
MIBEN: Robust Multiple Imputation with the Bayesian
Elastic Net

By

Kyle M. Lang

Submitted to the Department of Psychology and the
Graduate Faculty of the University of Kansas

in partial fulVllment of the requirements for the degree of
Doctor of Philosophy

Committee members

Wei Wu, Chairperson

Pascal Deboeck

Carol Woods

Paul Johnson

William Skorupski

Date defended: May 8, 2015

The Dissertation Committee for Kyle M. Lang certiVes
that this is the approved version of the following dissertation :

MIBEN: Robust Multiple Imputation with the Bayesian Elastic Net

Wei Wu, Chairperson

Date approved: May 8, 2015

ii

Abstract

Correctly specifying the imputation model when conducting multiple imputation

remains one of the most signiVcant challenges in missing data analysis. This disser-

tation introduces a robust multiple imputation technique, Multiple Imputation with

the Bayesian Elastic Net (MIBEN), as a remedy for this diXculty. A Monte Carlo sim-

ulation study was conducted to assess the performance of the MIBEN technique and

compare it to several state-of-the-art multiple imputation methods.

iii

Acknowledgements

I would Vrst like to thank my Ph.D. Advisor, Dr. Wei Wu, who has been a steadfast

source of support, mentorship, and sage advice throughout my graduate training. I

would also like to thank the other members of my dissertation committee, Drs. Carol

Woods, Pascal Deboeck, Billy Skorupski, Paul Johnson, and Vince Staggs, for their

very helpful suggestions during the development of this project. I wish to thank Dr.

Vince Staggs, in particular, for the gracious accommodations that he made to facil-

itate the defense of this dissertation’s proposal. I would like to thank my beloved

wife, Dr. Eriko Fukuda, whose unyielding love and support has made this disserta-

tion possible. Without you by my side, Eriko, it is very unlikely that I would have

had the fortitude to see my graduate training to its end. I thank my parents, Scott

and Lori Lang, my grandmother, Beverly Bareiss, and my siblings, Anthony, Dalton,

and Maggie Lang, for continually acting as my immutable champions—regardless

of the outcome of any academic pursuit. I must thank Anthony, additionally, for

his patient and thoughtful programming advice which helped me immensely while

writing the Gibbs sampler underlying theMIBENmethod. Finally, I wish to acknowl-

edge the continual contribution of all of my colleagues in the University of Kansas

Quantitative Psychology Program. Working in such an intellectually stimulating

environment has undoubtedly improved the quality of this project. In particular, I

wish to highlight the contributions of Jared Harpole, Terry Jorgenson, and Mauri-

cio Garnier-Villarreal who have each had a very direct impact of the outcome of

this project through our many stimulating discussions of Bayesian statistics, missing

data analysis, and computational methods.

iv

Contents

1 Introduction & Literature Review 1

1.1 Notational & Typographical Conventions . 5

1.2 Regularized Regression Models . 6

1.2.1 Ridge Regression . 7

1.2.2 The LASSO . 9

1.2.3 The Elastic Net . 10

1.3 Bayesian Model Regularization . 11

1.3.1 Bayesian Ridge & LASSO . 11

1.3.2 Bayesian Elastic Net . 12

1.3.2.1 Implementation of the Bayesian Elastic Net 12

1.3.2.2 Performance of the Bayesian Elastic Net 16

1.4 Model Regularization for Missing Data Analysis 17

1.5 Multiple Imputation with the Bayesian Elastic Net 19

1.5.1 Assumptions of the MIBEN Algorithm . 20

1.6 SpeciVcation of the MIBEN Algorithm . 21

1.7 Hypotheses . 27

2 Methods 30

2.1 Experimental Design . 30

2.1.1 Simulation Parameters . 30

v

2.1.2 Comparison Conditions . 31

2.1.3 Outcome Measures . 32

2.2 Data Generation . 34

2.2.1 Population Data . 34

2.2.2 Missing Data Imposition . 35

2.3 Procedure . 36

2.3.1 Computational Details . 36

2.3.2 Choosing the Number of Monte Carlo Replications 38

2.3.2.1 Estimating σ . 39

2.3.2.2 Power Analysis Results . 40

2.3.3 Parameterizing the MIBEN & MIBL Gibbs Samplers 44

2.3.4 Simulation WorkWow . 45

3 Results 46

3.1 Convergence Rates . 46

3.2 Overdetermined Models . 48

3.3 Underdetermined Models . 55

3.4 General Findings . 62

4 Discussion 71

4.1 Limitations & Future Directions . 75

4.2 Conclusion . 76

Appendix A R Code for Key Functions 83

vi

Figures

2.1 Replications required to adequately capture ŜEβ ,MC in Experiment 2 41

2.2 Monte Carlo replications required for Experiment 1 42

2.3 Replications required to adequately capture β̂MC in Experiment 2 43

3.1 Trace plots of MIBEN and MIBL penalty parameters 47

3.2 Percentage relative bias for Experiment 1 sparse imputation models 49

3.3 Percentage relative bias for Experiment 1 dense imputation models 50

3.4 Standardized bias for Experiment 1 sparse imputation models 51

3.5 Standardized bias for Experiment 1 dense imputation models 52

3.6 ConVdence interval coverage for Experiment 1 sparse imputation models 53

3.7 ConVdence interval coverage for Experiment 1 dense imputation models 54

3.8 Percentage relative bias for Experiment 2 sparse imputation models 56

3.9 Percentage relative bias for Experiment 2 dense imputation models 57

3.10 Standardized bias for Experiment 2 sparse imputation models 58

3.11 Standardized bias for Experiment 2 dense imputation models 59

3.12 ConVdence interval coverage for Experiment 2 sparse imputation models 60

3.13 ConVdence interval coverage for Experiment 2 dense imputation models 61

3.14 Mean conVdence interval width for Experiment 1 sparse imputation models . . . 63

3.15 Mean conVdence interval width for Experiment 1 dense imputation models 64

3.16 Mean conVdence interval width for Experiment 2 sparse imputation models . . . 65

3.17 Mean conVdence interval width for Experiment 2 dense imputation models 66

vii

3.18 Monte Carlo SD for Experiment 1 sparse imputation models 67

3.19 Monte Carlo SD for Experiment 1 dense imputation models 68

3.20 Monte Carlo SD for Experiment 2 sparse imputation models 69

3.21 Monte Carlo SD for Experiment 2 dense imputation models 70

viii

Tables

2.1 Optimization routines employed by themibrr package 38

2.2 Iterations of the MIBEN and MIBL Gibbs samplers & MCEM algorithms 44

ix

Algorithms

1 Rejection Sampling of σ 2 . 15

2 MIBEN Data Pre-Processing Module . 23

3 MIBEN Gibbs Sampling Module . 24

4 MIBEN Algorithm . 27

5 Impose MAR Missingness . 36

x

Code Listings

A.1 Function to simulate complete data . 83

A.2 Function to impose missing data . 84

A.3 Wrapper function to Vt the analysis models . 85

A.4 Function to compute the number of Monte Carlo replicates 86

A.5 Function to run a single simulation condition . 87

xi

Chapter 1

Introduction & Literature Review

Any data analytic enterprise will inevitably suUer from missing data, and psychological research

is certainly no exception. The sensitive nature of the topics that psychologists study virtually

ensures that the participants will fail to respond to some questions when data are collected via

self-reported measures. Data can also go missing due to random errors like equipment failures

that aUect an experimental apparatus or a computer malfunction corrupting some portion of

data stored electronically. No matter the reason for the missing data, the result is a data set

that contains “holes” where some of the cells with true, population-level values are empty. Such

incomplete data cannot be analyzed via traditional statistical tools (which require data to be fully

observed), so something must be done to address the nonresponse.

This is the purpose of missing data analysis: a set of tools that are (usually) applied dur-

ing data pre-processing to edit the data in such a way that they can be analyzed with standard

complete data techniques. The methodological literature on missing data analysis is certainly

extensive, and many powerful tools have been developed to address the issues caused by nonre-

sponse (e.g., multiple imputation [MI] – Rubin, 1978, 1987; the expectation maximization [EM]

algorithm – Dempster, Laird, & Rubin, 1977; full information maximum likelihood [FIML] –

Anderson, 1957; and sequential regression imputation [SRI]/multiple imputation with chained

equations [MICE] – Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; van Buuren,

1

Brand, Groothuis-Oudshoorn, & Rubin, 2006). The most powerful of these approaches, such as

MI and FIML, are known as principled missing data treatments, because they address the nonre-

sponse by modeling the underlying distribution of the missing data. With an appropriate model

for the missingness, these methods can either simulate plausible replacements for the missing

data with random draws from the posterior predictive distribution of the nonresponse (in the

case of MI) or partition the missing information out of the likelihood during model estimation

(in the case of FIML).

In the interest of brevity, I will not give an extensive overview of missing data theory, but in-

terested readers are encouraged to explore the wealth of work available on modern missing data

analysis. Readers interested in accessible treatments with less of the mathematical details should

consider Little, Jorgensen, Lang, and Moore (2013), Little, Lang, Wu, and Rhemtulla (in press),

and Schafer and Graham (2002) for papers on the subject or Enders (2010), Graham (2012), and

van Buuren (2012) for book length treatments. Those who desire a more technical discussion and

a thorough explanation of the underlying mathematics should consider Little and Rubin (2002),

Rubin (1987), Schafer (1997), and Carpenter and Kenward (2012) which are all excellent book-

length treatments (the Vnal reference being the most approachable for non-mathematicians).

While modern, principled missing data treatments can solve the majority of missing data

problems, a number of practical diXculties still remain when implementing missing data anal-

yses. Because principled missing data treatments require a model of the nonresponse, their

performance can be adversely aUected by misspeciVcation of this model. When using FIML to

treat nonresponse, ensuring an adequate model for the missingness is relatively simple. Because

FIML partitions the missingness out of the likelihood during model estimation, using the satu-

rated correlates approach (Graham, 2003) to include any important predictors of the nonresponse

mechanism will usually suXce. However, FIML cannot be used in all circumstances. In psycho-

logical research, there are two very common situations where FIML is inapplicable. The Vrst

such situation occurs when the raw data must be collapsed into composite scores (e.g., scale

scores or parcels) before analysis (Enders, 2010). The second situation arises when the data

2

analyst employs a modeling scheme that does not allow ML estimation methods (e.g., ordinary

least squares regression, decision tree modeling, back-propagated neural networks). In these sit-

uations, as well as any time that the data analyst simply desires a “completed” data set, MI is the

method of choice. MI also supports sensitivity analyses more easily than FIML does, so MI will

likely be preferred to FIML when the tenability of the missing at random (MAR) assumption is

questionable and must be explored via sensitivity analysis (Carpenter & Kenward, 2012).

In most versions of MI, the missing data are described by a discriminative linear model (usu-

ally a Bayesian generalized linear model [GLM]). Thus, correctly specifying a model for the

missing data (i.e., the imputation model) is analogous to specifying any GLM and requires param-

eterizing three components. (1) A systematic component: the conditional mean of the missing

data which is usually taken to be a linear combination of some set of exogenous predictors. (2) A

random component: the residual probability distribution of the missing data after partialing out

the conditional mean. (3) A linking function to map the systematic component to the random

component. To minimize the possibility of misspecifying the imputation model, the imputation

scheme must satisfy four requirements. First, the distributional form assumed for the missing

data (i.e., the random component, from the GLM perspective) must be a “close” approximation to

the true distribution of the missing data (Schafer, 1997). Second, all important predictors of the

missing data and the nonresponse mechanism must be included as predictors in the imputation

model (Collins, Schafer, & Kam, 2001; Rubin, 1996). Third, all important nonlinearities (i.e.,

interaction and polynomial terms) must be included in the imputation model (Graham, 2009;

Von Hippel, 2009). Fourth, the imputation model should not be over-speciVed. That is, the sys-

tematic component should not contain extraneous predictors that do not contribute explanatory

power to the imputation process (Graham, 2012; van Buuren, 2012).

In practice, the Vrst point is often of little concern since the multivariate normal distribu-

tion is a close enough approximation for many missing data problems (Honaker & King, 2010;

Schafer, 1997; Wu, Jia, & Enders, 2014), and the MICE framework makes it easy to swap in

other distributions on a variable-by-variable basis (van Buuren, 2012; van Buuren & Groothuis-

3

Oudshoorn, 2011). The last three points, however, cannot be side-stepped so easily. If the

imputation model fails to reWect important characteristics of the relationship between the miss-

ing data and the rest of the data set, the Vnal inferences can be severely compromised (Barcena

& Tusell, 2004; Drechsler, 2010; Honaker & King, 2010; Von Hippel, 2009). Including use-

less predictors is also problematic as they cannot improve the quality of the imputations but

will decrease the precision of the imputed values by adding noise to the Vtted imputation model

(Von Hippel, 2007).

Correctly parameterizing the imputation model (i.e., satisfying the four requirements de-

scribe above) remains one of the most challenging issues facing missing data analysts. This

diXculty is necessarily exacerbated in situations where the number of variables exceeds the

number of observations—the so-called P > N problem. Such problems imply a system of equa-

tions with more unknown variables than independent equations and are said to have deVcient

rank. Readers with some exposure to linear algebra will recall that such systems do not have a

unique solution. Traditionally, such underdetermined systems were not common in psychologi-

cal research, but they are becoming more prevalent with the increasing availability of big-data

sources. Such problems commonly arise when conducting secondary analyses of publicly avail-

able databases, for example, particularly in medical and health-outcomes research where a very

large number of attributes are often tracked for a comparatively small number of patients. The

push towards interdisciplinary research will also expose more psychologists to disciplines where

P > N problems are common (such situations are the rule, rather than the exception, in ge-

nomics, for example). In the case of missing data analysis, there is another mechanism that can

tip otherwise well behaved problems into the P > N situation. If the incomplete data set con-

tains nearly as many variables as observations, the process of including all of the interaction

and polynomial terms necessary to correctly model the nonresponse may push the number of

predictors in the imputation model higher than the number of observations. Until quite recently,

missing data analysts faced with such degenerate cases had very few, principled, tools to apply.

However, new developments in regularized regression modeling oUer tantalizing possibilities for

4

robust solutions to this persistent issue.

This dissertation will introduce one such solution: Multiple Imputation with the Bayesian Elas-

tic Net (MIBEN). The MIBEN algorithm is a robust multiple imputation scheme that augments

the Bayesian elastic net due to Li and Lin (2010) and employs it as the elementary imputation

method underlying a novel implementation of multiple sequential regression imputation (MSRI).

The MIBEN algorithm has been developed speciVcally to address the diXculties inherent in pa-

rameterizing good imputation models. By incorporating both automatic variable selection to

pare down large pools of auxiliary variables and model regularization to stabilize the estimation

and reduce spurious variability in the imputations, the MIBEN approach has been designed as a

very stable imputation platform.

1.1 Notational & Typographical Conventions

This paper contains many references to statistical software packages, and it relies heavily on

mathematical notation to clarify the exposition. Therefore, before continuing with the substan-

tive discussion, I will deVne the notational conventions that will be employed for subsequent

mathematical copy as well as the typographic conventions that I will use when discussing com-

puter software.

Scalar-valued realizations of random variables will be represented with lower-case Roman

letters (e.g., x , y). Vector-value realizations of random variables will be represented by bold-

faced, lower-case Roman letters (e.g., x, y). These vectors are assumed to be column-vectors

unless speciVcally denoted as row-vectors in context. Matrices containing multiple observations

of vector-valued random variables will be represented by bold-faced, upper-case Roman letters

(e.g., X, Y). Unobserved, population-level spaces from which these random variables are real-

ized will be represented by upper-case Roman letters in Gothic script (e.g., X, Y). Unknown

model parameters will be represented by lower-case Greek letters (e.g., µ , β , θ , ψ), while vec-

tors of such parameters will be represented by bold-faced lower-case Greek letters (e.g., µ, β).

5

Where convenient, matrices of unknown model parameters will be represented by capital Greek

letters (e.g., Θ, Ψ). Estimated model parameters will be given a “hat” (e.g., µ̂ , β̂). Unless oth-

erwise speciVed, all data sets will be represented as N × P rectangular matrices in Observations

× Variables format with n = 1, 2, . . . , N indexing observations and p = 1, 2, . . . , P indexing

variables. For the remainder of this paper the terms observation, subject, and participant will be

used interchangeably as will the terms variable and attribute.

Several probability density functions (PDFs) will be employed repeatedly in the following

derivations, so it is convenient to describe their notation here. N(µ , σ 2) represents the univariate

normal (Gaussian) distribution with mean µ and variance σ 2, MVN(µ, Σ) represents the multi-

variate normal (Gaussian) distribution with mean vector µ and covariance matrix Σ, Unif(a,b)

represents the the uniform distribution on the closed interval [a, b], and Γ(k , θ) represents the

gamma distribution with shape k and scale θ . All other mathematical notation (or modiVcations

to the conventions speciVed above) will be deVned in context.

When discussing computer software, references to entire programming languages will be de-

noted by the use of san-serif font (e.g., R, C++). References to software packages or libraries will

be denoted by the use of bold-faced font (e.g., mice, Eigen). Finally, inline listings of program

syntax and references to individual functions will be denoted with the use of typewriter font

(e.g., foo <- 3.14, quickpred).

1.2 Regularized Regression Models

A very important concept in statistical modeling is the idea of model regularization or penalized

estimation. Data analysts are always naïve to the truemodel and are often faced with a large pool

of potential explanatory variables and little a priori guidance as to which are most “important.”

