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ABSTRACT 

This paper introduces the concept of conditional independence in valuation-based systems 
(VBS). VBS is an axiomatic framework capable of representing many different uncertainty 
calculi. We define conditional independence in terms of factorization of the joint valuation. The 
definition of conditional independence in VBS generalizes the corresponding definition in 
probability theory. Besides probability theory, our definition applies also to Dempster-Shafer’s 
belief-function theory, Spohn’s epistemic-belief theory, and Zadeh’s possibility theory. In fact, it 
applies to any uncertainty calculi that fit in the VBS framework. We prove that our definition of 
conditional independence satisfies many of the usual properties associated with it. In particular, 
it satisfies Pearl and Paz’s graphoid axioms. 
KEY WORDS: Conditional independence, valuation-based systems, factorization, graphoid 
axioms 

1. INTRODUCTION 

The concept of conditional independence between two subsets of variables given a third has been 
extensively studied in probability theory [1, 2, 3, 4, 5, 6, 7]. The concept of conditional 
independence in probability theory has been interpreted in terms of relevance. If r, s, and t are 
subsets of variables, then to say that r and s are conditionally independent given t, means that the 
conditional distribution of r, given any values of s and t, is governed by the value of t alone—
further information about the value of s is irrelevant. 
 The concept of conditional independence for variables has also been studied in Spohn’s 
epistemic-belief theory [8, 9]. However, the concept of conditional independence for variables 
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has not been studied in Dempster-Shafer’s theory of belief functions [10, 11] or in Zadeh’s 
possibility theory [12, 13].1 
 An axiomatic framework that unifies various uncertainty calculi is that of valuation-based 
systems [20, 21, 24]. In valuation-based systems (VBS), knowledge about a set of variables is 
represented by a valuation for that set of variables. There are three operations in VBS that are 
used to make inferences. These are called combination, marginalization, and removal. 
Combination represents aggregation of knowledge. Marginalization represents coarsening of 
knowledge. And removal represents disaggregation of knowledge. 
 The VBS framework is able to uniformly represent probability theory, Dempster-Shafer’s 
belief-function theory, Spohn’s epistemic-belief theory, and Zadeh’s possibility theory. In this 
paper, we develop the notion of conditional independence for variables in the VBS framework. 
One advantage of this generality is that all results developed here apply uniformly to all 
uncertainty calculi that fit in the VBS framework. Thus the results described in this paper apply 
to, for example, probability theory, Dempster-Shafer’s belief-function theory, Spohn’s 
epistemic-belief theory, and Zadeh’s possibility theory. 
 What does it mean for two subsets of variables to be conditionally independent given a third 
subset? Conditional independence can be described in terms of factorization of the joint 
valuation. Suppose r, s, and t are disjoint subsets of variables. Suppose τ is a valuation for r∪s∪t. 
We say r and s are conditionally independent given t with respect to τ if and only if the valuation 
τ factors into two valuations, one whose domain involves variables in r∪t, and the other whose 
domain involves only variables in s∪t. 
 The conditional independence relation between subsets of variables in probability theory 
satisfies many different properties. Pearl and Paz [4] have isolated a subset of these properties 
called the “graphoid axioms.” The graphoid axioms are important because they are also satisfied 
by many ternary relations besides probabilistic conditional independence. In this paper we show 
that the definition of conditional independence we propose in the VBS framework satisfies the 
graphoid axioms. 
 An outline of this paper is as follows. In section 2, we describe the VBS framework. The 
VBS framework was described earlier in [20, 21, 24]. In this paper we extend the framework by 
defining two new sets of valuations called normal, and positive normal. As we will see, the 
concept of normal valuations is required for the definition of conditional independence, and the 
concept of positive normal valuations is required to prove the intersection property of conditional 
independence. Also, we introduce a new operation called removal. The removal operation is 
required for the definition of conditional valuations. Many of the properties of conditional 
                                                
1 Dempster [10], Shafer [11, 14, 15, 16, 17], and Smets [18] have defined independence for belief functions, but not 
for variables on which belief functions are defined. Shafer [11] has defined independence for frames of discernment, 
a concept further studied by Shafer, Shenoy and Mellouli [19]. Belief functions in belief-function theory are analogs 
of probability functions in probability theory. 
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independence are stated using conditional valuations. The exposition in this section is quite 
abstract. The reader may want to glance ahead at Sections 4–7 for specific examples of each 
definition in the VBS framework. 
 In section 3, we define conditional independence for sets of variables. We show that this 
definition satisfies some well-known properties that have been stated by Dawid [1, 22], Spohn 
[2], Lauritzen [3], Smith [5], and Pearl and Paz [4] in the context of probability theory. Using 
Pearl and Paz’s terminology, the conditional independence relation in VBS is a graphoid. 
 In section 4, we show how probability theory fits in the VBS framework. In particular, we 
define valuations, zero valuations, proper valuations, normal valuations, positive normal 
valuations, combination, marginalization, and removal. We also verify that all axioms and 
assumptions made in Section 2 are satisfied by our definitions. 
 In section 5, we show how Dempster-Shafer’s theory of belief functions fits in the VBS 
framework. In section 6, we show how Spohn’s epistemic-belief theory fits in the VBS 
framework. In section 7, we show how Zadeh’s possibility theory fits in the VBS framework. 
Finally, in section 8, we make some concluding remarks. 

2. THE VALUATION-BASED SYSTEMS FRAMEWORK 

In this section, we describe the valuation-based systems (VBS) framework. In VBS, we represent 
knowledge by entities called variables and valuations. We infer conditional independence 
relations using three operations called combination, marginalization, and removal. We use these 
operations on valuations. 
 The VBS framework is described in [20, 21, 24]. The motivation there was to describe a 
local computational method for computing marginals of the joint valuation. In this paper, we 
embellish the VBS framework by introducing two new sets of valuations called normal, and 
positive normal, and by introducing a new operation called removal. Our motivation here is to 
define conditional independence and describe its properties. 
 Variables. We assume there is a finite set X whose elements are called variables. Variables 
are denoted by upper-case Latin alphabets, X, Y, Z, etc. Subsets of X are denoted by lower-case 
Latin alphabets, r, s, t, etc. 
 Valuations. For each s ⊆ X, there is a set Vs. We call the elements of Vs valuations for s. Let 
V denote ∪{Vs | s ⊆ X}, the set of all valuations. If σ ∈Vs, then we say s is the domain of σ. 
Valuations are denoted by lower-case Greek alphabets, ρ, σ, τ, etc. 
 Valuations are primitives in our abstract framework and, as such, require no definition. But 
as we shall see shortly, they are objects that can be combined, marginalized, and removed. 
Intuitively, a valuation for s represents some knowledge about variables in s. In probability 
theory, e.g., a valuation for s is a function from the frame for s to the non-negative real numbers. 
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 Zero Valuations. For each s ⊆ X, there is at most one valuation ζs ∈Vs called the zero 
valuation for s. Let Z denote {ζs | s ⊆ X}, the set of all zero valuations. Notice that we are not 
assuming zero valuations always exist. If zero valuations do not exist, Z = Ø. We call valuations 
in V−Z nonzero valuations. Intuitively, a zero valuation represents knowledge that is internally 
inconsistent, i.e., knowledge that is a contradiction, or knowledge whose truth value is always 
false. In probability theory, for example, a zero valuation is a function that is identically zero. 
The concept of zero valuations is important in the theory of consistent knowledge-based systems 
[23]. 
 Proper Valuations. For each s ⊆ X, there is a subset Ps of Vs–{ζs}. We call the elements of 
Ps proper valuations for s. Let P denote ∪{Ps | s ⊆ X}, the set of all proper valuations. 
Intuitively, a proper valuation represents knowledge that is partially coherent. By coherent 
knowledge, we mean knowledge that has well-defined semantics. 
 The concept of proper valuations has substance (i.e., Ps is a proper subset of Vs–{ζs}) only in 
Dempster-Shafer’s belief-function theory. In Dempster-Shafer’s belief-function theory, a 
valuation for s is a function from the power set of the frame for s to the non-negative real 
numbers, and a proper valuation is an unnormalized commonality function. This is explained in 
detail in Section 5. In probability theory, Spohn’s epistemic-belief theory, and Zadeh’s 
possibility theory, Ps = Vs–{ζs}. Proper valuations play no role either in the definitions, or in the 
characterizations, or in the properties of conditional independence. The only role of proper 
valuations is in the semantics of knowledge. 
 Normal Valuations. For each s ⊆ X, there is another subset Ns of Vs–{ζs}. We call the 
elements of Ns normal valuations for s. Let N denote ∪{Ns | s ⊆ X}, the set of all normal 
valuations. Intuitively, a normal valuation represents knowledge that is also partially coherent, 
but in a sense that is different from proper valuations. In probability theory, e.g., a normal 
valuation is a function whose values add to 1. 
 We call the elements of P∩N proper normal valuations. Intuitively, a proper normal 
valuation represents knowledge that is completely coherent, i.e., knowledge that has well-defined 
semantics. For example, in probability theory, a proper normal valuation is a probability 
distribution function, and in Dempster-Shafer’s belief-function theory, a proper normal valuation 
is a commonality function. 
 Combination.2 We assume there is a mapping ⊕:V×V → N∪Z, called combination, that 
satisfies the following four axioms: 

