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Abstract

With the extreme popularity of online social networks, security and privacy
issues become critical. In particular, it is important to protect user privacy with-
out preventing them from normal socialization. User privacy in the context of
data publishing and structural re-identification attacks has been well studied.
However, protection of attributes and data content was mostly neglected in the
research community. While social network data is rarely published, billions of
messages are shared in various social networks on a daily basis. Therefore, it is
more important to protect attributes and textual content in social networks.

We first study the vulnerabilities of user attributes and contents, in partic-
ular, the identifiability of the users when the adversary learns a small piece of
information about the target. We have presented two attribute-reidentification
attacks that exploit information retrieval and web search techniques. We have
shown that large portions of users with online presence are very identifiable,
even with a small piece of seed information, and the seed information could be
inaccurate.

To protect user attributes and content, we adopt the social circle model
derived from the concepts of “privacy as user perception” and “information
boundary”. Users will have different social circles, and share different informa-
tion in different circles. We introduce a social circle discovery approach using
multi-view clustering. We present our observations on the key features of social
circles, including friendship links, content similarity and social interactions. We
treat each feature as one view, and propose a one-side co-trained spectral clus-
tering technique, which is tailored for the sparse nature of our data. We also
propose two evaluation measurements. One is based on the quantitative mea-
sure of similarity ratio, while the other employs human evaluators to examine
pairs of users, who are selected by the max-risk active evaluation approach.
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We evaluate our approach on ego networks of twitter users, and present our
clustering results. We also compare our proposed clustering technique with
single-view clustering and original co-trained spectral clustering techniques.
Our results show that multi-view clustering is more accurate for social circle
detection; and our proposed approach gains significantly higher similarity ra-
tio than the original multi-view clustering approach.

In addition, we build a proof-of-concept implementation of automatic circle
detection and recommendation methods. For a user, the system will return its
circle detection result from our proposed multi-view clustering technique, and
the key words for each circle are also presented. Users can also enter a message
they want to post, and the system will suggest which circle to disseminate the
message.
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Chapter 1

Introduction

With the development of internet technologies, people start to carry out

more and more activities online, as online shopping, online studying, online

banking, etc. One of the most significant creation in the Web era is online so-

cial network, which tries to connect users socially online. Social networks’ first

appearance online can trace back to early 90’s last century, and it starts to gain

vast popularity from mid 00’s. During the last few years, online social network

becomes more and more import to people’s social life with the development

of Facebook, YouTube, Google+ and many other web sites. They are becom-

ing extremely popular, attracting huge amounts of users and Internet traffic.

For instance, Facebook recorded one billion active user accounts in late 2012,

while approximately 10 million messages are posted every hour. They have

significantly changed our information sharing and socialization behavior, es-

pecially among the younger generation – it has been reported that 48% percent

of Facebook users between 18-34 years old check Facebook when they wake

up1. With online social networks, users can find their old friends without con-

1http://www.statisticbrain.com/facebook-statistics/
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tacting for many years, find out how is every friend every day, what is the hot

topic recently, and also get to know new friends much more easily. Online so-

cial networks provide a place where people can share, interact, and explore in

a more unconstrained manner.

However, as the online social life becomes more and more colourful these

days, it also causes some privacy issues. The extreme popularity of online so-

cial networks has become a double-edged sword. While service providers de-

vote to promote online socialization, privacy issues arise. In the literature, stud-

ies have shown a massive disconnection between users’ privacy perceptions

and their behavior–widely known as the privacy paradox. That is, most users

do not take appropriate actions to protect their information, although they ex-

press concerns on the privacy of such information [10, 75, 110]. For instance,

many users are concerned about their location privacy [16, 45, 67], however,

a blog/micro-blog post about a local restaurant [79], or blogs with location-

indicating words such as “Time Square” [21, 24] could effectively reveal the

user’s location. Many users ignore privacy settings. They make their profiles

and other contents visible publicly. Even though their private attributes are

only accessible to a portion of users, attackers can still infer their personal in-

formation [56]. In addition, the maturity of other information technologies, as

information retrival, make adversaries easier to collect and analyze informa-

tion online. This puts online social network users’ privacy into risk, as will be

shown in Chapter 3.

After the privacy problems originate, the research community have done

many works trying to study the characteristics of possible attacks, and also find

reasonable solutions for eliminating impacts of the attacks. Most of the exist-
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ing works focus on data-publishing and structural-based attacks or protections.

Some time, online social network data sets are published for legitimate reasons.

Researchers have been working on how adversaries could utilize the published

data to obtain sensitive information and how to modify the data sets to make

users more secure. Many of the proposed attack and prevention models are

based on links among users, which can be represented as graphs with nodes

corresponding to users and edges corresponding to links. Attackers can make

use of the connectivity information to possibly get the private information of

the target [55, 56, 142, 154]. The solutions try to modify this published graph

so that attackers can hardly succeed. One direction is to apply anonymization

theories, like k-anonymity [131]. The basic idea is to change the graph so that it

satisfies some anonymization properties, like each node has the same structural

characteristics with at least k-1 other nodes [83].

Although structures are important for user privacy protection in online so-

cial networks, it is content that actually bears sensitive information. Even if

the attackers successfully re-identified the target in the published anonymized

data set, without the contents and attributes information (i.e. user attribute

data), they can still hardly get the private stuff, and the users are still safe. In

addition, social network data is rarely published, and billions of messages are

sent in different social networks in a short period of time. Therefore, it is more

important to protect attributes and content in online social networks.

In social science, privacy is more related to user perception, i.e. they are

secure if they feel secure. So the proposed protection mechanisms for user pri-

vacy are more about how to control the information flow and set its boundary.

In our research, we propose to combine social science theories with modern
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computer technologies to protect user’s privacy automatically and effectively.

Although as stated above, there have been plenty of works studying the

privacy issues in online social networks using structural knowledge, protec-

tion focusing on attributes and content was mostly neglected. In our research,

we first study the vulnerability of content on the internet, which we will state

in detail in Chapter 3. We construct two types of attackers: resourceful and

tireless. We assume that they both have a piece of information of the target as

the seed, and try to re-identify the target using some methods. The former at-

tackers are able to create resource database as knowledge base and re-identify

the target within it, and can also combine multiple resources to get more sensi-

tive information of the target. The later do not have such resources. The only

tools they have are the ordinary online search engines and their own time and

energy. They search the web, inputting the seed information as the query, and

examine the results to check whether they can re-identify the target. By design-

ing some experiments, we have shown that large portions of users with online

presence are very identifiable, even with a small piece of seed information, and

the seed information could be inaccurate.

To protect user content and attributes, we propose to incorporate the social

circle model derived from social science theories. In this model, there are cir-

cles, i.e. highly clustered groups of people, in social networks. Circles have

boundaries, which can be utilized to constrain information flow and therefore,

protect user privacy. The notions of social circles and information boundary

have been proposed, to protect private information and to facilitate secure so-

cialization. However, the problem of social circle discovery remains open and

challenging. We propose an automatic social circle detection mechanism uti-
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lizing multi-view clustering, which is based on the method proposed in [68].

In particular, we propose a one-side co-trained spectral clustering technique,

which is tailored for the sparse nature of our data. For the multi-view cluster-

ing approach, we start with our observations that users belonging to the same

circle are very likely to: (1) be friends and share many common friends; (2) be

interested in similar content; (3) have more interactions with each other. We

model the ego network with 6 different views, and we argue that features from

different views would complement each other. We tested our algorithms with

real-world social networking data collected from Twitter and compared it with

several other clustering techniques, as structural-based clustering, in particu-

larly SCAN, proposed in [144], and single-view spectral clustering. Experiment

results show that our approach is both effective and efficient. Multi-view clus-

tering is more accurate for social circle detection; and our proposed approach

gains significantly higher similarity ratio than the original multi-view cluster-

ing approach.

The contributions of this dissertation are three-fold: (1) We take a first step

towards studying private information online, especially the online social net-

works data. We intensively examine the vulnerability of private information

in online sources as well as the validity of different types of attribute-based

privacy attacks. In particular, we introduce an information-theory-based ap-

proach to evaluate the values of personal information items to the attackers;

(2) We are the first to integrate structural, content and interaction features to

identify social circles in online social networks. We introduce a novel selec-

tive co-trained spectral clustering method to better handle view inconsistency

and view sparsity. We implement and evaluate our methods against real-world

5



social networking data, and demonstrate the superior performance of the pro-

posed approaches; (3) We build an automatic social circle detection and sug-

gestion proof-of-concept implementation, using multiple state-of-the-art web

techniques, as JSP, JavaScript, JQuery, etc., which is both innovative and user-

friendly.

In the following dissertation, background and related works are mentioned

in Chapter 2. Threats to online attributes and content are stated in detail in

Chapter 3. Social circle model motivation and circle discovery is talked in

Chapter 4. In Chapter 5 and 6, we will present our multi-view clustering

method thoroughly, and in Chapter 7 we will introduce our proof-of-concept

implementation of automatic circle detection and recommendation. Finally, we

will make a conclusion in Chapter 8.
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Chapter 2

Related Work

In recent years, many online social network services (SNS) such as Face-

book and Google+ have become extremely popular, attracting huge number

of users. As their popularity grows, more users willingly put their (personal)

information to social network sites so that they can share them with other

users. With the advancement of information retrieval and search engine tech-

niques, on the other hand, it becomes easier to do web-scale extraction of users’

personal information that is readily available in various social networks (e.g.,

[3,9,20,71,108]). Therefore, malicious or curious users could take advantage of

these techniques to collect others’ private information [76, 147]. We have been

overwhelmed by news reports on social network privacy: threats, tragedies,

and public concerns [19, 35, 52, 60, 63, 65, 98, 112]. Unfortunately, so far, such

concerns have not been sufficiently answered by research community and IT

industry.

7



2.1 Privacy Threats during Communication.

Communications are quite common in online activities. It greatly helps web

users’ in all kinds of areas. However, due to its underlying implementation, it

will also create possibilities for attackers to infringe users’ security of privacy.

During Web browsing, users implicitly reveal their private information (e.g.,

IP address) through network communications. Anonymous communications

are proposed to hide user identities in the Internet [33, 50, 111]. Meanwhile,

privacy issues connected with ubiquitous social computing are investigated

[26, 58, 97, 115].

2.2 Privacy Threats within Social Network Sites

2.2.1 Private information disclosure

Although, private information disclosure is usually controled carefully, it

may be mistakenly disclosed from trusted social networks in some situations:

publicly-available archives of closed social networks [39], social network stalk-

ers [35], code errors, add-ons and apps [19, 60, 66]. Meanwhile, users may

voluntarily give out private information: people publicize private information

if they feel “somewhat typical or positively atypical compared to the target

group” [59]; 80% of the Facebook users adopt identifiable or semi-identifiable

profile photos, and less than 2% made use of the privacy settings [53]. In ad-

dition, recent user studies show that users’ privacy settings violate their shar-

ing intentions [85, 90], and they are unable or unwilling to fix the errors [90].