In these situations, it is critical that the model (or the model search algorithm) be able to balance

the bias-variance trade-oU and keep the estimator fromwandering into the realm of high variance

solutions that overVt the observed data at the expense of replicability and validity.

6

One of the most common methods for achieving this aim in statistical modeling is to include

a penalty term into the objective function being optimized. The purpose of this penalty term is to

bias the Vtted solution towards simpler models by increasing the value of the objective function

(in the case of minimization) by a number that is proportional to the model complexity (usually

a function of the number of estimated parameters or their magnitude). Although many (if not

most) statistical modeling methods can be viewed as entailing some form of regularization, there

are three particularly germane extensions of ordinary least-squares (OLS) regression that make

the regularization especially salient, namely, ridge regression, LASSO, and the elastic net.

1.2.1 Ridge Regression

Consider linear models of the form y = Xβ + ε where y is a column vector containing N ob-

servations of a scalar-valued dependent variable, X is a N × P matrix of independent variables,

β is a column vector containing P regression coeXcients, and ε ∼ N(0, σ 2) is a column vector

of N normally distributed error terms. Ridge Regression (which is also known as `2-penalized

regression due to the form of its penalty term) is a widely implemented form of regularized re-

gression that can be applied to models of this form. It was originally proposed by Hoerl and

Kennard (1970) who were seeking a method to mitigate the eUects of multicollinearity in multi-

ple linear regression models. To do so, they developed a penalized estimator that decreased the

variance of the Vtted solutions (i.e., mitigated the “bouncing beta weights” problem), but did so

at the expense of no longer producing a best linear unbiased estimator, which is a well known,

and highly desirable, property of traditional OLS regression. Thus, ridge regression is a classic

example of manipulating the bias-variance trade-oU. Incorporating the ridge penalty produces

a biased solution (to a degree that the analyst can control), but doing so often yields consider-

ably better real-world results in terms of prediction accuracy and out-of-sample validity (Hastie,

Tibshirani, & Friedman, 2009).

The implementation of ridge regression is a straight-forward extension of traditional OLS

7

regression. To illustrate, recall the residual sum of squares loss function used in OLS regression:

RSSols =
N∑
n=1

(
yn − xTn β̂

)2
, (1.1)

where N is the total sample size, yn is the (centered) outcome for the nth observation, xn =

{xn1, xn2, . . . , xnP }T is a P -vector of (standardized) predictor values for the nth observation, and

β̂ = {β̂1, β̂2, . . . , β̂P }T is a P -vector of Vtted regression coeXcients. By minimizing Equation

1.1, OLS regression produces Vtted coeXcients of the form:

β̂ols =
(
XTX

)−1
XTy, (1.2)

where β̂ols is a P -vector of OLS regression coeXcients. To implement ridge regression, Equation

1.1 is extended by adding the squared `2-norm of the regression coeXcients as a penalty term:

RSS`2 =
N∑
n=1

(
yn − xTn β̂

)2
+ λ

P∑
p=1

β̂2p , (1.3)

where λ is a tuning parameter that dictates how strongly the solution is biased towards simpler

models, β̂p is the pth Vtted regression coeXcient, and the last term in the equation is the squared

`2-norm of the regression coeXcients (i.e., ‖ β̂ ‖22 =
∑P

p=1(β̂p − β̄)
2 =

∑P
p=1 β̂

2
p). By minimizing

Equation 1.3, ridge regression produces regularized coeXcients of the form:

β̂`2 =
(
XTX + λIP

)−1
XTy, (1.4)

where IP is the P × P identity matrix. Examination of Equation 1.4 clariVes how the ridge penalty

addresses multicollinearity. The ridge penalty has the eUect of adding a small constant value λ to

each diagonal element of the cross-products matrix of the predictors XTX. So, in situations with

severe multicollinearity, when the determinant of XTX equals zero (within computer precision),

the ridge penalty “tricks” the Vtting function into thinking that this determinant is nonzero. The

8

cross-products matrix can then be inverted, and the estimation becomes tractable once more.

1.2.2 The LASSO

Ridge regression is a very eUective and powerful regularization technique that performs particu-

larly well when the most salient problem is multicollinearity (Dempster, SchatzoU, & Wermuth,

1977). However, ridge regression does little to address another common goal of regularized

modeling: variable selection. Thus, ridge regression may perform poorly when the number of

predictors is large relative to the number of observations, especially when the true solution is

sparse. That is, when many of the predictors have no association with the outcome. In such

circumstances, ridge regression shrinks the coeXcients of unimportant predictors towards zero

and produces a tractable estimation problem, but it must still allot some nonzero value to each

coeXcient. Thus, useless predictors remain in the model (Hastie et al., 2009).

In an attempt to improve the performance of regularized regression with sparse models,

Tibshirani (1996) developed the Least Absolute Shrinkage and Selection Operator (LASSO). Imple-

menting the LASSO technique is very similar to implementing ridge regression in that a penalty

term is simply added to the usual OLS loss function. However, the LASSO employs the `1-norm

of the regression coeXcients as its penalty term (thus, it is also known as `1-penalized regres-

sion). While this diUerence may seem like a small distinction, it brings a considerable advantage:

the LASSO will force the coeXcients of unimportant predictors to exactly equal zero. Thus, the

LASSO can perform an automatic variable selection and intuitively address model sparsity.

As with ridge regression, the LASSO is implemented via a simple modiVcation of Equation

1.1 that results in the following penalized loss function:

RSS`1 =
N∑
n=1

(
yn − xTn β̂

)2
+ λ

P∑
p=1

∣∣∣∣β̂p ∣∣∣∣ , (1.5)

where the last term now represents the `1-norm of the regression coeXcients (i.e., ‖ β̂ ‖1 =∑P
p=1 | β̂p − β̄ | =

∑P
p=1 | β̂p |). An unfortunate consequence of replacing the squared `2-norm with

9

the `1-norm is that there is no longer a closed-form solution for β̂`1 . Thus, LASSO models must

be estimated by minimizing Equation 1.5 iteratively via quadratic programming procedures.

1.2.3 The Elastic Net

The LASSO demonstrates certain advantages over traditional ridge regression, but it entails its

own set of limitations. For researchers facing P > N scenarios, one of the LASSO’s biggest

limitations is that it cannot select more nonzero coeXcients than observations, thus there is an

artiVcially impose upper bound on the number of “important” predictors that can be included in

the model (Tibshirani, 1996). While this limitation is usually trivial, in certain circumstances this

cap on the allowable number of predictors may lead the Vtted model to poorly represent the data.

One answer to this limitation (and the inability of ridge regression to produce sparse solutions)

is the Elastic Net. The elastic net was introduced by Zou and Hastie (2005) as a compromise

between the ridge and LASSO options. The elastic net incorporates both an `1 and a squared

`2 penalty term. By doing so, the elastic net produces sparse solutions, but it also addresses

multicollinearity in a more reasonable manner by tending to select groups of highly correlated

variables to be included in or excluded from the model simultaneously. The elastic net can also

produce solutions with more non-zero coeXcients than observations.

The elastic net is also implemented by modifying Equation 1.1. In this case, by incorporating

both the `1 and squared `2 penalties to produce the following loss function:

RSSenet =
N∑
n=1

(
yn − xTn β̂

)2
+ λ2

P∑
p=1

β̂2p + λ1
P∑

p=1

∣∣∣∣β̂p ∣∣∣∣ , (1.6)

where λ2 corresponds to the ridge penalty parameter and λ1 corresponds to the LASSO penalty

parameter. In the original implementation by Zou and Hastie (2005), λ1 and λ2 were chosen

sequentially with a grid-based cross-validation procedure. Their method entailed choosing a

range of values for one of the parameters and Vnding the conditionally optimal value for the

other parameter by K-fold cross-validation. Choosing the penalty parameters with this method,

10

and minimizing Equation 1.6 after conditioning on the optimal values of λ1 and λ2, produces the

so-called naïve elastic net. Empirical evidence suggests that the naïve elastic net over-shrinks the

Vtted regression coeXcients due to the sequential method by which the penalty parameters are

chosen. So, Zou and Hastie (2005) suggested a correction factor for the naïve estimates. These

corrected estimates then represent the genuine elastic net. The suggested correction is given by:

βenet = (1 + λ2) β̂naïve, (1.7)

where βenet and β̂naïve are P -vectors of Vtted regression coeXcients for the elastic net and naïve

elastic net, respectively.

1.3 Bayesian Model Regularization

As discussed above, Frequentist model regularization operates by including a penalty term into

the loss function to add a “cost” for increasing the model’s complexity. There is a direct analog to

this concept in Bayesian modeling. From the Bayesian perspective, model regularization implies

a prior belief that the true model’s parameters are somehow bounded or that some take trivial

values (i.e., the true model is sparse). The Bayesian can impose a preference for simpler models

(both in terms of sparsity and coeXcient regularization) by giving the regression coeXcients

informative priors. The scales of these prior distributions play an analogous role to the penalty

parameters λ1 and λ2 in the Frequentist models. Through carefully tailored priors, Bayesian

analogs of ridge regression, LASSO, and the elastic net have all been developed.

1.3.1 Bayesian Ridge & LASSO

Ridge regression is actually a somewhat trivial case of model regularization from the Bayesian

perspective. This triviality arises from the fact that a ridge-like penalty can be incorporated

simply by giving the regression coeXcients informative, zero-mean Gaussian prior distributions

(Goldstein, 1976). The smaller the variance of these prior distributions, the larger the ridge-type

11

penalty on the posterior solution. The Bayesian analog to a LASSO penalty is achieved by giving

each regression coeXcient a zero-mean Laplacian (i.e., double exponential) prior distribution

(Gelman et al., 2013). However, Park and Casella (2008) showed that naïvely incorporating such

a Laplacian prior can induce a multi-modal posterior distribution. They went on to develop

an alternative formulation of the Bayesian LASSO that incorporated a conditional prior for the

regression coeXcients that depended on the noise variance. They proved that this formulation

will produce uni-modal posteriors in typical situations (see Park & Casella, 2008, Appendix A).

1.3.2 Bayesian Elastic Net

Bayesian formulations of the elastic net rely on prior distributions that combine characteristics

of both the Gaussian and Laplacian distributions (just as the Frequentist elastic net employs

both `2- and `1-penalties). Several authors have developed Wavors of such a prior. Some of these

formulations are relatively complicated like the one employed in themultiple Bayesian elastic net

(MBEN; Yang, Dunson, & Banks, 2011). The MBEN incorporates a Dirichlet process into the

prior for the regression coeXcients to group and shrink them towards multiple values. Other

authors have developed elastic net priors tailored to speciVc applications, such as vector auto-

regressive modeling (Gefang, 2014) and signal compression (Cheng, Mao, Tan, & Zhan, 2011).

1.3.2.1 Implementation of the Bayesian Elastic Net

While more complicated formulations of the elastic net prior can have certain advantages (e.g.,

shrinkage towards multiple values rather than just zero), the method introduced here will employ

the prior developed by Li and Lin (2010). Theirs was one of the earliest formulations of a Bayesian

elastic net (BEN), and it represents a relatively straight-forward extension of the Park and Casella

(2008) Bayesian LASSO. The Li and Lin (2010) BEN was motivated by the observation, made by

Zou and Hastie (2005), that the original elastic net solution is equivalent to Vnding the marginal

12

posterior mode β |y when the regression coeXcients are given the following prior:

π (β) ∝ exp
{
−λ1‖ β ‖1 − λ2‖ β ‖22

}
, (1.8)

where ‖ β ‖1 and ‖ β ‖22 represent the `1- and squared `2-norm of the regression coeXcients, re-

spectively. Combining this intuition with an uninformative prior for the noise variance and an

extension of the Park and Casella (2008) conditional prior for the regression coeXcients, Li and

Lin (2010) began their development with the following hierarchical representation of the BEN:

y | β , σ 2 ∼ N
(
Xβ , σ 2IN

)
, (1.9)

β | σ 2 ∼ exp
{
−

1
2σ 2

(
λ1‖ β ‖1 + λ2‖ β ‖22

)}
, (1.10)

σ 2 ∼
1
σ 2 , (1.11)

where N represents the number of observations, IN represents the N × N identity matrix, and

Equation 1.11 denotes an improper prior distribution for the noise variance. Although this for-

mulation is conceptually appealing due to its direct correspondence to the original elastic net, Li

and Lin (2010) noted that the absolute values in Equation 1.10 lead to unfamiliar posterior distri-

butions. So, to facilitate Gibbs sampling from the fully conditional posteriors, they introduced an

auxiliary parameter τ which leads to an alternative parameterization of the model given above:

y | β , σ 2 ∼ N
(
Xβ , σ 2In

)
, (1.12)

β | τ , σ 2 ∼

P∏
p=1

N

0, (
λ2
σ 2 ·

τp
τp − 1

)−1 , (1.13)

τ | σ 2 ∼

P∏
p=1

Trunc-Γ
(
1
2
,
8λ2σ 2

λ21
, (1,∞)

)
, (1.14)

σ 2 ∼
1
σ 2 , (1.15)

13

where P represents the number of predictors in the model and Equation 1.14 represents the

truncated gamma distribution with support on the open interval (1,∞). Introducing τ simpliVes

the computations by removing the need to explicitly incorporate the `1-norm into any of the

priors. The fully conditional posterior distributions of the BEN’s parameters are then given by:

β | y, σ 2, τ ∼ MVN
(
A−1XTy, σ 2A−1

)
, (1.16)

with A = XTX + λ2 · diag
(

τ1
τ1 − 1

, . . . ,
τP

τP − 1

)
,

1(
τp − 1

) | y, σ 2, β ∼ IG
(
µ =

√
λ1

2λ2 |βp |
, λ =

λ1
4λ2σ 2 ,

)
, p = 1, 2, . . . , P, (1.17)

σ 2 | y, β , τ ∼
(1
σ 2

) N
2 +P+1

{
ΓU

(
1
2
,

λ21
8σ 2λ2

)}−P
exp

(
−

1
2σ 2 · ξ

)
, (1.18)

with ξ = ‖y − Xβ ‖22 + λ2
P∑

p=1

τp
τp − 1

β2p +
λ21
4λ2

P∑
p=1

τp ,

where ΓU (α , x) =
∫ ∞
x tα−1e−tdt represents the upper incomplete gamma function and Equation

1.17 represents the inverse Gaussian distribution with a PDF as given by Chhikara and Folks

(1988). Clearly, the conditional posterior distribution of σ 2 does not follow any familiar func-

tional form, but it can be sampled via a relatively simple rejection sampling scheme. Li and Lin

(2010) noted that the expression on the right hand side of Equation 1.18 is bounded above by:

Γ
(1
2

)−P (1
σ 2

)a+1
exp

{
−

1
σ 2b

}
, (1.19)

with a =
N
2
+ P, b =

1
2

(y − Xβ)T (y − Xβ) + λ2
P∑

p=1

τp
τp − 1

β2p +
λ21
4λ2

P∑
p=1

τp

 .
Leveraging this relationship, they suggested the procedure described by Algorithm 1 to draw

variates from Equation 1.18. Given the preceding speciVcation, the joint posterior distribution

14

Algorithm 1 Rejection Sampling of σ 2

1: loop
2: Draw: A candidate variate Z
3: Z ∼ Inv-Γ(a,b) with a and b as in Equation 1.19
4: Draw: A threshold variateU
5: U ∼ Unif(0, 1)

6: if ln(U) ≤ P · ln
(
Γ

(
1
2

))
− P · ln

{
ΓU

(
1
2 ,

λ21
8Z λ2

)}
then

7: σ 2 ← Z
8: break
9: else
10: goto 2
11: end if
12: end loop

of the BEN can be estimated by incorporating the sampling statements represented by Equations

1.16–1.18 into a Gibbs sampling scheme with block updating of β and τ .

Choosing the Penalty Parameters. While it is possible to choose values for λ1 and λ2 via

cross-validation (as with the Frequentist elastic net), the Bayesian paradigm oUers at least two,

superior, alternatives. First, the penalty parameters can be added into the model hierarchy as

hyper-parameters and given their own hyper-priors. Li and Lin (2010) suggested λ21 ∼ Γ(a, b)

and λ2 ∼ GIG(λ = 1, ψ = c , χ = d), where GIG(λ , ψ , χ) is the generalized inverse Gaussian

distribution as given by Jørgensen (1982). Since these priors maintain conjugacy, λ1 and λ2

can then be directly incorporated into the Gibbs sampler. However, Li and Lin (2010) noted

that the posterior solutions can be highly sensitive to the choice of (a,b) and (c ,d). Therefore,

the approach that they actually employ for the BEN (as well as the method recommended by

Park & Casella, 2008, for the Bayesian LASSO) is the empirical Bayes Gibbs sampling method

described by Casella (2001). This empirical Bayes method estimates the penalty parameters with

Monte Carlo EM (MCEM) marginal maximum likelihood in which the expectations needed to

specify the conditional log-likelihood are approximated by the averages of the stationary Gibbs

samples. Both Li and Lin (2010) and Park and Casella (2008) suggested that this approach, while

more computationally expensive, produces equivalent results to the augmented Gibbs sampling

15

approach. For the Li and Lin (2010) formulation of the BEN, the appropriate conditional log-

likelihood (ignoring terms that are constant with respect to λ1 and λ2) is given by:

Q
(
Λ | Λ(i−1)

)
= P · ln(λ1) − P · E

[
ln

{
ΓU

(
1
2
,

λ21
8σ 2λ2

)} ∣∣∣∣ Λ(i−1), Y
]

−
λ2
2

P∑
p=1

E

 τp
τp − 1

·
β2p
σ 2

∣∣∣∣ Λ(i−1), Y
 − λ21

8λ2

P∑
p=1

E
[τp
σ 2

∣∣∣∣ Λ(i−1), Y
]

+ constant , (1.20)

= R
(
Λ | Λ(i−1)

)
+ constant ,

and the gradient is given by:

δR
δλ1

=
P
λ1

+
Pλ1
4λ2

E

{ΓU (
1
2
,

λ21
8σ 2λ2

)}−1
φ

(
λ21

8σ 2λ2

)
1
σ 2

∣∣∣∣ Λ(i−1), Y

−

λ1
4λ2

P∑
p=1

E
[τp
σ 2

∣∣∣∣ Λ(i−1), Y
]
, (1.21)

δR
δλ2

= −
Pλ21
8λ22

E

{ΓU (
1
2
,

λ21
8σ 2λ2

)}−1
φ

(
λ21

8σ 2λ2

)
1
σ 2

∣∣∣∣ Λ(i−1), Y

−
1
2

P∑
p=1

E

 τp
τp − 1

·
β2p
σ 2

∣∣∣∣ Λ(i−1), Y
 +

λ21
8λ22

p∑
p=1

E
[τp
σ 2

∣∣∣∣ Λ(i−1), Y
]
, (1.22)

where φ(t) = t−
1
2e−t , i indexes iteration of the MCEM algorithm, Λ = {λ1, λ2}, Y = {y,X}, and

constant represents a collection of terms that do not involve λ1 or λ2.