                                                
2 The definition of combination as a mapping ⊕:v×v → n∪z is a slight departure from our earlier definition in [24] 
as a mapping ⊕:v×v → v. The motivation in [24] was to describe a framework for computational purposes. From 
this perspective, it is wise to postpone normalization to the very end when we have draw an inference from the 
computational results. Here, we include normalization in the definition of combination for semantical purposes. Our 
objective here is not to describe a computational strategy, but to describe a semantically sound theory. Without 
normalization, we cannot prove the theorems that characterize conditional independence as we do in Section 3. 
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Axiom C1 (Domain): If ρ ∈Vr and σ ∈Vs, then ρ⊕σ ∈Vr∪s; 

Axiom C2 (Associative): ρ⊕(σ⊕τ) = (ρ⊕σ)⊕τ; 

Axiom C3 (Commutative): ρ⊕σ = σ⊕ρ; and 

Axiom C4 (Zero): Suppose zero valuations exist, and suppose σ ∈Vs. Then ζr⊕σ = ζr∪s. 
If ρ⊕σ, read as ρ plus σ, is a zero valuation, then we say that ρ and σ are inconsistent. If ρ⊕σ is 
a normal valuation, then we say that ρ and σ are consistent. 
 Intuitively, combination corresponds to aggregation of knowledge. If ρ and σ are valuations 
for r and s representing knowledge about variables in r and s, respectively, then ρ⊕σ represents 
the aggregated knowledge about variables in r∪s. In probability theory, e.g., combination 
corresponds to pointwise multiplication followed by normalization (see Section 4 for a precise 
definition). 
 An implication of Axiom C2 is that when we have multiple combinations of valuations, we 
can write it without using parenthesis. For example, (...((σ1⊕σ2)⊕σ3)⊕...⊕σm) can be written 
simply as σ1⊕...⊕σm without parenthesis. Further, by Axiom C3, we can write σ1⊕...⊕σm 
simply as ⊕{σ1, ..., σm}, i.e., not only do we not need parenthesis, we need not indicate the order 
in which the valuations are combined. 
 An implication of Axioms C1, C2, and C3 is that the set Ns∪{ζs} together with the 
combination operation ⊕ is a commutative semigroup [25]. (If zero valuations do not exist, then 
Ns∪{ζs} = Ns.) If zero valuations exist, then Axiom C4 defines the valuation ζs as the zero of 
the semigroup Ns∪{ζs}. 
 Identity Valuations. We assume that, for each s ⊆ X, the commutative semigroup Ns∪{ζs} 
has an identity denoted by ιs (Axiom C5). In other words, there exists ιs ∈Ns∪{ζs} such that for 
each σ ∈Ns∪{ζs}, σ⊕ιs = σ. Notice that a commutative semigroup may have at most one 
identity. From Axiom C4, it follows that ιs ≠ ζs, therefore ιs ∈Ns. Intuitively, identity valuations 
represent knowledge that is completely vacuous, i.e., they have no substantive content. For 
example, in probability theory ιs is the equiprobable probability distribution for s, and in 
Dempster-Shafer’s belief-function theory, ιs is the vacuous commonality function for s. 
 It follows from Axiom C5 that for each s ⊆ X, and for each σ ∈Ns∪{ζs}, there exists at least 
one identity for it in Ns∪{ζs}, i.e., there exists a δσ ∈Ns∪{ζs} such that σ⊕δσ = σ. For example, 
ιs is an identity in Ns∪{ζs} for each element of Ns∪{ζs}. A valuation in Ns∪{ζs} may have 
more than one identity in Ns∪{ζs}. For example, Axiom C4 states that every element of 
Ns∪{ζs} is an identity for ζs in Ns∪{ζs}. Notice that if σ ∈Ns, then δσ ∈Ns (Proof: If δσ = ζs, 
then σ⊕δσ = σ⊕ζs = ζs ≠ σ, contradicting the fact that δσ is an identity for σ). Also, notice that ιs 
has only one identity in Ns, namely itself (Proof: If there exists σ ∈Ns∪{ζs}, σ ≠ ιs, such that 
ιs⊕σ = ιs, then this contradicts the fact that ιs is an identity for σ). 
 Positive Normal Valuations. Let Us denote the subset of Ns consisting of all valuations in 
Ns that have unique identities in Ns. We call elements of Us positive normal valuations for s. Let 
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U denote ∪{Us | s ⊆ X}, the set of all positive normal valuations. The concept of positive normal 
valuations is important because the intersection property of conditional independence only holds 
for positive normal valuations (as shown in the next section). In probability theory, e.g., positive 
normal valuations correspond to strictly positive probability distributions. Figure 1 shows the 
relation between different types of valuations. 

Figure 1. The relation between different types of valuations. 

 
 

 Valuations for the Empty Set. We assume that the set NØ consists of exactly one element 
(Axiom C6).3 This axiom implies that UØ = NØ = {ιØ} where ιØ is the identity valuation for the 
semigroup N∅∪{ζ∅}. In probability theory, e.g., ι∅ corresponds to the constant 1. 
 Marginalization. We assume that for each nonempty s ⊆ X, and for each X ∈ s, there is a 
mapping ↓(s−{X}): Vs → Vs–{X}, called marginalization to s–{X}, that satisfies the following six 
axioms: 

Axiom M1 (Order of Deletion): Suppose σ ∈Vs, and suppose X1, X2 ∈ s. Then 

(σ↓(s−{X1}))↓(s−{X1,X2}) = (σ↓(s–{X2}))↓(s–{X1,X2}); 

Axiom M2 (Zero): If zero valuations exist, then ζs↓(s–{X}) = ζs–{X}; 

Axiom M3 (Normal): σ↓(s–{X}) ∈N if and only if σ ∈N; 

Axiom M4 (Positive Normal): If σ ∈U, then σ↓(s−{X}) ∈U; 

Axiom CM1 (Combination and Marginalization 1): Suppose ρ ∈Vr and σ ∈Vs. Suppose X ∉ r, 

and X ∈ s. Then (ρ⊕σ)↓((r∪s)–{X}) = ρ⊕(σ↓(s–{X})); and 

                                                
3 A similar axiom is stated in [26]. 
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Axiom CM2 (Combination and Marginalization 2):4 Suppose σ ∈Ns, suppose r ⊆ s, and suppose 
δ
σ↓r is an identity for σ↓r in Nr. Then σ⊕δ

σ↓r = σ. 

We call σ↓(s–{X}) the marginal of σ for s–{X}. 
 Intuitively, marginalization corresponds to coarsening of knowledge. If σ is a valuation for s 
representing some knowledge about variables in s, and X ∈ s, then σ↓(s–{X}) represents the 
knowledge about variables in s–{X} implied by σ if we disregard variable X. In probability 
theory, e.g., marginalization σ to s–{X} corresponds to summing the values of σ over the frame 
for X (see Section 4 for a precise definition). 
 If we regard marginalization as a coarsening of a valuation by deleting variables, then Axiom 
M1 says that the order in which the variables are deleted does not matter. One implication of this 
axiom is that (σ↓(s–{X1}))↓(s–{X1,X2}) can be written simply as σ↓(s–{X1,X2}), i.e., we need not 
indicate the order in which the variables are deleted. 
 Axioms M2, M3, and M4 state that marginalization preserves coherence of knowledge. An 
implication of Axiom M3 is that a valuation σ for s is normal if and only if σ↓Ø = ιØ. 
 Axiom CM1 states that the computation of (ρ⊕σ)↓((r∪s)–{X}) can be accomplished without 
having to compute ρ⊕σ. The combination ρ⊕σ is a valuation for r∪s whereas the combination 
ρ⊕(σ↓(s–{X})) is a valuation for (r∪s)–{X}. The following lemma is an easy consequence of 
Axiom CM1. 

Lemma 2.1. Suppose ρ ∈Vr, and σ ∈Vs. Then (ρ⊕σ)↓r = ρ⊕σ↓r∩s. 

Proof of Lemma 2.1: (ρ⊕σ)↓r = (ρ⊕σ)↓((r∪s)–(s–r)) = ρ⊕σ↓(s–(s–r)) = ρ⊕σ↓r∩s. ■ 

 Axiom CM2 describes an important property of identity valuations. The following lemma 
states some implications of Axiom CM2. 

Lemma 2.2. Suppose Axioms C1–C6, M1–M4, CM1, and CM2 hold. Then the 
following statements hold. 

(i). Suppose σ ∈Vs and suppose r ⊆ s. σ ∈Ns∪{ζs} if and only if σ⊕ιr = σ. 

(ii). If σ ∈Vs and r ⊆ s, then σ⊕ιr = σ⊕ι∅. 

(iii). ιs⊕ιr = ιr∪s. 

(iv). If r ⊆ s, then ιs
↓r = ιr. 

                                                
4 A similar axiom is stated in [26] and [27]. 
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Proof of Lemma 2.2: 

(i). (⇒): If σ ∈Ns, then σ⊕ιr = σ by Axiom CM2 since ιr is an identity for σ↓r. If σ = ζs, then 

σ⊕ιØ = σ by Axiom C4. 

(⇐): If σ⊕ιØ = σ, then, since σ⊕ιØ ∈Ns∪{ζs} by definition of the combination operation, 

σ ∈Ns∪{ζs}. 

(ii). σ⊕ιr = (σ⊕ιr)⊕ι∅ = (σ⊕ι∅)⊕ιr = σ⊕ι∅. 