[72, 117] studies the discrepancies between users’ perceptions on their privacy

disclosure and the exposure allowed by conventional privacy policies (espe-

8



cially to atypical access patterns). Furthermore, the study of [91] explores and

classifies three types of private information (e.g. vacation plans, medical con-

ditions) shared in the textual content of tweet messages. On the other hand,

users may post messages and later regret doing so, for various reasons [139].

Also, advanced techniques, as impersonation attacks, have been proposed [13]

to steal private (friends-only) attributes by cloning or faking user identities.

2.2.2 Information aggregation attacks

Information aggregation attacks are introduced in [76,87,147]: online social

network users voluntarily release pieces of personal information, e.g., profile

attributes and blog posts. Significant amount of privacy is recovered when

such pieces are associated and integrated. In particular, people are highly iden-

tifiable with very little information [51, 104, 130], which make cross-network

aggregations quite feasible and dangerous. A large scale experiment in [8] con-

firms that a significant amount of user profiles from multiple social networks

could be linked by email addresses.

2.2.3 Inference attacks

In this type of attacks, the private information is obtained by the attackers

using some inference rules. In [55,56,154], hidden attributes of target users are

inferred from friends’ attributes with a Bayesian network. Recently, [96] shows

that unknown user attributes could be accurately inferred when as few as 20%

of the users are known. On the other hand, friendship links and group member-

ship information can be used to (uniquely) identify users [142] or infer sensitive

hidden attributes [154], e.g., membership of a local engineer society discloses
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user’s location and profession. Most of the inference attacks’ inference rules are

based on target users’ explicit social connections (i.e. direct friends and social

groups explicitly constructed by different online social network applications).

However, the inference based on implicit friendship relations and social groups

are rarely touched. In our work, we will propose mechanisms for discovering

the implicit structures and privacy protection based on them.

2.3 Privacy Threats in Published Social Network Data

2.3.1 Attribute re-identification attacks

When social network data sets are published for legitimate reasons, user

identity and personal information are removed. However, with combination

of some pieces of un-identifiers attackers is possible to successfully re-identify

the targets and compromise their privacies. Some of the well-known tech-

niques for defending against these types of attacks include k-anonymity [4,132],

l-diversity [89] and t-closeness [78]. The basic ideas of them are to make the at-

tributes, which can probably identify the target, as usual as possible within the

published data, and also make the sensitive information of users having same

values in these attributes as diverse and distant as possible.

2.3.2 Structural re-identification attacks

Graph structure from anonymized social network data could be utilized for

re-identification. A good survey about this type of attacks could be found at

[156]. Notably, [6] identifies the problem that node identities could be inferred

through passive and active attacks, where passive attacks try to re-identify the

10



node based on the original structure of the social network when possessing

some structural or topological information. To evaluate the vulnerability of

social networks in the structural re-identification attacks, topological anonymity

is proposed. Topological anonymity quantifies the level of anonymity using the

topology properties of network graph [122]. An adversary who has the knowl-

edge of user’s neighbors could re-identify the user from network graph [155].

One property of graphs that are capable to survive under such assaults is K-

Degree Anonymity. K-Degree Anonymity requires each node to have the same

degree with at least k − 1 other nodes [83]. In addition, [54] models three

types of adversary knowledge that could be used to re-identify vertexes from

an anonymized social network graph. On the other hand, [84] handles social

network as a weighted graph, in which edge labels are also considered sensi-

tive.

2.4 Social Network Privacy Models

One of the most important privacy models is k-anonymity [132]. It inherits

the privacy definition of “un-identifiability.” In this model, when a record (user

profile) could not be identified from k other records, it is considered private. K-

anonymity and its successors [78,89] are good for anonymized data publishing,

but not online interactions. Reputation based models such as [1] alerts users

when they provide information to untrusted are better for real-time protections.

In another direction, the Platform for Privacy Preferences (P3P) [17, 27, 29] in-

troduces a standard for machine-readable privacy notices, and uses agents to

advise users [28]. However, P3P only helps to establish a “contract” between

users and web sites, but does not guarantee proper enforcement.
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Recently, [14] and [151] build social networks from multiple resources while

ensuring the privacy of participants. [7] introduces a social network platform

that stores and exchanges encrypted content, and access is enforced through

key management. [121] builds a platform that enforces privacy control on third

party applications. On the other hand, with the observation that it is diffi-

cult to explicitly define access control for large number of friends (hundreds to

thousands), tools have been built to help users manage their privacy settings.

For instance, Privacy Wizards [40] builds a machine learning model to predict

and configure users’ privacy rules based on limited input, and PViz [92] is pro-

posed to help users comprehend their privacy configurations based on the au-

tomatically labeled groups. [127] predicts privacy policies for newly uploaded

images based on their content similarities with existing images with known

policies. Other approaches [61, 143, 148, 150] help users group their contacts,

by exploiting the topology relationships among the users’ friends. Finally, au-

dience visualization tools [18] are also proposed to help users perceive and

control their disclosure boundary. However, none of the above mentioned ap-

proaches prevents privacy leakage during normal socialization (e.g. unwanted

private information disclosure and cross-site information aggregation attacks

as described in Section 2.2). By and large, some of them lack theoretical foun-

dations from sociological/psycological perspectives, while others do not have

formal constructs. Solutions need to find a balance between the privacy and

usability. In our work, we will propose a protection mechanism based on social

circles, which is effective for controlling user privacy and at the same time, user

friendly.
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2.5 Automatic Social Circle Detection

Identifying social circles from a user’s online social networks is important

for the individual to exert appropriate access control on information sharing

[31, 124] . However, manually managing groups on social network sites might

present a burden for users [62,73], which triggered the idea on using automatic

sociocentric network clustering algorithms. The feasibility of this idea has been

demonstrated in the findings from [48, 62].

Sociocentric network clustering, which is usually referred to as community

detection, aims to divide people into groups within which they are more sim-

ilar [2] and have more connections [101] or relationships. Unlike traditional

personal network studies, which focus on attribute-based data such as age,

sex [94], most of graph-based methods in community detection [44], which

include traditional methods like graph partitioning [64] and hierarchical clus-

tering [49, 101], modern methods through maximization of a likelihood like

[57,100], and more recent methods based on matrix factorization like [109,152],

only consider topological structure and linkage information. But there is a

trend in recent research based on graphs which combined link information

and content or attribute information [81, 113, 146] or interaction information

between individuals [159].

Compared with graph-based methods, another class of approaches attach

greater importance to content or link context information. [22, 86, 157, 158] use

state-of-the-art method like topic modeling to take full advantage of semantic

information, such as email, tweet messages, and documents, in detecting com-

munities from a social network. [138] proposed a method to find like-minded

people who share more semantically relevant tags.
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A recent research which is more related to ours is [114]. It proposed gener-

ative Bayesian models to utilize not only topics and social graph topology but

also nature of user interactions to discover latent communities in social graphs.

The difference between their work and ours is that we also used tag annotation

method to analyze content information generated by users, which concerns the

understanding of the information and is more meaningful in finding similar

topics.

Based on privacy concerns and automatic social circle detection, [93] devel-

oped a model to discover social circles by using both network structure and

user profile information; [125] proposed an approach based on apriori algo-

rithm to identify hidden groups by dynamically detecting grouping criteria,

i.e. certain combinations of properties of a user’s contacts, such as relation-

ship, location, hobbies, age, privacy, etc. The difficulty in utilizing this kind of

methods is that automatically collecting attributes of users through online so-

cial network is a nontrivial task although traditional personal network studies

can collect these information through interviews more easily.

On the algorithm aspect, we employ the multi-view clustering framework

for social circle detection. This framework frees us from the difficult task of

manually merging multiple sources before clustering. More importantly, em-

pirically study has shown its superior performance [12,68,69,137]. In our appli-

cation, we only have access to the similarity matrix, not the feature matrix, we

base our algorithm on the co-trained spectral clustering [68] approach, which

works directly on user similarity.

Spectral clustering [119] is a single-view clustering technique that exploits

properties of the Laplacian of the graph, whose nodes are samples and edges
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are similarities between samples. The top k eigenvectors of the normalized

graph Laplacian are shown to contain discriminative information for the k clus-

ters. Hence the algorithm performs k-means on rows of the eigenvectors to

obtain the clustering result.

Co-trained spectral clustering (CSC) is an extension of spectral clustering to

the multi-view setting based on the idea of co-training [15], where samples are

described by multiple feature sets, a.k.a. views. The underlying assumption of

CSC is view consistency, that is, if two samples are in the same cluster in one

view, they should be in the same cluster in all other views. CSC has the advan-

tage of further restricting the hypothesis space (the space of possible functions

that map each sample to a cluster) by imposing consistency constraint across

views.

A limitation of CSC is the equal treatment of each view, whereas in our

application, interaction views are too sparse to be completely consistent with

other views. Therefore, in this dissertation we tailor CSC and propose the

selective co-trained spectral clustering (SCSC) algorithm. Our key idea is to

encourage clustering results in a sparse view to be transferred only if the corre-

sponding similarity is not zero. Experimental results show that SCSC not only

effectively boosts the performance while many views are sparse, but also has

the advantage of efficient convergence rate.

15



Chapter 3

Content Vulnerability and

Attribute-Reidentification Attacks

3.1 Motivation and Overview of Attribute-Reidentification

Attacks

The Internet has changed the ways we publish, search and consume infor-

mation. Even with the static web, a huge amount of personal-related content

has been made available online. More recently, various types of online social

network (OSN) products have been introduced to the Internet, which further

promotes the sharing of personal information. In addition to the great commer-

cial success and social impacts of the OSNs, they also brought new challenges

to the research community (e.g., [46, 74, 82]). With enormous number of users

and tremendous amount of personal information available over various online

social networks, it is critical to ensure that user privacy is well preserved. How-

ever, although many researchers have been working on extracting information

or learning knowledge from online social networks, very little research effort
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has been put so far into the study of security and privacy issues until very re-

cently [6, 54–56, 83, 87, 149, 153–155].

In online social networks, users voluntarily share personal information within

the community under some implicit assumptions that: (1)these information is

only accessible to the targeted readers; (2) one’s true identity cannot be discov-

ered if he/she only provides limited/incomplete profile information (e.g. an

email address and a phone number); (3) a small amount of information is not

significant and the disclosure will not hurt one’s privacy; and (4) it is very dif-

ficult, if not impossible, to collect and link pieces of information scattered over

various online social networks or data sets, and associate them to one’s real

identity. Unfortunately, these assumptions are proven to be either false or at

least questionable, in both research literatures and news reports. Several types

of privacy attacks in social networks have been proposed, such as the structural

re-identification attacks [6,54,83,149,153,155], the inference attacks [55,56,154],

the information aggregation attacks [76, 87], and the traditional attribute re-

identification attacks [53, 59]. Although different types of attacks and coun-

termeasures have been proposed in recent literature, only a few of them have

been well tested on real data. Moreover, most of the attacks and corresponding

protection mechanisms are based on the graph topologies of social networks.

Privacy attacks that focus on the attributes are not well studied.