1.3.2.2 Performance of the Bayesian Elastic Net

Li and Lin (2010) used a Monte Carlo simulation study to compare their BEN to the Park and

Casella (2008) Bayesian LASSO, as well as the original, Frequentist elastic net and LASSO. They

found that the two Bayesian approaches consistently outperformed the Frequentist approaches

in terms of prediction accuracy, although the Bayesian versions were much more computation-

16

ally demanding than their Frequentest analogs were. The BEN and Bayesian LASSO performed

similarly in many conditions, but the BEN was the superior method for small sample sizes and

when the true model was not especially sparse.

1.4 Model Regularization for Missing Data Analysis

Although many data analysts may not realize it, regularized regression models are ubiquitous

in missing data analysis. This ubiquity stems from the fact that nearly all of the normal-theory

regression models used by current imputation software are actually ridge regression models.

Since well speciVed imputation models will likely contain many predictors (Howard, Rhemtulla,

& Little, in press; Rubin, 1996; Von Hippel, 2009), multicollinearity can become a serious issue,

and the increased indeterminacy introduced by nonresponse only exacerbates the problem. Thus,

most software packages for imputation oUer the option to include a “ridge prior” to regularize the

cross-products matrix of the predictors in the imputation model. When the analyst invokes the

prior = ridge(λ) option in SAS PROC MI, the empri = λ option in the R package Amelia

II, or the ridge = λ option in the R package mice the value chosen for λ is proportional to

the ridge parameter in Equations 1.3 and 1.4. In my experience, including such a prior is often

necessary to ensure stable convergence when creating multiple imputations—especially when

using an imputation method that employs the joint modeling paradigm.

The LASSO has not been applied to missing data analyses nearly as widely as ridge regression

has, but a few authors have considered it as an imputation engine. The R package imputeR

(Feng, Nowak, Welsh, & O’Neill, 2014) includes the capability to conduct a single deterministic

imputation using the Frequentist LASSO. This method is signiVcantly limited, though, since

it does not model uncertainty in the imputed data or the imputation model. A much more

principled implementation, based on the Bayesian LASSO, was developed by Zhao and Long

(2013). They developed an MI scheme in which the Bayesian LASSO model was Vrst trained on

the observed portion of the data and the missing values were then replaced by M random draws

17

from the posterior predictive distribution of the outcome. In this way, they achieved a fully

principled MI method in which uncertainty in both the missing data and the imputation model

were accounted for via Bayesian simulation. They also described how to use their method to

treat general missing data patterns via data augmentation and sequential regression imputation.

Zhao and Long (2013) compared their Bayesian LASSO-based MI scheme to several methods

based on frequentist regularized regression models, namely, the LASSO, the adaptive LASSO,

and the elastic net. They incorporated these Frequentist methods into MI schemes in which

the uncertainty was modeled by Vrst creating M bootstrap resamples of the incomplete data,

and then Vtting the regularized model to the observed portion of the (resampled) data. Once the

model moments had been estimated, they Vlled-in the missingness (in the original, un-resampled

data) with the corresponding elements of the M sets of model implied outcomes (this general

framework also underlies the bootstrapped EM algorithm employed by the R package Amelia

II). They also implemented a strategy in which the regularized models were simply used for

variable selection and the imputation was subsequently performed with standard, normal-theory

MI. They found that the Bayesian LASSO-based MI method generally performed better than the

other imputation schemes in terms of recovering the regression coeXcients of models Vt to the

imputed data. Interestingly, they also found that their Bayesian LASSO-based method could

outperform a normal-theory MI that used the true imputation model (which is unknowable in

practice), when the number of predictors in the true model was relatively large.

At the time of this writing, it appears that the elastic net has received almost no attention as

a missing data tool. Other than the comparison conditions employed by Zhao and Long (2013),

I was unable to Vnd any published research using the elastic net for imputation. Furthermore, I

was unable to Vnd any papers, at all, that employ a fully Bayesian construction of the elastic net

for this purpose. This dissertation addresses this gap in the literature by introducing a Wexible

and robust MI method. In the following, I describe a novel MI algorithm that is based on the

Li and Lin (2010) BEN and examine its performance via a Monte Carlo simulation study. The

method I introduce extends the previous work done in this area in several important ways. First,

18

the basis of the algorithm is a very Wexible and powerful model: the elastic net. Second, the

implementation is fully Bayesian, thereby allowing for fully principled multiple imputations.

Third, the algorithmic framework surrounding this model is more general and fully featured

than that of other regularized regression-based imputation methods.

1.5 Multiple Imputation with the Bayesian Elastic Net

This dissertation introduces a novel MI scheme. The method, Multiple Imputation with the

Bayesian Elastic Net (MIBEN), is a principled MI algorithm based on the Li and Lin (2010) BEN.

MIBEN is a very Wexible imputation tool that uses MSRI and data augmentation to treat gen-

eral patterns of nonresponse under the assumption of a MAR nonresponse mechanism. MIBEN

can treat an arbitrary number of incomplete variables and easily incorporates auxiliary variables

(which can also contain missing data) into the imputation model. The MIBEN algorithm is de-

signed to leverage the excellent prediction performance of the BEN to create optimal imputations

without requiring the missing data analyst to manually select which variables to include in the

imputation model. Thus, MIBEN is particularly well suited to situations where the data imputer

is presented with a large pool of possible auxiliary variables but has little a priori guidance as to

which may be important predictors of the missing data or the nonresponse mechanism. Because

the BEN is optimized for P > N problems, the MIBEN algorithm is also expected to perform

better than currently available alternatives when employed with underdetermined systems.

In addition to the powerful imputation model underlying the MIBEN algorithm, there are sev-

eral key features of the supporting framework considerably improve MIBEN’s capabilities. Most

importantly, the imputations are created through iterative data augmentation (Tanner & Wong,

1987). By including the missing data as another parameter in the Gibbs sampler, the imputations

and the parameters of the imputation model are iteratively reVned in tandem. This approach has

three major advantages over other methods. First, it simpliVes the treatment of general missing

data patterns. Second, it ensures that the posterior predictive distribution of the nonresponse ac-

19

curately models all important sources of uncertainty (since uncertainty in the imputation model

is conditioned on uncertainty in the imputed data and visa versa; Rubin, 1987). Finally, the iter-

ative nature of the data augmentation process mitigates any spurious order-related eUects that

may be introduced by the sequential aspect of the MSRI algorithm. The MIBEN algorithm also

uses a multi-stage MCEM algorithm that employs several of the computational tricks described

by Casella (2001) and a robust two-step optimization of the BEN’s penalty parameters. As shown

below, this multi-stage MCEM method produces very good convergence properties.

1.5.1 Assumptions of the MIBEN Algorithm

The MIBEN method has been designed as a robust and Wexible MI tool. However, MIBEN still

places certain assumptions on the imputation model, so this Wexibility does have limits. The

implementation described here requires the following key assumptions:

1. Each imputed variable’s residuals (i.e., conditioning on the Vtted imputation model) are

independent and identically normally distributed.

2. The imputation model is linear in the coeXcients.

3. The missing data follow a MAR mechanism.

The conditional normality of the incomplete variables is not an inherent requirement of the

MIBEN method since extending the BEN to accommodate categorical outcomes is a relatively

straight-forward process. Chen et al. (2009) described a method of incorporating binary out-

comes into the BEN via a probit transformation of the the raw model-implied outcomes. Al-

though this method can be directly incorporated into the structure presented here, I have cur-

rently implemented only the normal-theory version.

MIBEN is a parametric technique and, therefore, is inherently less Wexible than fully nonpara-

metric imputation approaches (e.g., those based on K-nearest neighbors or decision trees), but it

does allow the missing data analyst to relax certain key assumptions. Most notably, MIBEN is

robust to over-speciVcation of the imputation model. The performance of traditional MI methods

20

will deteriorate when useless, noise variables are included in the imputation model (van Buuren,

2012). MIBEN, on the other hand, will remain unaUected because the algorithm will simply elim-

inate any useless variables from the Vtted imputation model. So long as the MAR assumption

holds (thereby ensuring that all important predictors of the missing data are included on the data

set), MIBEN should not be vulnerable to under-speciVcation of the imputation model either. The

automatic variable selection of the underlying BEN should automatically include all important

auxiliary variables into the imputation model. Thus, MIBEN is expected to correctly specifying

the predictor set of the imputation model without any overt input from the data imputer.

MIBEN also places very few restrictions on the matrix of auxiliary variables. Because the

BEN is a discriminative model, there are no requirements placed on the distribution of the auxil-

iary variables (because their distribution is never modeled). Furthermore, the auxiliary variables

only enter the imputation model through matrix multiplication, so all of their observed informa-

tion can be easily incorporated by zero-imputing any of their missing data (i.e., to compute their

crossproduct matrix with pairwise-available observations). Thus, accommodating nonresponse

on the auxiliary variables requires only a trivial complication of the MIBEN algorithm. Most im-

portantly, the powerful regularization of the BEN prior allows the imputation model’s predictor

matrix (and, by extension, the matrix of auxiliary variables) to have deVcient rank (i.e., P > N)

while still maintaining estimability and low-variance imputations.

1.6 SpeciVcation of the MIBEN Algorithm

The MIBEN algorithm directly employs the fully conditional posteriors given by Equations 1.16–

1.18. However, to facilitate the imputation task, two additional sampling statements must be

incorporated into the Gibbs sampler. First, the intercept is reintroduced to the model with an

uninformative Gaussian prior. This leads to the following fully conditional posterior:

α ∼ N

ȳ,
√
σ 2

N

 , (1.23)

21

where ȳ represents the arithmetic mean of the variable being imputed. The original Bayesian

elastic net omitted an intercept term because the data were centered before model estimation

(thereby making an estimated intercept unnecessary). I have reintroduced the intercept here,

however, to allow for the possibility of imputing values with a diUerent conditional mean than

that of the observed part of the data. Second, the imputations must be updated at each iteration

of the Gibbs sampler. These updates are accomplished by replacing the missing values with

random draws from their posterior predictive distribution according to the following rule:

y(i)imp = α̃ (i)1P + X β̃ (i) + ε , (1.24)

with ε ∼ N
(
0, σ̃ 2

(i))
,

where 1P represents a P -vector of ones, ε is an N -vector of residual errors, the tildes designate

their associated parameters as draws from the appropriate posterior distributions, and the (i)

superscript indexes iteration of the Gibbs sampler. Incorporating these two additional sampling

statements into the original hierarchy given by Li and Lin (2010) Weshes out all of the components

needed for the MIBEN Gibbs sampler.

The overall MIBEN algorithm can be broken into three qualitatively distinct modules: (1)

an initial data pre-processing module and (2) a Gibbs sampling module that is nested within

(3) an MCEM module. The data pre-processing module takes an arbitrarily scaled, incomplete,

rectangular data matrix and creates K target objects corresponding to the K target variables

being imputed. For each target object, nuisance variables (e.g., ID variables) are removed, the

focal target variable is mean-centered, and the remaining (predictor) variables are standardized.

Let Yinc be an N × P rectangular data matrix that is subject to an arbitrary pattern of nonre-

sponse. Without loss of generality, assume that the Vrst K columns of Yinc contain the variables

to be imputed while the remainingV = P −K columns contain auxiliary variables. For simplicity,

assume that all nuisance variables have already been excluded from the Yinc . The pseudocode

given in Algorithm 2 provides the conceptual details of the MIBEN data pre-processing module.

22

Algorithm 2MIBEN Data Pre-Processing Module

1: Input: An incomplete data set Yinc
2: Output: K target objects

{
T (1), T (2), . . . , T (K)

}
3: DeVne: dvArray[K] B An empty array of vectors
4: DeVne: predArray[K] B An empty array of matrices
5: DeVne: Ytarдets B The Vrst K columns of Yinc
6: Draw: Yimp ,init ∼ MVN

(
Ytarдets , cov

(
Ytarдets

))
7: for n = 1 to N do
8: for k = 1 to K do
9: if Yinc[n, k] == MISSING then
10: Yinc[n, k]← Yimp ,init[n, k]
11: end if
12: end for
13: for p = (K + 1) to P do
14: if Yinc[n, p] == MISSING then
15: Yinc[n, p]← 0
16: end if
17: end for
18: end for
19: for k = 1 to K do
20: dvArray[k]← MeanCenter (Yinc[, k])
21: predArray[k]← Standardize (Yinc[,¬k])
22: T (k) ←

{
dvArray[k], predArray[k]

}
23: end for
24: return K initialized target objects

{
T (1), T (2), . . . , T (K)

}

23

After execution of Algorithm 2, each T (k) contains data structures formatted for treatment

via sequential regression imputation (i.e., each T (k) contains the outcome variable and predictor

set for a single conditional imputation equation). Given a set of K target objects constructed as

above and taking L to be the number of MCEM iterations and J to be the number of Gibbs sam-

pling iterations to employ within a particular iteration of the MCEM algorithm, the pseudocode

given by Algorithm 3 shows the conceptual details of the MIBEN Gibbs sampler.

Algorithm 3MIBEN Gibbs Sampling Module

1: Input: K initialized target objects
{
T (1), T (2), . . . , T (K)

}
2: Output: Updated posterior estimates of all imputation model parameters and imputations
3: if l == 1 then
4: Initialize: All parameters with draws from their respective prior distributions.
5: else
6: Initialize: All parameters with their posterior expectations from MCEM iteration l − 1
7: end if
8: for j = 1 to J do
9: for k = 1 to K do
10: Set: y← T (k)[[1]]
11: Set: X← T (k)[[2]]
12: Update: τ according to Equation 1.17
13: Update: α according to Equation 1.23
14: Update: β according to Equation 1.16
15: Update: σ 2 by applying Algorithm 1
16: Update: yimp according to Equation 1.24
17: end for
18: end for
19: Pre-Optimize: λ1 and λ2 by numerically maximizing Equation 1.20 with a derivative-free

optimization method
20: Optimize: λ1 and λ2 by reVning their pre-optimized estimate with a gradient-based opti-

mization method employing the analytic gradient given by Equations 1.21 and 1.22
21: return Updated posterior estimates of τ , α , β , σ , yimp , λ1, and λ2

24

As noted on Line 4 of Algorithm 3, initial starting values for all parameters are draws from

their respective prior distributions. For parameters with informative priors (i.e., τ and β), these

draws are taken from the appropriate components of the model hierarchy given by Equations

1.12–1.15. For parameters with uninformative priors (i.e., α and σ), however, the following data-

dependent starting values were employed:

α (k)
init ∼ Unif

−
√

Var
(
y(k)

)
Nk

,

√
Var

(
y(k)

)
Nk

 , (1.25)

σ (k)
init =

√
Var

(
y(k)

)
, (1.26)

where y(k) is the kth target variable, Nk is the number of non-missing observations of y(k), and the

Var(·) operator returns the variance of its argument. Starting values for the penalty parameters

λ1 and λ2 are user-supplied. For the study reported below, I employed λ1,init = 0.5 and λ2,init =

P/10, but empirical evidence suggests that the starting values of λ1 and λ2 have little eUect on the

estimation process unless these starting values are very diUerent from their ML estimates. Such

poorly chosen starting values will not corrupt MIBEN’s estimates but will slow its convergence.

The Vnal computational component of the MIBEN method is the MCEM module within

which the Gibbs sampler described above is nested. The MCEM algorithm employed by MIBEN

requires the expectations in Equations 1.20–1.22 to be approximated by the posterior means

of the appropriate Gibbs samples. This substitution requires that the process described by Al-

gorithm 3 be fully executed within each iteration of the MCEM algorithm (which can require

several hundred iterations for diXcult problems). Naturally, this leads to a very high computa-

tional burden, but Casella (2001) suggested several short-cuts that can considerably mitigate this

computational demand.

Most importantly, Casella (2001) noted that, until the Vnal few Gibbs samples, accurate es-

timates of Λ are not necessary. Thus, the speed of the MCEM algorithm can be dramatically

increased by running a large number of “approximation” iterations in which very small Gibbs

samples are simulated (e.g., with as few as 20 retained draws). Although these approximation

25

iterations are very noisy, they will rapidly bring the estimate of Λ into the neighborhood of its

ML estimate. Once the estimate of Λ is within this neighborhood, a small number of “tuning”

MCEM iterations can be run to “dial-in” this estimate using larger Gibbs samples.

