. 

The sea ice model shares the same horizontal grid as POP. Monthly climatologies from 1955 to 

2005 for salinity, potential temperature, and sea ice concentration were derived from model 

outputs. As with observed climatologies, layers summarizing maximum, minimum, and mean 

surface and bottom salinity and temperature; maximum, minimum, and mean mixed layer depth; 

and maximum, minimum, and mean sea ice concentrations were derived from these data. Mixed 

layer depth was calculated in the same manner as for the observational dataset, and potential 

temperature was converted to in situ temperature to render it comparable to observed 

temperature. The resulting layers were then re-gridded from the POP2 grid to a 1° geographical 

coordinate grid to match the observational data and render it compatible with ENM software. 
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Climate projections were also developed based on the RCP 8.5 future climate scenario, which 

represents the highest greenhouse gas emissions of the RCP family of future climate scenarios 

(Riahi et al. 2011); climatologies were derived from means of five ensemble members for both 

the early and late periods of the 21st Century projection: years 2005-2054 and 2054-2100. 

Observed bathymetry as derived for the observational dataset was also included in each of these 

datasets to render ENMs comparable. 

 Two sets of ENMs were developed using the correlative niche modeling algorithm 

Maxent v3.3.3k (Phillips et al. 2006) for each species, one calibrated using the observational 

dataset, and one calibrated using the GCM dataset. Each ENM was developed using 10 

bootstrapped replicates, with a maximum of 10,000 iterations each. For each replicate, 50% of 

occurrence points were chosen at random for intrinsic model testing; 25% of occurrence points 

were chosen at random for Arctogadus glacialis and Microgadus proximus, as these species had 

more limited occurrence data. To avoid overfit ENMs with unrealistic environmental response 

curves, no threshold or hinge features were permitted. To reduce overfitting further, we reduced 

the number of variables included in final environmental datasets by assessing autocorrelation 

between variables and variable contributions in preliminary model runs; the final datasets 

included only bathymetry, maximum and minimum sea ice concentration and mean surface 

temperature and salinity.  

 The observational and GCM-based ENMs for each species were then used to project the 

species’ potential distributions in the present (2005), in 2054, and 2100. To avoid unpredictable 

model transfer behavior (Owens et al. 2013), we did not permit extrapolation or clamping. The 

suitable habitat for each species’ modeled distributions was defined using a 95% occurrence 

threshold using R (R Core Team 2012; Figure 3.1-2; Appendix IV.A; Appendix V). In this 
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method of thresholding, the highest 95% of suitability scores at occurrence points used to 

calibrate the model are classified as “suitable”, and values falling below the 95% threshold are 

classified as “unsuitable”. While more complex methods of thresholding have demonstrated 

better skill in classifying suitable and unsuitable environments (Jiménez-Valverde & Lobo 2007; 

Liu et al. 2005), our dataset lacks true absence data, and therefore, a simple fixed threshold 

technique was preferable (Bean et al 2012). The 95% threshold value was chosen based on 

comparison between ENM-classified “suitable” habitats and maps of species’ known 

Figure 3.1. Modeled suitable habitat extent for GCM- and observation-calibrated ecological niche 
models for Arctogadus glacialis, Boreogadus saida, Gadus morhua, and Melanogrammus aeglefinus 
through time. Colored area in the present denotes the calibration region; white areas are outside 
calibration regions. Future time slices are projected across the Northern Hemisphere to allow estimation 
of potential range expansions. 
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distributions (Cohen et al. 1990). In the present, models of suitable environmental space were 

limited to the calibration area extent to avoid unpredictable extrapolation; future time slice 

comparisons were made across the entirety of the northern hemisphere. 

 For each species’ ENM projections, future suitable habitat area and mean latitude (Table 

3.1) were calculated according to the 95% calibration presence threshold maps (Figure 3.1-2; 

Appendix IV.A; Appendix V). Cohen’s Kappa was calculated using R (Appendix V) for each 

species at each time slice to quantify agreement between ENM projections derived from 

Figure 3.2. Modeled suitable habitat extent for GCM and observation-calibrated ecological niche 
models of Gadus chalcogrammus, Gadus macrocephalus, Gadus ogac, and Micromesistius poutassou 
through time. Colored area in the present denotes the calibration region; white areas are outside 
calibration regions. Future time slices are projected across the Northern Hemisphere to allow estimation 
of potential range expansions. 
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observational and GCM datasets  (Table 3.2). We compared Kappa scores with the relative ENM 

contribution of each environmental variable to determine if certain environmental variables were 

more likely to cause incongruent distributional predictions than others. Further, to test whether 

variables in observational and GCM datasets differed significantly, we performed a paired 

Wilcoxon signed rank test as implemented in R (Appendix V). We also mapped ENM 

disagreement for all species at each time slice to explore spatially-based areas of disagreement 

(false positives and false negatives) between models calibrated using observational and GCM 

datasets that may contribute to uncertainty in predictions of species’ future distributions (Figure 

3.3; Appendix V).   

  

Results 

 Thresholded ENMs calibrated using either observational data or GCM data produced 

present-day distributional predictions that were generally congruent with known distributions 

(Fig. 3.1-2, Appendix IV.A). As present species’ distributions were limited to the extent of the 

Species Present 2055 2100 Depth
Max 
Sea Ice

Min 
Sea Ice

Mean 
SSS

Mean 
SST Depth

Max 
Sea Ice

Min 
Sea Ice

Mean 
SSS

Mean 
SST

Arctogadus glacialis 0.29 0.00 0.00 27.4 4.3 51.7 13.2 3.4 57.0 18.0 12.1 11.5 1.3
Boreogadus saida 0.83 0.25 0.42 13.8 35.4 39.0 6.8 4.9 17.8 30.4 33.3 15.9 2.6
Eleginus gracilis 0.75 0.35 0.63 66.2 25.5 0.1 0.8 7.4 69.6 7.4 12.1 2.7 7.2
Gadus chalcogrammus 0.63 0.69 0.60 32.3 27.4 0.0 15.4 24.9 42.6 28.4 4.8 9.4 14.8
Gadus macrocephalus 0.58 0.75 0.71 37.6 20.8 0.0 2.0 39.6 48.6 23.1 0.0 1.1 27.2
Gadus morhua 0.72 0.55 0.48 47.1 9.3 0.0 28.0 15.6 29.8 7.7 9.0 31.2 22.3
Gadus ogac 0.72 0.00 0.00 40.1 32.9 4.8 6.5 15.7 54.8 11.5 18.6 7.1 7.9
Melanogrammus aeglefinus 0.84 0.59 0.73 19.6 17.4 0.0 37.7 25.4 35.1 22.1 0.8 19.9 22.1
Merlangius merlangus 0.82 0.80 0.67 74.1 8.9 0.0 7.8 9.2 42.4 7.5 0.0 49.3 0.8
Microgadus proximus 0.54 0.31 0.75 73.7 6.9 0.0 18.5 0.9 30.5 12.1 0.1 32.8 24.5
Microgadus tomcod 0.76 0.41 0.07 94.3 1.2 0.0 0.2 4.3 51.4 17.0 0.0 16.8 14.7
Micromesistius poutassou 0.49 0.58 0.55 41.5 26.3 0.0 10.9 21.2 30.7 23.7 0.6 25.9 19.1
Pollachius pollachius 0.74 0.75 0.46 70.0 11.5 0.0 10.5 8.1 38.0 4.7 0.0 49.1 8.2
Pollachius virens 0.72 0.45 0.38 20.2 10.6 0.0 55.4 13.8 34.1 6.4 0.5 26.3 32.7
Trisopterus minutus 0.81 0.72 0.72 45.8 1.0 0.0 36.7 2.6 46.5 0.9 0.0 49.4 3.1

Kappa Observational variable contributions GCM variable contributions

Table 3.2. Statistical comparison of models. Cohen’s Kappa measures agreement between GCM- and 
observation-calibrated niche models at each time slice. Variable contributions denote relative 
contributions (in percent of total) of environmental variables in niche model calibration. Max Sea Ice: 
maximum sea ice concentration; Min Sea Ice: minimum sea ice concentration; SSS: sea surface salinity; 
SST: sea surface temperature.  
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model calibration region for each species, they were 

not compared directly to cross-hemisphere 

predictions at future time points. Estimated future 

distributions of suitable habitat tended to be more 

extensive for models calibrated using observational 

data. In 21 of 30 cases, extents of potential 

distributional areas increased between 2054 and 

2100: models calibrated using the observational 

dataset predicted an area increase for 11 species, 

whereas those calibrated using the GCM dataset 

predicted an increase for 10 species (Table 3.1). In 

all but one projection, mean latitude of distributional 

areas was predicted to increase between 2054 and 

2100. For the remaining species, Arctogadus glacialis, 

neither of the niche model projections identified any 

suitable areas at either future time point (Fig. 3.1). 