Personal information is scattered over various sources, including online so-

cial networks and the general Web. We believe a thorough understanding of the

nature of how these information are distributed and retrievable is the key to an

effectively defense. Our works takes a first step towards studying private in-

formation online, especially the online social networks data. In this chapter, we
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intensively examine the vulnerability of private information in online sources

as well as the validity of different types of attribute-based privacy attacks. In

particular, we define two types of attackers, resourceful attacker and tireless at-

tacker, based on their different attack capabilities and strategies. Both types

of attackers obtain small amounts of information about their targets, known as

seed attributes, from external sources and launch advanced re-identification at-

tacks. The seed information could be non-identifiable attributes, such as names

of schools where the target gets degrees. A resourceful attacker is capable of

retrieving a large amount of personal information about potential targets from

online social network sites and creating his/her own resource database, and

re-identifies the target by checking the seed attributes against his/her resource

database. On the other hand, a tireless attacker only submits such attributes

to search engines, and tirelessly browses and studies the results for clues. We

have simulated both types of attacks on our database, with 3 million records

collected from an online social network and a phonebook data set, to check

their reality and severeness. From the results, we can see that large portions

of users with online presence are identifiable even with a small piece of seed

information, where the seed information could be inaccurate. Our simulation

also shows that it does not require extensive resources or efforts to successfully

conduct attribute-based attacks to hurt user’s privacy online.
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3.2 Information, Vulnerabilities and Attacks

3.2.1 Information and Vulnerabilities

With the Internet explosion, huge amounts of information have been made

online. Moreover, advances in information retrieval techniques and Web search

engines have enabled easy access to such information. However, large amount

of personal information is also exposed to public, not always with the consent

of the information owner. In particular, we believe there are three primary

channels for personal information disclosure:

Personal information on the general web. In the Web 1.0 era, especially in the

early days, personal homepages sometimes contain large amount of personal

information. Such information is usually published by owners who are some-

what familiar with the Web. They usually understand the risks better than the

novices, hence, the contents may be carefully tailored to protect privacy. On

the other hand, some personal information maybe published in sources such

as news, employee directories, etc. Overall, this channel is better administered

although sensitive information could be disclosed by careless users.

Digitalized public records. With governmental and industrial efforts, a large

amount of public records (e.g. phone books) have been digitalized and made

available online. Many of them are indexed by commercial search engines,

while others require a minimum subscription fee for full access – the barrier is

usually low for an adversary to query or even collect the entire databases. Some

public information could be highly personal (e.g. salaries of faculty members

in public universities).

Online social networks. As online social networks get extremely popular, they
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become gold mine for adversaries. Large volume of personal information have

been collected at social network sites for socialization, career development, and

other purposes. As shown in [53], most social network users are poorly pro-

tected and their personal information is highly accessible. In this way, social

network users may be very vulnerable.

All types of information summarized above are accessible to adversaries,

who strive to collect personal information about the targeted users. From the

adversaries’ perspective, user information could be categorized as (i) private

information, (ii) identifiable information, and (iii) non-identifiable information.

In the literature, a lot of work has been done on the risks associated with (i)

and (ii), and on preventing (i) private information from being disclosed to the

Internet. However, seed information obtained by the adversary (from offline)

is not always identifiable, hence, the attacker’s first objective is to discover the

true identity of the target (i.e. from category iii to ii).

3.2.2 Attacker Models

In this work, we define and simulate two types of attackers, resourceful at-

tackers and tireless attackers, with different attacking capabilities and strategies.

Resourceful attacker: a resourceful attacker is assumed to have enough resource

(bandwidth, storage, technique, etc) to construct his/her own database by col-

lecting information from the Web. The database could be constructed in three

ways: (1) crawling the general web, extracting personal information from web

pages, and storing the data in a local database; (2) implementing a focused

crawler to collect data from online public record datasets; (3) crawling online

social networks, or downloading research data sets published by social net-
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work sites.

In the information retrieval community, many work has been done for en-

tity extraction from the “surface Web”, e.g. [23]. However, to populate a local

database requires intensive crawling of a significant portion of the surface web,

which is very time-consuming. Comparably, collecting information from pub-

lic records and online social network user profiles is more feasible since the

information has been concentrated on such websites. Moreover, considering

the user data are usually published in well-structured templates, resourceful

attackers can easily implement niche parsers to extract structured personal in-

formation. One practical obstacle could be the restriction for massive crawling,

which usually violates the terms of use for most online social networks. How-

ever, with technical assists, e.g. anonymous routing [33], such crawling is very

doable and hard to detect. As such, it is reasonable for us to assume a resource-

ful attacker has certain technical capability to crawl from typical online data

sources.

With the collected databases, resourceful attackers compare his/her exter-

nal knowledge about the target with information in the database, and search

for candidate records for further examination. Meanwhile, if the target is iden-

tified from one database, it becomes trivial to use the discovered identity to re-

trieve more information from other databases. A real-world example for cross-

database attacks is given in [76]. The example in [76] is a manually executed

attack, but the risk is valid when a resourceful attacker possesses multiple over-

lapping databases.

Tireless attacker: a tireless attacker does not have the resources or techniques

to create and maintain a local database. As a compensation, a tireless attacker
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devotes more time and labor in the attacking process to maximize the chance

of success. In particular, a tireless attacker knows some of the attributes of

his/her target (seed attributes), and submits such attributes to search engines,

and tirelessly browsing and examining the results for clues. Due to the size of

the Web, the results returned from search engines are mostly noise, and the at-

tacker needs to be very patient to discover any useful information. The chance

of success highly depends on the amount of information provided by the seed

attributes. For instance, if the attacker knows that the target get a Bachelor’s

degree from a large public university and nothing else, it is very unlikely to

identify the target in tireless attack. However, if the attacker knows the first

name of the target, and the fact that he/she gets a Ph.D. from a small univer-

sity, the attacker is more likely to discover the true identity (full name) and

more personal information of the target.

Meanwhile, a tireless attacker also tries to search or browse in social net-

works, public records, etc. Furthermore, besides the “brute-force” attack, a tire-

less attacker can get “smarter” by constructing advanced queries with his/her

knowledge about the attacker. For instance, if the attacker knows that the target

is currently employed at a university, it is more likely that the target’s informa-

tion will be discovered from webpages within the domain of the university.

This type of “advanced search” functions are provided by all major search en-

gines.

3.3 Resourceful Attackers

In this section, we focus on two types of privacy attacks (i.e. the re-identification

attack and the cross-database aggregation attack) conducted by a resourceful
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attacker, who is capable of maintaining a private database of a large volume

of publicly available online user profiles. In our study, we simulate the power

of the resourceful attackers by crawling user data from two publicly available

resources, a social networking site and an online phone book data repository,

and study the feasibility, difficulty, and the success rate of resourceful attacks

with different types of seed attributes.

3.3.1 Data Collection

To implement a proof-of-concept attacking mechanism, we design niche

crawlers to collect data from two resources to simulate the proposed resource-

ful attacker.

3.3.1.1 Collecting data from LinkedIn

LinkedIn1 is a professional online social networking site that provides open

access to detailed identifying user profiles. We implemented a specialized

crawler to retrieve data based on the public index of LinkedIn.com, using meth-

ods and technologies that are available to any potential resourceful attacker. We

collected approximately 9 million (8,943,014) user profiles in total in 10 months.

The crawled html profiles are indexed alphabetically by the last name of profile

owners and stored in a MySQL database for further offline processing, which

includes two major procedures, data extraction and data cleaning.

Data extraction: The LinkedIn profile contains rich information about one’s ed-

ucational history that is useful in identifying a target. However, the raw data

are in html profiles, which need to be extracted to reconstruct corresponding

1http://www.linkedin.com
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records in the resource database. We implemented a specialized parser to do

that. Currently, our parser only extracts data from three fields name, work and

education fields, which contain the most useful information for re-identification.

In the future, we consider to extend our parser to include more fields such as

working experiences. Data from the three fields are further processed and cat-

egorized into 11 seed attributes, as shown in Table 3.1. For instance, data in

name field are segmented as first, middle and last names. Data in work field are

decomposed to current title, affiliation (e.g. Software Engineer at XYZ company),

industry type (e.g. Internet, Higher Education, Research), and current location

(e.g. San Francisco Bay Area). Similarly, school name, degree earned, major, de-

gree starting time and ending time, and the entire degree time period are extracted

from education field. Please note that one profile may have multiple educa-

tion records. Also, not all the profiles contain education information. In some

profiles, the education field is either left blank or hidden from non-registered

LinkedIn users.

Table 3.1. Seed attributes in the resource database created by a re-
sourceful attacker.

Name Work Education
FN first name TI title S school name
LN last name AF affiliation D degree

IND industry ST start time
LO location ET end time

T time period

To simulate the attacks where the attacker only had approximate informa-

tion about the target, we consider two common scenarios. In the first case,

the attacker only knows the initial of the target, and in the second case, the

attacker only know the approximate location of the school that the target has
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attended. Therefore, we added 5 new attributes to our seed attribute table, as

shown in Table 3.2. After cross-checking with the school reference lists, we

have successfully added country and continent information to all schools and

state information to all the US schools, for 80% of the records.

Table 3.2. Approximate information on attributes.
Attribute Approximation Notation

name initials N.in

school

state S.st
region S.re
country S.ct
continent S.cn

Data cleaning: The collected data may have redundant or ambiguous con-

tents, which makes data cleaning operations important in data collection. Some

of the ambiguity is caused by inaccurate or wrong inputs of careless users, for

instance, a user mistakenly includes department name or year of graduation as

part of school name. A more common problem resulting in redundant content

is that many universities are referred by different names. For example, we no-

ticed University of Cambridge is referred as Cambridge University instead of

its formal name in some profiles. We corrected this problem by cross-checking

with the school reference lists that contain formal forms for most of the schools.

After a quick browsing of the data, we created manually coded heuristic rules

to map most of the school names to their formal forms, and removed all the

redundant elements and special characters 2.

Another important processing we took in data cleaning is to set aside the

schools with less than 3 attendees, which we think are highly likely to be invalid

2Due to lack of referencing lists for high schools and lower level schools, we have to remove
all education records at high school level or lower.
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or mistaken entries (proved by later manual check). After all the operations,

we successfully obtained about 2,466,721 clean profiles, with 3,417,550 clean

education records.

3.3.1.2 Collecting data from online phone books

Many data sets with private personal information are now publicly avail-

able for commercial or administration purposes. Such information is open to

public, unless data owners explicitly opt out. Residential phone book data is

such a resource, which has been made online through various sources. All

the online phone book sites list phone numbers and residential locations for

free access. For the registered users, more detailed residential information

are also available. Moreover, a few of online phone books even show the

names and addresses of the holders as unlisted phone book entries, for in-

stance, while the phone numbers are hidden, the owners’ info is displayed on

http://www.phonesbook.com.

We assume the resourceful attackers are capable of retrieving all types of on-

line data to enrich their resource databases. Therefore, we crawled residential

phone book entries for three regions, two college towns and one state capital

city3, from an online phone book data repository to simulate attackers’ knowl-

edge in this category.