This multi-stage approach is implemented in MIBEN. A large number of MCEM approxima-

tion iterations are run with very small Gibbs samples followed by a few tuning iterations with

larger Gibbs samples and Vnally a single large Gibbs sample is drawn to represent the station-

ary posterior distribution of the imputation model parameters. So long as the estimates of the

penalty parameters stabilize during the approximation and tuning phases of the MCEM algo-

rithm, the Gibbs samples themselves only need to converge for the Vnal iteration. Convergence

of the MCEM estimates of Λ can be judged graphically by scrutinizing the trace plots of the Λ

estimates. Upon convergence, these plots will randomly oscillate around an equilibrium level.

Systematic linear or curvilinear trends in these trace plots indicate that the system has not yet

converged on the optimal estimates of Λ. Convergence of the Vnal Gibbs samples can be judged

by a number of criteria; for the study reported here, I used the potential scale reduction factor (R̂).

Take M to be the number of imputations to create, L1 to be the number of MCEM approxi-

mation iterations and L2 the number of MCEM tuning iterations, J1 to be the number of Gibbs

sampling iterations employed within each of the MCEM approximation iterations, J2 to be the

number of Gibbs sampling iterations used during the tuning phase of the MCEM algorithm, and

J3 be the number of Gibbs sampling iterations used to represent the stationary posterior dis-

tribution of the imputation model parameters. Then, the pseudocode presented in Algorithm 4

incorporates all of the MIBEN modules into the overall MIBEN algorithm.

26

Algorithm 4MIBEN Algorithm

1: Input: An incomplete data set Yinc
2: Output: M completed data sets

{
Y(1)
comp , Y

(2)
comp , . . . , Y

(M)
comp

}
3: Execute: Algorithm 2
4: for l = 1 to L1 do {MCEM Burn-In Iterations}
5: Set: J ← J1
6: Execute: Algorithm 3
7: end for
8: for l = 1 to L2 do {MCEM Tuning Iterations}
9: Set: J ← J2
10: Execute: Algorithm 3
11: end for
12: Set: j ← J3
13: Execute: Algorithm 3 {Approximate the stationary posterior}
14: Draw: M replicates of the missing data,

{
Y(1)
imp , Y

(2)
imp , . . . , Y

(M)
imp

}
, from the stationary poste-

rior predictive distribution of Ytarдets
15: Transform:

{
Y(1)
imp , . . . , Y

(M)
imp

}
→

{
Y(1)
imp,oUset, . . . , Y

(M)
imp,oUset

}
by adding back each target vari-

able’s mean {un-center the imputations}
16: return M completed data sets with missing elements of Yinc replaced by corresponding

elements of
{
Y(1)
imp,oUset, . . . , Y

(M)
imp,oUset

}
.

1.7 Hypotheses

The MIBEN method is expected to outperform current state-of-the-art techniques in terms of

recovering the analysis model’s true parameters. Several key characteristics of the BEN can

inform the likely performance of the MIBENmethod. First, the accuracy of the BEN’s predictions

is very good. So, the imputations produced by MIBEN should be unbiased, and, at worst, should

be no more biased than imputations created from less-regularized methods. Second, the BEN

is speciVcally designed to reduce the variance of its predictions. Thus, the imputations created

by MIBEN should lead to more precise standard errors and narrower conVdence intervals than

those produced by less-regularized imputation methods. Third, because the penalty parameters

λ1 and λ2 are estimated directly from the data, the BEN underlying MIBEN should be able to

retain the meaningful variance in the predicted values but exclude most of the extraneous noise.

Thus, MIBEN should produce conVdence intervals with coverage rates that are approximately

27

nominal, and, at worst, it should produce coverage rates that are at least as close to nominal

as the coverage rates produced by less-regularized methods. Fourth, because the elastic net is

optimized for underdetermined systems, MIBEN’s superior performance should be ever more

salient when applied to P > N and P ≈ N problems. Finally, because the Bayesian LASSO can

perform poorly when the true model is not sparse, MIBEN should outperform Bayesian LASSO-

based MI in conditions with dense imputation models. Appealing to these justiVcations, the

following hypotheses are posed:

1. In all conditions, MIBEN will lead to parameter estimates that are negligibly biased and

have conVdence intervals with approximately nominal coverage rates.

2. In all conditions, the CIs derived from MIBEN will be narrower than those derived from

Normal-theory MICE: (a) including all possible predictors, (b) including predictors chosen

via best subset selection, and (c) employing the true imputation model

3. When the system is overdetermined, MIBEN will lead to parameter estimates that are no

more biased than those estimated under Normal-theory MICE: (a) including all possible

predictors, (b) including predictors chosen via best subset selection, and (c) employing the

true imputation model

4. When the system is overdetermined, the coverage rates for CIs derived from MIBEN will

be at least as close to nominal as those derived from Normal-theory MICE: (a) including

all possible predictors, (b) including predictors chosen via best subset selection, and (c)

employing the true imputation model

5. When the system is underdetermined, MIBEN will lead to parameter estimates that are less

biased than those estimated under Normal-theory MICE: (a) employing the true imputation

model and (b) including predictors chosen via best subset selection

6. When the system is underdetermined, the coverage rates for CIs derived from MIBEN will

be closer to nominal than those derived from Normal-theory MICE: (a) employing the true

28

imputation model and (b) including predictors chosen via best subset selection

7. When the true imputation model is sparse and the system is overdetermined, MIBEN and

Bayesian LASSO-based MI will lead to approximately equivalent parameter estimates.

8. When the true imputation model is sparse and the system is underdetermined, MIBEN will

lead to parameter estimates that are superior to those estimated under Bayesian LASSO-

based MI in terms of: (a) Bias and (b) ConVdence Interval Coverage

9. When the true imputation model is not sparse, MIBEN will lead to parameter estimates

that are superior to those estimated under Bayesian LASSO-based MI in terms of: (a) Bias

and (b) ConVdence Interval Coverage

29

Chapter 2

Methods

The performance of the MIBEN algorithm was assessed via a Monte Carlo simulation study.

This study scrutinized the MIBEN algorithm by comparing it to several alternative MI meth-

ods in terms of its ability to recover the true, population-level, coeXcients of a multiple linear

regression model.

2.1 Experimental Design

The Monte Carlo simulation was broken into two experiments that each targeted distinct areas of

the problem space. Experiment 1 was designed to give a detailed image of the MIBEN algorithm’s

performance in well-conditioned P � N situations. Experiment 2, on the other hand, was

designed to explore the performance of MIBEN in ill-conditioned P ≈ N and P > N situations.

2.1.1 Simulation Parameters

Four design parameters were varied in the simulation: total sample size (N), proportion of miss-

ing data on the analysis variables (PM), number of potential auxiliary variables (V), and degree of

sparsity in the true imputation model (DS). In both Experiments 1 and 2, two sparsity conditions

were included: a sparse condition and a dense condition. In the dense condition all regression

30

coeXcients took non-zero values in the population, while in the sparse condition, half of the

potential auxiliary variables had no association with the analysis variables.

The variable-selection/dimension-reduction capabilities of the various MI methods were not

of interest during Experiment 1. Therefore, I VxedV = 12 and varied the remaining three design

parameters across the following levels: PM = {.1, .2, .3}, N = {200, 400}, DS = {Sparse, Dense}.

Experiment 1 followed a factorial design and contained 1(V) × 3(PM) × 2(N) × 2(DS) = 12 fully

crossed conditions. Likewise, the eUect of sample size was not interesting in Experiment 2. So, I

Vxed N = 200 and varied the remaining design parameters across the following levels: PM = {.1,

.2, .3}, V = {150, 250}, DS = {Sparse, Dense}. Experiment 2 also conformed to a factorial design

and contained 1(N) × 3(PM) × 2(V) × 2(DS) = 12 fully crossed conditions.

2.1.2 Comparison Conditions

To judge the relative performance of the MIBEN algorithm, the parameters produced by analysis

models Vt to data treated with the MIBEN method were compared to analogous parameters

estimated under four alternative missing data treatments. Three of these comparison conditions

were applications of normal-theory MICE as implemented in the R package mice (van Buuren

& Groothuis-Oudshoorn, 2011). Each of these MICE-based conditions employed Bayesian linear

regression as the elementary imputation method, but they diUered in which predictors entered

their respective imputation models.

The Vrst comparison condition employed the true imputation model (i.e., the model con-

taining only the variables of the analysis model and those potential auxiliary variables that were

actually used to impose the MAR missingness). The second condition employed a method of best

subset selection to choose which variable to include in the imputation model. This best subset of

predictors included all of the variables in the analysis model and a subset of auxiliary variables

selected with the quickpred function which is included as a convenience function in the mice

package. The quickpred function selects predictors for the imputation model according to the

strengths of their correlations with (1) the incomplete variable being imputed and (2) the nonre-

31

sponse indicator for the variable being imputed. For the current study, a threshold of r = .5 was

used to choose predictors. This value was chosen according to guidance given by Graham (2012)

who noted that auxiliaries that are correlated with the incomplete variables at lower than r = .5

will tend to have a minimal impact on the imputation performance. Experiment 1 included an-

other MICE-based condition in which the imputation model naïvely included all of the potential

auxiliary variables and all of the variables in the analysis model. This method was not included

in Experiment 2 because the naïve imputation models were intractable when P > N .

To ground MIBEN in the most recent literature, a variation of the Zhao and Long (2013)

Bayesian LASSO-based MI was also included. This method was very similar to the sequen-

tial regression-based extension reported by Zhao and Long (2013) except that the underlying

Bayesian LASSO model employed the Park and Casella (2008) prior, whereas the original Zhao

and Long (2013) implementation used a slightly more complex parameterization of the LASSO

prior. The method employed here, which I will refer to as multiple imputation with the Bayesian

LASSO (MIBL), estimates the LASSO penalty parameter via the same multi-stage MCEM frame-

work used by MIBEN. Numerical optimization was not necessary, however, because Park and

Casella (2008) provided a deterministic update rule for the EM estimator. Thus, the two-step op-

timization of the penalty parameters described on Lines 19 and 20 of Algorithm 3 was replaced

by a single deterministic update calculation.

2.1.3 Outcome Measures

A heuristic image of each method’s performance was built up by comparing several outcome

measures. Bias introduced by the imputations was quantiVed with two measures: percentage

relative bias (PRB) and standardized bias (SB).

PRB = 100 ·

 ¯̂θ − θθ
 , SB =

¯̂θ − θ
SDθ̂
,

32

where θ represents the focal parameter’s true value, ¯̂θ represents the mean of the estimated pa-

rameters, and SDθ̂ represents the empirical standard deviation of the focal parameter. Following

the recommendations of Muthén, Kaplan, and Hollis (1987) and Collins et al. (2001), respectively,

|PRB| > 10 and |SB| > 0.40 were considered indicative of problematic bias. Variation induced

strictly by the Monte Carlo simulation was quantiVed by the Monte Carlo Standard Deviation of

the focal parameters.

SDMC =

√√√
R−1

R∑
r=1

(
θ̂r −

¯̂θ
)2
,

where R is the number of Monte Carlo replicates and θ̂r is the estimated parameter from the r th

Monte Carlo replication. To assess the integrity of hypothesis tests conducted under the various

imputation techniques, the conVdence interval coverage rates and average conVdence interval

width were also computed.

CIcover = R−1
R∑

r=1

I
(
θ ∈ ĈIr

)
, CIwidth = R−1

R∑
r=1

[
ĈIr,upper − ĈIr,lower

]
,

where ĈIr is the estimated conVdence interval from the r th replication, ĈIr,upper and ĈIr,lower rep-

resent the upper and lower bounds, respectively, of the estimated conVdence interval for the

r th replication, and I(·) is the indicator function that returns 1 when its argument is true and 0

otherwise. Following the recommendation of Burton, Altman, Royston, and Holder (2006), CI

coverage rates that were greater than two standard errors of the nominal coverage probability p

above or below the nominal coverage rate were considered problematic. The standard error of

the nominal coverage rate was deVned as: SE(p) =
√
p(1 − p)/R.

33

2.2 Data Generation

2.2.1 Population Data

The data were generated in two stages. First, a N × 3 matrix X containing the independent

variables of the analysis model was simulated according to the following model:

X = Zζ + Θ, (2.1)

with Z ∼ MVN (0V , IV) ,

and Θ ∼ MVN (03, ΩX) ,

where ΩX =

(1
2

)
ζTCov(Z)ζ ◦ I3. (2.2)

In the preceding, 0V represents a V -vector of zeros, IV represents the V × V identity matrix, the

Cov(·) operator returns the covariance matrix of its argument, and the ◦ operator represents the

element-wise matrix product (i.e., the Hadamard product). The matrix Z in Equation 2.1 contains

the exogenous auxiliary variables. These auxiliaries were related to the analysis variables via the

coeXcient matrix ζ which took diUerent forms according to the sparsity of the focal condition:

ζdense =

ζ1,1 ζ1,2 ζ1,3

ζ2,1 ζ2,2 ζ2,3
...

...
...

ζV,1 ζV,2 ζV,3

, ζsparse =

ζ1,1 ζ1,2 ζ1,3

ζ2,1 ζ2,2 ζ2,3
...

...
...

ζV
2 ,1

ζV
2 ,2

ζV
2 ,3

0 0 0
...

...
...

0 0 0

,

where each ζv , j ∼ Unif(.25, .5).

Once the predictors in the analysis model were simulated as above, the dependent variable y

34

was created as a function of the variables in X:

y = Xβ + ε , (2.3)

with β = {.2, .4, .6}T ,

and ε ∼ N
(
0,ω2

y

)
,

where ω2
y =

(1
5

)
βTCov(X)β . (2.4)

The terms βTCov(X)β (in Equation 2.4) and ζTCov(Z)ζ (in Equation 2.2) quantify the reliable

variance/covariance of y and X, respectively. Thus, by simulating the data as described, y and X

maintain a constant signal-to-noise ratio of 5:1 and 2:1, respectively. After simulating y, X, and

Z as above, these three data matrices were merged into a single N × (4 +V) data frame Yf ull that

represented the fully observed population realization of Y for the r th Monte Carlo replication.

2.2.2 Missing Data Imposition

Item nonresponse was imposed on all variables in Yf ull . A 10% nonresponse rate was imposed

on the auxiliary variables via a simple missing completely at random (MCAR) mechanism. The

probability of a cell zn,v ∈ Z being unobserved was modeled as a Bernoulli trial with a 10% chance

of “success.” For the analysis variables Y, the missingness was imposed via a MAR mechanism

in which the propensity to respond was given as a linear function of a randomly selected subset

of the potential auxiliary variables. Thus, the nonresponse mechanism aUecting the analysis

variables was modeled as a straight-forward probit regression:

P (yk = MISSING | Z) = Φ
(
Z̃ξ

)
, (2.5)

where ξ = {.25, .5}T in Experiment 1 and ξ = {.25, .25, .25, .25, .25, .5, .5, .5, .5, .5}T in

Experiment 2, Z̃ was a N × 2 matrix in Experiment 1 and a N × 10 matrix in Experiment 2 whose

columns contained, respectively, 2 or 10 randomly selected columns of Z that were associated

35

with nontrivial regression coeXcients, and Φ(·) represents the standard normal cumulative distri-

bution function. By drawing Z̃ from only the columns of Z associated with nontrivial regression

coeXcients all of the true auxiliary variables remain in the active set of {X,Z}. This parameter-

ization minimized the possibility of true auxiliaries being selected out of the imputation model

and producing a set of auxiliary data that was predictive of the incomplete variables Y but unre-

lated to the nonresponse propensity. For each variable yk ∈ {y,X} k = 1, 2, 3, 4 missingness was

imposed according to the process described by Algorithm 5.

Algorithm 5 Impose MAR Missingness

1: Input: A complete data set Yf ull
2: Output: An incomplete data set Yinc
3: DeVne: PM B The percentage of missing data to impose
4: DeVne: J B The number of true auxiliary variables
5: Set: Y← {y, X}
6: for k = 1 to 4 do
7: Set: Z̃← J randomly selected columns of Z s.t . βz j , 0
8: Compute: P (yk = MISSING | Z) according to Equation 2.5
9: for n = 1 to N do
10: if P (yk = MISSING | Z) ≥ 1 − PM then
11: Y[n, k]← MISSING
12: end if
13: end for
14: end for
15: Set: Yinc ← Merge(Y, Z)
16: return Yinc

2.3 Procedure

2.3.1 Computational Details

To ease the computational burden of this study, the Monte Carlo simulation was conducted us-

ing parallel processing methods. This parallel computing was implemented via the R package

parallel (R Core Team, 2014). To ensure replicability of the experiment, and to ensure the inde-

pendence of the Monte Carlo replications, the pseudo-random numbers were generated accord-

36

ing to the L’ecuyer, Simard, Chen, and Kelton (2002) method as implemented in the R package

rlecuyer (Sevcikova & Rossini, 2012).