No clear pattern of difference in mean latitude 

predictions for the two sets of models could be 

Figure 3.3. Map of regional prediction disagreement at 
each time slice. Rasters of disagreement between ENMs 
calibrated using observational and GCM datasets were 
computed for all 15 species at each time point; from those, 
proportional disagreement was calculated for each time 
point. These maps provide guidance in the interpretation 
of ENM projections by showing where the lowest biases 
are located, and thus, where results may be interpreted 
with the greatest confidence. 
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detected (Table 3.1).  

 There were no consistent trends in Cohen’s Kappa across species through time (Table 

3.2). Depth was the most significant contributor in 19 of 30 ENMs, followed by mean sea 

surface salinity (7 models), minimum sea ice concentration (3 models), and mean sea surface 

temperature (1 model). Minimum sea ice concentration was the least important variable in 24 

models, followed by mean sea surface temperature (4 models), mean sea surface salinity (1 

model) and maximum sea ice concentration (1 model). The relative contributions of 

environmental variables were not consistent between GCM- and observation-calibrated models. 

Observational- and GCM-calibrated models agreed on the most significant variable for 6 of 15 

species (depth, 5 species; minimum sea ice concentration, 1 species); the least significant 

variable was the same for 13 of 15 species (minimum sea ice concentration, 11 species; mean sea 

surface temperature, 1 species). We also found no significant relationship between model 

disagreement and variable contribution (Table 3.2). Results of the Wilcoxon signed rank test 

indicate that only mean surface temperature was not significantly different (P > 0.05) between 

the present observational dataset and the GCM dataset.  

 Furthermore, the model sets were neither spatially congruent in the present nor in future 

projections (Figures 3.1-2, Appendix IV.A). Observational- and GCM-calibrated ENMs of 

species that occur solely in the eastern Atlantic (Merlangius merlangus, Pollachius pollachius, 

and Trisopterus minutus) had the highest average agreement in the present, and were relatively 

high in agreement through future projections; models of species that occur in the Arctic 

(Arctogadus glacialis and Boreogadus saida) had the lowest agreement in the present, and were 

relatively low through future projections. Particularly notable areas of disagreement are located 
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in the Sea of Okhostk, the Laptev Sea, the western Bering Sea, the Barents Sea and in the Gulf 

Stream off the eastern coast of North America (Fig. 3.3). 

 

Discussion 

 Our results suggest that spatial incongruity between environmental data sources is a more 

significant and consistent source of variation in ENM results than environmental-variable-based 

incongruity. Relative variable importance was not predictive of congruence (Cohen’s Kappa) 

between the sets of ENMs. Particularly striking was our observation that the ENM contributions 

of depth, which were identical in each dataset, and surface temperature, which was not 

significantly different between datasets, did not correlate with Cohen’s Kappa. These patterns 

may be the result of Maxent’s response not only to mean values of the environmental data, but 

also to their variance (Merow et al. 2013). That is, it is possible that, even though the two 

datasets do not have significantly similar means, their variances across the landscape were 

generally similar, leading to similar patterns in predicted species distributions.  

 Exploration of the CCSM4 GCM model from which we derived our GCM dataset sheds 

some light on disagreements between observational and GCM-calibrated ENMs. First, GCM 

forecast runs typically include an ensemble of runs (identical experiments with slightly different 

starting conditions) to take into account natural climate variability. We have used five ensemble 

members here, recognizing that the choice of ensemble member can result in differences that 

reflect such variability. Second, strong disagreements in our present-day regional disagreement 

map (Fig. 3.3) likely reflect regional biases in CCSM4. One region is the Gulf Stream, where 

CCSM4 has an elevated temperature and salinity bias (Danabasoglu et al. 2012). Another is in 

the Sea of Okhotsk between Japan and Russia’s Kamchatka Peninsula, where CCSM4 has a cold 
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temperature bias in the northwest (Danabasoglu et al. 2012) that corresponds directly with the 

region of greatest disagreement between our present-time ENM outputs (Fig. 3.3). Finally, in 

both the Barents Sea and the Sea of Okhotsk, CCSM4 model biases of maximum sea ice 

concentration are too high (Jahn et al. 2012). 

 Consciousness of spatial and variable-based challenges in developing climate models is 

key to interpreting projections of future distributions of suitable environments for species of 

interest. The incongruent predictions of suitable present-day habitat for most of the Arctic gadine 

species call for caution when applying GCM climate projections in forecasting suitable habitat. 

This is particularly true with respect to finer-scale regional predictions, such as the regions 

identified above. However, in cases such as that of Arctogadus glacialis, for which both sets of 

ENM projections predict the disappearance of suitable habitat for the species by 2100 (Fig. 3.1), 

the signal of the predicted trend is probably robust. For such Arctic species, a realistic approach 

to studying the effects of climate change must begin with sufficient baseline data on current 

distributions and ecosystem services provided by these species, so that mitigation efforts can be 

focused on systems most likely to be impacted by climate-change-induced species loss (Post et al. 

2009). Both ENMs calibrated using observational and GCM datasets suggest the possibility that 

extirpated Arctogadus glacialis will be replaced in the Arctic by its sister species, Boreogadus 

saida (Fig. 3.1). Unlike A. glacialis, B. saida is not dependent on sea ice for reproduction (Cohen 

et al. 1990), such that reduction of Arctic sea ice (Overland & Wang 2013; Vavrus et al. 2012) is 

less a challenge and more an opportunity. Although our ENMs do not explicitly account for 

species competition, in habitats where the two species are currently sympatric and partition food 

resources spatially (Christiansen et al. 2012), B. saida may enjoy relaxation in competitive 

pressure, permitting expansion and exploitation of new food resources. 
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 Both sets of models for IUCN Vulnerable gadine species Gadus morhua and 

Melanogrammus aeglefinus, both Atlantic species, indicate northward shifts in mean latitude and 

expansion in suitable habitat between 2054 and 2100 (Fig. 3.1). The models also indicate 

suitable habitat in the Pacific for both species, but without clear connectivity in suitable habitat 

between the Pacific and Atlantic potential ranges for either species (Fig. 3.1). It is unlikely that G. 

morhua and M. aeglefinus will face competition from other gadine species as their distributions 

shift. The most common and widespread Pacific species, G. chalcogrammus and G. 

macrocephalus, are predicted to experience a reduction in suitable habitat within their native 

range, but with new habitats opening up in the Atlantic (Fig. 3.2). However, their ability to 

expand into Atlantic waters would require dispersal across an even broader swath of unsuitable 

ocean than their Atlantic counterparts may experience (Fig. 3.2). Suitable habitat for G. ogac, an 

Atlantic species sympatric with G. morhua and M. aeglefinus with an already limited range, has 

an uncertain future— the GCM-calibrated ENM predicts a northward expansion, whereas the 

observation-calibrated ENM predicts that suitable habitat for G. ogac will disappear by 2100 

(Fig. 3.2). Micromesistius poutassou, a species with larval stages that share a similar feeding 

ecology with the two IUCN Vulnerable species, G. morhua and M. aeglefinus (Turner 1984), 

may present the biggest threat; M. poutassou is predicted by both ENMs to expand in suitable 

habitat within its native range, with improved connectivity between populations compared to the 

present day (Fig. 3.2). Additional problems for G. morhua and M. aeglefinus (and indeed, for 

any of the species) may arise if prey species do not experience parallel distributional shifts; 

previously, researchers employing mechanistic models have predicted a decline in larval G. 

morhua recruitment as cold-temperature-dependent food resources decrease as the oceans warm 