After creating his own resource database, the resourceful attacker is capable

of launching two types of attacks, the re-identification attack and the cross-network

attack.
3City names are anonymized as required by double-blind review policy.
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3.3.2 Re-identification attacks

The re-identification attack is to explore the identity (and/or other information-

of-interest) of the target by linking or matching the known information about

the target to the data in the resource database. In this section, we first sim-

ulate a number of re-identification attacks over the crawled LinkedIn data to

assess the risk of re-identification attack against profile data that users volun-

tarily submitted to online social networks. Then, we employ an information

theory based approach to theoretically estimate the re-identification risk.

3.3.2.1 Re-identification attack model

To launch a re-identification attack, the attacker needs to know some infor-

mation about the target. It is assumed that the attacker obtains such knowledge

from external resources. When the attacker obtains offline information about

the target, he expresses this knowledge in the form of seed attributes that he

collects for the resource database.

The attacker’s knowledge about each target varies. In some cases, the at-

tacker knows only one seed attribute about the target, e.g. “John has a bach-

elor’s degree”. In other cases, the attacker may know more about the target,

which can be interpreted as multiple seed attributes, e.g. “John graduated

from college in 2004”. Sometimes, the knowledge about the target is not ac-

curate. For example, the attacker may only know that “John graduated from a

school in Midwest”. Since the inaccuracy in the name and school location fields

are addressed by the new approximate attributes in Table 3.2, we can simulate

certain inaccurate inputs in attacker’s knowledge. For instance, the attacker

may know that: “John graduated from a school in Midwest”, which indicates
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Attribute SchoolRegion = “Midwest”.

Therefore, we model the attacker’s knowledge about a target as an identity-

attribute tuple <I , υ1,..., υt>, where I is the identity of the target, and {υ1,...,υt}

are the values of the known seed attributes {A1,...,At}. For instance, the at-

tacker’s knowledge “John graduated from college in 2004” can be expressed

as:

Identity : I = John

Attribute FirstName : υ1 = “John”

Attribute EndTime : υ2 = “2004”

In the defined resourceful attack model, to re-identify the target, the attacker

needs to send the known identity-attribute tuple into the resource database that

is built upon the data retrieved from online sources. The severeness of such

re-identification attack highly depends on the completeness and identifiability

of the records in the resource database. Therefore, the first-step approach to-

wards assessing the risk of such re-identification attack is to study the resource

database. In particular, we explore the identifiability of the crawled LinkedIn

user profiles in our simulated resource database to assess the re-identification

risk.

3.3.2.2 Assessing risk with profile identifiability

The resource database and the seed information are two key components for

a successful re-identification. Consider a resource database D with n records,

where each record is associated with one identity. To an attacker, the ideal case

for the resource database is that it is large enough to contain records of all the
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targets and each record contains all information about the target. The ideal

case for the seed information is that it is accurate and adequate to distinguish

the target from records of others in the database. However, it is very difficult,

if not impossible, to meet both conditions in real-world cases. Therefore, for a

resourceful attacker, it is important to measure the identifiability of the records

in the resource database D.

Definition 1. For a database D whose scheme is D(A1, ..., At), we define the

identifiability of a target T in D as I{v1,...,vr}T = k, if T cannot be distinguished

from other k−1 profiles with known seed attributes {attr1, ..., attrr} = {v1, ..., vr},

where r ≤ t.

This definition is similar to the k-anonymity concept of privacy in data pub-

lishing, but interpreted from the attacker’s perspective. For each target whose

record is in D, given any adequate and accurate seed information {v1, v2, ..., vt},

his/her identifiability should be 1, which means he/she is uniquely identified.

Typically, since the attacker’s seed information is limited, the identifiability of

a target, k, is much larger than 1. However, for the attacker, the size of poten-

tial profile set (that may contain the target) under this definition is successfully

decreased from n to k.

To assess the identifiability of D, we further count nk−, which is the num-

ber of profiles that cannot be identified from at most k other profiles given

seed information {attr1, ..., attrr}. In other words, for every possible value set

{v1, ..., vr} in the seed attribute tuple space Rr,

nk− = sum(I
{v1,...,vr}
T ), for I

{v1,...,vr}
T < k.
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Then, we calculate k-or-less proportion p(k) as an indicator of the identifia-

bility of D, where

p(k) =
nk−
n
, for k ∈ [1,max(k)],

andmax(k) is the largest k for all possible values of seed attribute tuple {attr1, ..., attrr}.

Next, we select several seed attribute tuples, and assess the identifiability

of the resource database with crawled LinkedIn data. First, we simulate the

scenario where the attacker only knows a single seed attribute value about the

target. Then we measured the k-or-less proportion p(k) for each seed attribute

in Table 3.1. The results of three seed attributes, first name FN , work location

LO, and school name S, are shown in Figure 3.1(a). In the figure, a slowly grow-

ing curve indicates better anonymity, since less people are identifiable among

smaller sets. As we can see from the figure, users’ identifiability shows differ-

ent patterns for different attribute. Overall, when the adversary only knows

one attribute, most people cannot be identified among a relatively large set.

Then, we consider the scenario in which a weaker attacker only knows ap-

proximate values of the attributes, as summarized in Table 3.2. Some of the

results are shown in Figure 3.1(b), when the attacker knows (i) the first and

last initials (N.in) of the target, but not the name, e.g. the attacker knows “JD”,

not “John Doe”, or (ii) the region where the target goes to school (S.re), e.g.,

“the person went to school in West coast”. As we have expected, knowing

approximate values on an attribute usually gives the adversary very limited

information.

The third type of scenarios that we examine is that the resourceful attacker

knows multiple attributes about the target. Figure 3.1(c) shows the population

vs. k-anonymity curves when the resourceful attacker knows (i) first name and
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seed attribute tuple: <FN, AF> seed attribute tuple: <S, ST> seed attribute tuple: <FN, LO, S>

Figure 3.1. Estimate the risk of resourceful attacks.

affiliation: <FN, AF>, e.g. “John works at XYZ company”; (ii) school name

and starting time: <S, ST>, e.g. “the person went to Stanford in 2001”; and

(iii) first name, work location and school name <FN, LO, S>, e.g. “John went

to Berkeley, and now works at New York”. Note that the k axis is scaled to [1,

100]. As we can see from the figure, users become very vulnerable when the

adversary knows multiple seed attributes.

We also consider the case where the adversary knows approximate infor-

mation on multiple attributes. The right-most figure in Figure 3.1(b) shows the

population vs. k-anonymity curve when the attacker knows the states in which
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the target goes to school (given that the target goes to at least two schools), e.g.

“the person went to school in California and Massachusetts”. Obviously, the

database is less identifiable under approximate seed information.

3.3.2.3 Assessing risk using information gain

To quantify the amount of information provided by an attribute, we further

analyze the problem from an information theory perspective. In our scenario,

the goal of the attacker is to identify the particular record which corresponds

to the target. Without any prior knowledge, all the records are equally likely

to be the target. Hence, to achieve the goal, the average amount of information

that the attacker needs to collect (i.e. adversary’s expected information gain) is

denoted as:

E(I(X)) = H(X) = − log2

1

N

whereN is the number of records in the database. In our simulation,E(I(X)) =

21.23(bits), i.e. on average, the attacker needs to obtain 21.23 bits of information

in order to identify a target from our database.

When the attacker knows the value v of attribute attr, the conditional en-

tropy is denoted as:

H(X|attr = v) = − log2

1

Nattr=v

where Nattr=v is the number of records that satisfy the condition attr=v. On
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Table 3.3. Information gain (IG) by knowing a single seed attribute
with precise values.

Category Attribute IG (bit)

Name FN 13.348
LN 16.461

Work

TI 14.433
AF 12.979

IND 6.405
LO 8.011

Education

S 11.8231
D 1.8336
ST 5.149
ET 5.026
T 7.537

average, the information gain of knowing attribute A is denoted as:

I(X;A) = H(X)−H(X|A)

= H(X)−
∑
v∈VA

p(A = v)H(X|A = v)

where H(X|A) is the conditional entropy of knowing attribute A. In our set-

tings, an information gain of m bits indicates that the attacker has successfully

discovered that the target is among N
2m

= 2,466,721
2m

records, on average. In ad-

ditions, the attacker will need to further obtain 21.23 − m bits of information

in order to exactly identify the target. Most importantly, if we assume that our

data set is a random sample of the general population, attackers’ information

gain will be the same if he obtains the same attribute in the general popula-

tion. In that case, H(X) and H(X|A) increases proportionally, while I(X;A)

will remain the same (statistically).

In Table 3.3, we show the information gain of the attacker when he/she

knows one seed attribute. As we expected, the last name carries the largest
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amount of information, while first name and school name also carries signif-

icant amount of information. However, knowing one attribute alone is not

enough for the attacker to identify the target, or to narrow down to a very

manageable range. Attribute ln is somehow an exception, which on average

narrows the search to less than 30 candidates (i.e. H(X|A) = 4.77bit). When the

attacker only know approximate information on an attribute, the information

he/she learns from the knowledge is even less, as shown in Table 3.4.

Table 3.4. Information gain (IG) by knowing seed attribute with ap-
proximate values.

Attribute IG (bit) Attribute IG (bit)
N.in 8.807 S.st 4.795
S.re 2.360 S.ct 1.853
S.cn 1.328

In the scenario that the attacker knows multiple attributes, the information

gain is denoted as:

I(X;A1A2) = H(X)−H(X|A1A2)

When two attributes A1 and A2 are independent, we should have:

I(X;A1A2) = H(X)−H(X|A1A2)

= H(X)−H(X|A1)−H(X|A2)

Table 3.5 shows the information gain when the attacker knows multiple at-

tributes.
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Table 3.5. Information gain (IG) by knowing multiple seed at-
tributes.

Attributes IG (bit) Attributes IG (bit)
<FN, S> 20.316 <S, ST, ET> 16.549
<FN, S.st> 15.068 <FN, S.ct> 12.848
<FN, ST> 16.092 <FN, ST, ET> 17.362
<FN, ET> 15.679 <D, ST, ET> 5.685

(a)

(b)

(c)

Figure 3.2. Cross-database aggregation for three cities.

3.3.3 Cross-database aggregation

As we have introduced, a resourceful attacker is capable of collecting mul-

tiple databases from different sources. When the attacker identifies the target

(i.e. discovers the full name of the target) from one of the databases, it becomes

trivial to retrieve relevant records from other databases to learn more about the
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target.

In our experiments, we simulate cross-database aggregation attack by match-

ing LinkedIn data with online phone book data. We have crawled phone book

data for three cities: two college towns and a state capital city. We try to link

records from both databases by matching full names. The results are shown

in Figure 3.2. As we can see, approximately 20% of the LinkedIn users from

town A could be identified in phone book, while 14% and 14% of the LinkedIn

users from town B and town C are re-identified, respectively. According to the

literature [51, 76], with known full name and location information, people are

very identifiable. We are confident that most of the linked records are true posi-

tives (i.e., the two linked records reflect one unique offline identity). For linked

records, the attacker will further learn the home address and phone number

of the user. In many cases, the attacker also learns the names of the family

members of the user.