The code to run the simulation was written in the R statistical programming language (R

Core Team, 2014). All of the MICE-based comparison conditions were run using the R package

mice (van Buuren & Groothuis-Oudshoorn, 2011). MIBEN and MIBL were implemented with

a new R package, mibrr1(i.e., Multiple Imputation with Bayesian Regularized Regression), that I

developed for this project. The mibrr package employs the multi-stage MCEM algorithm and

Gibbs sampler described in Section 1.6 to Vt the MIBEN and MIBL imputation models. mibrr

only uses R for data pre- and post-processing; all Gibbs sampling and marginal MCEM optimiza-

tion required to Vt the MIBEN and MIBL imputation models is done in C++ and linked back to the

R layer via the Rcpp package (Eddelbuettel & François, 2011). The numerical (pre-)optimization

of MIBEN’s penalty parameters is accomplished through a robust, redundant procedure. Both

pre-optimization and Vnal optimization of the penalty parameters is done with the C++ package

nlopt (Johnson, 2014). At each stage, the maximization is initially attempted via a preferred op-

timization routine. If this initial attempt fails, a series of three additional optimization routines

are sequentially attempted until either the parameters are successfully (pre-)optimized, or the V-

nal candidate optimization routine fails. In the latter case, the program exits with an error. Table

2.1 gives information on the various optimization routines employed in themibrr package.

Experiment 1 was run on a personal computer with an Intel Core i7 3610QM processor, 8GB

RAM, and a 750GB mechanical hard disk running Debian GNU/Linux 7.8. The computations

were run in parallel across the 8 virtual cores of the 3610QM processor. Experiment 2 was run

on an Amazon Web Services (AWS) Elastic Compute Cloud (EC2) c4.8xlarge cluster computing

instance running Ubuntu Server 14.04 LTS. This instance employed 36 virtual processor cores

physically located on several 2.9 GHz Intel Xeon E5-2666 v3 processors, 60GB of RAM, and a

100GB SSD with 3000 provisioned IOPS. The computations were run in parallel across the 36

virtual cores of the instance.

1This package is freely available for testing purposes. A copy can be accessed by request to the author.

37

Algorithm
Precedence

Pre-Optimization Routines Final Optimization Routines

Algorithm NLopt Key Citation Algorithm NLopt Key Citation

1

Bound-
Constrained

Optimization by
Quadratic

Approximation

BOBYQA Powell (2009)
Method of
Moving

Asymptotes
MMA Svanberg (2002)

2

Constrained
Optimization by

Linear
Approximation

COBYLA Powell (1994)

Shifted
Limited-Memory
Variable-Metric
(Rank-2 Method)

VAR2
Vlček and

Lukšan (2006)

3 Subplex SBPLX Rowan (1990)

Shifted
Limited-Memory
Variable-Metric
(Rank-1 Method)

VAR1
Vlček and

Lukšan (2006)

4 Principle Axis PRAXIS Brent (1973)
Low-Storage

BFGS LBFGS
Liu and Nocedal
(1989); Nocedal

(1980)

Table 2.1: Optimization routines employed by themibrr package

2.3.2 Choosing the Number of Monte Carlo Replications

In the current project, two classes of parameter were of principle interest: the regression co-

eXcients of the analysis model and their associated standard errors. Thus, a power analysis

was conducted to compute how many replications were needed to capture these eUects to an

acceptable degree of accuracy.

Given a focal parameter θ , Burton et al. (2006) gave the following formula to determine the

number of Monte Carlo replications R needed to ensure a 1 − (α/2) probability of measuring θ̂

to an accuracy of δ :

R =
(
Z1−(α/2)σ

δ

)2
, (2.6)

where Z1−(α/2) represents the 1 − (α/2) quantile of the standard normal distribution and σ is the

known standard deviation of θ .

38

2.3.2.1 Estimating σ

There were two diXculties with implementing Equation 2.6 for the current project. First, the

Monte Carlo sampling variances of β and SEβ were not known before running the simulation.

Second, it was not immediately obvious how the introduction of missing data would aUect the

Monte Carlo sampling variances of these parameters. The Vrst issue was addressed by running

an initial pilot simulation. For each sample size N = {200, 400} in Experiment 1 and each number

of potential auxiliary variables V = {150, 250} in Experiment 2, 50,000 replicates of Yf ull were

simulated and used to Vt the analysis model given by Equation 2.3. These 50,000 model Vts were

then used to compute the empirical Monte Carlo standard deviations of β and SEβ .

The second issue, however, required more careful consideration. The ubiquitous fraction of

missing information (FMI) is the key quantity to consider when assess the eUect of missing data

on a given model. The FMI quantiVes the amount of a parameter’s information that has been

lost to nonresponse. Because information is inversely proportional to variance, the FMI also

quantiVes the increase in a parameters sampling variability that is strictly due to nonresponse

(Rubin, 1987). Clearly, the Vnal Monte Carlo sampling variability of β and SEβ will be some

combination of the quantity described in the previous paragraph and the FMI. However, the

FMI can only be computed once the missing data analysis is complete because its value will be

relatively larger or smaller depending on the quality of the missing data treatment.

Though the exact FMI cannot be computed before the missing data analysis is run, a plau-

sible interval for the expected FMI can be inferred. The FMI can be somewhat larger than the

proportion of missing data (Savalei & Rhemtulla, 2011), but, in practice, it is often reason-

able to expect that the FMI is approximately equal to or somewhat smaller than the PM (En-

ders, 2010)—especially when the data follow a MAR mechanism and the imputation model is

well-parameterized. Therefore, the projected inWuence of the missing data was included into

the current power analysis by specifying three values for FMI to encompass a plausible range:

FMI = {PM/2, PM, 2PM}. For each of these values of FMI, the projected Monte Carlo standard

39

deviation was taken to be:

SDMC,Proj = ŜDMC,Pilot

1 + √
FMI

1 − FMI

 , (2.7)

where ŜDMC,Pilot is the complete-data Monte Carlo SD estimated from the pilot simulation de-

scribed above. The fractional term under the radical in Equation 2.7 is the relative increase in

variance, which gives the proportional increase in the focal parameters sampling variability due

to nonresponse. Thus, the weighting term inside the parentheses in Equation 2.7 represents a

scaling factor that adjusts the parameters’ sampling variances for the expected impact of non-

response. The required replicates R were then computed by substituting SDMC,Proj in for σ in

Equation 2.6.

2.3.2.2 Power Analysis Results

For the current power analysis, the target accuracy (i.e., δ in the denominator of Equation 2.6)

was speciVed as a proportion of the true parameter’s magnitude. Because the standard error of β

does not have a true population-level value, its “true value” SEβ was taken to be the the average

of the 50,000 replicates from the pilot study (i.e., SEβ B 2 × 10−5
∑
ŜEβ ,MC). The target accuracies

were deVned to be, at least, 5 percent of these true values: δβ = .05 · β and δSEβ = .05 · SEβ . Thus,

the Vnal power analysis entailed computing the number of replications required to achieve these

target accuracies given sample sizes of N = {200, 400} (for Experiment 1), number of potential

auxiliaries V = {150, 250} (for Experiment 2), proportions missing of PM = {.1, .2, .3}, and FMI

Levels of FMI = {PM/2, PM, 2PM}. Figures 2.1, 2.2, and 2.3 summarize the Vndings.

Based on the Vndings of the power analysis, R = 500 replications were chosen for the cur-

rent simulation. Figures 2.2 and 2.1 show that, in plausible circumstances, 500 replications are

suXcient to ensure a 95% chance of measuring β̂MC in Experiment 1 and ŜEβ ,MC in both ex-

periments to within 2.5% of their true values. Unfortunately, in Experiment 2, ensuring a 95%

chance of measuring small values of β̂MC to within 5% of their true values would require a pro-

40

hibitively large number of replications (as seen in the Vrst two columns of Figure 2.3). Because

computational demands were already a paramount limitation of the current project, and because

the moderate and large eUects are adequately captured with R = 500 replications, this number

was deemed suXcient for Experiment 2, as well—with the acknowledgment that the precision

of estimates of the small eUects may suUer. As seen in the rightmost two columns of Figure 2.3,

R = 500 is suXcient to ensure a 95% chance of measuring the small eUects to an accuracy of 10%

of their true values.

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

150 Potential Auxiliaries

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

P
M

 =
 0

.1

250 Potential Auxiliaries

FMI Levels

PM/2

PM

2PM

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

P
M

 =
 0

.2

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.2 0.4 0.6

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

P
M

 =
 0

.3

0.2 0.4 0.6

Effect Size (of β)

N
u

m
b

er
 o

f
M

o
n

te
 C

a
rl

o
 R

ep
li

ca
te

s

Figure 2.1: Monte Carlo replications required to capture ŜEβ ,MC to an accuracy of 2.5% of its true
value in Experiment 2

41

02004006008001000

N
 =

 2
0
0

02004006008001000

N
 =

 4
0
0

R
ep

li
ca

ti
o
n
s

N
ee

d
ed

 t
o
 C

ap
tu

re
 β

02004006008001000

N
 =

 2
0
0

02004006008001000

PM = 0.1

N
 =

 4
0
0

F
M

I
L

ev
el

s

P
M

/2

P
M

2
P

M

R
ep

li
ca

ti
o
n
s

N
ee

d
ed

 t
o
 C

ap
tu

re
 S

E
(β

)

02004006008001000

02004006008001000

02004006008001000

02004006008001000

PM = 0.2

02004006008001000

0
.2

0
.4

0
.6

02004006008001000

0
.2

0
.4

0
.6

02004006008001000

0
.2

0
.4

0
.6

02004006008001000

PM = 0.3

0
.2

0
.4

0
.6

E
ff

ec
t

S
iz

e
(o

f
β

)

Number of Monte Carlo Replicates

Figure 2.2: Monte Carlo replications required to capture β̂MC and ŜEβ ,MC to accuracies of 2.5% of
their respective true values in Experiment 1

42

050010001500200025003000

1
5
0
 P

o
te

n
ti

a
l

A
u

x
il

ia
ri

es

050010001500200025003000

2
5
0
 P

o
te

n
ti

a
l

A
u

x
il

ia
ri

es

δ
 =

 0
.0

5

02004006008001000

1
5
0
 P

o
te

n
ti

a
l

A
u

x
il

ia
ri

es

02004006008001000

PM = 0.1

2
5
0
 P

o
te

n
ti

a
l

A
u

x
il

ia
ri

es

F
M

I
L

e
v
e
ls

P
M

/2

P
M

2
P

M

δ
 =

 0
.1

050010001500200025003000

050010001500200025003000

02004006008001000

02004006008001000

PM = 0.2

050010001500200025003000

0
.2

0
.4

0
.6

050010001500200025003000

0
.2

0
.4

0
.6

02004006008001000

0
.2

0
.4

0
.6

02004006008001000

PM = 0.3

0
.2

0
.4

0
.6

E
ff

ec
t

S
iz

e

Number of Monte Carlo Replicates

Figure 2.3: Monte Carlo replications required to capture β̂MC to an accuracy of 5% (left two
columns) and 10% (right two columns) of its true value in Experiment 2

43

2.3.3 Parameterizing the MIBEN & MIBL Gibbs Samplers

To implement MIBEN and MIBL several key parameters must be speciVed: (1) the number of

MCEM approximation iterations, (2) the number of MCEM tuning iterations, (3) the size of the

Gibbs samples drawn during the MCEM approximation phase (and the associated number of

burn-in Gibbs iterations to discard), (4) the size of the Gibbs samples drawn during the MCEM

tuning phase (and the associated number of burn-in Gibbs iterations to discard), and (5) the

size of the Vnal posterior Gibbs sample to draw (and the associated number of burn-in Gibbs

iterations to discard). For the current study, these values were each chosen by running a small set

of exploratory replications in which diUerent candidate values were auditioned and convergence

was judged as in the full simulation study. This approach led to choosing the set of values

contained in Table 2.2 to parameterize the MIBEN and MIBL Gibbs samplers.

S
a
m

p
le

 S
iz

e

E
x
p

e
ri

m
e
n

t
1 S

p
a
rs

e

0.1 400 12 50 75 10 25 25 100 200 250 500

0.2 400 12 50 75 10 25 25 100 200 250 500

0.3 400 12 50 75 10 25 25 100 200 250 500

0.1 200 12 50 75 10 25 25 100 200 250 500

0.2 200 12 50 75 10 25 25 100 200 250 500

0.3 200 12 50 75 10 25 25 100 200 250 500

D
e
n

s
e

0.1 400 12 50 75 10 25 25 100 200 250 500

0.2 400 12 50 75 10 25 25 100 200 250 500

0.3 400 12 50 75 10 25 25 100 200 250 500

0.1 200 12 50 75 10 25 25 100 200 250 500

0.2 200 12 50 75 10 25 25 100 200 250 500

0.3 200 12 50 75 10 25 25 100 200 250 500

E
x
p

e
ri

m
e
n

t
2 S

p
a
rs

e

0.1 200 250 200 200 20 25 25 200 300 500 1000

0.2 200 250 200 300 20 25 25 200 300 500 1000

0.3 200 250 200 400 20 25 25 200 300 500 1000

0.1 200 150 150 200 15 25 25 200 300 500 1000

0.2 200 150 150 200 15 25 25 200 300 500 1000

0.3 200 150 150 200 15 25 25 200 300 500 1000

D
e
n

s
e

0.1 200 250 200 200 20 25 25 200 300 500 1000

0.2 200 250 300 300 20 25 25 200 300 500 1000

0.3 200 250 400 400 20 25 25 200 300 500 1000

0.1 200 150 150 200 15 25 25 200 300 500 1000

0.2 200 150 150 200 15 25 25 200 300 500 1000

0.3 200 150 150 200 15 25 25 200 300 500 1000

P
ro

p
o
rt

io
n

M
is

s
in

g

P
o
te

n
ti

a
l

A
u

x
il
ia

ri
e
s

M
IB

E
N

 M
C

E
M

A
p

p
ro

x
im

a
ti

o
n

It
e
ra

ti
o
n

s

M
IB

L
 M

C
E

M
A

p
p
ro

x
im

a
ti

o
n

It
e
ra

ti
o
n

s

M
C

E
M

T
u

n
in

g
It

e
ra

ti
o
n

s

M
C

E
M

 A
p
p

ro
x
:

G
ib

b
s
 B

u
rn

-I
n

M
C

E
M

 A
p

p
ro

x
:

G
ib

b
s

S
a
m

p
le

 S
iz

e

M
C

E
M

 T
u

n
e
:

G
ib

b
s
 B

u
rn

-I
n

M
C

E
M

 T
u

n
e
:

G
ib

b
s

S
a
m

p
le

 S
iz

e

P
o
s
te

ri
o
r

B
u

rn
-I

n

P
o
s
te

ri
o
r

G
ib

b
s

S
a
m

p
le

 S
iz

e

Table 2.2: Iterations of the MIBEN and MIBL Gibbs samplers & MCEM algorithms

44

2.3.4 Simulation WorkWow

For each replication, a single population realization Yf ull ∈ Y of the full data was simulated

according to Equations 2.1 and 2.3. The appropriate degree of nonresponse was then imposed

according to the procedures describe in Section 2.2.2. These missing data were then imputed

100 times by the MIBEN algorithm as well as each of the MI methods described in Section 2.1.2.

Finally, for each of these sets of imputed data, 100 replicates of the analysis model given by

Equation 2.3 were estimated, and their parameter estimates were pooled via Rubin’s Rules (Ru-

bin, 1987). After running all 500 replications, the performance of each of the MI methods was

quantiVed by computing the suite of outcome measures described in Section 2.1.3.

45

Chapter 3

Results

3.1 Convergence Rates

Convergence rates of all imputation and analysis models were very high. Only two imputation

models failed to converge. Both failures occurred with MIBEN, in Experiment 1, with sparse

imputation models, PM = 0.1, and N = 400. These failures occurred when the MCEM algorithm

failed to locate a non-zero value for the ridge penalty parameter because the `2-regularization

was unnecessary. All other imputation and analysis models converged. For MIBEN and MIBL,

convergence of the imputation model parameters’ Vnal Gibbs samples was assessed via the po-

tential scale reduction factor (R̂). Using the criterion R̂ ≤ 1.1 to indicate stable convergence, all

Vnal Gibbs samples converged to their respective stationary posterior distributions. Experiment

1 took approximately 16.7 hours to run, and Experiment 2 ran for approximately 92.7 hours.

Although I had no hypothesis regarding convergence properties, this area is one where

MIBEN clearly outstrips MIBL. The deterministic update rule used to estimate the Bayesian

LASSO’s penalty parameter (see Park & Casella, 2008, p. 683) is robust and computationally

eXcient (within iteration), but it takes small steps in the parameter space. Compared to this de-

terministic update, the two-step, numerical optimization employed to estimate the BEN’s penalty

parameters in MIBEN is much more computationally expensive within a single iteration, but it

46

takes much larger steps in the parameter space. Thus, MIBEN’s MCEM algorithm converges in

far fewer iterations than MIBL’s version does. MIBEN’s MCEM iterates also tend to produce

an unambiguous “elbow” pattern in the penalty parameters’ trace plots that eases the task of

assessing convergence while MIBL’s version tends to produce much smoother trace plots that

are more diXcult to interpret. Figure 3.1 shows trace plots of ten randomly selected replications

from Experiment 2 with PM = 0.3, 250 potential auxiliaries, and sparse imputation models.