(iii). Suppose τ ∈Nr∪s. Then from Axiom CM2, τ⊕(ιs⊕ιr) = (τ⊕ιs)⊕ιr = τ⊕ιr = τ. If τ = ζr∪s, 

then from Axiom C4, τ⊕(ιs⊕ιr) = ζr∪s⊕(ιr⊕ιs) = ζr∪s = τ. Therefore ιs⊕ιr must be the 

identity for Nr∪s∪{ζr∪s}, i.e., ιs⊕ιr = ιr∪s. 

(iv). Suppose ρ ∈Nr, and suppose r ⊆ s. We need to show that ρ⊕ιs
↓r = ρ. ρ⊕ιs

↓r = (ρ⊕ιs)
↓r = 

(ρ⊕ιr⊕ιs–r)↓r = (ρ⊕ιs–r)↓r
 = ρ⊕ιs–r

↓∅ = ρ⊕ι∅ = ρ. ■ 

 Axioms C1, C2, C3, M1, and CM1 make local computation of marginals possible. Suppose 
{σ1, ..., σm} is a collection of valuations, and suppose σi ∈Vsi

. Suppose X = s1∪...∪sm, and 
suppose X ∈X. Suppose we wish to compute (σ1⊕...⊕σm)↓{X}. We can do so by successively 
deleting all variables but X from the collection of valuation {σ1, ..., σm}. Each time we delete a 
variable, we do a fusion operation defined as follows. Consider a set of k valuations ρ1, ..., ρk. 
Suppose ρi ∈Vri

. Let FusY{ρ1, ..., ρk} denote the collection of valuations after fusing the 
valuations in the set {ρ1, ..., ρk} with respect to variable Y ∈ r1∪...∪rk. Then  

 FusY{ρ1, ..., ρk} = {ρ↓(r−{Y})}∪{ρi | Y ∉ ri} 
where ρ = ⊕{ρi | Y ∈ ri}, and r = ∪{ri | Y ∈ ri}. After fusion, the set of valuations is changed as 
follows. All valuations whose domains include Y are combined, and the resulting valuation is 
marginalized such that Y is eliminated from its domain. The valuations whose domains do not 
include Y remain unchanged. The following theorem describes the fusion algorithm, a method 
for computing (σ1⊕...⊕σm)↓{X} using only local computations. 

Theorem 2.1 [21]. Suppose {σ1, ..., σm} is a collection of valuations such that 
σi ∈Vsi

. Suppose Axioms C1, C2, C3, M1, and CM1 hold. Let X denote 
s1∪...∪sm. Suppose X ∈X, and suppose X1X2...Xn–1 is a sequence covering all 
variables in X–{X}. Then 

 (σ1⊕...⊕σm)↓{X} = ⊕{FusXn–1
{... FusX2

{FusX1
{σ1, ..., σm}}}}. 

 Next, we define another binary operation called removal. The removal operation is an inverse 
of the combination operation. 
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 Removal. We assume there is a mapping : V × (N∪Z) → N∪Z, called removal, that 
satisfies the following three axioms: 

Axiom R1 (Domain): Suppose σ ∈Vs, and ρ ∈Nr∪Zr. Then σρ ∈Nr∪s∪Zr∪s; 

Axiom R2 (Identity): For each ρ ∈N∪Z, there exists an identity for ρ in N∪Z, denoted by, say, 

ιρ, such that ρρ = ιρ; and 

Axiom CR (Combination and Removal): Suppose π, θ ∈V, and ρ ∈N∪Z. Then, (π⊕θ)ρ = 

π⊕(θρ). 
 We call σρ, read as σ minus ρ, the valuation resulting after removing ρ from σ. Intuitively, 
σρ can be interpreted as follows. If σ and ρ represent some knowledge, and if we remove the 
knowledge represented by ρ from σ, then σρ describes the knowledge that remains. In 
probability theory, e.g., removing corresponds to pointwise division followed by normalization 
(see Section 4 for a precise definition). 
 Axioms R2 and CR define the removal operation as an “inverse” of the combination 
operation in the sense that arithmetic division is inverse of arithmetic multiplication, and in the 
sense that arithmetic subtraction is inverse of arithmetic addition. The following lemma 
describes some implications of Axioms R1, R2, and CR. 

Lemma 2.3. Suppose π, θ ∈V, and suppose ρ ∈N∪Z. 

(i). (π⊕θ)ρ = (πρ)⊕θ. 

(ii). If σ ∈Vs, and r ⊆ s, then σιr = σ⊕ι∅. 

(iii). [(π⊕ρ)ρ]⊕ρ = π⊕ρ. 

Proof of Lemma 2.3: 

(i). (π⊕θ)ρ = (θ⊕π)ρ = θ⊕(πρ) = (πρ)⊕θ. 
(ii). Let σ ∈Vs, and r ⊆ s. Then, σιr = (σιr)⊕ιr = σ⊕(ιrιr) = σ⊕ιιr = σ⊕ιr = σ⊕ι∅. 

(iii). [(π⊕ρ)ρ]⊕ρ = [π⊕(ρρ)]⊕ρ =(π⊕ιρ)⊕ρ = π⊕(ιρ⊕ρ) = π⊕ρ. ■ 

 Suppose ρ ∈N∪Z. Define ρ−1 = ι∅ρ. We call ρ−1 the inverse of ρ. If ρ ∈Nr∪Zr, then 
ρ−1

 ∈Nr∪Zr. The following lemma describes two properties of inverses. 
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Lemma 2.4. Suppose σ ∈V, ρ ∈N∪Z. 

(i). ρ−1⊕ρ = ρ⊕ρ−1 = ιρ.5 

(ii). σρ = σ⊕ρ−1. 

Proof of Lemma 2.4: 

(i). ρ⊕ρ−1 = ρ⊕(ι∅ρ) = (ρρ)⊕ι∅ = ρρ = ιρ. 

(ii). σρ = (σρ)⊕ι∅ = (σ⊕ι∅)ρ = σ⊕(ι∅ρ) = σ⊕ρ−1. ■ 

 The following lemma states an important consequence of Axioms R1, R2, CR, and CM1. 

Lemma 2.5. Suppose σ ∈Vs, ρ ∈Nr∪Zr, X ∈ s, and X ∉ r. Then 

 (σρ)↓((r∪s)–{X}) = σ↓(s–{X})ρ. 

Proof of Lemma 2.5: Suppose σ ∈Vs, ρ ∈Vr, X ∈ s, and X ∉ r. Then 
(σρ)↓((r∪s)–{X}) = (σ⊕ρ−1)↓((r∪s)–{X}) = σ↓(s−{X})⊕ρ−1 = σ↓(s–{X})ρ. ■ 

 Conditional Valuations. Suppose σ ∈Ns, and suppose a and b are disjoint subsets of s. The 
valuation σ↓(a∪b)σ↓a for a∪b plays an important role in the theory of conditional independence. 
Borrowing terminology from probability theory, we call σ↓(a∪b)σ↓a the conditional for b given 
a with respect to σ. Let σ(b | a) denote σ↓(a∪b)σ↓a. Also, if a = ∅, let σ(b) denote σ(b | ∅). 
 The following lemma states some important properties of conditional valuations. 

Lemma 2.6. Suppose σ ∈Ns, and suppose a, b, and c are disjoint subsets of s. 

(i). σ(a) = σ↓a. 

(ii). σ(a)⊕σ(b | a) = σ(a∪b). 

(iii). σ(b | a)⊕σ(c | a∪b) = σ(b∪c | a). 

(iv). Suppose b' ⊆ b. Then σ(b | a)↓(a∪b') = σ(b' | a). 

(v). (σ(b | a)⊕σ(c | a∪b))↓(a∪c) = σ(c | a) 

(vi). σ(b | a)↓a = ισ(a). 

(vii). σ(b | a) ∈Na∪b. 

Proof of Lemma 2.6: 

                                                
5 If we assume that u is closed under combination, then statement (i) of Lemma 2.4 implies that (u, ⊕) is an Abelian 

(commutative) group [28]. One implication of this is that if ρ, σ ∈u, then (ρ⊕σ)−1 = ρ−1
⊕σ

−1 and (ρ−1)−1 = ρ. 
Also, if π ∈v, and θ, ρ ∈u, then π (θ⊕ρ) = (πθ)ρ, and π (θρ) = (πθ)⊕ρ. 
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(i). σ(a) = σ↓aσ↓∅ = σ↓aι∅ = σ↓a⊕ι∅ = σ↓a. 

(ii). σ(a)⊕σ(b | a) = σ↓a⊕(σ↓(a∪b)σ↓a) = (σ↓aσ↓a)⊕σ↓(a∪b) = ι
σ↓a⊕σ

↓(a∪b) = σ↓(a∪b) = σ(a∪b). 

(iii). σ(b | a)⊕σ(c | a∪b) = (σ↓(a∪b)σ↓a)⊕(σ↓(a∪b∪c)σ↓(a∪b)) = 
σ↓(a∪b∪c)⊕[σ↓(a∪b)σ↓(a∪b)]σ↓a = σ↓(a∪b∪c)⊕ι

σ↓(a∪b)σ
↓a = σ↓(a∪b∪c)σ↓a = σ(b∪c | a). 

(iv). σ(b | a)↓(a∪b') = (σ↓(a∪b)σ↓a)↓(a∪b') = (σ↓(a∪b))↓(a∪b')σ↓a = σ↓(a∪b')σ↓a = σ(b' | a). 