(Kristiansen et al. 2014).  
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 This study demonstrates both promise and limitations in using GCM climate model data 

to anticipate effects of future climate change on gadine species’ distributions. Particularly, we 

offer unique methodological insight as to the sources of spatial bias in GCM-calibrated ENMs by 

comparing biases in environmental inputs with those of ENM results. Considerable uncertainty 

remains in ENMs projected to future conditions, especially in areas where model bias has been 

difficult to account for or correct. Still, as the CCSM climate model continues to improve, 

attempts to understand changes in gadine distributions and predict future distributions of these 

species will likely also benefit. In the meantime, while remaining conscious of the biases implicit 

in GCM-based ENM predictions using the methods employed herein, policy makers and 

researchers still may be able to identify areas of particular concern for gadine species, and better 

prioritize conservation efforts as the Earth’s climate continues to change.  
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Chapter 4*  

Closing the gap between researchers and policymakers: 

lessons from the history of fisheries management in the United States 
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Abstract 

 Increases in sea surface temperature have led to distributional changes in many 

commercially exploited fish species. These changes have already led to conflict over mackerel 

fisheries, arising from demand for fair resource apportionment and desire to manage the fishery 

sustainably. In order to develop adaptable management strategies for complex ocean fishery 

systems, policymakers and researchers must move beyond a reactive producer–consumer 

relationship to develop proactive, supportive collaborations. The history of U.S. national 

fisheries management is presented as an example of this transition. Building cooperative capacity 

over the last two centuries has led to a more systematic understanding of the oceans, and has led 

to success in reducing the number of overfished stocks. Similar development of cooperation 

between policymakers and researchers on an international scale may be the surest way to develop 

management strategies adaptable enough to withstand challenges posed by future climate change.  
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Introduction 

 In the summer of 2010, conflict erupted over northeastern Atlantic Mackerel, a 

commercially valuable migratory fish species. In August of that year, Iceland and the Faroe 

Islands raised their mackerel catch quotas from 2,000 to 130,000 tons and from 25,000 to 85,000 

tons, respectively (Cendrowicz 2010). The two governments claimed their original quotas were 

based on obsolete data, from a time when the mackerel fishery extended only marginally into 

their territory; the new quotas reflected increasing numbers of mackerel migrating into their 

waters as a result of climate change (Cendrowicz 2010). Scotland, where mackerel is the most 

economically important fishery, immediately called for action from the European Union (EU), 

including a blockade of the offending nations at EU ports (BBC News 2010). When the EU did 

not comply with this request, fishers in the Scottish port of Peterhead blocked offloading of 

mackerel by a Faroese fishing boat (Cendrowicz 2010). As of mid-2012, a compromise had not 

yet been reached, despite ongoing negotiations (Hannesson 2013).  

 Capture fisheries are the last major source of wild food for humans, accounting for 88.6 

million tons of food fish in 2010 (FAO 2012). Wild-caught fish are products of an environment 

that humans cannot control directly, and are subject to changes in predation, food availability, 

seasonal and yearly temperatures and long-term climate change. The recent northeastern Atlantic 

mackerel fishery conflict, colorfully dubbed the ‘‘Mackerel Wars,’’ may provide a preview of 

future conflicts if fisheries resource distributions continue to shift with climate change and 

fisheries management strategies are not altered in response. A recent study by Cheung and 

colleagues (2013) indicated that species catch is strongly correlated with sea surface temperature, 

with mean preferred temperature of exploited species increasing globally by 0.19°C per decade 

since 1970. The stakeholder demand for rapid policy response to such perceived shifts in the 
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distribution of fisheries resources is increasing. However, the data necessary for such decisions 

are largely lacking; in the case of northeastern Atlantic Mackerel, long-term data on migrations 

in disputed areas and perceived changes therein to date do not yet exist (Hannesson 2013).  

 The demand for decision making with incomplete data is a central issue in natural 

resource management. Policymakers demand the most complete data available from researchers, 

but must also move beyond demanding specific, single-issue facts in reaction to specific issues to 

supporting new avenues of scientific inquiry, including the exploration of complex ocean 

systems. This essay examines the history of marine fisheries management in the United States 

from the late 19th century, through the mid-20th century to the present, in order to illustrate the 

benefits of this transition. The factors and processes that produce healthy, productive ocean 

ecosystems and fisheries are complicated. Understanding these systems in a future of increasing 

uncertainty will require cooperation among policymakers and researchers, and must remain a 

priority in order to successfully implement dynamic management strategies that will have the 

potential to adapt to emerging challenges posed by climate change.  

 

Birth of the U.S. Commission of Fish and Fisheries  

 The United States government became interested in management of the nation’s fisheries 

in the late 19th century in response to noticeable declines in the northeastern fishery, the 

country’s primary source of commercial fish (Hobart 1995). Although technological innovations 

in fish harvesting such as trap-nets were suggested as a cause, positive evidence was lacking 

(Baird 1873). Still, several states attempted to outlaw such fishing methods, but the legislation 

foundered, and it was determined that further scientific research into the problem would be 

necessary (Baird 1873). As a result, in 1871, Congress created the U.S. Commission of Fish and 
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Fisheries, originally consisting of one man, Spencer Fullerton Baird (Hobart 1995). Baird’s duty 

was to investigate reports of fisheries declines in the northeastern United States and offer insight 

on possible causes and solutions to this problem (Hobart 1995).  

 Two years later, Baird submitted a report to Congress on his findings (Baird 1873), 

identifying several possible causes for fisheries diminution. Bluefish overpredation was one 

possible culprit—according to one particularly graphic account retold by Baird (1873), 

‘‘Sometimes among a school of herring or menhaden thousands of blue-fish will be seen, biting 

off the tail of one and then another, destroying ten times as many fish as they really need for food, 

and leaving in their track the surface of the water covered with the blood and fragments of the 

mangled fish.’’ Climate variability may have contributed to this phenomenon—bluefish are a 

warm-water species that underwent drastic changes in size and abundance in the Northeast from 

year to year, possibly as a result of variable weather conditions (Baird 1873). Counterintuitive to 

the previous point, several fishermen suggested in Baird’s interviews that cold snaps had proven 

detrimental to populations of several food fish species (Baird 1873). 

 Despite reports of the vagaries of climate variability and voracious predators, the timing 

of fisheries decline suggested that while natural threats to fisheries existed, the heart of the 

problem was overfishing. Decreases in fisheries were first observed in the 1850s and were 

gradual until 1865, when yields began decreasing more sharply, coincident with introduction and 

increasing use of trap- and pound-nets (Baird 1873). Baird concluded that overpredation by 

bluefish and overfishing, in combination, were the main causes of fisheries decline (Baird 1873). 

Since it was undesirable to destroy bluefish to save species they preyed upon (bluefish were a 

valuable food fish in their own right), he concluded that the easiest and most expedient way to 
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preserve northeastern commercial fish populations would be to ban, or at least control, use of 

fish traps (Baird 1873).  

 His recommendation was extremely controversial, owing to vast improvements in catch 

per unit effort and resulting economic benefits from using fish traps (Baird 1873). J. Talbot 

Pitman, a Providence lawyer in favor of banning the traps, attested, ‘‘If, as now alleged, [fish 

are] diminishing gradually from other causes, and will ultimately disappear, because there is a 

tradition that they had once before disappeared, about one hundred years ago, and without any 

known cause . . . let us not hasten the evil day, by reducing their numbers every year while they 

do remain, through means of these traps’’ (Baird 1873). Nathaniel Atwood, fisherman and 

entrepreneur (Del Deo 2010), testified on behalf of fish trappers, making the point that fisheries 

were important resources, and regulation would be detrimental to future economic growth in the 

region (Baird 1873). Furthermore, Atwood presented an anecdotal history of natural declines and 

recoveries in many fish populations of the region that had little, if anything, to do with human 

exploitation, adding, ‘‘it is my candid opinion that man cannot destroy a race of fishes’’ (Baird 

1873).  

 This discourse highlights the struggle of policymakers to balance preservation of natural 

resources with economic growth, confounded by uncertainty as to population structure and the 

role of fluctuations in climate in perceived population declines. From Atwood’s perspective, the 

recent declines in northeastern fisheries were just a small snapshot of a larger cycle of variability, 

and the burden of proof of harm lay with would-be regulators of fish traps. Pitman, on the other 

hand, took a precautionary stance, arguing that previous climate variations did not excuse the 

actions of trap fishermen, and that the burden of proof of benign effect lay with would-be users 

of fish traps. In the end, Congress found Atwood’s arguments more compelling, and used 
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historical variability of fish populations and lack of solid evidence of the harm of fish traps as a 

justification for continuing the unregulated trapping of food fishes (Hobart 1995). This debate 

highlights the reluctance of policymakers at the time to fully acknowledge the complicated 

interplay of factors influencing fisheries’ health. 