In cross-database aggregation attacks, when a resourceful attacker identi-

fies a target using attribute-reidentification attacks on one of his databases, it is

likely that he can learn more information about the target. In our experiments,

we only collected information about users whose phone numbers are listed. As

we have mentioned, there are websites (e.g. http://www.phonesbook.com/)

that publish addresses of users who opt to exclude their information from

the phone book. From our observation, this website contains 20% more user

records than the phone book data set we crawled. Meanwhile, with a small fee,

the attacker could subscribe to various databases that collect personal informa-

tion from public and commercial records. Therefore, a resourceful attacker has

great potential to become more powerful than we have demonstrated in this
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work.

We can also see that the phonebook size is much larger in state capital C,

which shows that a relatively larger population who do not have LinkedIn ac-

counts (or configured their accounts as private), but are still visible in the phone

book. In this case, although these users are not actively releasing their informa-

tion online, or are successfully protecting their online identities, unfortunately,

their personal information is still accessible from online sources.

3.4 Tireless Attackers

3.4.1 Tireless Attackers

Tireless attackers do not possess a local database of personal information,

as a compensation, they devote their time and energy. In our simulation, the

tireless attacker knows some (non-identifiable) attributes about the target. The

attacker queries a Web search engine (we use Google in our experiments) with

the known attributes, and examines the results returned by the search engine

for any clue.

To simulate tireless attacks, we have randomly sampled 50,000 users from

education and healthcare industry, including faculty, students, researchers, doc-

tors, etc. We simulated tireless attacks on different combinations of known

attributes. In Figure 3.3, we show the success rate when the tireless attacker

knows the target’s: (1) first name and the name of last school that the target at-

tended <FN, S>; (2) last name and school <LN, S>; (3) first name and current

affiliation <FN, AF>; (4) last name and current affiliation <LN, AF>; (5) names

of two schools, knowing that the target has attended two or more schools <S,
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<FN, S> <LN, S> <FN, AF> <LN, AF> <S, S> <S, D, ET>

Figure 3.3. Success rate of tireless attackers.

S>; and (6) school name, degree and year of graduation <S, D, ET>. When

the full name of the target was discovered in a returned web page in the form

of “John Doe” or “Doe, John”, we treat the result as positive. An attack is suc-

cessful when at least one positive result is found in the top 200 results returned

from the search engine. Please note that in tireless attacks, we exclude all the re-

sults from LinkedIn, i.e., an attack is successful only if the target is re-identified

from non-LinkedIn sources.

Figure 3.4 and Figure 3.5 give more insights on tireless attacks. Figure 3.4(a)

shows a histogram of the number of positive results for successful attacks when

the attacker knows the first name and affiliation of the target <FN, AF>. Fig-

ure 3.5(a) shows the same histogram for <FN, S>case. We do observe a sig-

nificant portion of targets who have been re-identified from multiple websites

(excluding LinkedIn). Meanwhile, no victim has been re-identified from more

than 20 websites. Figure 3.4(b) and Figure 3.5(b) show a histogram of the rank
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Figure 3.4. Results of successful tireless attacks with seed attribute
tuple <FN, AF>.

of the first positive result for successful attacks of the <FN, AF>and <FN,

S>cases, respectively. We observe that most of the positive results came from

top 10 results, which indicates that a tireless attacker does not need to be very

“tireless” to achieve a successful attack. On the other hand, we also observe

that positive results do not always come in top 2 search results.

To further validate the successful attacks, we have manually checked 200

randomly-sampled positive results for each type of attacks. We have discov-

ered that around 70% of them were true positives that also contain further per-

sonal information about the target. Meanwhile, we do have some false neg-

atives. For instance, in the <LN, AF>attack, we have found a few pages of

conference program committee members. They contain the name of the school,

and a person with exactly the same name as the target, but affiliated with a

different school or organization. Another major category of false positive ap-
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Figure 3.5. Results of successful tireless attacks with seed attribute
tuple <FN, S>.

pears when the name “Doe, John” is discovered in the context of “Jay Doe, John

Smith”.

Last but not least, when the targets are identified in tireless attacks, we con-

tinue the attack by issuing new queries using their identity (i.e. full name) and

known attributes. For most of the cases, we can easily discover more sources

(again, excluding LinkedIn) that contains further information about the target.

A major reason is that we use the LinkedIn user profiles from education and

healthcare domains as seeds, and such users are more active on the Internet.

3.4.2 Smart Tireless Attackers

Regular tireless attackers use a simple textual combination of all the known

attributes as the query to be sent to search engines. However, existing web

search engines support not only free text queries, but also advanced queries
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Figure 3.6. Results of successful smart tireless attacks with seed at-
tribute tuple <FN, AF>

(e.g. Google Advanced Search4). Tireless attackers can get smarter by utilizing

such functions. In our simulation, when the tireless attacker knows the affilia-

tion of the target (e.g. this person works at XYZ University), it is highly likely

that information about the target could be found in the employers’ domain

(e.g. xyz.edu). A smart attacker first queries the search engine (e.g. Q=“XYZ

university”) to get the official website of the employer, which is usually in-

cluded in the top 3 returned results. The attacker then issues an advanced

query, which contains textual terms and a domain constrain. The textual terms

include the other known attributes about the target (e.g. first name “John”),

while the domain constrain forces to search within the employer’s domain (e.g.

“site:xyz.edu”).

4http://www.google.com/advanced search
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We simulate smart tireless attacks for the case with seed attribute tuple<FN,

AF>(i.e., the attacker knows the first name and current affiliation of the target).

We have simulated attacks for 10,000 users, randomly sampled from the 50,000

records that we used for regular tireless attacks. Figure 3.6 shows the simula-

tion results of such smart tireless attacks. As we can see, the re-identification

rate of smart tireless attacks is lower than the re-identification rate of regular

tireless attacks. It means that, in at least 50% of the successful regular tireless

attacks, the targets are identified from information sources other than websites

of their workplaces. When we further look into the successful smart tireless

attacks, we observe that most of them are true positives. Moreover, as we can

see from Figure 3.6(b), on average, the rank of the first positive result is higher

in smart tireless attacks. Therefore, smart attacks are more effective – less effort

is required for the attacker to browse and examine the results. For both regular

and smart tireless attacks, we can see that most of the users are either identified

in top results, or never identified. It means that when the user is not “highly

visible”, his/her information is most likely buried in the massive amount of

online information and becomes invisible. However, consider the fact that only

a small portion of the general population have disclosed their information on

the Web, people with an online presence is still highly distinguishable.

3.5 Analysis and Reflection

Information. We have observed a large amount of personal information avail-

able over the Internet. Each information item may include both identifiable and

non-identifiable attributes. Not all such information is published by the owner

(of the identity), or with the consent of the owner. For instance, we have ob-
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served webpages such as news stories published by the employer. Moreover,

the user might be completely unaware that his/her information has been ac-

cessible and searchable over the Internet. From the simulation results, we can

see that it is very difficult, if not impossible, to completely hide one’s online

identity in the Internet age.

On the other hand, we have introduced an information-theory-based ap-

proach to evaluate the values of personal information items to the attackers.

We believe that the results will help users determine the types and amounts of

information to be published on personal and social networking sites.

Vulnerability. We have simulated the data collection process of resourceful

attackers. We can see that personal information could be easily collected by

attackers, especially from social networking or public record sites, where infor-

mation is published in well-structured templates. On the other hand, automat-

ically and accurately extracting large amounts of structured information from

free (unstructured) text is not an easy task. Named-entity extraction [23, 38] is

a very hard problem. Although we have seen successes in controlled datasets

or for popular entities that appear on many web contexts, the general problem

of arbitrary entity extraction is still far from being solved. In particular, diver-

sity of web documents and limited evidences (e.g. a user’s phone number only

appears on one webpage) make it very difficult to precisely extract and collect

large amounts of entities from the web. However, we have shown that it takes

little effort for a human attacker to exploit search engines to locate webpages

containing such information.

Next, with the simulation results of resourceful and tireless attackers, we

have shown that people with web presences are highly identifiable, even with
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very limited or approximate information. Moreover, information from multiple

resources could be linked to provide more information to the attacker. A major

reason behind the phenomenon is that many people do not have a web pres-

ence, as confirmed by our cross-network aggregation attacks. On the contrary,

people with web presence are very likely to appear in multiple sources. In this

sense, we have a group of people who are more active on the Web, while the

mass majority of the population mostly remain silent online. As a result, the

online population becomes very identifiable. There appears to be a dilemma:

if we have more people online, the identity of the existing users will be better

“shadowed” than they are right now. However, in this way, we may put more

people under risk.

Attacks. Recent advances in information retrieval techniques are shown to be a

double-bladed sword – they provide great functions to the users, but also reveal

their private information to attackers with sufficient capabilities and resources,

or strong wills. Intuitively, we can interpret the goal of the attacker as taking a

piece of seed information as input against large data that are available online

to successfully find a hit.

Ideally, if the seed is precise and adequate and the data is large enough to

guarantee that it contains the target, the attack will always succeed. While the

results are constrained in reality, the attacker manages to increase his chance

and efficiency by meeting the conditions at his most. The first (and often hid-

den) assumption is that the focused data should be large enough to contain

data of a particular target. In the resourceful attack, the focused data is the

resource database created by the attacker, which in turn motivates the long-

term and multi-source data collection. The second condition that affects the
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success rate of the attack is the identifiability of the user with the seed informa-

tion (in terms of either seed attributes or search terms). In the tireless attack,

it is assumed implicitly that the related data should be in the high-rank results

returned by search engines. This in turn explains why tireless attack is only

effective when the target is highly distinct against proper search terms (or com-

bination of search terms). The study of the identifiability will also shed light on

how to tailor one’s online presence to shadow his identity within an indistin-

guishable group.
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Chapter 4

Social Circle: Observations,

Properties, and Automatic Detection

After analyzing the vulnerability of online content and attributes, we will

move on to propose our solutions for this problem. In this chapter, we will

talk about the motivation of social circles, elaborate the data collection process,

and introduce a graph topology based social circle detection technique called

SCAN.

4.1 Motivation

Offline social networks start to appear as early as the origin of human be-

ings. At that time, social circles emerge due to the geographical separation and

difficulty of transportation. The creation of languages makes communication

between people much easier, and human intelligence changed the world mag-

nificently. The development of transportation makes the distance “shorter”,

paper and books make sharing of knowledge easier, and instruments, mu-
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sic and all kinds of sports make people’s life much more colorful. Although

the development makes people connection dramatically easier, the diversity of

modern society makes people tend to form more circles. As the development

of human society, different types of works arise. People with different jobs

will more possibly form different groups, so as people with different education

background, interests, locations, religions, etc. Modern social science research

about circles can trace back to late 19th century [88]. Social circles are groups

of people that have strong connectivity or higher similarity. They can be used

to study different aspects of social networks, including information flow [105],

epidemiology [103], security and privacy [41, 61, 141], etc. In traditional social

science, circles are often studied with real people involvement, such as inter-

views, or questionnaires. Although the development of statistics makes the

traditional methods more powerful and scalable, it is still very time-consuming

and not suitable for large-scale analysis.

After the innovation of computer technologies, the traditional study of so-

cial circles have been largely assisted. The relation of people can be represented

by matrices, stored in computers, and analyzed using all sorts of inter computer

algorithms. Among them, graph clustering methods have been well developed

and applied to inter fields [77,99,116,118,135,140,145], which makes circle de-

tection possibly automatic. When the web applications become more and more

popular, in particular, online social networks, sociology has entered a new era.