(v). This follows directly from (iii) and (iv). 

(vi). σ(b | a)↓a = (σ↓(a∪b)σ↓a)↓a = (σ↓(a∪b))↓aσ↓a = σ↓aσ↓a = σ(a)σ(a) = ισ(a). 

(vii). σ(b | a) is either normal or zero. If σ(b | a) is zero, then σ(b | a)⊕σ(a) = ζa∪b ≠ σ(a∪b) 

contradicting statement (ii). Therefore σ(b | a) is normal. ■ 

3. CONDITIONAL INDEPENDENCE 

In this section, we define conditional independence in terms of factorization of the joint 
valuation. Also, we show that this definition implies the well-known properties of conditional 
independence in probability theory [1, 2, 3] and in other domains [4, 5, 29]. 
 The essence of conditional independence is as follows. Suppose r, s, and v are disjoint 
subsets. We say r and s are conditionally independent given v with respect to a valuation τ if and 
only if τ↓(r∪s∪v) factors into two valuations αr∪v ∈Vr∪v, and αs∪v ∈Vs∪v. 
 The definition of conditional independence is either objective or subjective depending on 
whether we have an objective or subjective measure of knowledge represented by valuation τ. In 
probability theory for example, in some cases, we start with an objective specification of a joint 
probability distribution of all variables. This joint probability distribution then serves as an 
objective measure of knowledge, and all statements of conditional independence are objective 
with respect to this state of knowledge. In other cases, however, we do not start always with a 
joint probability distribution. In such cases, the first task is to specify a joint probability 
distribution. To make this specification task simpler, we make assertions of conditional 
independence that are necessarily subjective. However, once we have a specification of a joint 
probability distribution (obtained either objectively or subjectively), all further statements of 
conditional independence are necessarily objective with respect to the joint probability 
distribution. 
  If τ is normal, statement (i) of Lemma 2.6 tells us that τ(a) = τ↓a. In this case, we will use the 
simpler and more intuitive conditional notation to denote the marginals, i.e., we will use, for 
example, τ(a) in place of τ↓a. 
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Definition 3.1 (Conditional Independence). Suppose τ ∈Nw, and suppose r, s, and 
v are disjoint subsets of w. We say r and s are conditionally independent given v 
with respect to τ, written as r ⊥τ s | v, if and only if there exist αr∪v ∈Vr∪v, and 
αs∪v ∈Vs∪v such that τ(r∪s∪v) = αr∪v⊕αs∪v. 

 When it is clear that all conditional independence statements are with respect to τ, we simply 
say ‘r and s are conditionally independent given v’ instead of ‘r and s are conditionally 
independent given v with respect to τ,’ and use the simpler notation r ⊥ s | v instead of r ⊥τ s | v. 
Also, if v = ∅, we say ‘r and s are independent’ instead of ‘r and s are conditionally independent 
given ∅’ and use the simpler notation r ⊥ s instead of r ⊥ s | ∅. 
 We make four observations about our definition of conditional independence. First, notice 
that αr∪v and αs∪v are arbitrary valuations, they need not be normal. τ is necessarily normal. 

Second, notice that we do not use the removal operation in the definition of conditional 
independence. If there is a removal operation as defined in the previous section, then we can 
characterize conditional independence in terms of conditionals. This is done in Lemma 3.1 
below. Third, if τ ∈Nw, and r and v are disjoint subsets of w, then r ⊥τ ∅ | v. This property is 
called trivial conditional independence by Geiger and Pearl [29]. Fourth, if τ ∈Nx, w ⊆ x, and r 
and s are disjoint subsets of w, then r ⊥τ s if and only if r ⊥

τ(w) s. 

 The following lemma gives seven characterizations of conditional independence. 

Lemma 3.1.6 Suppose τ ∈Nw, and suppose r, s, and v are disjoint subsets of w. 
The following statements are equivalent. 

(i). r ⊥ s | v. 

(ii). τ(r∪s | v) = βr∪v⊕βs∪v, where βr∪v ∈Vr∪v, and βs∪v ∈Vs∪v. 

(iii). τ(r∪s∪v) = τ(v)⊕τ(r | v)⊕τ(s | v). 

(iv). τ(r∪s | v) = τ(r | v)⊕τ(s | v). 

(v). τ(r∪s∪v)⊕τ(v) = τ(r∪v)⊕τ(s∪v). 

(vi). τ(r∪s∪v) = τ(r | v)⊕τ(s∪v). 

(vii). τ(r | s∪v) = τ(r | v)⊕ιτ(s∪v). 

(viii). τ(r | s∪v) = αr∪v⊕ιτ(s∪v), where αr∪v ∈Vr∪v. 

                                                
6 The statements of Lemma 3.1 are analogs of corresponding statements in probability theory [1]. Our contribution 
here is in showing that these statements hold in the more general framework of VBS. 
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Proof of Lemma 3.1: We will prove that (i) implies (ii), (ii) implies (iii), ..., (vii) implies (i). 
 To prove (i) implies (ii), suppose τ(r∪s∪v) = αr∪v⊕αs∪v, where αr∪v ∈Vr∪v, and 
αs∪v ∈Vs∪v. Removing τ(v) from both sides of the preceding equality, we get τ(r∪s∪v)τ(v) = 
αr∪v⊕αs∪vτ(v). Since τ(r∪s∪v)τ(v) = τ(r∪s | v), and [αs∪vτ(v)] ∈Vs∪v, we have proved 
(ii). 
 To prove (ii) implies (iii), suppose τ(r∪s | v) = βr∪v⊕βs∪v, where βr∪v ∈Vr∪v, and 
βs∪v ∈Vs∪v. Adding τ(v) to both sides, we get τ(r∪s∪v) = βr∪v⊕βs∪v⊕τ(v). Deleting variables 
in s from both sides, we get τ(r∪v) = βr∪v⊕βs∪v

↓v⊕τ(v). Removing τ(v) from both sides, τ(r | v) 
= βr∪v⊕βs∪v

↓v⊕ιτ(v). Similarly, we can show that τ(s | v) = βr∪v
↓v⊕βs∪v⊕ιτ(v). Deleting variables 

in r∪s from both sides of τ(r∪s∪v) = βr∪v⊕βs∪v⊕τ(v), we get τ(v) = βr∪v
↓v⊕βs∪v

↓v⊕τ(v). 
Now, τ(v)⊕τ(r | v)⊕τ(s | v) = τ(v)⊕[βr∪v⊕βs∪v

↓v⊕ιτ(v)]⊕[βr∪v
↓v⊕βs∪v⊕ιτ(v)] = 

[βr∪v⊕βs∪v]⊕[βr∪v
↓v⊕βs∪v

↓v⊕τ(v)⊕ιτ(v)⊕ιτ(v)] = [βr∪v⊕βs∪v]⊕[βr∪v
↓v⊕βs∪v

↓v⊕τ(v)] = 
τ(r∪s | v)⊕τ(v) = τ(r∪s∪v). 
 To prove (iii) implies (iv), suppose τ(r∪s∪v) = τ(v)⊕τ(r | v)⊕τ(s | v). Removing τ(v) from 
both sides of the preceding equality, τ(r∪s∪v)τ(v) = τ(r | v)⊕τ(s | v)⊕ιτ(v), i.e., τ(r∪s | v) = 
τ(r | v)⊕τ(s | v). 
 To prove (iv) implies (v), suppose τ(r∪s | v) = τ(r | v)⊕τ(s | v). Adding τ(v)⊕τ(v) to both 
sides, we get τ(r∪s | v)⊕τ(v)⊕τ(v) =  τ(r | v)⊕τ(s | v)⊕τ(v)⊕τ(v), i.e., τ(r∪s∪v)⊕τ(v) = 
τ(r∪v)⊕τ(s∪v). 
 To prove (v) implies (vi), suppose τ(r∪s∪v)⊕τ(v) = τ(r∪v)⊕τ(s∪v). Removing τ(v) from 
both sides, we get τ(r∪s∪v) = τ(r∪v)⊕τ(s∪v)τ(v) = τ(r | v)⊕τ(s∪v). 
 To prove that (vi) implies (vii), suppose τ(r∪s∪v) = τ(r | v)⊕τ(s∪v). Removing τ(s∪v) from 
both sides of the equality, we get τ(r∪s∪v)τ(s∪v) = (τ(r | v)⊕τ(s∪v))τ(s∪v), i.e., τ(r | s∪v) = 
τ(r | v)⊕ιτ(s∪v). 
 To prove that (vii) implies (viii), notice that τ(r | v) ∈Vr∪v. 
 To prove that (viii) implies (i), suppose τ(r | s∪v) = αr∪v⊕ιτ(s∪v), where αr∪v ∈Vr∪v. Adding 
τ(s∪v) to both sides of the equality, we get τ(r∪s∪v) = αr∪v⊕ιτ(s∪v)⊕τ(s∪v) = αr∪v⊕τ(s∪v). 
The result now follows from Definition 3.1. ■ 

 The following corollary to Lemma 3.1 gives three characterizations of the independence 
relation. 

Corollary 3.1. Suppose τ ∈Nw, and suppose r  and s are disjoint subsets of w. The 
following statements are equivalent. 

(i). r ⊥ s. 

(ii). τ(r∪s) = τ(r)⊕τ(s). 

(iii). τ(r | s) = τ(r)⊕ιτ(s). 
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(iv). τ(r | s) = ρ⊕ιτ(s), where ρ ∈Vr. 