 The creation of the U.S. Fish Commission was not only in response to declines in 

northeastern fishery stocks, but also a response to a need for information vital to international 

fishing treaty negotiations. This process began with the signing of the Washington Treaty of 

1871 (Baird 1879), requiring appointment of three fisheries agents: one by the United States, one 

by Great Britain, and one agreed upon by both parties (Hobart 1995). These three agents were to 

convene in Halifax at their earliest convenience to determine equitable coastal fishing rights for 

the United States and the Dominion of Canada (Baird 1879). Baird (1879) attended the Halifax 

Fisheries Commission and reported that testimony of each country’s witnesses was, ‘‘as might be 

imagined, very opposite as to the value of the privileges conceded by the two contracting 

parties.’’ He expressed frustration that the United States was extremely deficient in the necessary 

statistics to state its case compared to Canada, which had a history of making detailed yearly 

reports on all aspects of its fisheries (Baird 1879). Britain’s superior advance knowledge of 

Canadian fisheries conferred political power and economic advantage over valuable oceanic 

resources. The convention found that the United States owed Great Britain more than $5,000,000 

in the day’s currency to make amends for unequal fisheries harvesting (Baird 1879).  

 U.S. Fisheries Commission research programs were expanded rapidly as a result of this 

defeat, but interest in proactive information gathering on wild fish stocks following the Canadian 

model gradually waned. It was not until the 1970s that a renewed interest in fisheries 
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conservation and international resource management efforts brought the need for a shift from 

reactive, decision-maker-driven scientific research to proactive primary research (Hobart 1995). 

 

Modern U.S. National Fisheries Science and Management  

 The late 1960s and early 1970s saw an increase not only in environmental concerns 

(Hobart 1995), but also in researching and developing U.S. marine resources for food and 

resource extraction and protecting U.S. claims on marine territories (Commission on Marine 

Science, Engineering and Resources [CMSER] 1969). This period marked a transition from 

passive, reactionary research on ocean resources to active exploration of the ocean. In 1966, the 

U.S. Commission on Marine Science, Engineering, and Resources was formed to examine the 

frontiers of these interests, and to recommend plans for issues ranging from how to utilize marine 

resources more effectively to how to protect marine environments (CMSER 1969). The efforts of 

this committee were summed up in Our Nation and the Sea: A Plan for National Action, known 

popularly as the Stratton Report, which summarized key issues relating to marine resources and 

made recommendations on how to address them (CMSER 1969).  

 Under recommendation from the Stratton Report, the Bureau of Commercial Fish and 

Fisheries was reorganized and renamed the National Marine Fisheries Service (NMFS) 

(Schoning 1973). The stated purpose of the organization was to develop and protect the nation’s 

fisheries resources:  

The global oceans, which constitute nearly three-fourths of the surface of our 

planet, are today the least-understood, the least-developed, and the least-protected 

parts of our earth. Food from the oceans will increasingly be a key element in the 

world’s fight against hunger. The mineral resources of the ocean beds and of the 
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oceans themselves are being increasingly tapped to meet the growing world 

demand. We must understand the nature of these resources, and assure their 

development without either contaminating the marine environment or upsetting its 

balance. (Schoning 1973, 3–4)  

With this call to action, the NMFS was charged not only with developing a proactive, 

exploratory research plan, but also with understanding the ocean as a system instead of a 

collection of relatively independent parts.  

 In 1976, Congress passed the Fishery Conservation and Management Act of 1976, 

commonly known as the Magnuson–Stevens Act (MSA), which established a legal framework 

for fisheries management in U.S. waters (Hobart 1995). The act instituted enforcement of 

international fishery agreements and established a conservation zone extending 200 miles off 

U.S. shores, within which the United States reserved the right to manage foreign fishing, stating, 

‘‘International fishery agreements have not been effective in preventing or terminating the 

overfishing of these valuable fishery resources’’ (USC 16 §§ 1801–1884 1976). The act broke 

U.S. marine fisheries holdings into eight regions, requiring each region to develop management 

plans for each of its fisheries, and requiring each plan to be based on the best research available 

(USC 16 §§ 1801–1884 1976). However, the MSA did not provide any guidance on how fishery 

research was to be conducted or evaluated, or allow for support of useful extra-agency research 

activities, such as those conducted by academic and nonprofit institutions.  

 Despite the best intentions of the MSA, U.S. fisheries continued to struggle with impacts 

of overfishing. Between 1983 and 1993, cod catches declined by 55%, Yellowtail Flounder by 

83%, and Haddock by 94% (Hennessey and Healey 2000). The year 1996 marked an important 

transition, not just for the MSA and U.S. national fisheries, but also for how the federal 
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government of the United States responded to ecological change: Congress enacted the 

Sustainable Fisheries Act (SFA) to amend the MSA (Hogarth 2003). The SFA added 

requirements that overfished stocks be replenished in less than 10 years and that ecosystem-

based management practices be considered (U.S. Public Law 104-297 1996). Also, a section 

codifying fisheries management and research practices was added, including requirements that 

fisheries observers be trained under the National Sea Grant College program, and that grants be 

awarded to the University of Hawaii to, among other things, conduct scientific research in the 

Pacific Insular Area (U.S. Public Law 104-297 1996). These changes marked a shift toward 

increased cooperation with academic researchers, not only to train government researchers, but 

also to supply primary data to the NMFS. Some positive progress toward fishery recovery has 

been made as a result of changes made by the SFA: As of 2012, 56 of the 75 original stocks 

designated ‘‘overfished’’ are no longer listed as such (NMFS 1997; NMFS 2012).  

 While the SFA did not completely solve overfishing problems in the United States, it 

heralded a new era of commitment to improving scientific understanding of fisheries, including 

effects of environment and overfishing, as well as effects of fisheries on communities. In 2000, 

President Clinton signed the Oceans Act of 2000, which created the U.S. Commission on Ocean 

Policy, a think tank tasked with providing the President and Congress with recommendations on 

how to develop ‘‘a coordinated and comprehensive national ocean policy’’ (Clinton 2000). This 

action carried through to the George W. Bush administration, and led to reauthorization of the 

MSA with even more authority and motivation to protect valuable fisheries resources, as well as 

further plans to include academic institutions in collaborative fishery research (U.S. Public Law 

109-479 2007).  
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 U.S. ocean policy continues to evolve, and progress is still being made. In July 2010, 

President Obama issued an executive order creating a national ocean policy for the United States 

and the National Ocean Council, a cooperative body charged with the task of translating that 

policy into action (Obama 2010). In the spring of 2013, the National Ocean Council published its 

recommendations, which included plans for federal and nongovernmental participation in ocean 

research, maintaining and expanding infrastructure for data management and research, and 

managing an interface between science and decision making (National Ocean Council 2013). 

Most importantly, the policy implementation plan recognizes the need for thorough information 

gathering, as well as collaborative input from scientists and stakeholders, in order to develop 

sound fisheries management policies (National Ocean Council 2013).  