0 50 100 150 200

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

M
IB

E
N

 λ
1

Target Variable = Y

0 50 100 150 200

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Target Variable = X1

0 50 100 150 200

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Target Variable = X2

0 50 100 150 200

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Target Variable = X3

0 50 100 150 200

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

M
IB

E
N

 λ
2

0 50 100 150 200

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

0 50 100 150 200

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

0 50 100 150 200

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

0 50 100 150 200

1
0

1
5

2
0

2
5

M
IB

L
 λ

0 50 100 150 200

1
0

1
5

2
0

2
5

0 50 100 150 200

1
0

1
5

2
0

2
5

0 50 100 150 200

1
0

1
5

2
0

2
5

MCEM Iteration Number

Figure 3.1: Trace plots of MIBEN and MIBL penalty parameters for 10 randomly selected repli-
cations of Experiment 2 with PM = 0.3, V = 250, and sparse imputation models
Note: Dashed horizontal lines indicate the beginning of the MCEM tuning phase

47

3.2 Overdetermined Models

The results of Experiment 1 showed very strong performance for both MIBEN and MIBL when

the imputation models were highly overdetermined. Both MIBEN and MIBL produced unbi-

ased estimates with nearly optimal conVdence interval coverage rates (although there was a

tendency for all imputation methods to induce overcoverage of the true regression slopes with

sparse models). The three MICE-based approaches also did very well except when estimating

intercepts, where they tended to produce positively biased estimates with conVdence intervals

that considerably undercovered the true parameter values. Thus, Hypotheses 3 and 4 are fully

supported since MIBEN performed as well as, or better than, the MICE-based approaches for

overdetermined imputation models. Hypothesis 7 was also supported since MIBEN and MIBL

produced nearly identical results for the overdetermined models. Figures 3.2 and 3.3 contain

plots of each method’s PRB for sparse and dense imputation models, respectively. Likewise, Fig-

ures 3.4 and 3.5 show each method’s SB for sparse and dense models, respectively, and Figures

3.6 and 3.7 show analogous plots of the CI coverage rates. The dashed lines in the plots contained

in Figures 3.6 and 3.7 represent two SEs of the nominal coverage probability above and below the

nominal coverage rate (i.e., .95 ± 2 × SE(p)).

48

−0.06−0.04−0.020.000.020.040.06

β
 =

 I
n
te

rc
ep

t
(R

aw
 B

ia
s)

−6−4−20246

β
 =

 0
.2

−6−4−20246

β
 =

 0
.4

−6−4−20246

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

N = 200

−0.06−0.04−0.020.000.020.040.06

1
0
%

2
0
%

3
0
%

−6−4−20246

1
0
%

2
0
%

3
0
%

−6−4−20246

1
0
%

2
0
%

3
0
%

−6−4−20246

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Percentage Relative Bias

Figure 3.2: Percentage relative bias for Experiment 1 sparse imputation models
Note: Raw bias is reported for the intercepts because their true values were β0 = 0.

49

−0.06−0.04−0.020.000.020.040.06

β
 =

 I
n
te

rc
ep

t
(R

aw
 B

ia
s)

−6−4−20246

β
 =

 0
.2

−6−4−20246

β
 =

 0
.4

−6−4−20246

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

N = 200

−0.06−0.04−0.020.000.020.040.06

1
0
%

2
0
%

3
0
%

−6−4−20246

1
0
%

2
0
%

3
0
%

−6−4−20246

1
0
%

2
0
%

3
0
%

−6−4−20246

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Percentage Relative Bias

Figure 3.3: Percentage relative bias for Experiment 1 dense imputation models
Note: Raw bias is reported for the intercepts because their true values were β0 = 0.

50

−0.6−0.4−0.20.00.20.40.6

β
 =

 I
n
te

rc
ep

t

−0.6−0.4−0.20.00.20.40.6

β
 =

 0
.2

−0.6−0.4−0.20.00.20.40.6

β
 =

 0
.4

−0.6−0.4−0.20.00.20.40.6

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

N = 200

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Standardized Bias

Figure 3.4: Standardized bias for Experiment 1 sparse imputation models

51

−0.6−0.4−0.20.00.20.40.6

β
 =

 I
n
te

rc
ep

t

−0.6−0.4−0.20.00.20.40.6

β
 =

 0
.2

−0.6−0.4−0.20.00.20.40.6

β
 =

 0
.4

−0.6−0.4−0.20.00.20.40.6

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

N = 200

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Standardized Bias

Figure 3.5: Standardized bias for Experiment 1 dense imputation models

52

0.850.88750.9250.96251

β
 =

 I
n
te

rc
ep

t

0.90.9250.950.9751

β
 =

 0
.2

0.90.9250.950.9751

β
 =

 0
.4

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

0.90.9250.950.9751

β
 =

 0
.6

N = 200

0.850.88750.9250.96251

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Confidence Interval Coverage

Figure 3.6: ConVdence interval coverage for Experiment 1 sparse imputation models
Note: Dashed lines represent .95 ± 2 × SE(p)

53

0.850.88750.9250.96251

β
 =

 I
n
te

rc
ep

t

0.90.9250.950.9751

β
 =

 0
.2

0.90.9250.950.9751

β
 =

 0
.4

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

0.90.9250.950.9751

β
 =

 0
.6

N = 200

0.850.88750.9250.96251

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Confidence Interval Coverage

Figure 3.7: ConVdence interval coverage for Experiment 1 dense imputation models
Note: Dashed lines represent .95 ± 2 × SE(p)

54

3.3 Underdetermined Models

When P > N or P ≈ N , there was not a clearly strongest method in terms of bias in the analysis

model parameters. Figures 3.8 and 3.9 show the PRB of each method for sparse and dense impu-

tation models, respectively. Figures 3.10 and 3.11 contain analogous plots of the SB. As seen in

these Vgures, neither metric reWected much of a performance diUerence in estimating the mod-

erate (β = 0.4) and large (β = 0.6) eUects, but there was some diUerentiation when estimating

small eUects (β = 0.2) and intercepts, particularly in terms of PRB. The MICE-based methods

tended to overestimate the intercepts for sparse models while MIBEN and MIBL provided unbi-

ased estimates of the intercepts in all conditions. On the other hand, MIBEN and MIBL tended to

underestimate the small eUects to a greater extent in the sparse models while all tested methods

tended to underestimate the small eUects for dense models. SpeciVcally in terms of SB, MIBEN

and MIBL produced unbiased estimates across the board, while a small degree of positive SB in

the intercepts remained for the MICE-based methods. A possible explanation for this pattern is

discussed in more detail below, but these Vndings indicate little to no support for Hypothesis 5

since there is no evidence that MIBEN systematically produced lower parameter bias than the

MICE-based methods did, except when estimating intercepts.

The patterns of CI coverage rates are also somewhat ambiguous. Figures 3.12 and 3.13 contain

plots of the CI coverage rates induced by each method for sparse and dense models, respectively.

All methods clearly demonstrated occasionally problematic departures from the nominal cover-

age rate, but one general pattern emerged. When coverage was problematic, MIBEN and MIBL

tended to lead to overcoverage while the MICE-based approaches tended to induce undercover-

age. This diUerence suggests that MIBEN and MIBL will tend to induce higher Type II error

rates while the MICE-based approaches will tend to induce inWated Type I error rates. It may

be that Type II errors are the lesser of two evils, but these Vndings do not support Hypothesis 6

because the CI coverage was not systematically closer to nominal for MIBEN than it was for the

MICE-based methods.

55

−0.6−0.4−0.20.00.20.40.6

β
 =

 I
n
te

rc
ep

t
(R

aw
 B

ia
s)

−10−50510

β
 =

 0
.2

−10−50510

β
 =

 0
.4

−10−50510

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

150 Potential Auxiliaries

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−10−50510

1
0
%

2
0
%

3
0
%

−10−50510

1
0
%

2
0
%

3
0
%

−10−50510

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Percentage Relative Bias

Figure 3.8: Percentage relative bias for Experiment 2 sparse imputation models
Note: Raw bias is reported for the intercepts because their true values were β0 = 0.

56

−0.6−0.4−0.20.00.20.40.6

β
 =

 I
n
te

rc
ep

t
(R

aw
 B

ia
s)

−20−15−10−50510

β
 =

 0
.2

−10−50510

β
 =

 0
.4

−10−50510

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

150 Potential Auxiliaries

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−20−15−10−50510

1
0
%

2
0
%

3
0
%

−10−50510

1
0
%

2
0
%

3
0
%

−10−50510

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Percentage Relative Bias

Figure 3.9: Percentage relative bias for Experiment 2 dense imputation models
Note: Raw bias is reported for the intercepts because their true values were β0 = 0.

57

−0.6−0.4−0.20.00.20.40.6

β
 =

 I
n
te

rc
ep

t

−0.6−0.4−0.20.00.20.40.6

β
 =

 0
.2

−0.6−0.4−0.20.00.20.40.6

β
 =

 0
.4

−0.6−0.4−0.20.00.20.40.6

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

150 Potential Auxiliaries

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Standardized Bias

Figure 3.10: Standardized bias for Experiment 2 sparse imputation models

58

−0.6−0.4−0.20.00.20.40.6

β
 =

 I
n
te

rc
ep

t

−0.6−0.4−0.20.00.20.40.6

β
 =

 0
.2

−0.6−0.4−0.20.00.20.40.6

β
 =

 0
.4

−0.6−0.4−0.20.00.20.40.6

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

150 Potential Auxiliaries

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

−0.6−0.4−0.20.00.20.40.6

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Standardized Bias

Figure 3.11: Standardized bias for Experiment 2 dense imputation models

59

0.90.9250.950.9751

β
 =

 I
n
te

rc
ep

t

0.90.9250.950.9751

β
 =

 0
.2

0.90.9250.950.9751

β
 =

 0
.4

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

0.90.9250.950.9751

β
 =

 0
.6

150 Potential Auxiliaries

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Confidence Interval Coverage

Figure 3.12: ConVdence interval coverage for Experiment 2 sparse imputation models
Note: Dashed lines represent .95 ± 2 × SE(p)

60

0.90.9250.950.9751

β
 =

 I
n
te

rc
ep

t

0.90.9250.950.9751

β
 =

 0
.2

0.90.9250.950.9751

β
 =

 0
.4

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

0.90.9250.950.9751

β
 =

 0
.6

150 Potential Auxiliaries

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

0.90.9250.950.9751

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Confidence Interval Coverage

Figure 3.13: ConVdence interval coverage for Experiment 2 dense imputation models
Note: Dashed lines represent .95 ± 2 × SE(p)

61

3.4 General Findings

In Experiment 1, Hypothesis 1 was mostly supported as MIBEN led to universally unbiased pa-

rameter estimates but the coverage rates for some of those parameters were somewhat too high.

This problematic CI coverage was most pronounced for the large eUects with sparse imputation

models. In Experiment 2, Hypothesis 1 was also partially supported. MIBEN produced better

CI coverage rates in Experiment 2 than it did in Experiment 1, but it led to problematic degrees

of PRB for the small eUects (β = 0.2) with dense imputation models. In terms of SB, however,

MIBEN led to unbiased parameter estimates for all conditions. Graham (2012) noted that PRB can

exaggerate the absolute bias in small eUects. He suggested favoring SB over PRB when judging

the practical importance of bias in small eUects, if there is disagreement between the two met-

rics. Therefore, it could be argued that MIBEN led to universally unbiased parameter estimates,

at least from the perspective of practical importance. As discussed below, the inconsistency

between PRB and SB also reWects sensible Bayesian behavior on the part of MIBEN.

Two overall patterns permeated all of the experimental conditions: (1) MIBEN and MIBL pro-

duced nearly identical results, and (2) MIBEN and MIBL produced more variable results than the

MICE-based approaches produced. The Vrst pattern means that Hypotheses 8 and 9 are deVni-

tively rejected since MIBEN did not systematically outperform MIBL in any condition tested for

this project. Finding that MIBEN and MIBL produced more variable solutions that the MICE-

based methods was somewhat surprising and clearly rejects Hypothesis 2 since the additional

variability made MIBEN’s CIs universally wider than those derived from MICE-based methods.

Figures 3.14 and 3.15 contain plots of each method’s average CI width for Experiment 1’s sparse

and dense models, respectively, and Figures 3.16 and 3.17 contain analogous plots from Experi-

ment 2. As a consequence of producing more variable analysis model Vts than the MICE-based

methods, MIBEN and MIBL also had higher Monte Carlo variability than the MICE-based meth-

ods did. This higher simulation variability can be seen in Figures 3.18, 3.19, 3.20, and 3.21 which

show plots of the SDMC for each method in Experiment 1 sparse models, Experiment 1 dense

models, Experiment 2 sparse models, and Experiment 2 dense models, respectively.

62

0.00.10.20.30.40.5

β
 =

 I
n
te

rc
ep

t

0.00.10.20.30.40.5

β
 =

 0
.2

0.00.10.20.30.40.5

β
 =

 0
.4

0.00.10.20.30.40.5

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

N = 200

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Mean Confidence Interval Width

Figure 3.14: Mean conVdence interval width for Experiment 1 sparse imputation models

63

0.00.10.20.30.40.5

β
 =

 I
n
te

rc
ep

t

0.00.10.20.30.40.5

β
 =

 0
.2

0.00.10.20.30.40.5

β
 =

 0
.4

0.00.10.20.30.40.5

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

N = 200

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Mean Confidence Interval Width

Figure 3.15: Mean conVdence interval width for Experiment 1 dense imputation models

64

012345

β
 =

 I
n
te

rc
ep

t

0.00.51.01.52.0

β
 =

 0
.2

0.00.51.01.52.0

β
 =

 0
.4

0.00.51.01.52.0

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

150 Potential Auxiliaries

012345

1
0
%

2
0
%

3
0
%

0.00.51.01.52.0

1
0
%

2
0
%

3
0
%

0.00.51.01.52.0

1
0
%

2
0
%

3
0
%

0.00.51.01.52.0

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Mean Confidence Interval Width

Figure 3.16: Mean conVdence interval width for Experiment 2 sparse imputation models

65

02468

β
 =

 I
n
te

rc
ep

t

0.00.51.01.52.0

β
 =

 0
.2

0.00.51.01.52.0

β
 =

 0
.4

0.00.51.01.52.0

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

150 Potential Auxiliaries

02468

1
0
%

2
0
%

3
0
%

0.00.51.01.52.0

1
0
%

2
0
%

3
0
%

0.00.51.01.52.0

1
0
%

2
0
%

3
0
%

0.00.51.01.52.0

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Mean Confidence Interval Width

Figure 3.17: Mean conVdence interval width for Experiment 2 dense imputation models

66

0.000.050.100.150.20

β
 =

 I
n
te

rc
ep

t

0.000.050.100.150.20

β
 =

 0
.2

0.000.050.100.150.20

β
 =

 0
.4

0.000.050.100.150.20

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

N = 200

0.000.050.100.150.20

1
0
%

2
0
%

3
0
%

0.000.050.100.150.20

1
0
%

2
0
%

3
0
%

0.000.050.100.150.20

1
0
%

2
0
%

3
0
%

0.000.050.100.150.20

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Monte Carlo Standard Deviation

Figure 3.18: Monte Carlo SD for Experiment 1 sparse imputation models

67

0.000.050.100.150.20

β
 =

 I
n
te

rc
ep

t

0.000.050.100.150.20

β
 =

 0
.2

0.000.050.100.150.20

β
 =

 0
.4

0.000.050.100.150.20

M
IB

E
N

M
IB

L

N
ai

v
e

M
IC

E

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

N = 200

0.000.050.100.150.20

1
0
%

2
0
%

3
0
%

0.000.050.100.150.20

1
0
%

2
0
%

3
0
%

0.000.050.100.150.20

1
0
%

2
0
%

3
0
%

0.000.050.100.150.20

1
0
%

2
0
%

3
0
%

N = 400

P
er

ce
n

t
M

is
si

n
g

Monte Carlo Standard Deviation

Figure 3.19: Monte Carlo SD for Experiment 1 dense imputation models

68

0.00.20.40.60.81.01.2

β
 =

 I
n
te

rc
ep

t

0.00.10.20.30.40.5

β
 =

 0
.2

0.00.10.20.30.40.5

β
 =

 0
.4

0.00.10.20.30.40.5

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

150 Potential Auxiliaries

0.00.20.40.60.81.01.2

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Monte Carlo Standard Deviation

Figure 3.20: Monte Carlo SD for Experiment 2 sparse imputation models

69

0.00.51.01.52.0

β
 =

 I
n
te

rc
ep

t

0.00.10.20.30.40.5

β
 =

 0
.2

0.00.10.20.30.40.5

β
 =

 0
.4

0.00.10.20.30.40.5

M
IB

E
N

M
IB

L

B
es

t
M

IC
E

T
ru

e
M

IC
E

β
 =

 0
.6

150 Potential Auxiliaries

0.00.51.01.52.0

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

0.00.10.20.30.40.5

1
0
%

2
0
%

3
0
%

250 Potential Auxiliaries

P
er

ce
n

t
M

is
si

n
g

Monte Carlo Standard Deviation

Figure 3.21: Monte Carlo SD for Experiment 2 dense imputation models

70

Chapter 4

Discussion

I have introduced Multiple Imputation with the Bayesian Elastic Net (MIBEN), and examined its

performance with a Monte Carlo simulation study in which MIBEN was compared to an adap-

tation of the Zhao and Long (2013) Bayesian LASSO-based MI method (MIBL) and MICE with

predictors chosen through three diUerent model selection schemes. Each method was judged

based on its ability to produce multiple imputations that facilitated accurate estimation of the

parameters of a linear regression model and produced well-calibrated conVdence intervals for

those estimates.