Proof of Corollary 3.1: Statement (ii) follows from statement (iii) (or (iv) or (v) or (vi)) of 
Lemma 3.1, statement (iii) follows from statement (vii) of Lemma 3.1, and statement (iv) follows 
from statement (viii) of Lemma 3.1. ■ 

  Theorem 3.1 below states the symmetry property of conditional independence. 

Theorem 3.1 (Symmetry). Suppose τ ∈Nw, and suppose r, s, and v are disjoint 
subsets of w. r ⊥ s | v if and only if s ⊥ r | v. 

Proof of Theorem 3.1: The proof follows immediately from the definition of conditional 
independence and Axiom C3 (commutativity of combination). ■ 

 Definition 3.2 generalizes Definition 3.1 for any number of subsets of variables. 

Definition 3.2 (Joint Conditional Independence). Suppose τ ∈Nw, and suppose r1, 
..., rn, v are disjoint subsets of w. We say r1, ..., rn are conditionally independent 
given v with respect to τ, written as ⊥τ {r1, ..., rn} | v, if and only if there exist 
αri∪v ∈Vri∪v for i = 1, ..., n, such that τ(r1∪...∪rn∪v) = αr1∪v⊕...⊕αrn∪v. 

 Definition 3.2 is a generalization of Definition 3.1. Notice that r ⊥ s | v if and only if 
⊥{r, s} | v. We know from probability theory that functions of independent random variables are 
independent. If X1 and X2 are independent random variables, then f(X1) and g(X2) are also 
independent random variables. More generally, if X1, …, Xn are conditionally independent given 
X, {N1, ..., Nk} is a partition of the set {X1, …, Xn}, and Yj is a function of the Xi in Nj, then Y1, 
…, Yk are conditionally independent given X. The following lemma makes an analogous 
statement. 

Lemma 3.2.7 Suppose τ ∈Nw, and suppose r1, ..., rn, v are disjoint subsets of w. 
Suppose ⊥{r1, ..., rn} | v. Suppose {N1, ..., Nk} is a partition of {1, ..., n}, i.e., 
Ni∩Νj = Ø if i ≠ j, and N1∪...∪Nk = {1, ..., n}. Suppose sj ⊆ (∪{ri | i ∈Nj}), for j 
= 1, ..., k. Then ⊥{s1, ..., sk} | v. 

Proof of Lemma 3.2: From Definition 3.2, τ(r1∪ ...∪rn∪v) = αr1∪v⊕...⊕αrn∪v. Let βj = 
⊕{αri∪v | i ∈ Nj}, j = 1, ..., k. Since {N1, ..., Nk} is a partition of {1, ..., n}, τ(r1∪ ...∪rn∪v) = 
β1⊕...⊕βk. If we delete variables in ((∪{ri | i ∈ N1})−s1)∪...∪((∪{ri | i ∈ Nk})−sk) from both sides 

                                                
7 An analogous statement is stated and proved in [19] in the context of qualitative conditional independence. 
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of the preceding equality, using Axiom CM1 we get τ(s1∪ ...∪sk∪v) = β1
↓(s1∪v)⊕...⊕βk

↓(sk∪v). 
Therefore, ⊥{s1, ..., sk} | v. ■ 

 The statement in the following theorem is called decomposition by Pearl [30]. It is a special 
case of Lemma 3.2. 

Theorem 3.2 (Decomposition). Suppose τ ∈Nw, suppose r, s, t, and v are disjoint 
subsets of w. If r ⊥ s∪t | v, then r ⊥ s | v. 

Proof of Theorem 3.2: The result follows directly from Lemma 3.2. ■ 

 The following lemma gives three alternative characterizations of joint conditional 
independence in terms of binary conditional independence. 

Lemma 3.4.8 Suppose τ ∈Nw, and suppose r1, ..., rn, and v are disjoint subsets of 
w. The following statements are equivalent. 

(i). ⊥{r1, ..., rn} | v. 

(ii). ⊥{r1, ..., rn–1} | v and (r1∪...∪rn–1) ⊥ rn | v. 

(iii). ri ⊥ ∪{rj | j = 1, ..., n, j ≠ i} | v, for i = 1, ..., n. 

(iv). rj ⊥ (r1∪...∪rj–1) | v for j = 2, ..., n. 

Proof of Lemma 3.4: We will prove that (i) implies (ii), (ii) implies (iii), ..., (iv) implies (i). 
 That (i) implies (ii) follows directly from Lemma 3.2. 
 To prove (ii) implies (iii), we will prove (ii) implies (i), and (i) implies (iii). Suppose 
⊥τ{r1, ..., rn–1} | v, and (r1∪...∪rn–1) ⊥ rn | v. Since (r1∪...∪rn-1) ⊥ rn | v, τ(r1∪...∪rn | v) = 
τ(r1∪...∪rn–1 | v)⊕τ(rn | v). Since ⊥τ{r1, ..., rn–1} | v, τ(r1∪...∪rn−1∪v) = αr1∪v⊕...⊕αrn–1∪v, where 
αri∪v ∈Vri∪v, i = 1, ..., n–1. Therefore, τ(r1∪...∪rn∪v) = τ(r1∪...∪rn | v)⊕τ(v) = τ(r1∪...∪rn–

1 | v)⊕τ(rn | v)⊕τ(v) = τ(r1∪...∪rn–1∪v)⊕τ(rn | v) = αr1∪v⊕...⊕αrn–1∪v⊕τ(rn | v). By Definition 3.2, 
⊥{r1, ..., rn} | v. That (i) implies (iii) follows directly from Lemma 3.2. 
 That (iii) implies (iv) follows directly from Lemma 3.2. 
 To show (iv) implies (i), suppose ri ⊥ (r1∪...∪ri–1) | v for i = 2, ..., n. We are given 
⊥{r1, r2} | v. It suffices to show that if ⊥{r1, ..., rj–1} | v, then ⊥{r1, ..., rj} | v. The proof of this 
latter assertion is similar to the proof given above to show (ii) implies (i). ■ 

                                                
8 The statements in Lemma 3.2 are analogs of corresponding statements in [19] in the context of qualitative 
conditional independence. 
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 Theorem 3.3 states another property of conditional independence. This property is called 
weak union by Pearl [30]. 

Theorem 3.3 (Weak Union). Suppose τ ∈Nw, and suppose r, s, t, and v are 
disjoint subsets of w. If r ⊥ s∪t | v, then r ⊥ s | t∪v. 

Proof of Theorem 3.3: Suppose r ⊥ s∪t | v. Then by Definition 3.1, τ(r∪s∪t∪v) = αr∪v⊕αs∪t∪v, 
where αr∪v ∈Vr∪v, and αs∪t∪v ∈Vs∪t∪v. Therefore τ(r∪s∪t∪v) = 
= αr∪v⊕αs∪t∪v = (αr∪v⊕αs∪t∪v)⊕ιt = (αr∪v⊕ιt)⊕αs∪t∪v. Since αr∪v⊕ιt ∈Vr∪t∪v, and 
αs∪t∪v ∈Vs∪t∪v, the result follows. ■ 

 Theorem 3.4 states another property of conditional independence. This property is called 
contraction by Pearl [30]. 

Theorem 3.4 (Contraction). Suppose τ ∈Nw, and suppose r, s, t, and v are 
disjoint subsets of w. If r ⊥ s | v, and r ⊥ t | s∪v, then r ⊥ s∪t | v. 

Proof of Theorem 3.4: Suppose r ⊥ s | v, and r ⊥ t | s∪v. Therefore, τ(r∪s∪t∪v) = 
τ(r∪s∪v)⊕τ(t | r∪s∪v) = [τ(r | v)⊕τ(s∪v)]⊕τ(t | s∪v) = τ(r | v)⊕[τ(s∪v)⊕τ(t | s∪v)] = 
τ(r | v)⊕τ(s∪t∪v). Therefore, by Definition 3.1, r ⊥ s∪t | v. ■ 

 The next theorem states a property of conditional independence that holds only if the joint 
valuation τ is positive normal. This property is called intersection by Pearl [30]. 

Theorem 3.5 (Intersection). Suppose τ ∈Uw, and suppose r, s, t, and v are disjoint 
subsets of w. If r ⊥ s | t∪v, and r ⊥ t | s∪v, then r ⊥ s∪t | v. 