 

Conclusion  

 In a time when climate change is drastically altering the distribution patterns of the 

world’s fishes, it is vital that proactive, cooperative fisheries research remain a priority for all 

nations. Policymakers must shift their approach to scientific research from consuming raw data 

on single issues to promoting proactive, cooperative exploration of complex systems. With 

policy based on solid, holistic scientific understanding of ocean systems, it will be possible to 

develop dynamic management strategies with potential to adapt to emerging challenges posed by 

climate change. Only then will truly sustainable international fisheries management be possible, 

and future conflicts over resources be avoided.  
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Appendix I  

Detailed phylogenetic methods from (Chapter 2; Owens 2015) 
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Gene sequencing 

PCR reactions for 12S, CYTB and ZIC1 consisted of 1µL extract, 1.5 µL TAQ buffer, 0.125 µL 

TAQ, 0.75 µL dNTP and MgCl2, 0.25µL forward and reverse primers, and dH2O, to a final 

volume of 13 µL. For RAG1, reactions consisted of 5 µL extract, 1.25 µL forward and reverse 

primers, one PuReTaq Ready-To-Go™ PCR Bead (GE Healthcare Bio-Sciences, Pittsburgh, PA, 

USA), and 17.5 µL dH2O, for a final volume of 25 µL. RAG1 was amplified using a custom PCR 

profile, beginning with an initial cycle of 180 s at 94 °C, followed by 10 cycles of 45 s at 94 °C, 

45 s at 52 °C, and 75 s at 72 °C, followed by 30 cycles of 45 s at 94 °C, 45 s at 47 °C, and 75 s at 

72 °C, with a final extension of 7 min at 72 °C. PCR bands were visualized on 1% low melting-

point agar gels, and PCR products were purified with QIAquick PCR purification kits (Qiagen, 

Valencia, CA, USA). DNA sequencing was done using an ABI BigDye Terminator ver. 3.1 

cycle sequencing kit (Perkin Elmer, Waltham, MA, USA) for dye-terminator chemistry 

following manufacturer’s instructions. Cycle-sequencing reactions were precipitated in 75% 

solution of ethanol following ABI protocol. Dried cycle-sequencing reactions were resuspended 

and electrophoresed on an AB 3730 Genetic Analyzer (Applied Biosystems, Grand Island, NY, 

USA). Both strands were sequenced to verify accuracy of sequences. 

 

Phylogenetic inference	
  

The Akaike information criterion (AIC) as implemented in JMODELTEST 2.1 (Posada & Crandall, 

1998) was used to determine appropriate data partitioning and model selection for phylogenetic 

inference. Nine data partitions were tested, and those with the simplest model of evolution were 

used to conduct several preliminary BEAST analyses (Appendix S1: Table S3). Analyses failed to 

converge after 5 million generations due to CG and GT transversions in 12S and AT 
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transversions in RAG1 position 3 as indicated by TRACER 1.5 (http://beast.bio.ed.ac.uk/tracer). 

As such, simpler models were used in final BEAST analysis. The standard deviation of the RAG1 

uncorrelated lognormal clock model in preliminary BEAST analysis included 0, so a strict clock 

model was applied in the final analyses of that gene. 

 For final BEAST analyses, two independent runs of 106 generations were conducted, and 

the resulting tree and log files for each run were combined using LOGCOMBINER 1.6.1 

(http://beast.bio.ed.ac.uk/logcombiner). Convergence of model parameter values was assessed by 

examination of convergence and likelihood stationarity in TRACER 1.5 from combined posterior 

samples to ensure adequate mixing of the Markov chain Monte Carlo (MCMC). A cutoff of 20% 

was used for the burn-in. The posterior probability density of the combined tree and log files was 

summarized as a maximum clade credibility tree using TREEANNOTATOR 1.6.1 

(http://beast.bio.ed.ac.uk/TreeAnnotator).  
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Appendix II 

Supplementary tables from (Chapter 2; Owens 2015) 
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Appendix II.A Genetic resources used in analysis. Bold voucher numbers indicate tissues sequenced in 
this study.  

Species Voucher number Sample number 12S CYTB ZIC1 RAG1 

Arctogadus glacialis ZMUC P375407  KP644355 KP644321 KP644377  

 ZMUC P375424  KP644354    

Boreogadus saida ZMUC P375316  KP644366 KP644323 KP644375  

 ZMUC P375149  KP644367 KP644322   

Eleginus gracilis No voucher   AB078150   

 UW 44916     FJ215236 

Gadus chalcogrammus KU 28401 KU 2067 KP644356 KP644332 KP644379 KP644396 

 KU 28196 KU 3212 KP644357 KP644331   

 UW 47697     FJ215294 

Gadus macrocephalus KU 28470 KU 3234 KP644362 KP644335   

 KU 28473 KU 3250 KP644363 KP644338   

 UW 47711     FJ215241  

Gadus morhua MCZ 155780 KU 2937 KP644360 KP644333 KP644382 KP644390 

 No voucher KU 3776 KP644361 KP644334 KP644384  

Gadus ogac ZMUC P374606  KP644358 KP644336 KP644374  

 ZMUS P375315  KP644359 KP644337 KP644386  

Gaidropsarus ensis ZMUC P375409  KP644342  KP644388 KP644391 

 No voucher   DQ174049   

Lota lota ZMUC P375475  KP644347 KP644340 KP644373 KP644392 

Melanogrammus aeglefinus MCZ 155777 KU 2939 KP644364 KP644328 KP644371  

 No voucher KU 3773 KP644365 KP644327 KP644383  

 No voucher     FJ215262 

Merlangius merlangus No voucher KU 3774 KP644353 KP644320 KP644372 KP644393 

Microgadus proximus KU 23722 KU 9491 KP644370  KP644387  

 KU 23722 KU 824 KP644369    

 No voucher   DQ365944   

 UW 74300     FJ215274 

Microgadus tomcod KU 34104 KU 5884 KP644368 KP644319 KP644380  

Micromesistius poutassou No voucher KU 3777 KP644348 KP644326 KP644385  

Molva molva ZMUC P373715     KP644394 

 ZMUC P374175  KP644346 KP644341 KP644389  

Pollachius pollachius ZMUC P375896  KP644352 KP644324 KP644378  
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 ZMUC P375793  KP644351 KP644325   

Pollachius virens KU 28071 KU 359    KP644395 

 KU 28071 KU 9105 KP644350 KP644330 KP644376  

 No voucher KU 3779 KP644349 KP644329   

Trisopterus esmarkii ZMUC P375906  KP644344    

 MNHN 2005.1674   EU492145   

Trisopterus luscus ZMUC P375806  KP644343    

 MNHN 2005.1677   EU492067   

Trisopterus minutus ZMUC P373712  KP644345 KP644339 KP644381  
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Appendix II.B. Modeltest results and evolutionary models used in analysis. 

Gene Partition AICc BIC 
Model 
used Clock Notes 

12S 123pos GTR+I+G GTR+I+G HKY+I+G UCLN poor convergence under GTR (CG and GT 
transversions) 

       

CYTB 1pos GTR+I+G K80+G    
CYTB 2pos GTR+I F81    
CYTB 12pos HKY+I+G HKY+I+G HKY+G UCLN  
CYTB 3pos GTR+I+G HKY+G HKY+G UCLN  
       

ZIC1 12pos GTR JC HKY UCLN  
ZIC1 3pos HKY HKY HKY UCLN  
       

RAG1 12pos GTR+G HKY+I HKY Strict  
RAG1 3pos GTR+I GTR HKY Strict poor convergence under GTR (AT transversion), 

UCLN StDev includes 0, justifying use of strict clock 

	
  

AICc, Akaike information criterion corrected for small sample size; BIC, Bayesian information criterion, 
UCLN, uncorrelated lognormal.
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Appendix II.C. Sources of raw occurrence data with numbers of records. Natural History Museum, 
London (NHMUK), Zoological Institute at the Russian Academy of Sciences (ZIN), Global Biodiversity 
Information Facility (GBIF), and Ocean Biogeographic Information System (OBIS).  

 Source 
Species GBIF OBIS NHMUK ZIN 

Arctogadus glacialis 147 297  18 
Boreogadus saida 6510 18301 12 170 
Eleginus gracilis 489 493  9 
Gadus chalcogrammus 30589 16686 4 20 
Gadus macrocephalus 15292 19128 4 4 
Gadus morhua 76230 743857 4 36 
Gadus ogac 3245 615 1 5 
Melanogrammus aeglefinus 25934 486259 15 9 
Merlangius merlangius 12438 687911 20 12 
Microgadus proximus 172 449   
Microgadus tomcod 369 1980  1 
Micromesistius poutassou 654 45968 11  
Pollachius pollachius 9377 5708 1  
Pollachius virens 21814 79790  4 
Trisopterus esmarkii 823 136361 5 2 
Trisopterus luscus 4996 21570 14  
Trisopterus minutus 3560 98699 22  



 86 

Appendix II.D. Range coding for biogeographical range analysis. 