For many people, it has even become a habit to log into social network web-

sites everyday. This has greatly facilitated social network studies, since large

amount of social data becomes available. However, new challenges have also

appeared. Firstly, because of the vast amount of users online, the social net-
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work can be very large, which propose computational issues; Secondly, there

are more than one types of relations between user online, as they can become

friends, send messages, comment or share other’s content, etc, which makes the

conventional techniques for one-dimensional graphs not enough, and more ad-

vanced methods need to be applied; Thirdly, more information available means

more vulnerable people are, as can be seen from our previous work talked in

chapter 3, which results in urgent requirement for more efficient and effective

security and privacy mechanisms.

In this new age of online social networks, social circles still have their im-

portant role. Discovering circle membership can help infer common attributes

among group members, as hobbies, location, jobs, etc, and can also be uti-

lized for friends recommendation, personalized advertisement, information

flow studies, and so on. More importantly, since it draws boundaries implic-

itly for social networks, it is well suited for security and privacy enforcement.

The idea of using social circles for privacy control can retrospect to former so-

cial science studies, which propose the concept of “privacy as user perception”.

Controlling the visibility of inter information based on inter social circles can

make users feel secure. Additionally, most of the previous works focus on cir-

cle detection and analysis for the whole network in both social and computer

science, which are not only very inefficient but also not suitable for real imple-

mentation, where information is sent from user to user and personalized circle

privacy enforcement is more appropriate. There are some pioneer research in

this field: in [95], the author studies personal networks from the perspective

of social science, which shows there are indeed inter groups in people’s per-

sonal networks representing inter parts of people’s lives; in [61], the authors
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have similar ideas as what we want to propose in this work. They want to use

some clustering technique to automatically partition user’s personal network

and implement group-based privacy. However, they also choose real human

interviews and questionnaires as their evaluation methods, and their analy-

sis about group-based privacy is more about the practicability, no automatic

privacy policy formulation. In addition, although they consider the content

impacts on human beings’ privacy policy making, they do not combine it in

clustering or make use of it for machine implemented privacy mechanisms.

In conclusion, social circles are an important aspect of online social net-

works, and particularly, we want to utilize them for security and privacy is-

sues of online users. With the help of advanced graph clustering techniques,

we propose an automatic social circle detection and recommendation system.

4.1.1 Privacy Protection Using Social Circles

The user-centered privacy and HCI research community has introduced the

notion of “restricted access and limited control” [30, 136] and “information bound-

aries” [120]. In particular, social circles have been proposed for privacy pro-

tection [125, 126], so that new messages are posted to designated social cir-

cles and the message owners have full control of the information boundary.

Meanwhile, social circles are also expected to promote information sharing,

since they give users the perception of security and privacy. Social circles pro-

vide natural boundaries to disseminate information. As an example from [88],

shown in Figure 4.1, we can see that the “Ego” Mary, whom we are studying

the personal network about, has the closest circle with her spouse. She also

has a family circle who are in Orlando and a special connection with her twin
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sister inside the family. Another 2 social circles she have are for her and her

husband’s former work and her current dental school classmates or teachers.

This is a very common case of an ordinary person’s social structure.

Figure 4.1. Social Circle Example

From this example, we can see how social circles can help to protect user pri-

vacy. When Mary wants to talk about her children, relations with her husband

or some other personal issues, she may prefer not to let her former colleagues

or current classmates know, and she wants her family members to discuss these

problems with her. But when she wants to post some information about her for-

mer work or dental knowledge, the other two circles are more appropriate for

distributing the information. Or sometimes, she wants to complain about her
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former boss or some colleagues, the family or dental school circle should be the

destination. Another scenario is when there are many soccer fans in her former

colleague circle, she would prefer to post some messages about World Cup

to them. After successfully dividing users’ personal networks into appropri-

ate social circles, we can easily control information within certain boundaries

to effectively protect users’ privacy. Social circles provide natural “informa-

tion districts”, when detected properly, can be utilized to significantly improve

users’ social experience online. Users nowadays tend to have different aspects

of social life, serving for different purposes. Social circles can present these dif-

ferences and help to protect users’ privacy in a truthful and user-friendly way.

However, industrial adoption has not been very successful. Various products

have been released by commercial social networking sites, such as circles in

Google+ and custom lists in Facebook. However, none of them is well-received

by users. A major drawback is the usability problem – it is tedious and labor-

intensive to assign hundreds of existing friends into circles or lists. We will

state more about this in the next section.

4.1.2 Automatic Social Circle Detection and Content Distribution

Based on the above statement, to detect hidden social circles properly be-

comes significantly important. How to discover social circles easily and cor-

rectly should be the main concern. One approach is by expert manually detec-

tion. Experts are knowledgeable people who are experienced in the social com-

munity discovery field. But we may lack such resource and even experts cannot

know every person very well to detect social circles exactly as they should be.

Another method is to ask users to label social circles themselves. Most online
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social network sites apply this method (see Figure 4.2 for the facebook and

Google+ example.)

(a) Google+ Example

(b) Facebook Example

Figure 4.2. Social Network Circle Creation Example

Even though, this method is easier to implement and usually more accurate,

it is very labor-intensive and not practical enough to be widely adopted. Users

tend to create one large circle of “Friend” and ignore this functionality. As a re-

sult, we want to propose an automatic social circle detection technique, which

can not only ease users’ work, but also render relatively accurate results. Users

do not need to inconveniently create social circles by themselves, and at the
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same time, can get acceptable quality clustering results. In the following parts

of the dissertation, we will mainly talk about automatic social circle detection,

including a purely structure-based method and a proposed selective co-trained

spectral clustering method. In the rest of this chapter, we will firstly talk about

the method based on friendship only, which is also called the structure-based

method. Our goal is to find an appropriate computer algorithm, which can help

us detect social circles both accurately and efficiently. Based on the characteris-

tics of modern online social networks, we propose to use the multi-view clus-

tering technique to include not only the structural aspect of social networks,

but also their content and interaction information. The detailed elaboration

can be seen in Chapter 5, where we will present our experiment results, from

which we can see the significant improvement of circle quality by our method.

In addition, in the goal of better protecting user privacy, which most users

are indifferent of, we want to automatically suggest most appropriate circles,

when users want to post some information online. The idea is: even though the

social circles are defined properly, if users refuse to utilize them for privacy, the

issues are still unsolved. As an example, for Mary in last section, even if all the

circles are defined correctly for her, if she makes complains about her former

boss visible to her colleague circle, and personal issues visible to the colleague

and classmate circles, there would be some problems. So we also want to ease

this part of users’ online social life, and provide a more secure environment.

For this functionality, we will discuss in more details in Chapter 7.
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4.2 Data Collection

To fulfill our goal of circle based user privacy analysis and implementation,

we construct our data set from Twitter1. Twitter is one of the most newly devel-

oped online social network service, which allows users to edit personal profiles,

follow other users, upload photos and “tweet” or “re-tweet” about everything

they want to share. It is mostly recognizable for its “tweets” function, which

can be viewed as micro-blogging. For its convenience, it rapidly gains popu-

larity and hundreds of millions of users can generate over 300 million tweets

and billions of search queries per day. Because of its vast disseminated in-

formation and popularity, proposing efficient and effective privacy protection

applications is significantly important.

We construct our crawler using Twitter4j2, which is a Java library integrat-

ing newest Twiiter API3. It allows users to get a Twitter user’s profile, fol-

lower/following list, and tweets given its identifier. To conduct the crawling,

we start from a manually selected random user as the seed, which has enough

friends for continuous crawling. After crawling one seed, we will select one

friend of the seed, who have least common friends with the seed and with num-

ber of friends no less than 100, no larger than 500. We do this to make seeds

as less correlated as possible, and omit those users who has too many or too

few friends. We believe that users with too many friends are often well-known

people or special users, as twitter accounts for companies, advertisement, mag-

azines, etc. Users with too few friends are often inactive, for which they can be

omitted for privacy settings, and they are also not suitable for the following

1http://www.twitter.com
2http://twitter4j.org
3https://dev.twitter.com/docs
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seed selection.

For each seed, we construct a folder, containing a text file for its profile

information, a text file for its most recent tweets (no more than 2,000), and a file

of all its friend ids. It is worth noting that we consider a user that both follows

the seed and is followed by the seed as a friend of the seed, due to the easy

follow mechanism of Twitter, which may induce noise to our experiment. For

each friend of the seed, we also create a folder containing the similar profile,

tweets, and friend list files, and put it within the seed folder. The detailed

attribute information for profile and tweet data is shown in Table 4.1. The user

ID and tweet ID are number strings, generated by Twitter. Our friend list files

contain lists of user IDs.

Table 4.1. Attributes of user profiles and tweets data.
Profile Tweet

Name user name ID tweet id
Screen name displayed screen name Create Time tweet made time

ID user id Location created location
Created at create time In reply to replied user id

Description personal statement Content tweet content
# of followers number of followers
# of following number of followings

Location user location
Timezone user timezone

URL personal url

In about 5 months, we collect 160 seeds. The average number of friends for

all the seeds is: 249, and the average number of tweets for them is: 932.
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4.3 Structural-based Social Circle Detection Using SCAN

In this section, we will discuss the structural-based clustering method we

use for automatic circle detection. The method is proposed in [144], which is

called SCAN (Structural Clustering Algorithm for Networks). A similar work

we mentioned [61] also used this method. Firstly, we will give a brief intro-

duction of this method including the related work and step by step algorithm

elaboration. Then we will present our evaluation techniques for its clustering

result and observations obtained.

4.3.1 SCAN

Our circle detection is largely related to the field of graph clustering, which

is motivated in physics, computer science, applied mathematics, etc. Graph

clustering is trying to group vertices of graphs so that vertices within clusters

are more connected than vertices between different clusters. Before SCAN,

there have already been several other types of graph clustering methods. As

mentioned in a survey of graph clustering [116], there are hierarchical meth-

ods, including divisive [99] direction, which starts with one cluster of all the

vertices and continues to separate it to more smaller groups, and agglomer-

ative [25] direction, which oppositely starts from each vertex in a separated

cluster and combines smaller clusters in every iteration; there is also spectrum

clustering, which utilizes eigenvectors and eigenvalues of adjacency matrices

or matrices derived from adjacency matrices [34, 134] to find the membership

for each vertex. In contrast, SCAN is motivated by the study of network clus-

tering that may contain special types of vertices: hubs and outliers. Hubs are

vertices that connect different clusters and should not be grouped into any of
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them. Outliers are isolated vertices with few connections with others. Tra-

ditional graph clustering algorithms do not often identify these two types of

nodes. Identifying these nodes are essential to many real world applications,

as epidemiology, viral marketing, security and privacy, etc. To some degree,

SCAN has successfully not only discovered the clusters, but also the hubs and

outliers.

SCAN is a similarity based clustering method. Nodes with similarities larger

than or equal to the threshold ε are clustered together. Before introducing the

algorithm, we need some preliminary definitions, given a graph G = {V,E},

where V is the vertex set and E is the edge set.