Proof of Theorem 3.5: Suppose r ⊥ s | t∪v, and r ⊥ t | s∪v. Since r ⊥ s | t∪v, by statement (vii) 
of Lemma 3.1, τ(r | s∪t∪v) = τ(r | t∪v)⊕ιτ(s∪t∪v). Since τ is positive normal, τ(s∪t∪v) is positive 
normal. Therefore ιτ(s∪t∪v) = ιs∪t∪v = ιs⊕ιt∪v. Therefore, τ(r | s∪t∪v) = τ(r | t∪v)⊕ιs⊕ιt∪v = 
τ(r | t∪v)⊕ιs. Similarly, since r ⊥ t | s∪v, τ(r | s∪t∪v) = τ(r | s∪v)⊕ιt. Since the left hand sides of 
the preceding two equalities are the same, the right hand sides must be equal, i.e., τ(r | t∪v)⊕ιs = 
τ(r | s∪v)⊕ιt. Adding τ(t∪v)⊕τ(s∪v) to both sides of the preceding equality, we get 
τ(r | t∪v)⊕ιs⊕τ(t∪v)⊕τ(s∪v) = τ(r | s∪v)⊕ιt⊕τ(t∪v)⊕τ(s∪v), i.e., τ(r∪t∪v)⊕τ(s∪v) = 
τ(r∪s∪v)⊕τ(t∪v). Deleting s from both sides of the preceding equality, we get τ(r∪t∪v)⊕τ(v) = 
τ(r∪v)⊕τ(t∪v), i.e., r ⊥ t | v. Earlier we had τ(r | s∪t∪v) = τ(r | t∪v)⊕ιs = τ(r | v)⊕ιt⊕ιs. 
Therefore, τ(r | s∪t∪v)⊕τ(s∪t∪v) = [τ(r | v)⊕ιt⊕ιs]⊕τ(s∪t∪v), i.e., τ(r∪s∪t∪v) = 
τ(r | v)⊕τ(s∪t∪v). Therefore, r ⊥ s∪t | v. ■ 
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 Pearl and Paz [4] call a conditional independence relation that satisfies symmetry, 
decomposition, weak union, contraction, and intersection a graphoid. From Theorems 3.1–3.5, it 
follows that the definition of conditional independence in Definition 3.1 is a graphoid. 

4. PROBABILITY THEORY 

In this section, we show how probability theory fits in the VBS framework. More precisely, we 
define valuations, zero valuations, proper valuations, normal valuations, combination, 
marginalization, and removal. Also, we show that all axioms made in Section 2 hold. First we 
start with notation. 
 Frames and Configurations. We use the symbol WX for the set of possible values of a 
variable X, and we call WX the frame for X. We assume that one and only one of the elements of 
WX is the true value of X. We assume that all the variables in X have finite frames. 
 Given a nonempty set s of variables, let Ws denote the Cartesian product of WX for X in s; 
Ws = ×{WX | X ∈ s}. We call Ws the frame for s. We call the elements of Ws configurations of 
s. We use this terminology even when s is a singleton subset. Thus elements of WX are called 
configurations of X. We use lower-case, bold-faced letters such as x, y, etc., to denote 
configurations.  
 It is convenient to extend this terminology to the case where the set of variables s is empty. 
We adopt the convention that the frame for the empty set Ø consists of a single configuration, 
and we use the symbol ♦ to name that configuration; WØ = {♦}.  
 Projection of Configurations. Projection simply means dropping extra coordinates; for 
example, if (w,x,y,z) is a configuration of {W,X,Y,Z}, then the projection of (w,x,y,z) to {W,Y} 
is simply (w,y), which is a configuration of {W,Y}. If r and s are sets of variables, r ⊆ s, and x is 
a configuration of s, then x↓r denotes the projection of x to r. If r = Ø, then of course, x↓r = ♦. 
 If x is a configuration of r, y is a configuration of s, and r∩s = Ø, then there is a unique 
configuration z of r∪s such that z↓r = x, and z↓s = y. Let (x, y) or (y, x) denote z. As per this 
notation, (x, ♦) = (♦, x) = x. 
 In probability theory, the basic representational unit is called a probability function. Let 2Ws 
denote the set of all nonempty subsets of Ws. Elements of 2Ws will be denoted by a, b, c, etc. 
Let [0, 1] denote the unit interval. 
 Probability Function. A probability function σ for s is a function σ: 2Ws → [0, 1] such that 
  (P1). Σ{σ({x}) | x ∈Ws} = 1; and 
  (P2). σ(a) = Σ{σ({x}) | x ∈ a} for all a ∈ 2Ws. 
Notice that although a probability function is defined for the set of all nonempty subsets of Ws, it 
is clear from condition (P2) that it is completely specified by its values for all singleton subsets 
of Ws. 
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 In probability theory, a valuation for s is a function σ: Ws → [0, 1]. Zero valuations exist—a 
valuation ζs for s is zero if and only if all values of ζs are zeros, i.e., ζs(x) = 0 for all x ∈Ws. 
Suppose σ is a valuation for s. We call σ proper if and only if σ ≠ ζs, i.e., all nonzero valuations 
are proper. Suppose σ is a valuation for s. We call σ normal if and only if Σ{σ(x) | x ∈Ws} = 1. 
A normal valuation can be regarded as a probability function defined only for singleton subsets.  
 Combination. In probability theory, combination is pointwise multiplication followed by 
normalization (if normalization is possible). Suppose ρ ∈Vr, and σ ∈Vs. Let K = 
Σ{ρ(x↓r)σ(x↓s) | x ∈Wr∪s}. The combination of ρ and σ, denoted by ρ⊕σ, is the valuation for 
r∪s given by  
  K–1

 ρ(x↓r) σ(x↓s)  if K > 0 
 (ρ⊕σ)(x) =   (4.1) 
  0 if K = 0 
for all x ∈Wr∪s. If K = 0, ρ⊕σ = ζr∪s. If K > 0, then K is a normalization constant that ensures 
ρ⊕σ is a normal valuation. 
 It is easy to see that Axioms C1–C6 are satisfied by the definition of combination in (4.1). 
The identity ιs for Ns∪{ζs} is given by ιs(x) = 1/|Ws| for all x ∈Ws. Suppose σ ∈Ns. An identity 
δσ for σ in Ns is a normal valuation for s such that δσ(x) = K−1 if σ(x) > 0, and δσ(x) = K−1r if 
σ(x) = 0, where r is any non-negative real number, and K is the normalization constant. Suppose 
σ ∈Ns. Notice that σ is positive normal if and only if σ(x) > 0 for all x ∈Ws. 
 Marginalization. For valuations in probability theory, marginalization is addition. Suppose 
σ ∈Vs, and X ∈ s. The marginal of σ for s–{X}, denoted by σ↓(s–{X}), is the valuation for s–{X} 
defined as follows:  

 σ↓(s–{X})(y) = Σ{σ(y,x) | x ∈WX} (4.2) 
for all y ∈Ws–{X}. 
 The above definition of marginalization follows from condition (P2) in the definition of a 
probability function since a proposition {y} about variables in s–{X} is the same as proposition 
{y}×WX about variables in s. 
 It is easy to see that the definition of marginalization in (4.2) satisfies Axioms M1–M4. It can 
be easily shown that Axioms CM1 and CM2 hold. 
 Removal. In probability theory, removal is division followed by normalization (if 
normalization is possible). Division by zero can be defined arbitrarily. For the sake of simplicity 
of exposition, we define division of any real number by zero as resulting in zero. Suppose σ ∈Vs, 
and ρ ∈Nr∪Zr. Let K = Σ{σ(x↓s)/ρ(x↓r) | x ∈Wr∪s s.t. ρ(x↓r) > 0}. Then the valuation resulting 
from the removal of ρ from σ, denoted by σρ, is the valuation for r∪s given by 
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  K–1σ(x↓s)/ρ(x↓r) if K > 0 and ρ(x↓r) > 0 
 (σρ)(x) =   (4.3) 
  0 if K = 0 or ρ(x↓r) = 0 
for all x ∈Wr∪s. 
 If K > 0, K is the normalization constant that ensures σρ is a normal valuation. It is easy to 
see that Axioms R1, R2, and CR hold. Suppose ρ ∈Nr∪Zr. The identity ιρ for ρ defined in 
Axiom R2 is the normal valuation for r such that ιρ(x) = K−1 if ρ(x) > 0, and ιρ(x) = 0 if ρ(x) = 0, 
where K is the normalization constant. 
 Does the VBS framework capture all aspects of probability theory? The answer is no. The 
VBS framework only captures the important features of probability theory. For example, 
Studeny [31] has proved the following property of conditional independence in probability 
theory: If r, s, t, and u are disjoint subsets of variables, then t ⊥ u | r∪s, t ⊥ u, r ⊥ s | t, and r ⊥ s | u if 
and only if r ⊥ s | t∪u, r ⊥ s, t ⊥ u | r, and t ⊥ u | s. However, Spohn [32] has shown that this 
property does not hold in his theory. Therefore, it is clear that the above property of conditional 
independence does not hold in the VBS framework. 

5. DEMPSTER-SHAFER’S BELIEF-FUNCTION THEORY 

In this section, we show how Dempster-Shafer’s belief-function theory fits in the VBS 
framework. More precisely, we define valuations, zero valuations, proper valuations, normal 
valuations, combination, marginalization, and removal. Also, we show that all axioms and 
assumptions made in Section 2 hold. 
 In Dempster-Shafer’s belief-function theory, proper normal valuations correspond to either 
basic probability assignment functions, belief functions, plausibility functions, or commonality 
functions. For simplicity of exposition, we describe Dempster-Shafer’s belief-function theory in 
terms of commonality functions. We define commonality functions in terms of basic probability 
assignment functions. Remember that 2Ws denotes the set of all nonempty subsets of Ws. 
 Basic Probability Assignment Function. A basic probability assignment (bpa) function for 
s is a function µ: 2Ws → [0, 1] such that 
  (B1). µ(a) ≥ 0 for all a ∈ 2Ws 
  (B2). Σ{µ(a) | a ∈ 2Ws} = 1. 
 Commonality Function. A function θ: 2Ws → [0, 1] is a commonality function for s if there 
exists a bpa function µ for s such that 

 θ(a) = Σ{µ(c) | c ⊇ a}. (5.1) 
for all a ∈ 2Ws. 
 It is evident from (B1), (B2), and (5.1) that 0 ≤ θ(a) ≤ 1, and that θ(a) ≥ θ(b) whenever 
a ⊆ b. 
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 The following two lemmas from [33] will help us understand the mathematical properties of 
commonality functions. 