	
  
 Western 

Atlantic (W)	
  
Eastern 
Atlantic (E)	
   Arctic (A)	
   Pacific (P)	
  

Arctogadus glacialis	
   0	
   0	
   1	
   0	
  
Boreogadus saida	
   0	
   0	
   1	
   0	
  
Gadus macrocephalus	
   0	
   0	
   0	
   1	
  
Gadus ogac	
   1	
   0	
   0	
   0	
  
Gadus morhua	
   1	
   1	
   0	
   0	
  
Theragra chalcogramma	
   0	
   0	
   0	
   1	
  
Pollachius pollachius	
   0	
   1	
   0	
   0	
  
Pollachius virens	
   1	
   1	
   0	
   0	
  
Melanogrammus aeglefinus	
   1	
   1	
   0	
   0	
  
Micromesistius poutassou	
   1	
   1	
   0	
   0	
  
Merlangius merlangus	
   0	
   1	
   0	
   0	
  
Eleginus gracilis	
   0	
   0	
   0	
   1	
  
Microgadus proximus	
   0	
   0	
   0	
   1	
  
Microgadus tomcod	
   1	
   0	
   0	
   0	
  
Trisopterus esmarkii	
   0	
   1	
   0	
   0	
  
Trisopterus minutus	
   0	
   1	
   0	
   0	
  
Trisopterus luscus	
   0	
   1	
   0	
   0	
  

 

  



 87 

Appendix III 

Supplementary figures from (Chapter 2; Owens 2015) 
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Appendix III.B Biogeographical range reconstructions under alternate models of dispersal, 
extinction and cladogenesis with unconstrained dispersal. 
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Appendix IV 

Supplementary figures from (Chapter 3) 
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Appendix IV.A. Modeled suitable habitat extent for GCM and observation-calibrated ecological 
niche models of Eleginus gracilis, Merlangius merlangus, Microgadus proximus, Microgadus tomcod, 
Pollachius pollachius, Pollachius virens, and Trisopterus minutus through time. Colored area in the 
present denotes the calibration region; white areas are outside calibration regions. Future time slices are 
projected across the Northern Hemisphere to allow estimation of potential range expansions. 
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Appendix V  

R code for comparison statistics from (Chapter 3) 
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library(gtools); 
library(raster); 
library(sfsmisc); 
library(RColorBrewer); 
 
################################################# 
# Threshold raw niche models to 95% training presence       # 
################################################# 
 
#Get observation medians 
setwd("~/Desktop/NCAR_Paper/CCSM4/PresentObservation/Medians/") 
obsList <- list.files(pattern="*.asc") 
rastObsList <- vector("list", length(obsList)); 
count <- 1; 
while (count <= length(obsList)){ 
  rastObsList[[count]] <- raster(obsList[[count]]); 
  count <- count + 1; 
} 
 
#Get model medians 
setwd("~/Desktop/NCAR_Paper/CCSM4/PresentModel/Medians/") 
modList <- list.files(pattern="*.asc") 
rastModList <- vector("list", length(modList)); 
count <- 1; 
while (count <= length(modList)){ 
  rastModList[[count]] <- raster(modList[[count]]); 
  count <- count + 1; 
} 
rm(modList, obsList) 
 
#Get 95% threshholds 
##Get point data 
setwd("~/Desktop/NCAR_Paper/CCSM4/Localities/"); 
fileList <- list.files(pattern="*.csv"); 
pointDataList <- vector("list", length(fileList)); 
count <- 1; 
while (count <= length(fileList)){ 
  pointDataList[[count]] <- read.csv(fileList[[count]]); 
  count <- count + 1; 
} 
 
modPointData <- pointDataList 
obsPointData <- pointDataList 
rm(pointDataList) 
 
#Get 95% suitability values 
threshObsList <- vector("list", length(obsPointData)) 
threshObsValues <- vector("list", length(obsPointData)) 
count <- 1 
while (count <= length(obsPointData)){ 
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  threshObsList[[count]] <- cbind(obsPointData[[count]][,2:3], extract(rastObsList[[count]], 
obsPointData[[count]][,2:3])) 
  colnames(threshObsList[[count]]) <- c("Longitude", "Latitude", "SuitabilityValue") 
  threshObsList[[count]] <- threshObsList[[count]][order(threshObsList[[count]]$SuitabilityValue, 
na.last=NA, decreasing = T),] 
  threshObsList[[count]] <- 
threshObsList[[count]][1:as.integer(length(threshObsList[[count]]$Longitude)*.95),] 
  threshObsValues[[count]] <- min(threshObsList[[count]]$SuitabilityValue) 
  count <- count + 1 
} 
 
threshModList <- vector("list", length(modPointData)) 
threshModValues <- vector("list", length(modPointData)) 
count <- 1 
while (count <= length(modPointData)){ 
  threshModList[[count]] <- cbind(modPointData[[count]][,2:3], extract(rastModList[[count]], 
modPointData[[count]][,2:3])) 
  colnames(threshModList[[count]]) <- c("Longitude", "Latitude", "SuitabilityValue") 
  threshModList[[count]] <- threshModList[[count]][order(threshModList[[count]]$SuitabilityValue, 
na.last=NA, decreasing = T),] 
  threshModList[[count]] <- 
threshModList[[count]][1:as.integer(length(threshModList[[count]]$Longitude)*.95),] 
  threshModValues[[count]] <- min(threshModList[[count]]$SuitabilityValue) 
  count <- count + 1 
} 
 
#Reclassify suitability surfaces 
reclassifiedObsRasters <- vector("list", length(obsPointData)) 
count <- 1 
while (count <= length(obsPointData)){ 
  reclass <- c(-Inf, threshObsValues[[count]]*.999, 0, threshObsValues[[count]]*.999, Inf, 1) 
  reclassMatrix <- matrix(reclass, ncol=3, byrow=TRUE) 
  reclassifiedObsRasters[[count]] <- reclassify(rastObsList[[count]], reclassMatrix, NAflag = -9999) 
  count <- count + 1 
} 
rm(reclass, reclassMatrix, rastObsList, threshObsList, obsPointData, threshObsValues) 
 
#Reclassify suitability surfaces 
reclassifiedModRasters <- vector("list", length(modPointData)) 
count <- 1 
while (count <= length(modPointData)){ 
  reclass <- c(-Inf, threshModValues[[count]]*.999, 0, threshModValues[[count]]*.999, Inf, 1) 
  reclassMatrix <- matrix(reclass, ncol=3, byrow=TRUE) 
  reclassifiedModRasters[[count]] <- reclassify(rastModList[[count]], reclassMatrix, NAflag = -9999) 
  count <- count + 1 
} 
rm(reclass, reclassMatrix, rastModList, threshModList, modPointData, threshModValues) 
 
#Trim both to M 
setwd("~/Desktop/NCAR_Paper/CCSM4/CodMs/ASCIIs/"); 
mList <- list.files(pattern="*.asc"); 
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maskedModRasters <- vector("list", length(reclassifiedModRasters)) 
maskedObsRasters <- vector("list", length(reclassifiedObsRasters)) 
count <- 1 
while(count <= length(mList)){ 
  setwd("~/Desktop/NCAR_Paper/CCSM4/CodMs/ASCIIs/"); 
  #Get mask layers 
  maskRast <- raster(x = mList[[count]]) 
  #Get total extent 
  uext <- extent(c(-180, 180, 0, 90)) 
  xext <- extent(maskRast) 
  uext <- union(uext, xext) 
  # Global Area empty rasterLayer 
  rt <- raster(uext) 
  res(rt) <- 1 
  rt[] <- NA 
  # Merge each rasterLayer to Global Extent area 
  maskRast <- merge(maskRast, rt,  tolerance = 1e+6) 
  setwd("~/Desktop/NCAR_Paper/CCSM4/95_Threshholds/") 
  maskedModRasters[[count]] <- mask(x = reclassifiedModRasters[[count]], maskRast) 
  writeRaster(maskedModRasters[[count]], filename = paste(unlist(strsplit(fileList[count], split = 
"[.]csv")), "_95Reclass_Mod", sep = ""), format = "ascii", overwrite = T) 
  maskedObsRasters[[count]] <- mask(x = reclassifiedObsRasters[[count]], maskRast) 
  writeRaster(maskedObsRasters[[count]], filename = paste(unlist(strsplit(fileList[count], split = "[.]csv")), 
"_95Reclass_Obs", sep = ""), format = "ascii", overwrite = T) 
  count <- count + 1 
} 
rm(maskRast, uext, xext, rt, count) 
 
################################################# 
# Make prediction error map                                                  # 
################################################# 
 