In terms of the conditions explored for this study, MIBEN performed well and led to satisfac-

tory results, overall. MIBEN and MIBL produced nearly identical results, but the MCEM algo-

rithm underlying MIBEN converged much faster, and more decisively, than the version employed

by MIBL. The importance of this superior convergence behavior should not be underestimated as

both of these methods entail a considerable computational expense. In terms of parameter bias,

there was no clearly superior method except when estimating the intercepts with sparse im-

putation models where MIBEN and MIBL performed considerably better than the MICE-based

methods did. On the other hand, MIBEN and MIBL did tend to induce somewhat larger relative

biases in the estimates of the small eUects than the MICE-based methods did.

The two systematic patterns in the parameter bias (i.e., poorly estimated intercepts with

71

MICE-based methods and poorly estimated small eUects with MIBEN/MIBL), can both be ex-

plained by the inWuence of the underlying model regularization. The simulated data were very

noisy, and the outcome data had the lowest signal to noise ratio of all target variables because

of the two-stage data generation process (see Section 2.2.1). The true value for the intercept was

also β0 = 0. Taking both of these aspects into consideration it becomes clear that accurately esti-

mating the intercepts was actually a very challenging task. The MICE-based imputations appear

to have been systematically “oU the mark” in that they consistently implied a non-zero condi-

tional mean for the outcome variable. On the other hand, the very strong regularization inherent

in MIBEN and MIBL is ideally suited to overcoming the high rates of noise in the outcome vari-

able and creating imputations that correctly implied a conditional mean of zero for the outcome

variable. This behavior is not an artifact of this simulation’s data generation process, either.

MIBEN’s strong regularization should always facilitate accurate imputations of the outcome’s

conditional mean because MIBEN’s data pre-processing module centers all target variables be-

fore imputation. Thus, the correct conditional mean for each of MIBEN’s elementary imputation

equations will be β0 = 0, regardless of the value in the original incomplete data. When MIBL

is implemented with these same data pre-processing steps (as was done for this study), the pre-

ceding rationale suggests that it should also impute correct estimates for the target variables’

conditional means.

This high degree of regularization can be a double-edged sword, however, and it also ex-

plains the poorer performance of MIBEN and MIBL in facilitating estimation of small eUects.

The eUects in question were β = 0.2 in the population, which will border on nonsigniVcance

when the observed data are very noisy. In these cases MIBEN and MIBL seem to be somewhat

over-regularizing the Vtted imputation models and creating a larger than desired proportion of

imputations that imply a zero eUect when the true β = 0.2.

In terms of conVdence interval coverage rates, MIBEN and MIBL tended to produce more

desirable results than the MICE-based methods did. Although all methods induced sporadic cov-

erage problems, the violation of MIBEN and MIBL were always conservative (i.e., overcoverage)

72

while those induced by MICE tended to be liberal (i.e., undercoverage). Though it is up to the

end-user of these methods to judge whether Type I or Type II errors are more problematic for

their particular application, I suggest that Type II errors are the lesser of two evils in most miss-

ing data problems.

Additionally, the coverage rates for the intercepts were much too low for the MICE-based

approaches, while they were nearly nominal for MIBEN and MIBL. Thus, it appears that the

MICE-based imputations implied a non-zero conditional mean for the outcome variable with

a high degree of certainty, whereas MIBEN and MIBL not only produced imputations that ac-

curately reWected the outcome’s conditional mean, but also incorporate the uncertainty in that

estimate in a sensible way. Although intercepts are often ignored in social science research,

there are many situations in which accurately estimating the conditional mean of a given out-

come is critically important. Any forecasting problem, for example, is absolutely dependent on

being able to accurately infer the conditional mean of the forecasting quantity. In such applica-

tions, MIBEN or MIBL would be expected to perform much better than the MICE-based methods

examined here.

MIBEN and MIBL produced more variable estimates than the MICE-based methods did. This

increased variability led to wider conVdence intervals and higher Monte Carlo SDs for MIBEN

and MIBL than for the MICE-based methods. While this additional variability may seem unde-

sirable, I suggest that it is actually indicative of sensible behavior for the circumstances of the

current study. MI is a fundamentally Bayesian procedure, regardless of how the imputations

themselves are created, and one of the most important aspects of any Bayesian data analysis is

quantifying uncertainty in the posterior estimates (Gelman et al., 2013). A well-calibrated impu-

tation model should capture the additional uncertainty introduced by nonresponse (or sampling

variability) by producing posterior distributions for the imputation model parameters that are

more diUuse than those that would have been estimated for completely observed (or low-noise)

data. These widened posteriors, by extension, should induce posterior predictive distribution

of the missing data that have higher variability than the completely observed data’s posterior

73

distribution would have exhibited (Rubin, 1987). In practice, these wider posteriors will increase

the variability of the imputations and induce higher levels of between imputation variance, rela-

tive to situations with greater certainty about the imputation model’s parameter estimates. This

reasonable behavior is what MIBEN and MIBL seem to be demonstrating in this study.

While neither MIBEN and MIBL nor the MICE-based methods tended to induce much bias

in the analysis model parameters, when such bias was present the MICE-based methods also

tended to attribute too much certainty to the parameter estimate whereas MIBEN and MIBL

“self-corrected” by inducing additional variance into the imputations to accurately reWect the

uncertainty in any problematic estimates. This discrepancy is made clear by contrasting the

percentage relative bias and standardized bias, particularly as shown in Figures 3.8 and 3.10, re-

spectively. As Figure 3.8 shows, the MICE-based methods induced bias in the intercept estimates

while MIBEN and MIBL tended to induce bias in the estimated small eUects. When comparing

this pattern to Figure 3.10, however, it becomes clear that MIBEN and MIBL have increased the

variance in the imputations to account for their inherent limitations in estimating such small

eUects in the presence of noisy data—which is the appropriate response when faced with high

levels of uncertainty in the estimated parameters. Thus, there are no appreciable diUerences in

the small eUects’ standardized bias between methods. The MICE-based methods, on the other

hand, appear to have metaphorically “doubled down” on there biased estimates of the intercepts

by failing to increase the between imputation variance to account for the parameter bias. Thus,

the standardized bias in the intercept estimates reported in Figure 3.10 is even more severe than

the raw bias reported in Figure 3.8.

This same pattern carries over to the CI coverage rates. While neither MIBEN and MIBL nor

the MICE-based methods produce universally nominal coverage rates, the MICE-based methods

tend to undercover the true parameters (suggesting too much certainty in the parameter esti-

mates), while the MIBEN and MIBL methods tend to overcover the true parameters (suggesting

low certainty in the parameter estimates). Again, with such noisy data and additional missing

data compounding the uncertainty, I suggest that the behavior of MIBEN and MIBL is more

74

sensible under these circumstances.

The similar performance of MIBEN and MIBL was somewhat surprising but is sensible, in

hindsight. Although the data generating models in experiment 2 were, potentially, highly under-

determined, their parametric structure was actually very simple. These models were straight-

forward regression models in which all potential auxiliary variables entered the model linearly

and were linearly related to a normally distributed outcome variable. In such cases, it seems that

the additional regularization provided by the Bayesian elastic net does not hold any apprecia-

ble advantage over the simpler regularization of the Bayesian LASSO. The fact that MIBEN and

MIBL performed equivalently here validates MIBEN’s baseline performance. Future work will

explore more complex data generating models for which MIBEN is more uniquely well suited.

4.1 Limitations & Future Directions

The study presented here was necessarily limited in its scope. Future research will explore more

complex data generating models to elucidate the circumstances in which MIBEN can outperform

MIBL. An important Vrst step will be to introduce correlations among the auxiliary variables. If

the auxiliaries are subject to multicollinearity, the ridge-type penalization of the BEN may be-

come more crucial, and MIBEN could considerably outperform MIBL. Another key complication

will be to include nonlinear functions of the auxiliaries (e.g., interactions and polynomial terms)

into the systematic component of the data generating model. Simulating data with a “grouped”

item structure (e.g., by using a factor analytic model to generate the data) may also bring out

some of the unique strengths of MIBEN relative to MIBL.

The MIBEN method and the mibrr R package are also in active development, and their

capabilities are currently being extended. A key improvement will be incorporating the ability to

impute incomplete categorical variables. The performance of MICE-based methods is not nearly

as clear-cut when dealing with incomplete categorical data (Lang, 2014; Wu et al., 2014), so

MIBEN may dramatically outperform currently available methods in this domain. The way that

75

missingness on the auxiliary variables is treated must also be considered. Although the method

employed here (e.g., pairwise deletion through zero-imputation) worked well for the current

study, it may induce bias when the auxiliary variables are subject to MAR missingness, rather

than the MCAR missingness simulated here. Future work will test this possibility and consider

alternative strategies for addressing missing data on the auxiliary variables. Finally, methods for

online convergence monitoring will be considered. Actively monitoring the convergence of both

the Gibbs samples and the penalty parameters’ MCEM chains could dramatically improve the

computational eXciency of MIBEN by avoiding the use of wastefully long Markov Chains.

4.2 Conclusion

I have introduced MIBEN, a novel multiple imputation scheme that leverages the strengths of the

Bayesian elastic net to create principled multiple imputations of normally distributed missing

data under the assumption of MAR missingness. The MIBEN method was found to perform as

well as or better than current state-of-the-art techniques based on normal-theory MI within a

MICE framework and MI based on the Bayesian LASSO. Although MIBEN is not yet ready for

production-level deployment, the results of this study show that the MIBEN method has great

promise, and future research will work to maximize this potential and extend MIBEN into a very

powerful and highly featured missing data tool.

76

References

Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribu-

tion when some observations are missing. Journal of the American Statistical Association,

52(278), 200–203.

Barcena, M. J., & Tusell, F. (2004). Fitting multivariate responses using scalar trees. Statistics &

Probability Letters, 69(3), 253–259. doi: 10.1016/j.spl.2004.06.012

Brent, R. P. (1973). Algorithms for minimizatin without derivatives. Englewood CliUs, NJ: Prentice-

Hall. (Reprinted by Dover, 2002)

Burton, A., Altman, D. G., Royston, P., & Holder, R. L. (2006). The design of simulation studies

in medical statistics. Statistics in Medicine, 25(24), 4279–4292. doi: 10.1002/sim.2673

Carpenter, J. R., & Kenward, M. G. (2012). Multiple imputation and its applications. John Wiley

& Sons.

Casella, G. (2001). Empirical Bayes Gibbs sampling. Biostatistics, 2(4), 485–500.

Chen, M., Carlson, D., Zaas, A., Woods, C., Ginsburg, G. S., Hero, I., Alfred, . . . Carin, L. (2009).

The Bayesian elastic net: Classifying multi-task gene-expression data (Tech. Rep.). Duke

University. (Retrieved from http://people.ee.duke.edu/ lcarin/BayesianEnet.pdf)

Cheng, K.-Y., Mao, Q.-R., Tan, X.-Y., & Zhan, Y.-Z. (2011). A novel sparse learning method:

Compressible Bayesian elastic net model. Journal of Information and Computing Science,

6(4), 295–302.

Chhikara, R. S., & Folks, J. L. (1988). The inverse Gaussian distribution: Theory, methodology, and

applications. Boca Raton, FL: CRC Press.

77

Collins, L. M., Schafer, J. L., & Kam, C. (2001). A comparison of inclusive and restrictive strategies

in modern missing data procedures. Psychological Methods, 6(4), 330–351. doi: 10.1037//

1082-989X.6.4.330

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),

1–38. doi: 10.2307/2984875

Dempster, A. P., SchatzoU, M., & Wermuth, N. (1977). A simulation study of alternatives to

ordinary least squares. Journal of the American Statistical Association, 72(357), 77–91.

Drechsler, J. (2010). Using support vector machines for generating synthetic datasets. In Proceed-

ings of the 2010 international conference on privacy in statistical databases (pp. 148–161).

Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless R and C++ integration. Journal of

Statistical Software, 40(8), 1–18. Retrieved from http://www.jstatsoft.org/v40/i08/

Enders, C. K. (2010). Applied missing data analysis. New York, NY: The Guilford Press.

Feng, L., Nowak, G., Welsh, A. H., & O’Neill, T. J. (2014, July). A general imputation framework

in R [Computer software manual]. Retrieved from http://cran.r-project.org/web/

packages/imputeR/index.html (R package version 1.0.0)

Gefang, D. (2014). Bayesian doubly adaptive elastic-net lasso for VAR shrinkage. International

Journal of Forecasting, 30(1), 1–11.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian

data analysis (3rd ed.). Boca Raton, FL: CRC press.

Goldstein, M. (1976). Bayesian analysis of regression problems. Biometrika, 63(1), 51–58.

Graham, J. W. (2003). Adding missing-data-relevant variables to Vml-based structural equation

models. Structural Equation Modeling: A Multidisciplinary Journal, 10(1), 80–100. doi:

10.1207/S15328007SEM1001_4

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual review of

psychology, 60, 549–576.

Graham, J. W. (2012). Missing data: Analysis and design. New York, NY: Springer. doi: 10.1007/

78

978-1-4614-4018-5

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). New

York, NY: Springer. doi: 10.1007/978-0-387-84858-7

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal

problems. Technometrics, 12(1), 55–67.

Honaker, J., & King, G. (2010). What to do about missing values in time-series cross-section data.

American Journal of Political Science, 54(2), 561–581. doi: 10.1111/j.1540-5907.2010.00447.x

Howard, W., Rhemtulla, M., & Little, T. D. (in press). Using principal components as auxiliary

variables in missing data estimation. Multivariate Behavioral Research.

Johnson, S. G. (2014, May). The NLopt nonlinear-optimization package. Retrieved from http://

ab-initio.mit.edu/nlopt (C++ package version 2.4.2)

Jørgensen, B. (1982). Statistical properties of the generalized inverse Gaussian distribution. New

York, NY: Springer. doi: 10.1007/978-1-4612-5698-4

Lang, K. M. (2014). What to do with incomplete nominal variables? A Monte Carlo simulation

study comparing methods for creating multiple imputations of unordered factors. In K.

M. Lang (Chair). Practical Issues in Missing Data Analysis. Symposium conducted at the

Modern Modeling Methods (M3) Conference, Storrs, CT.

L’ecuyer, P., Simard, R., Chen, E. J., & Kelton, W. D. (2002). An object-oriented random-number

package with many long streams and substreams. Operations Research, 1073–1075. doi:

10.1287/opre.50.6.1073.358

Li, Q., & Lin, N. (2010). The Bayesian elastic net. Bayesian Analysis, 5(1), 151–170.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). Hoboken,

NJ: Wiley-Interscience.

Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, E. W. G. (2013). On the joys of missing data.

Journal of Pediatric Psychology, 1–12. doi: 10.1093/jpepsy/jsto48

Little, T. D., Lang, K. M., Wu, W., & Rhemtulla, M. (in press). Missing data. In D. Cicchetti (Ed.),

Developmental psychopathology (3rd ed., pp. 000–000). New York, NY: Wiley.

79

Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization.

Mathematical Programming, 45(1-3), 503–528.

Muthén, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are

not missing completely at random. Psychometrika, 52(3), 431–462.

Nocedal, J. (1980). Updating quasi-Newton matrices with limited storage. Mathematics of Com-

putation, 35(151), 773–782.

Park, T., & Casella, G. (2008). The Bayesian LASSO. Journal of the American Statistical Associa-

tion, 103(482), 681–686.

Powell, M. J. D. (1994). A direct search optimization method that models the objective and

constraint functions by linear interpolation. In S. Gomez & J.-P. Hennart (Eds.), Advances

in optimization and numerical analysis (Vol. 275, pp. 51–67). Boston: Kluwer Academic

Publishers.

Powell, M. J. D. (2009). The BOBYQA algorithm for bound constrained optimization without deriva-

tives (Tech. Rep. No. NA2009/06). Department of Applied Mathematics and Theoretical

Physics, Cambridge England.

R Core Team. (2014). R: A language and environment for statistical computing [Computer

software manual]. Vienna, Austria. Retrieved from http://www.R-project.org/

Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate

technique for multiply imputing missing values using a sequence of regression models.

Survey Methodology, 27(1), 85–96.

Rowan, T. (1990). Functional stability analysis of numerical algorithms. Ph.d. thesis, University of

Texas at Austin.

Rubin, D. B. (1978). Multiple imputations in sample surveys – A phenomenological Bayesian

approach to nonresponse. In Proceedings of the section on survey research methods (pp.

20–28).

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys (Vol. 519). New York, NY:

John Wiley & Sons.

80

Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical

Association, 91(434), 473–489.

Savalei, V., & Rhemtulla, M. (2011). Some explorations of the local and global measures of missing

information Paper presented at the 76th annual and the 17th international meeting of the

Psychometric Society, Hong Kong.

Schafer, J. L. (1997). Analysis of incomplete multivariate data (Vol. 72). Boca Raton, FL: Chapman

& Hall/CRC.

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of state of the art. Psychological

Methods, 7(2), 147–177. doi: 10.1037//1082-989X.7.2.147

Sevcikova, H., & Rossini, T. (2012). rlecuyer: R interface to RNGwith multiple streams [Computer

software manual]. Retrieved from http://CRAN.R-project.org/package=rlecuyer

(R package version 0.3-3)

Svanberg, K. (2002). A class of globally convergent optimization methods based on conservative

convex separable approximations. SIAM Journal on Optimization, 12(2), 555–573.

Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmen-

tation. Journal of the American Statistical Association, 82(398), 528–540.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 267–288.

van Buuren, S. (2012). Flexible imputation of missing data. Boca Raton, FL: CRC Press. doi:

10.1201/b11826

van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully

conditional speciVcation in multivarite imputation. Journal of Statistical Computation and

Simulation, 76(12), 1049–1064.

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained

equations in R. Journal of Statistical Software, 45(3), 1–67.