Lemma 5.1. Suppose µ and θ are real-valued functions defined on 2Ws. Then 
(5.1) holds for every a ∈ 2Ws if and only if 

 µ(a) = Σ{(–1)|c–a|
 θ(c) | c ⊇ a} 

holds for all a ∈ 2Ws. 

Lemma 5.2. Suppose µ and θ are real-valued functions defined on 2Ws, and 
suppose (5.1) holds for every a ∈ 2Ws. Then 

 Σ{µ(a) | a ∈ 2Ws} = Σ{(–1)|a|+1θ(a) | a ∈ 2Ws}. 

 These lemmas can be proven by the methods used in the appendix of Ch. 2 of [11]. 
 From Lemma 5.1, we see that a basic probability assignment is completely determined by the 
commonality function. From Lemmas 5.1 and 5.2, and conditions (B1) and (B2), we see that a 
function θ: 2Ws → [0, 1] is a commonality function if and only if two conditions are satisfied: 

 Σ{(–1)|c–a|
 θ(c) | c ⊇ a} ≥ 0 (5.2) 

for every a ∈ 2Ws, and  

 Σ{(–1)|a|+1θ(a) | a ∈ 2Ws} = 1. (5.3) 
Condition (5.2) follows from condition (B1) and Lemma 5.1, and condition (5.3) follows from 
condition (B2) and Lemma 5.2. 
 In belief-function theory, a valuation for s is a function σ: 2Ws → [0, 1]. Zero valuations 
exist—a valuation ζs for s is zero if and only if all values of ζs are zeros, i.e., ζs(a) = 0 for all 
a ∈ 2Ws. Suppose σ is a nonzero valuation for s. We call σ proper if and only if 
Σ{(−1)|c−a|

 σ(c) | c ⊇ a} ≥ 0 for all a ∈ 2Ws. Suppose σ is a nonzero valuation for s. We say σ is 
normal if and only if Σ{(−1)|a|+1σ(a) | a ∈ 2Ws} = 1. It is clear from (5.2) and (5.3) that proper 
normal valuations are commonality functions. 
 In belief-function theory, combination is pointwise multiplication of commonality functions 
followed by normalization [11]. Before we can give a formal definition of combination, we need 
the definition of projection of subsets of configurations. 
 Projection of Subsets of Configurations. If r and s are sets of variables, r ⊆ s, and a ∈ 2Ws, 
then the projection of a to r, denoted by a↓r, is the element of 2Wr given by a↓r = {x↓r | x ∈ a}. 
 Combination. Suppose ρ ∈Vr and σ ∈Vs. Let K = Σ{(−1)|a|+1ρ(a↓r)σ(a↓s) | a ∈ 2Wr∪s}. The 
combination of ρ and σ, denoted by ρ⊕σ, is the valuation for r∪s given by  
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  K–1ρ(a↓r)σ(a↓s)  if K ≠ 0 
 (ρ⊕σ)(a) =   (5.4) 
  0 if K = 0 
for all a ∈ 2Wr∪s. If K = 0, then ρ⊕σ = ζr∪s. If K ≠ 0, then K is the normalization constant that 
ensures ρ⊕σ is a normal valuation. It is shown by Shafer [11, p. 61] that if ρ and σ are 
commonality functions (proper normal valuations), and K ≠ 0, then ρ⊕σ is a commonality 
function. 
 It is easy to see that axioms C1–C6 are satisfied by the definition of combination in (5.4). 
The identity ιs for Ns∪{ζs} is given by ιs(a) = 1 for all a ∈ 2Ws. Suppose σ ∈Ns. An identity δσ 
for σ in Ns is a normal valuation for s such that δσ(a) = K−1 if σ(a) > 0, and δσ(a) = K−1r if 
σ(a) = 0, where r is any non-negative real number, and K is the normalization constant. Suppose 
σ ∈Ns. Notice that σ is positive normal if and only if σ(a) > 0 for all a ∈ 2Ws. 
 Marginalization. Suppose σ ∈Vs, and suppose X ∈ s. The marginal of σ for s–{X}, denoted 
by σ↓(s–{X}), is the valuation for s–{X} defined as follows:  

 σ↓(s–{X})(a) = Σ{(–1)|b–c| σ(b) | b, c ∈ 2Ws such that c↓(s–{X})
 ⊇ a, and b ⊇ c} (5.5) 

for all a ∈ 2Ws–{X}. 
 It is easy to see that the definition of marginalization in (5.5) satisfies Axioms M1–M4. It can 
be easily shown that Axioms CM1 and CM2 hold. Formal proofs that Axioms M1 and CM2 hold 
can be found in [34]. 
 Removal. We define removal as pointwise division followed by normalization (if 
normalization is possible). Division by zero can be defined arbitrarily. For the sake of simplicity 
of exposition, we define division of any real number by zero as resulting in zero. Suppose σ ∈Vs, 
and ρ ∈Nr∪Zr. Let K = Σ{(–1)|a|+1

 σ(a↓s)/ρ(a↓r) | a ∈ 2Wr∪s s.t. ρ(a↓r) > 0}. Then the valuation 
resulting from the removal of ρ from σ, denoted by σρ, is the valuation for r∪s given by 

  K–1σ(a↓s)/ρ(a↓r) if K > 0 and ρ(a↓r) > 0 
 (σρ)(a) =   (5.6) 
  0 if K = 0 or ρ(a↓r) = 0 
for all a ∈ 2Wr∪s. 
 If K > 0, K is the normalization constant that ensures σρ is a normal valuation. It can be 
easily shown that Axioms R1, R2, and CR hold. Suppose ρ ∈Nr∪Zr. The identity ιρ for ρ 
defined in Axiom R2 is the normal valuation for r such that ιρ(a) = K−1 if ρ(a) > 0, and ιρ(a) = 
0 if ρ(a) = 0, where K is the normalization constant. 
 Notice that if σ and ρ are commonality functions, it is possible that σρ may not be a 
commonality function because condition (5.2) may not be satisfied by σρ. In fact, if σ is a 
commonality function for s, and r ⊆ s, then even σσ↓r may fail to be a commonality function. 
This fact is the reason why we need the concept of proper valuations as distinct from nonzero 
and normal valuations in the general VBS framework. An implication of this fact is that 



22  Prakash P. Shenoy 

conditionals may lack semantical coherence in the Dempster-Shafer’s theory. This is the primary 
reason why conditionals are neither natural nor widely studied in the Dempster-Shafer’s belief-
function theory. 

6. SPOHN’S EPISTEMIC-BELIEF THEORY 

In this section, we show how Spohn’s epistemic-belief theory [8, 35, 36] fits in the VBS 
framework. More precisely, we define valuations, proper valuations, normal valuations, 
combination, marginalization, and removal. Also, we show that all axioms and assumptions 
made in Section 2 hold. 
 In Spohn’s theory, a basic representational unit is called a disbelief function. Let N denote 
the set of all natural numbers. 
 Disbelief Function. A disbelief function for s is a function σ: 2Ws → N such that 
  (D1). there exists a configuration x ∈Ws such that σ({x}) = 0; and 
  (D2). σ(a) = MIN{σ({x}) | x ∈ a} for all a ∈ 2Ws. 
Notice that from condition (D2) in the definition of a disbelief function, a disbelief function is 
completely determined by its values for singleton subsets. 
 Intuitively, σ(a) represents the degree of disbelief in proposition a (the proposition that the 
true configuration of s is in a). The degree of belief in proposition a is given by σ(~a), where 
~a = Ws– a. Thus σ represents an epistemic state in which a is believed if and only if σ(~a) > 0, 
a is disbelieved if and only if σ(a) > 0, and a is neither believed nor disbelieved if σ(a) = σ(~a) 
= 0. Also, in epistemic state σ, a is more believed than b if σ(~a) > σ(~b) > 0, and a is more 
disbelieved than b if σ(a) > σ(b) > 0. 
 In Spohn’s epistemic-belief theory, a valuation for s is a function σ:Ws → N. Zero valuations 
do not exist, i.e., all valuations are nonzero. Also, all valuations are proper. 
 Suppose σ ∈Vs. We say σ is normal if and only if MIN{σ(x) | x ∈Ws} = 0. A normal 
valuation for s can be regarded as a disbelief function for s defined only for singleton subsets of 
2Ws. 
 Combination. In Spohn’s theory, combination is simply pointwise addition followed by 
normalization [8, 36]. If ρ ∈Vr, and σ ∈Vs, then their combination, denoted by ρ⊕σ, is the 
valuation for r∪s given by  

 (ρ⊕σ)(x) = ρ(x↓r) + σ(x↓s) – K (6.1) 
for all x ∈Wr∪s, where K is a constant defined as follows: 

 K = MIN{ρ(x↓r) + σ(x↓s) | x ∈Wr∪s}. 
K is the normalization constant that ensures that ρ⊕σ is a normal valuation. 
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 It is easy to see that axioms C1–C6 are satisfied by the definition of combination in (6.1). 
The identity ιs for Ns∪{ζs} is given by ιs(x) = 0 for all x ∈Ws. Every normal valuation in Ns has 
a unique identity in Ns, therefore a normal valuation is also positive normal. 
 Marginalization. Suppose σ ∈Vs, and suppose X ∈ s. The marginal of σ for s–{X}, denoted 
by σ↓(s–{X}), is the valuation for s–{X} defined as follows:  