#Reclass masked rasters to show map of error 
errorReclass <- vector("list", length(maskedModRasters)) 
count <- 1 
while (count <= length(errorReclass)){ 
  errorReclass[[count]] <- maskedObsRasters[[count]] + maskedModRasters[[count]] 
  reclass <- c(-Inf, .999, 0, .999, 1.5, 1, 1.6, Inf, 0) 
  reclassMatrix <- matrix(reclass, ncol=3, byrow=TRUE) 
  errorReclass[[count]] <- reclassify(errorReclass[[count]], reclassMatrix, NAflag = -9999) 
  errorReclass[[count]][is.na(errorReclass[[count]])] <- 0 
  count <- count + 1 
} 
 
sumOfErrorReclass <- errorReclass[[1]] + errorReclass[[2]] + errorReclass[[3]] + errorReclass[[4]] + 
errorReclass[[5]] + errorReclass[[6]] + errorReclass[[7]] + errorReclass[[8]] + errorReclass[[9]] + 
errorReclass[[10]] + errorReclass[[11]] + errorReclass[[12]] + errorReclass[[13]] + errorReclass[[14]] + 
errorReclass[[15]] 
 
#Reclass masked rasters to show map of Ms to make maps of correct and incorrect predictions 
MReclass <- vector("list", length(maskedModRasters)) 
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count <- 1 
while (count <= length(MReclass)){ 
  MReclass[[count]] <- maskedObsRasters[[count]] + maskedModRasters[[count]] 
  reclass <- c(-Inf, .999, 1, .999, 1.5, 1, 1.6, Inf, 1) 
  reclassMatrix <- matrix(reclass, ncol=3, byrow=TRUE) 
  MReclass[[count]] <- reclassify(MReclass[[count]], reclassMatrix, NAflag = -9999) 
  MReclass[[count]][is.na(MReclass[[count]])] <- 0 
  count <- count + 1 
} 
 
sumOfMReclass <- MReclass[[1]] + MReclass[[2]] + MReclass[[3]] + MReclass[[4]] + MReclass[[5]] + 
MReclass[[6]] + MReclass[[7]] + MReclass[[8]] + MReclass[[9]] + MReclass[[10]] + MReclass[[11]] + 
MReclass[[12]] + MReclass[[13]] + MReclass[[14]] + MReclass[[15]] 
 
#Plot the % correct and % incorrect 
plot(sumOfErrorReclass/sumOfMReclass, col = rev(brewer.pal(11, "RdYlBu")), main = "Percent of 
Erroneous Predicitons") 
 
#################################################### 
# Calculate Cohen's Kappa for species predictions                      # 
#################################################### 
 
#Get cross tabulations for each species 
crossTabList <- vector("list", length(maskedModRasters)) 
count <- 1 
while (count <= length(crossTabList)){ 
  crossTabList[[count]] <- crosstab(maskedObsRasters[[count]], maskedModRasters[[count]]) 
  crossTabList[[count]] <- crossTabList[[count]][complete.cases(crossTabList[[count]]),] 
  colnames(crossTabList[[count]]) <- c("Obs", "Mod", "Frequency") 
  count <- count + 1 
} 
 
#Get measurements from cross tabulations 
sumCells <- vector("list", length(crossTabList)) 
obsAgreement <- vector("list", length(crossTabList)) 
predPosObs <- vector("list", length(crossTabList)) 
predPosMod <- vector("list", length(crossTabList)) 
probAgreement <- vector("list", length(crossTabList)) 
sensitivity <-  vector("list", length(crossTabList)) 
specificity <-  vector("list", length(crossTabList)) 
kappaList <- vector("list", length(crossTabList)) 
count <- 1 
while ( count <= length(crossTabList)){ 
  sumCells[[count]] <- sum(crossTabList[[count]][,3]) 
  obsAgreement[[count]] <- (crossTabList[[count]][1,3] + crossTabList[[count]][4,3])/sumCells[[count]] 
  predPosObs[[count]] <- (crossTabList[[count]][2,3] + crossTabList[[count]][4,3])/sumCells[[count]] 
  predPosMod[[count]] <- (crossTabList[[count]][3,3] + crossTabList[[count]][4,3])/sumCells[[count]] 
  probAgreement[[count]] <- (predPosObs[[count]]*predPosMod[[count]])+((1-predPosObs[[count]])*(1-
predPosMod[[count]])) 
  sensitivity[[count]] <- 
crossTabList[[count]][4,3]/(crossTabList[[count]][3,3]+crossTabList[[count]][4,3]) 
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  specificity[[count]] <- crossTabList[[count]][1,3] / (crossTabList[[count]][1,3] + 
crossTabList[[count]][2,3]) 
  kappaList[[count]] <- (obsAgreement[[count]]-probAgreement[[count]])/(1-probAgreement[[count]]) 
  count <- count + 1 
} 
 
statTable <- cbind(unlist(strsplit(mList, split = "[.]asc")), sensitivity, specificity, kappaList) 
write.csv(statTable, "~/Desktop/NCAR_Paper/CCSM4/StatTablePresent.csv") 
writeRaster(sumOfCorrectReclass/sumOfMReclass, 
"~/Desktop/NCAR_Paper/CCSM4/sumOfCorrectPredictionsPresent.asc", format = "ascii", overwrite = 
T) 
writeRaster(sumOfErrorReclass/sumOfMReclass, 
"~/Desktop/NCAR_Paper/CCSM4/sumOfErroneousPredictionsPresent.asc", format = "ascii",  overwrite 
= T) 
 
################################################# 
# Calculate change statistics for each species                        # 
################################################# 
 
#Get present 
setwd(dir = "~/Desktop/NCAR_Paper/CCSM4/95_Threshholds/") 
fileNames <- list.files(pattern="*.asc") 
presObs <- vector("list", length(fileNames)/2); 
presMod <- vector("list", length(fileNames)/2); 
count <- 1; 
while (count <= length(fileNames)){ 
  if (odd(count)){ 
    countAdj <- count %/% 2 + 1 
    plot(raster(fileNames[[count]], crs = "+proj=longlat +datum=WGS84"), main = 
paste(fileNames[[count]], count, "Mod")) 
    presMod[[countAdj]] <- raster(fileNames[[count]], crs = "+proj=longlat +datum=WGS84");  
  } else { 
    countAdj <- count / 2 
    plot(raster(fileNames[[count]], crs = "+proj=longlat +datum=WGS84"), main = 
paste(fileNames[[count]], count, "Obs")) 
    presObs[[countAdj]] <- raster(fileNames[[count]], crs = "+proj=longlat +datum=WGS84")}; 
  count <- count + 1; 
} 
 
#Get 2055 
setwd(dir = "~/Desktop/NCAR_Paper/CCSM4/rcp8_5Projection/2055/95_Threshholds/") 
fileNames <- list.files(pattern="*.asc") 
Obs2055 <- vector("list", length(fileNames)/2); 
Mod2055 <- vector("list", length(fileNames)/2); 
count <- 1; 
while (count <= length(fileNames)){ 
  if (odd(count)){ 
    countAdj <- count %/% 2 + 1 
    print(paste(fileNames[[count]], count, "Mod")) 
    Mod2055[[countAdj]] <- raster(fileNames[[count]], crs = "+proj=longlat +datum=WGS84");  
  } else { 
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    countAdj <- count / 2 
    Obs2055[[countAdj]] <- raster(fileNames[[count]], crs = "+proj=longlat +datum=WGS84")}; 
  count <- count + 1; 
} 
 
#Get 2100 
setwd(dir = "~/Desktop/NCAR_Paper/CCSM4/rcp8_5Projection/2100/95_Threshholds/") 
fileNames <- list.files(pattern="*.asc") 
Obs2100 <- vector("list", length(fileNames)/2); 
Mod2100 <- vector("list", length(fileNames)/2); 
count <- 1; 
while (count <= length(fileNames)){ 
  if (odd(count)){ 
    countAdj <- count %/% 2 + 1 
    print(paste(fileNames[[count]], count, "Mod"))  
    Mod2100[[countAdj]] <- raster(fileNames[[count]], crs = "+proj=longlat +datum=WGS84");  
  } else { 
    countAdj <- count / 2 
    Obs2100[[countAdj]] <- raster(fileNames[[count]], crs = "+proj=longlat +datum=WGS84")}; 
  count <- count + 1; 
} 
 