Vlček, J., & Lukšan, L. (2006). Shifted limited-memory variable metric methods for large-scale

unconstrained optimization. Journal of Computational and Applied Mathematics, 186(2),

81

365–390.

Von Hippel, P. T. (2007). Regression with missing Ys: An improved strategy for analyzing

multiply imputed data. Sociological Methodology, 37(1), 83–117.

Von Hippel, P. T. (2009). How to impute interactions, squares, and other transformed variables.

Sociological Methodology, 39(1), 265–291.

Wu, W., Jia, F., & Enders, C. K. (2014). A comparison of imputation strategies to ordinal categor-

ical data. Multivariate Behavioral Research. (Manuscript under review)

Yang, H., Dunson, D., & Banks, D. (2011). The multiple Bayesian elastic net (Tech. Rep.). Duke

University. Retrieved from http://stat.duke.edu/~hy35/MBEN.pdf

Zhao, Y., & Long, Q. (2013). Multiple imputation in the presence of high-dimensional data.

Statistical Methods in Medical Research, XXX–XXX. doi: 10.1177/0962280213511027

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

82

Appendix A

R Code for Key Functions

Code Listing A.1: Function to simulate complete data

simData <- function(control, parms)
{

require(mvtnorm)
nObs <- parms$maxObs
nTargets <- length(parms$targetNames)
nAux <- parms$maxAux
zColin <- parms$auxColin
sparse <- control$sparse
xSNR <- parms$xSNR
ySNR <- parms$ySNR

zSigma <- matrix(zColin, nAux, nAux)
diag(zSigma) <- 1.0
Z <- rmvnorm(nObs, rep(0, nAux), zSigma)

if(sparse) {
Zeta <- rbind(

matrix(runif((nTargets - 1) * (nAux / 2), 0.25, 0.5),
ncol = nTargets - 1),

matrix(rep(0, (nTargets - 1) * (nAux / 2)),
ncol = nTargets - 1)

)
} else {

Zeta <- matrix(runif((nTargets - 1) * nAux, 0.25, 0.5),
ncol = nTargets - 1)

}

83

noiseVar <- (1 / xSNR) * (
t(Zeta) %*% cov(Z) %*% Zeta * diag(nTargets - 1)
)

X <- Z %*% Zeta +
rmvnorm(nObs, rep(0, nTargets - 1), noiseVar)

beta <- c(0.2, 0.4, 0.6)
noiseVar <- (1 / ySNR) * (t(beta) %*% cov(X) %*% beta)
y <- X %*% beta + rnorm(nObs, 0, noiseVar)
Y <- cbind(y, X)
outData <- data.frame(Y, Z)
colnames(outData) <-

c(parms$targetNames, paste0("z", c(1 : nAux)))

list(data = outData, trueBeta = beta)
}# END simData()

Code Listing A.2: Function to impose missing data

imposeMissing <- function(inData, control, parms)
{

targetNames <- parms$targetNames
auxNames <- colnames(inData)[!colnames(inData) %in% targetNames]
nObs <- nrow(inData)
nTrueAux <- control$nTrueAux
pmAux <- parms$pmAux
sparse <- control$sparse
pmTarget <- control$pm

trueAux <- list()
for(i in 1 : length(targetNames)) {

if(sparse) {
trueAux[[i]] <-

sample(auxNames[1 : (length(auxNames) / 2)], nTrueAux)
} else {

trueAux[[i]] <- sample(auxNames, nTrueAux)
}

}

if(parms$missingAux) {
Impose MCAR missingness on the auxiliaries:
imposeMCAR <- function(x, pm)

84

{
missFlag <- rbinom(length(x), 1, pm)
x[as.logical(missFlag)] <- NA
x

}# END imposeMCAR()

incAuxData <-
apply(inData[, auxNames], 2, FUN = imposeMCAR, pm = pmAux)

colnames(incAuxData) <- auxNames
} else {

incAuxData <- inData[, auxNames]
}

Impose MAR missingness on the target variables:
imposeMAR <- function(x, inData, trueAux, pm, auxNames)
{

useAux <- trueAux[[x]]
ksi <- c(rep(0.25, length(useAux) / 2),

rep(0.5, length(useAux) / 2))
linPred <- as.matrix(inData[, useAux]) %*% ksi
missPropensity <- pnorm(linPred, mean(linPred), sd(linPred))
missPattern <- missPropensity >= 1 - pm
inData[, x][missPattern] <- NA
inData[, x]

}# END imposeMAR()

incTargetData <- sapply(c(1 : length(targetNames)),
FUN = imposeMAR,
inData = inData,
trueAux = trueAux,
pm = pmTarget,
auxNames = auxNames)

colnames(incTargetData) <- targetNames

list(data = data.frame(incTargetData, incAuxData),
trueAux = trueAux)

}# END imposeMissing()

Code Listing A.3: Wrapper function to Vt the analysis models

fitModels <- function(impData)
{

require(mitools)

85

fitMods <- function(x)
{

lm(y ~ x1 + x2 + x3, data = as.data.frame(x))
}

miFits <- lapply(impData, FUN = fitMods)
MIcombine(miFits)

}# END fitModels()

Code Listing A.4: Function to compute the number of Monte Carlo replicates

calcReps <- function(betaMat, seMat, pm, acc, betaTrue)
{

betaMCSD <- apply(betaMat, 2, sd)

Calculate a range of plausible MCSD values:
midMissBetaSD <-

betaMCSD * (1 + sqrt(pm / (1 - pm)))
bestMissBetaSD <-

betaMCSD * (1 + sqrt((0.5 * pm) / (1 - (0.5 * pm))))
worstMissBetaSD <-

betaMCSD * (1 + sqrt((2 * pm) / (1 - (2 * pm))))

Calculate the required number of Monte Carlo replications:
betaReps <- rbind(

((1.96 * bestMissBetaSD[-1]) / (acc * betaTrue))^2,
((1.96 * midMissBetaSD[-1]) / (acc * betaTrue))^2,
((1.96 * worstMissBetaSD[-1]) / (acc * betaTrue))^2

)

colnames(betaReps) <- c("beta1", "beta2", "beta3")
rownames(betaReps) <- c("best", "middle", "worst")

seMCSD <- apply(seMat, 2, sd)
seTrue <- colMeans(seMat)

Calculate a range of plausible MCSD values:
midMissSESD <-

seMCSD * (1 + sqrt(pm / (1 - pm)))
bestMissSESD <-

seMCSD * (1 + sqrt((0.5 * pm) / (1 - (0.5 * pm))))
worstMissSESD <-

seMCSD * (1 + sqrt((2 * pm) / (1 - (2 * pm))))

86

Calculate the required number of Monte Carlo replications:
seReps <- rbind(

((1.96 * bestMissSESD) / (acc * seTrue))^2,
((1.96 * midMissSESD) / (acc * seTrue))^2,
((1.96 * worstMissSESD) / (acc * seTrue))^2
)

colnames(seReps) <- c("int", "beta1", "beta2", "beta3")
rownames(seReps) <- c("best", "middle", "worst")

list(beta = betaReps, se = seReps)
}# END calcReps()

Code Listing A.5: Function to run a single simulation condition

runCondition <- function(x, compData, control, parms, rp)
{

control$pm <- pm <- as.numeric(x["pm"])
control$nObs <- nObs <- as.numeric(x["nObs"])
control$nAux <- nAux <- as.numeric(x["nAux"])
control$nTrueAux <- as.numeric(x["nTrueAux"])

saveParams <- parms$saveImpModParams

nTargets <- length(parms$targetNames)
nVars <- ncol(compData)

Subset the complete data according to
the parameterization of the current condition:
if(control$expNum == 1) {

completeData <- compData[1 : nObs,]
} else {

if(nAux == (nVars - nTargets)) {
completeData <- compData

} else {
completeData <- data.frame(

compData[, parms$targetNames],
compData[, (nTargets + 1) : (nTargets + (nAux / 2))],
compData[, (nVars - (nAux / 2) + 1) : nVars]

)
}

}

87

Impose missingness on the complete data:
missData <- imposeMissing(inData = completeData,

control = control,
parms = parms)

IMPUTE THE MISSINGNESS

nImps <- parms$nImps

Specify a character vector of methods for use by mice():
methVec <- c(rep("norm", nTargets), rep("", nAux))

if(control$expNum == 1) {# Naive MICE is only run in Experiment 1
Run vanilla MICE:
naiveMiceOut <- try(

mice(missData$data,
m = nImps,
method = methVec,
maxit = control$miceIters,
printFlag = parms$verbose)

)

if(class(naiveMiceOut) != "try-error") {
naiveMiceImps <- list()
for(i in 1 : nImps) {

naiveMiceImps[[i]] <- complete(naiveMiceOut, i)
}

}
}

Run MICE using best subset selection:
bestPreds <- quickpred(missData$data,

mincor = 0.5,
include = parms$targetNames)

bestPreds[(nTargets + 1) : nrow(bestPreds),] <- 1

bestMiceOut <- try(
mice(missData$data,

m = nImps,
method = methVec,
predictorMatrix = bestPreds,
maxit = control$miceIters,
printFlag = parms$verbose)

)

88

if(class(bestMiceOut) != "try-error") {
bestMiceImps <- list()
for(i in 1 : nImps) {

bestMiceImps[[i]] <- complete(bestMiceOut, i)
}

}

Run MICE using the true imputation model:
truePreds <- matrix(0, nAux + nTargets, nAux + nTargets)

for(i in 1 : nTargets) {
truePreds[i ,] <-

as.numeric(colnames(missData$data) %in%
missData$trueAux[[i]])

}

truePreds[1 : nTargets, 1 : nTargets] <- 1
diag(truePreds) <- 0
truePreds[(nTargets + 1) : nrow(truePreds),] <- 1

trueMiceOut <- try(
mice(missData$data,

m = nImps,
method = methVec,
predictorMatrix = truePreds,
maxit = control$miceIters,
printFlag = parms$verbose)

)

if(class(trueMiceOut) != "try-error") {
trueMiceImps <- list()
for(i in 1 : nImps) {

trueMiceImps[[i]] <- complete(trueMiceOut, i)
}

}

currentStreamName <- paste0(parms$streamStem, rp)
myThin <- as.numeric(x["finalGibbs"] / nImps)

Run MIBEN:
mibenOut <- try(

miben(rawData = missData$data,
nImps = parms$nImps,
targetVariables = parms$targetNames,
nEmApproxIters = as.numeric(x["nMibenEmApprox"]),

89

nEmTuneIters = as.numeric(x["nEmTune"]),
nEmApproxBurn = as.numeric(x["emApproxBurn"]),
nEmApproxGibbs = as.numeric(x["emApproxGibbs"]),
nEmTuneBurn = as.numeric(x["emTuneBurn"]),
nEmTuneGibbs = as.numeric(x["emTuneGibbs"]),
nPosteriorBurn = as.numeric(x["finalBurn"]),
nPosteriorThin = myThin,
returnModelParams = saveParams,
verboseIters = parms$verbose,
gibbsControl =

list(createRngStream = FALSE,
streamName = currentStreamName),

optControl =
list(smoothingWindow =

as.numeric(x["smoothWindow"]))
)

)

Run MIBL:
miblOut <- try(

mibl(rawData = missData$data,
nImps = parms$nImps,
targetVariables = parms$targetNames,
nEmApproxIters = as.numeric(x["nMibenEmApprox"]),
nEmTuneIters = as.numeric(x["nEmTune"]),
nEmApproxBurn = as.numeric(x["emApproxBurn"]),
nEmApproxGibbs = as.numeric(x["emApproxGibbs"]),
nEmTuneBurn = as.numeric(x["emTuneBurn"]),
nEmTuneGibbs = as.numeric(x["emTuneGibbs"]),
nPosteriorBurn = as.numeric(x["finalBurn"]),
nPosteriorThin = myThin,
returnModelParams = saveParams,
verboseIters = parms$verbose,
gibbsControl =

list(createRngStream = FALSE,
streamName = currentStreamName),

optControl =
list(smoothingWindow =

as.numeric(x["smoothWindow"]))
)

)

FIT ANALYSIS MODELS AND CHECK CONVERGENCE

Store MIBEN & MIBL auxiliary output:

90

rHatList <- lambdaList <- paramList <- list()

if(class(mibenOut) != "try-error") {
rHatList$miben <- mibenOut$rHats
lambdaList$miben <- mibenOut$lambdaHistory
if(saveParams) paramList$miben <- mibenOut$params

} else {
rHatList$miben <- lambdaList$miben <-

paramList$miben <- vcovList <- "ERROR_42"
}

if(class(miblOut) != "try-error") {
rHatList$mibl <- miblOut$rHats
lambdaList$mibl <- miblOut$lambdaHistory
if(saveParams) paramList$mibl <- miblOut$params

} else {
rHatList$mibl <- lambdaList$mibl <- paramList$mibl <- "ERROR_42"

}

ds <- ifelse(control$sparse, "sparse", "dense")
saveRDS(rHatList,

file = paste0(parms$outDir,
"rHats/dissSimRHats",
"_n", control$nObs,
"_v", control$nAux,
"_", ds,
"_pm", 100 * pm,
"_rep", rp,
".rds")

)

saveRDS(lambdaList,
file = paste0(parms$outDir,

"lambdas/dissSimLambdas",
"_n", control$nObs,
"_v", control$nAux,
"_", ds,
"_pm", 100 * pm,
"_rep", rp,
".rds")

)

if(saveParams) {
saveRDS(paramList,

file = paste0(parms$outDir,

91

"params/dissSimParams",
"_n", control$nObs,
"_v", control$nAux,
"_", ds,
"_pm", 100 * pm,
"_rep", rp,
".rds")

)
}

Fit the analysis models and track imputation model convergence:
impConvList <- list()

if(control$expNum == 1) {
if(class(naiveMiceOut) != "try-error") {

naiveMicePooled <- try(fitModels(naiveMiceImps))
impConvList$naiveMice <- TRUE

} else {
naiveMicePooled <- "ERROR_42"
impConvList$naiveMice <- FALSE

}
}

if(class(bestMiceOut) != "try-error") {
bestMicePooled <- try(fitModels(bestMiceImps))
impConvList$bestMice <- TRUE

} else {
bestMicePooled <- "ERROR_42"
impConvList$bestMice <- FALSE

}

if(class(trueMiceOut) != "try-error") {
trueMicePooled <- try(fitModels(trueMiceImps))
impConvList$trueMice <- TRUE

} else {
trueMicePooled <- "ERROR_42"
impConvList$trueMice <- FALSE

}

if(class(mibenOut) != "try-error") {
mibenPooled <- try(fitModels(mibenOut$imps))
impConvList$miben <- TRUE

} else {
mibenPooled <- "ERROR_42"
impConvList$miben <- FALSE

92

}

if(class(miblOut) != "try-error") {
miblPooled <- try(fitModels(miblOut$imps))
impConvList$mibl <- TRUE

} else {
miblPooled <- "ERROR_42"
impConvList$mibl <- FALSE

}

Check convergence of analysis models:
modConvList <- list()

if(control$expNum == 1) {
fullConverge <- class(naiveMicePooled) != "try-error" &&

naiveMicePooled != "ERROR_42"
if(fullConverge) {

modConvList$naiveMice <- TRUE
} else {

if(class(naiveMicePooled) == "try-error") {
modConvList$naiveMice <- FALSE

} else {
modConvList$naiveMice <- NA

}
}

}

fullConverge <- class(bestMicePooled) != "try-error" &&
bestMicePooled != "ERROR_42"

if(fullConverge) {
modConvList$bestMice <- TRUE

} else {
if(class(bestMicePooled) == "try-error") {

modConvList$bestMice <- FALSE
} else {

modConvList$bestMice <- NA
}

}

fullConverge <- class(trueMicePooled) != "try-error" &&
trueMicePooled != "ERROR_42"

if(fullConverge) {
modConvList$trueMice <- TRUE

} else {
if(class(trueMicePooled) == "try-error") {

93

modConvList$trueMice <- FALSE
} else {

modConvList$trueMice <- NA
}

}

fullConverge <- class(mibenPooled) != "try-error" &&
mibenPooled != "ERROR_42"

if(fullConverge) {
modConvList$miben <- TRUE

} else {
if(class(mibenPooled) == "try-error") {

modConvList$miben <- FALSE
} else {

modConvList$miben <- NA
}

}

fullConverge <- class(miblPooled) != "try-error" &&
miblPooled != "ERROR_42"

if(fullConverge) {
modConvList$mibl <- TRUE

} else {
if(class(miblPooled) == "try-error") {

modConvList$mibl <- FALSE
} else {

modConvList$mibl <- NA
}

}

Pack all convergence checks into a single list:
convList <- list(imps = impConvList,

mods = modConvList)

saveRDS(convList,
file = paste0(parms$outDir,

"convChecks/dissSimConvergence",
"_n", control$nObs,
"_v", control$nAux,
"_", ds,
"_pm", 100 * pm,
"_rep", rp,
".rds")

)

94

Pack all results into a single list:
resultsList <- list()
resultsList$miben = mibenPooled
resultsList$mibl = miblPooled
resultsList$bestMice = bestMicePooled
resultsList$trueMice = trueMicePooled
if(control$expNum == 1) {

resultsList$naiveMice = naiveMicePooled
}

saveRDS(resultsList,
file = paste0(parms$outDir,

"results/dissSimResults",
"_n", control$nObs,
"_v", control$nAux,
"_", ds,
"_pm", 100 * pm,
"_rep", rp,
".rds")

)

list() # Return nothing
}# END runCondition()

95