Definition 1 (Vertex Structure). For a vertex v ∈ V , the structure of v is defined

by its neighborhood, denoted as Γ(v):

Γ(v) = {w ∈ V |(v, w) ∈ E} ∪ {v}

Definition 2 (Structure Similarity). For vertex v, w ∈ V , the structure similar-

ity between v, w, denoted by σ(v, w), is defined as:

σ(v, w) =
|Γ(v) ∩ Γ(w)|√
|Γ(v)||Γ(w)|

Not stated in the paper, SCAN for weighted graph is also proposed. For

weighted graph, the definition for structure similarity has been represented in

a different way.

Definition 3 (Weighted Structure Similarity). We denote the weight between
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vertex i, j as ωij . For vertex v, w ∈ V , the weighted structure similarity between

v, w, denoted by σω(v, w), is defined as:

σω(v, w) =

∑
i∈Γ(v),i∈Γ(w) ωvi · ωwi√∑

j∈Γ(v) ω
2
vj ·
√∑

k∈Γ(w) ω
2
wk

Definition 4 (ε-Neighborhood). For a vertex v ∈ V and a given similarity

threshold ε ∈ R, the ε-Neighborhood of v, denoted by Nε(v), is defined as:

Nε(v) = {w ∈ Γ(v)|σ(v, w) ≥ ε}

By introducing another threshold µ, we can define a special type of vertices,

core vertices, which are used as seeds for clusters.

Definition 5 (Core). For thresholds ε ∈ R and µ ∈ N, the core vertex v, denoted

by COREε,µ(v) is defined as:

COREε,µ(v)⇔ |Nε(v)| ≥ µ

With these definitions, we can continue to describe of the procedure of

SCAN.

• STEP 1. Start from an arbitrary core vertex COREε,µ(v) as the seed.

• STEP 2. Group all the vertices in Nε(v) with the seed in the same cluster.

• STEP 3. For vertices in Nε(v) that are core, treat them as seeds.
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• STEP 4. For each of the seed from STEP 3, repeat STEP 1 - 3.

• STEP 5. Continue until no more vertices can be added.

• STEP 6. Start from another arbitrary un-clustered core vertex, repeat

STEP 1 - 5.

• STEP 7. Repeat until no more core vertices are un-clustered.

• STEP 8. For each un-clustered vertices, if it connects more than 1 clusters,

it is classified as a hub, else it is classified as an outlier.

Using the SCAN algorithm, we can cluster personal networks into circles

based on neighborhood similarities and also identify hubs and outliers.

4.3.2 Evaluation & Observations

In this section, we will present the clustering result of SCAN on our data sets

and make some observations from it. The source code of SCAN is provided by

the author of this algorithm [144] Xiaowei Xu.

To use SCAN, we need to generate pair files indicating edges of the network.

Currently, we used the unweighted SCAN for only edges within the personal

network of the seed in our data set. In the future, we propose to use SCAN for

weighted graph, in which the weight between friends is:

ω(i, j) = 1.0 + λ× |N(i) ∩N(j)|

N stands for the neighborhood set of a vertex. λ is a parameter which can be

tuned to different ratios for the neighborhood similarity. The weighted version

integrates more neighbor information than the unweighted one.

59



4.3.2.1 Structural-based Circle Quality Evaluation

To apply SCAN in our data set, we use the default µ 2, and every ε from

0.1 to 1.0 in step of 0.1 is tested for evaluation. From the 10 clustering results

of each seed, we selected the one with largest modularity as the representative

SCAN clustering result for the seed. Modularity is a widely utilized criteria

for evaluating the structural quality of graph clustering [25, 99, 133]. The basic

idea behind it is that good clustering tends to have larger distance from the

randomly generated graph with the same degree for each vertex. Formally, it

can be calculated as:

Definition (Modularity). For a given clustering C of a graph G = (V,E), mod-

ularity of C, denoted by Modularity(C), is:

Modularity(C) =
1

2m

∑
C

∑
i,j∈C,C∈C

(Aij − didj/2m)

In the definition, C is a set of subsets of V , m = |E|, i.e. the number of

edges, i, j denote vertices, Aij represents the adjacency between i, j (check the

following definition), and di, dj stand for the degree of i, j.

Aij =


1, if {i, j} ∈ E.

0, if {i, j} /∈ E.

It also needs to be mentioned that we only consider clusters obtained from

SCAN with at least 4 users, since we believe that clusters with too few mem-

bers are not reasonable for real life situations, and they are not suitable for our

statistical evaluations.

For a random seed, whose user id is: 15373743, the selected clustering has
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ε = 0.4 and modularity = 0.3657. The result is shown in Table 4.2

Table 4.2. Clustering result for seed 15373743
Set Size

HUBS 5
OUTLIERS 46

C1 65
C2 10
C3 9
C4 24
C5 24
C6 7
C7 5
C8 6
C9 4

SUM 205
NumOfFriends 329

We can see the total number of users classified either in some cluster or into

hubs and outliers is less than the seed’s total number of friends. This is due to

we only input the friend pairs within the seed’s personal network. In the future,

we may input more pair information to SCAN for comparing the results.

We also randomly selected 6 other seeds to get some statistical summary.

The result is shown in Table 4.3.

Table 4.3. Clustering result for 7 seeds.
Seed Hub Outlier # of Clusters Largest Sum Classified Friends Mod ε

11069482 4 27 5 78 128 179 0.118 0.4
12792062 1 47 5 8 79 447 0.297 0.4
14451009 1 9 3 17 56 165 0.487 0.4
14665656 4 62 8 100 224 359 0.193 0.4
15373743 5 46 9 65 205 329 0.366 0.4
16358915 74 96 4 33 216 299 0.039 0.5
18193317 3 15 5 104 180 248 0.148 0.4
Average 13 43 6 58 155 289 0.235 0.41

Each column of Table 4.3 corresponds to: the seed user id, number of hubs

identified, number of outliers found, number of clusters, largest cluster size,
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total number of friends classified into hubs, outliers or any cluster, total number

of friends of the seed, and the best corresponded modularity, and ε obtained

from SCAN.

From the result, we can see that there is often a dominant cluster for each

seed, which may be caused by the cluster growing mechanism that only con-

siders neighborhood similarities. Modularities are often below 0.3. There is one

seed who has relatively large value. According to [25], for modularity, greater

than about 0.3 can indicate remarkable community structure in networks. We

can also observe that seeds often have large outlier groups, which is possibly

the result of that many users in online social networks are not active and tend

to have few friends. In addition, we can see that ε tends to be constant, mostly

0.4, which justifies the statement from [144] that the recommended ε is from 0.5

to 0.8 and µ = 2.

Even though, the modularity does not exceed 0.3, we believe that the re-

sults of SCAN are relatively good enough. Based on this, we propose our first

observation.

Observation 1. Users in the same circle are connected and share many friends in

common.

In the future, we will analyze all the seeds in our data set and have a more

complete statistical observation.

4.3.2.2 Content-based Circle Quality Evaluation

To further study the result of SCAN, we propose to analyze the content

similarities between users within clusters and users in different clusters.
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Circle Quality Evaluation Using TF-IDF Firstly, we study the raw tweets

content for evaluation. We consider tweets created by each user. We input

all the tweets content from a user into a new file, and construct the bag-of-

words model from all the tweets files from a personal network. In bag-of-words

model, a wordlist is first constructed by extracting all the different words from

the group of files after removing stop words and stemming (i.e. mapping the

words to their roots). Then, each file is represented with a vector. Each feature

of the vector corresponds to each word from the word list. One entry of a vector

corresponding to term t, document d, denoted as d(t), given the whole corpus

as D, is calculated as:

d(t) = tf(t,d)× idf(t,D)

tf(t,d) = f(t,d)

idf(t,D) = log
|D|

|{d ∈ D|t ∈ d}|

f(t,d) is number of appearances of t in d. We use a tool called wvtool4 for

constructing the tf-idf matrix from the raw tweets data.

Then we can use cosine similarities for calculating the angle between 2 doc-

ument vectors to indicate the content similarity of the corresponded 2 users.

The cosine similarity for 2 vectors a,b, denoted as CosSim(a,b), is:

CosSim(a,b) =

∑n
i=1(a(i)× b(i))√∑n

i=1 a(i)2 ×
√∑n

i=1 b(i)2

Then for each cluster C, we calculate average cosine similarities among all

the pairs of users within C as intra similarity of C, denoted by IntraSim(C).

4http://sourceforge.net/projects/wvtool/
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We also calculate inter similarity of C, denoted by InterSim(C) by averaging

cosine similarities between users in C and users not in C.

IntraSim(C) =

∑
i∈C,j∈C CosSim(di,dj)

|C|(|C| − 1)/2

InterSim(C) =

∑
i∈C,j /∈C CosSim(di,dj)

|C|(|U| − |C|)

U is the set containing all the users of a personal network. The intra and

inter similarity of each cluster for seed 15373743 is listed in Table 4.4.

Table 4.4. Circle Quality Evaluation Using TF-IDF for seed 15373743
Cluster IntraSim InterSim
C1 0.151 0.047
C2 0.031 0.022
C3 0.101 0.040
C4 0.040 0.023
C5 0.048 0.029
C6 0.023 0.027
C7 0.021 0.022
C8 0.020 0.028
C9 0.033 0.023

To compare the clustering quality according to intra and inter similarities

for different seeds, we propose to calculate a ratio, called intra similarity pro-

portion, denoted by IntraSimPro.

IntraSimPro(seed) =
IntraSimSum(seed)

IntraSimSum(seed) + InterSimSum(seed)

IntraSimSum(seed) =
∑

C∈Cseed

IntraSim(C)

InterSimSum(seed) =
∑

C∈Cseed

InterSim(C)

We calculate the intra similarity proportion for each of the randomly se-
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lected seeds, and the result is shown in Table 4.5.

Table 4.5. Circle Quality Evaluation Using TF-IDF for 7 randomly
selected seeds

Seed IntraSimPro
11069482 0.648
12792062 0.641
14451009 0.745
14665656 0.712
15373743 0.643
16358915 0.671
18193317 0.717
Average 0.682

From the result, we can see that intra similarities tend to be larger than

inter similarities for all the seeds, which fits the requirement for social network

clustering that users within circles are more similar. Based on this, we propose

our second observation:

Observation 2. Users from the same social circle tend to have similar content.

Circle Quality Evaluation Using Tags In this section we will continue to talk

about content evaluation of clustering result based on tags.

Tags are often categorized short texts with clear semantic information. It is

nowadays ubiquitous online. You can see tags on wikipedia5 pages, which link

to their corresponding web source. Users of online social networks can tag web

articles, photos, videos with some short phrases when sharing. They can also

tag their friends when they upload photos containing them. Tags are usually a

convenient way for others to understand web content.