 σ↓(s–{X})(y) = MIN{σ(y,x) | x∈WX} (6.2) 
for all y ∈Ws–{X}. 
 The above definition of marginalization follows from condition (D2) in the definition of a 
disbelief function since a proposition {y} about variables in s–{X} is the same as proposition 
{y}×WX about variables in s. 
 It is easy to see that the definition of marginalization in (6.2) satisfies Axioms M1–M4. It can 
be easily shown that Axioms CM1 and CM2 hold. Formal proofs that Axioms M1 and CM1 hold 
can be found in [36]. 
 Removal. In Spohn’s theory, removal is subtraction followed by normalization [36]. Suppose 
σ ∈Vs, and ρ ∈Nr∪Zr. Then the normal valuation resulting from the removal of ρ from σ, 
denoted by σρ, is given by 

 (σρ)(x) = σ(x↓s) – ρ(x↓r) – K (6.3) 
for all x ∈Wr∪s, where K is a constant given by  

 K = MIN{σ(x↓s) – ρ(x↓r) | x ∈Wr∪s}. 
 K is the normalization constant that ensures σρ is a normal valuation. It can be easily 
shown that Axioms R1, R2, and CR hold. Suppose ρ ∈Nr∪Zr. Since every normal valuation is 
positive normal, ιρ = ιr. 

7. ZADEH’S POSSIBILITY THEORY 

In this section, we describe how Zadeh’s possibility theory [12, 13] fits in the VBS framework. 
More precisely, we define valuations, normal valuations, proper valuations, combination, 
marginalization, and removal. Also, we show that all axioms and assumptions made in Section 2 
hold. 
 The basic representational unit in Zadeh’s possibility theory is called a possibility function. 
 Possibility Function. A possibility function π for s is a function π: 2Ws → [0, 1] such that 
  (S1). there exists a configuration x ∈Ws such that π({x}) = 1; and 
  (S2). π(a) = MAX{π({x}) | x ∈ a} for all a ∈ 2Ws. 
Notice that from condition (S2) in the definition of a possibility function, a possibility function is 
completely determined by its values for singleton subsets. 
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 A possibility function is a complete representation of a consistent possibilistic state [37]. a is 
possible in state π if and only if π(a) = 1, and a is not possible in state π if and only if π(a) < 1. 
A possibility function consists of more than a representation of a consistent possibilistic state. It 
also includes degrees to which proposition are possible and degrees to which propositions are not 
possible. π(a) can be interpreted as the degree to which proposition a is possible, and [1 − π(a)] 
can be interpreted as the degree to which proposition a is not possible, i.e., a is more possible 
than b if π(a) > π(b) and conversely, a is more impossible than b if π(a) < π(b) < 1. 
 In Zadeh’s possibility theory, a valuation σ for s is a function σ: Ws → [0, 1]. Zero 
valuations exist—a valuation ζs for s is zero if and only if all values of ζs are zeros, i.e., ζs(x) = 0 
for all x ∈Ws.  
 Suppose σ is a valuation for s. We say σ is proper if and only if σ ≠ ζs, i.e., all nonzero 
valuations are proper. 
 Suppose σ is a valuation for s. We say σ is normal if and only if MAX{σ(x) | x ∈Ws} = 1. A 
normal valuation can be regarded as a possibility function defined only for singleton subsets. 
 Combination.9 We define combination as multiplication followed by normalization (if 
normalization is possible). Suppose ρ ∈Vr, and suppose σ ∈Vs. Suppose K = 
MAX{ρ(x↓r)σ(x↓s) | x ∈Wr∪s}. The combination of ρ and σ, denoted by ρ⊕σ, is the valuation 
for r∪s given by  

  K–1 ρ(x↓r)σ(x↓s)  if K > 0 
 (ρ⊕σ)(x) =   (7.1) 
  0 if K = 0 
for all x ∈Wr∪s. If K = 0, ρ⊕σ = ζr∪s. If K > 0, then K is the normalization constant that ensures 
that ρ⊕σ is a normal valuation. 
 It is easy to see that axioms C1–C6 are satisfied by the definition of combination in (7.1). 
The identity ιs for Ns∪{ζs} is given by ιs(x) = 1 for all x ∈Ws. Suppose σ ∈Ns. An identity δσ 
for σ in Ns is a normal valuation for s such that δσ(x) = 1 if σ(x) > 0, and δσ(x) ∈ r if σ(x) = 0, 
where r is any real number in the interval [0, 1]. Suppose σ ∈Ns. Notice that σ is positive normal 
if and only if σ(x) > 0 for all x ∈Ws. 
 Marginalization. Suppose σ ∈Vs, and X ∈ s. The marginal of σ for s–{X}, denoted by σ↓(s–

{X}), is the valuation for s–{X} defined as follows:  

 σ↓(s–{X})(y) = MAX{σ(y,x) | x ∈WX} (7.2) 
                                                
9 There are several definitions of combination in possibility theory. Zadeh [12] has defined combination as 
pointwise minimization (with no normalization). However, several alternative definitions of combination have been 
suggested in the fuzzy set literature (see, e.g., [13], pp. 78–85). Any triangular norm can be regarded as a definition 
of combination. In the VBS framework, combination has to be associative, and the combination of two valuations 
has to be either normal or zero. These two requirements restrict the definition of combination to pointwise 
multiplication followed by normalization (since pointwise minimization followed by normalization, for example, 
fails to be associative). 
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for all y ∈Ws–{X}. 
 The above definition of marginalization follows from condition (S2) in the definition of a 
possibility function since a proposition {y} about variables in s–{X} is the same as proposition 
{y}×WX about variables in s. 
 It is easy to see that the definition of marginalization in (7.2) satisfies Axioms M1–M4. It can 
be easily shown that Axioms CM1 and CM2 hold. Formal proofs that Axioms M1 and CM1 hold 
can be found in [37]. 
 Removal. In possibility theory, removal is division followed by normalization (if 
normalization is possible). Division by zero can be defined arbitrarily. For the sake of simplicity 
of exposition, we define division of any real number by zero as resulting in zero. Suppose σ ∈Vs, 
ρ ∈Nr∪Zr. Suppose K = MAX{σ(x↓s)/ρ(x↓r) | x ∈Wr∪s such that ρ(x↓r) > 0}. Then the valuation 
resulting from the removal of ρ from σ, denoted by σρ, is given by, 

  K–1 σ(x↓s)/ρ(x↓r)  if K > 0, and ρ(x↓r) > 0 
 (σρ)(x) =   (7.3) 
  0 if K = 0 or ρ(x↓r) = 0 
for all x ∈Wr∪s. 
 If K > 0, then K is the normalization constant that ensures σρ is a normal valuation. It can 
be easily shown that Axioms R1, R2, and CR hold. Suppose ρ ∈Nr∪Zr. The identity ιρ for ρ 
defined in Axiom R2 is the normal valuation for r such that ιρ(x) = 1 if ρ(x) > 0, and ιρ(x) = 0 if 
ρ(x) = 0. 
 Most of the literature on Zadeh’s possibility theory defines combination as pointwise 
minimization with no normalization. With this definition, combination is always idempotent, i.e., 
π⊕π = π, and consequently, conditional independence always holds for any disjoint subsets of 
variables. Therefore, conditional independence has not been widely studied in the possibility 
theory literature. A problem with the definition of combination as pointwise minimization with 
no normalization is that it is semantically inadequate. If we define combination as pointwise 
minimization with normalization, then combination is not associative. This poses other problems 
because now we have to worry about the sequence in which we combine possibility valuations 
and what the sequence represents. Our definition of combination as pointwise multiplication 
followed by normalization makes possibility theory more similar to probability theory and 
Spohn’s epistemic-belief theory. In our version of possibility theory, possibility valuations are no 
longer idempotent and therefore the conditional independence theory is no longer trivial. We 
believe this version of possibility theory merits more study than it has received in the literature. 
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8. CONCLUSION 

The main objective of this paper was to define conditional independence in the VBS framework. 
Although this concept has been defined and extensively studied in probability theory, it have not 
been extensively studied in non-probabilistic uncertainty theories. 
 Drawing upon the literature on conditional independence in probability theory [1, 2, 3, 4, 5, 
6, 7], we define conditional independence in VBS. The VBS framework was defined earlier by 
Shenoy [20, 21]. However, the VBS framework defined there is inadequate for the purposes of 
studying properties of conditional independence. In this paper, we embellish the framework by 
including three new classes of valuations called proper, normal, and positive normal, and by 
including a new operation called removal. The new definitions are stated in the form of axioms. 
These axioms are general enough to include probability theory, Dempster-Shafer’s belief-
function theory, Spohn’s epistemic-belief theory, and Zadeh’s possibility theory. 
 The VBS framework enables us to define conditional independence, and to prove some major 
properties of conditional independence that have been derived in probability theory. Conditional 
independence is defined in terms of factorization of the joint valuation. Thus, not only do we 
have a deeper understanding of conditional independence in probability theory, we also 
understand what conditional independence means in various non-probabilistic uncertainty 
theories. This should deflect some criticism that non-probabilistic uncertainty theories are not as 
well developed as probability theory. Also, the VBS framework allows us to translate results 
from probability theory to non-probabilistic uncertainty theories, and vice-versa. 
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