#Calculate area of each extent 
setwd("~/Desktop/NCAR_Paper/CCSM4/Localities/"); 
fileNames <- list.files(pattern="*.csv"); 
 
modPresArea <- vector("list", length(fileNames)); 
obsPresArea <- vector("list", length(fileNames)); 
mod2055Area <- vector("list", length(fileNames)); 
obs2055Area <- vector("list", length(fileNames)); 
mod2100Area <- vector("list", length(fileNames)); 
obs2100Area <- vector("list", length(fileNames)); 
count <- 1 
while (count <= length(fileNames)){ 
  obsPresArea[[count]] <- cellStats(area(presObs[[count]]) * presObs[[count]], sum); 
  modPresArea[[count]] <- cellStats(area(presMod[[count]]) * presMod[[count]], sum); 
  mod2055Area[[count]] <- cellStats(area(Mod2055[[count]]) * Mod2055[[count]], sum); 
  obs2055Area[[count]] <- cellStats(area(Obs2055[[count]]) * Obs2055[[count]], sum); 
  mod2100Area[[count]] <- cellStats(area(Mod2100[[count]]) * Mod2100[[count]], sum); 
  obs2100Area[[count]] <- cellStats(area(Obs2100[[count]]) * Obs2100[[count]], sum); 
  count <- count + 1; 
} 
 
#Calculate mean latitudinal change 
modPresMeanLat <- vector("list", length(fileNames)); 
obsPresMeanLat <- vector("list", length(fileNames)); 
mod2055MeanLat <- vector("list", length(fileNames)); 
obs2055MeanLat <- vector("list", length(fileNames)); 
mod2100MeanLat <- vector("list", length(fileNames)); 
obs2100MeanLat <- vector("list", length(fileNames)); 
count <- 1 
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while (count <= length(fileNames)){ 
  obsPresMeanLat[[count]] <- mean(unique(rasterToPoints(presObs[[count]], 
fun=function(x){x==1})[,2])); 
  modPresMeanLat[[count]] <- mean(unique(rasterToPoints(presMod[[count]], 
fun=function(x){x==1})[,2])); 
  obs2055MeanLat[[count]] <- mean(unique(rasterToPoints(Obs2055[[count]], 
fun=function(x){x==5})[,2])); 
  mod2055MeanLat[[count]] <- mean(unique(rasterToPoints(Mod2055[[count]], 
fun=function(x){x==1})[,2])); 
  obs2100MeanLat[[count]] <- mean(unique(rasterToPoints(Obs2100[[count]], 
fun=function(x){x==5})[,2])); 
  mod2100MeanLat[[count]] <- mean(unique(rasterToPoints(Mod2100[[count]], 
fun=function(x){x==1})[,2])); 
  count <- count + 1; 
} 
 
changeTable <- cbind(strsplit(fileNames,split = ".csv"), obsPresArea, modPresArea, obs2055Area, 
mod2055Area, obs2100Area, mod2100Area, obsPresMeanLat, modPresMeanLat, obs2055MeanLat, 
mod2055MeanLat, obs2100MeanLat, mod2100MeanLat) 
rm(obsPresArea, modPresArea, obs2055Area, mod2055Area, obs2100Area, mod2100Area, 
obsPresMeanLat, modPresMeanLat, obs2055MeanLat, mod2055MeanLat, obs2100MeanLat, 
mod2100MeanLat) 
changeTable <- matrix(unlist(changeTable), ncol = 13, byrow = F) 
colnames(changeTable) <- c("Species", "Obs Area Present", "Mod Area Present", "Obs Area 2055", 
"Mod Area 2055", "Obs Area 2100", "Mod Area 2100", "Obs Lat Present", "Mod Lat Present", "Obs Lat 
2055", "Mod Lat 2055", "Obs Lat 2100", "Mod Lat 2100"); 
 
write.csv(changeTable, "~/Desktop/NCAR_Paper/CCSM4/HistogramTable.csv", row.names = F); 
changeTable <- read.csv("~/Desktop/NCAR_Paper/CCSM4/HistogramTable.csv"); 
 
setwd(dir = "~/Desktop/NCAR_Paper/CCSM4/PredictedDistributions/") 
reclassifiedObsPres <- vector("list", length(fileNames)); 
count <- 1 
while (count <= length(fileNames)){ 
  reclass <- c(-Inf, 0, 0, 0.1, Inf, 5) 
  reclassMatrix <- matrix(reclass, ncol=3, byrow=TRUE) 
  reclassifiedObsPres[[count]] <- reclassify(presObs[[count]], reclassMatrix, NAflag = -9999) 
  writeRaster((reclassifiedObsPres[[count]] + presMod[[count]]), filename = 
paste(unlist(strsplit(fileNames[count], split = "[.]csv")), "_Present", sep = ""), format = "ascii", overwrite 
= T); 
  writeRaster((Obs2055[[count]] + Mod2055[[count]]), filename = paste(unlist(strsplit(fileNames[count], 
split = "[.]csv")), "_2055", sep = ""), format = "ascii", overwrite = T); 
  writeRaster((Obs2100[[count]] + Mod2100[[count]]), filename = paste(unlist(strsplit(fileNames[count], 
split = "[.]csv")), "_2100", sep = ""), format = "ascii", overwrite = T); 
  count <- count +1 
} 
 
################################################# 
# Wilcoxon Rank Sum test                                                     # 
################################################# 
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#Get observation data 
setwd("~/Desktop/NCAR_Paper/CCSM4/PublicationFolder/VariableComparison/Observation/"); 
names <- list.files(pattern="*.asc"); 
observations <- vector("list", length(names)); 
count <- 1; 
while (count <= length(names)){ 
  observations[[count]] <- raster(names[[count]]); 
  count <- count + 1; 
} 
 
#Get model data 
setwd("~/Desktop/NCAR_Paper/CCSM4/PublicationFolder/VariableComparison/Model/"); 
names <- list.files(pattern="*.asc"); 
model <- vector("list", length(names)); 
count <- 1; 
while (count <= length(names)){ 
  model[[count]] <- raster(names[[count]]); 
  count <- count + 1; 
} 
 
#Make a sampling grid 
samplingGrid <- rasterToPoints(x = model[[1]]); 
 
#Get data 
dataMatrix <- matrix(data=NA, nrow = nrow(samplingGrid), ncol= 12); 
dataMatrix[,1:2] <- samplingGrid[,1:2] 
 
obsExtractList <- vector("list", length(names)); 
modelExtractList <- vector("list", length(names)); 
count <- 1 
while (count <= length(names)){ 
  obsExtractList[[count]] <- extract(observations[[count]], samplingGrid[,1:2]) 
  modelExtractList[[count]] <- extract(model[[count]], samplingGrid[,1:2]) 
  count <- count + 1; 
} 
 
dataMatrix[,3:12] <- cbind(obsExtractList[[1]], modelExtractList[[1]], obsExtractList[[2]], 
modelExtractList[[2]], obsExtractList[[3]], modelExtractList[[3]], obsExtractList[[4]], 
modelExtractList[[4]], obsExtractList[[5]], modelExtractList[[5]]) 
 
colnames(dataMatrix) <- c(colnames(samplingGrid)[1:2], "etopoObs", "etopoMod", "isMaxObs", 
"isMaxMod", "isMinObs", "isMinMod", "ssMeanObs", "ssMeanMod", "tsMeanObs", "tsMeanMod") 
 
#Do test of variable importance 
etopo <- wilcox.test(dataMatrix[,3], dataMatrix[,4], paired = T, na.action = "omit")#sanity 
isMax <- wilcox.test(dataMatrix[,5], dataMatrix[,6], paired = T, na.action = "omit") 
isMin <- wilcox.test(dataMatrix[,7], dataMatrix[,8], paired = T, na.action = "omit") 
ssMean <- wilcox.test(dataMatrix[,9], dataMatrix[,10], paired = T, na.action = "omit") 
tsMean <- wilcox.test(dataMatrix[,11], dataMatrix[,12], paired = T, na.action = "omit") 
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sumTable <- cbind(c("etopo", "isMax", "isMin", "ssMean", "tsMean"), c(etopo$p.value, isMax$p.value, 
isMin$p.value, ssMean$p.value, tsMean$p.value)) 