How to extract tags from web content automatically becomes an impor-

tant question. It can largely facilitate researchers in different fields, and im-
5http://www.wikipedia.org
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prove ordinary users’ web experience. Compared to the context where con-

tent has more information, short text topic discovery is much harder, and be-

comes more and more important recently. For our research, short text tagging

is more related and suitable. There have already been some works for this

problem [37, 80, 102, 106, 107, 128, 129]. Some of them focus on creating a large

knowledge base, and try to eliminate the negative impact of short texts’ little se-

mantics. Others try to solve the problem independent of other resources. Their

methods are often based on some observations about the semantic implications

of non-semantic information of the short text, such as length, capitalization of

short texts. In this proposal, we propose to use a web service, called TAGME6

for extracting topics of short texts of tweets. It is based on wikipedia knowledge

base and trying to link text in the queries with wikipedia pages. The topics of

the linked pages can be used as the tags of the tweets.

For time issues, we have just finished topic detection for one seed of our

data set: 15373743. So in this section, we will talk about our tag evaluation

mechanism based on this user.

For each tweet, we select the top 3 extracted tags by TagMe (select all if the

TagMe result contains less than 3 tags) with largest ρ, which is an indicator of

the “goodness” of TagMe annotation about the topics of the query. For seed

15373743, we collect 117201 distinct tags. Figure 4.3 shows the number of ap-

pearance for each tag among its friends.

We can see that the distribution complies power-law, where most of the tags

appear infrequently, and only a few of them appear many times.

Based on tags, each user can be represented by a tag file containing tags

6http://tagme.di.unipi.it
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Figure 4.3. Tag distribution of seed 15373743

of its tweets. We can apply the tf-idf model on the tag files to calculate the

similarities. We use similar calculation as for raw tweet content evaluation,

where t stands for tags instead of terms. However, to normalize the tf , so that

there is no bias toward longer files, we propose to use tfnorm:

tfnorm(t,d) =
f(t,d)

max{f(w,d)|w ∈ d}

f(t,d) is the number of appearance of tag t in file d, and max{f(w,d)|w ∈ d}

returns the max frequency of all the tags in d.

Then we can construct vectors for each user, and calculateCosSim, IntraSim,

InterSim as presented in section 4.3.2.2. The result is show in Table 4.6.

Although we can see that the tag-based similarity measure has similar IntraSimPro

as the raw-tweet similarity, more clusters have larger IntraSim than InterSim

in tag-based model. Generally, the tag-based similarity further justifies our Ob-

servation 2.
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Table 4.6. Circle Quality Evaluation Using Tags for seed 15373743
Cluster IntraSim InterSim
C1 0.145 0.046
C2 0.039 0.028
C3 0.069 0.041
C4 0.039 0.025
C5 0.079 0.036
C6 0.029 0.028
C7 0.028 0.027
C8 0.035 0.036
C9 0.061 0.031

IntraSimPro 0.638

To continue the content evaluation into a deeper level, we want to find the

most unique tags for each SCAN clustered group. To do so, we want to cal-

culate the probability of appearance for each tag in each cluster. The tag with

larger bias towards a cluster can better represent the content specificity of the

cluster. Instead of calculating the number of users in a group with a tag di-

vided by the group size as the tag group probability, we propose to use tfnorm

to normalize the content quantity of each user. Formally, the probability of tag

t in cluster C, denoted by P (t|C) can be defined as:

P (t|C) =

∑
i∈C tfnorm(t, i)

|C|

As a result, for one group, the more users having the tag t appearing more

times in their tweets, the larger probability the tag has in that group.

For finding the biasness of tags toward certain cluster, we propose to utilize

Kullback-Leibler Divergence (denoted as KL-divergence). KL-divergence is com-

monly used to calculate the difference between 2 probability distributions. To

apply it for our requirement, we firstly construct 2 discrete probability distri-
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butions Pt(i), Qt(i).

Pt(i) =
P (t|Ci)∑
Ci∈C P (t|Ci)

Qt(i) =
1

|C|

So now, we can use the formula for KL-divergence to calculate the bias of

tags:

BiasKL(t) =
∑
i

(Pt(i) ln
Pt(i)

Qt(i)
)

The largest BiasKL we get is for tag: “Global Positioning System”, with

BiasKL = 1.273.

Then for each cluster Ci, we can find the tags with largest BiasKL, and hav-

ing max P (t|C) in Ci as the representative tags for Ci. The top 5 tags for each

cluster of seed 15373743 are shown in Table 6.4.

Table 4.7. Representative tags for clusters of seed 15373743
Cluster Representative
C1 Alpha Comae Berenices,Europe,Ampere,Wave,Brazil
C2 Global Positioning System,System,The People,Wine,Running
C3 NPR,Travel,Documentary film,City,Tourism
C4 Essay,E-book,Health care,On Your Own (Blur song),Australia
C5 Packaging and labeling,Tree,Web design,Nike,Web application
C6 Wedding,Filmmaking,Mexico,Stock photography,Workshop
C7 Geek,News,Doepfer A-100,Graphics Interchange Format,Happening
C8 Music download,T-shirt,Propaganda,Graphic designer,Minute
C9 Search engine optimization,Sugar,Web conferencing,United States Treasury security,Google+

From these tags, we can clearly see the content difference between each clus-

ter. C1 is likely to be formed by people from other countries. C2 is more about

outdoor activities. C3 focus on traveling, while C4 seems to concern health and

study. C5 is related to programmer. C6 is more about art. C7 seems rather tech-

nical about graphics, and C8 is also about art but a little different from C6. C9

seems to be for very high level topics. Based on these analysis, we can see that

69



tag-based evaluation can help us find the most specific topics for each social

circle.

4.3.2.3 Interaction-based Circle Quality Evaluation

In this section, we will propose the methods used for interaction evaluation,

show some results and make some observation.

In our scenario, interactions are tweets reply between users. Refer to section

4.2, in our data set each tweet contains ID, Create Time, Location, In reply to, and

Content. Based on this, for each friend of the seed, we can extract every tweet

that replied to him/her from the same personal network. Each of these tweets

is considered as one interaction. So, given a clustering of a seed’s personal

network C, for cluster Ci, we can count its number of intra interactions, and

inter interactions. We use
−→
Ii,j to denote an interaction that user i replies user

j. Formally, intra interaction IntraIntr and inter interaction InterIntr can be

defined as:

IntraIntr(C) = |{
−→
Ii,j|i ∈ C, j ∈ C}|

InterIntr(C) = |{
−→
Ii,j|i ∈ C, j /∈ C, j ∈ U ∨ j ∈ C, i /∈ C, i ∈ U}|

As mentioned before, U is for the set of all the friends of a seed. To eval-

uate the intra and inter interaction characteristic of a clustering, similar as

content evaluation, we propose the IntraIntrPro which stands for intra in-

teraction proportion. To eliminate the size difference between intra cluster and

inter cluster, we calculate the average intra and inter interactions. Formally,
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IntraIntrPro can be calculated as:

IntraIntrPro(seed) =
AvgInIntrSum(seed)

AvgInIntrSum(seed) + AvgOuIntrSum(seed)

AvgInIntrSum(seed) =
∑
Ci

IntraIntr(Ci)

|Ci|

AvgOuIntrSum(seed) =
∑
Ci

InterIntr(Ci)

|U| − |Ci|

Based on these calculations, we can get the IntraIntrPro for each seed. The

result for the 7 randomly selected seeds is shown in Table 4.8.

Table 4.8. Interaction-based Circle Quality Evaluation for 7 ran-
domly selected seeds

Seed IntraIntrPro
11069482 0.610
12792062 0.861
14451009 0.702
14665656 0.883
15373743 0.904
16358915 0.752
18193317 0.954
Average 0.809

From the result, we can see that the intra interaction proportion is high for

every seed. Especially for seeds 15373743 and 18193317. Recall Table 4.3, we

can see that both of them have a large number of friends clustered into one

group and the rest groups much smaller. This will certainly increases the in-

tra interaction probability. This type of clustering may be caused by SCAN (its

cluster expansion based on neighborhood similarity instead of complete simi-

larity) or the seed just happens to have this structure. We need further analysis

about this point. Although, the result may not be accurate enough, we can still

believe that intra interaction probability should be higher than inter interaction
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probability. Here we propose our third observation:

Observation 3. Users in the same circle are more likely to interact.

Based on these three observations obtained from evaluation, we will pro-

pose a new technique for automatic social circle detection in personal networks

next chapter.
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Chapter 5

Multi-View Clustering for Social

Circle Detection

5.1 Multi-View Clustering for Social Circle Detection:

Motivation

The problem of social community discovery has been studied in the con-

text of social network evolution. Closely-related social groups are examined

to analyze the temporal and spatial dynamics of social networks. However,

such approaches heavily rely on structural features (i.e., topology of the friend-

ship graph), and may have difficulties on users with too many or too few

links (sometimes referred-to as “hubs” and “outliers”). Meanwhile, social circle

identification approaches from the user-centered research community often re-

quire explicit attributes, e.g. education=“stanford”, age=21, hobbies=“hiking”

[125]. Unfortunately, such attributes are not always available in online social

networking sites.

In this chapter, we present a multi-view clustering approach to automati-
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cally discover social circles in users’ ego networks. Besides the topology-based

clusters adopted in the literature, we also observe that: (1) friends who are

interested in similar topics (contents) and share similar (or sometimes oppo-

site) opinions are more likely to be placed in the same circle (by the user); (2)

friends are more likely to interact within circles, than cross circles. Based on

the observations, we build computational models to extract multiple quantita-

tive features from users’ ego networks. We argue that integrating all struc-

tural, content and interaction features will improve clustering performance,

and eventually generate more meaningful social circles. We notice that some

views are very sparse (e.g. the views for user interactions), but they provide

stronger indications, when two friends are associated in such sparse views. To

better utilize such properties, we present a Selective Co-Trained Spectral Cluster-

ing (SCSC) algorithm for multi-view clustering. Last, to measure the perfor-

mance of the proposed modeling and clustering approaches, we introduce a

set of quantitative and user-based evaluation methods. We test our approaches

with real-world social networking data collected from Twitter, and show that

SCSC outperforms existing solutions.

The rest of this chapter is organized as follows: we first present our models

of three categories of features in Section 5.2. We then describe the multi-view

clustering algorithms in Section 5.3.

5.2 Ego Network Modeling

By definition, a user’s ego network or personal network includes all the

nodes that connect to the user, i.e., all his/her friends. Social circles of a user’s

ego network are hidden structures of closely connected clusters. For instance,
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a user’s high-school friends may constitute a circle, while his/her colleagues

belong to a different circle, and his/her family members constitute yet another

circle.

Existing research on social community discovery mostly rely on graph topol-

ogy, i.e., structural features. However, social circles may not be revealed by a

single aspect of the ego networks. Instead, they need to be inferred from mul-

tiple features. For example, colleagues may interact frequently offline so that

they have few online interactions, however, they are highly connected to each

other in the friendship graph. Meanwhile, a family member may be connected

to some close colleagues on the friendship graph, however, he/she will mostly

interact with other family members, which is a definitive indicator that he/she

belongs to the family circle.

(a) Label: Common Friends (b) Label: Interaction (C) Label: Content Similarity

Figure 5.1. Labeled Real World Online Social Network Subnet

Example 1: Figure 5.1 demonstrates a small subgraph from real-world twitter

data set. Two users are regarded as friends if they mutually follow each other.

The subgraph is extracted from friends of one seed user. For simplicity, the seed

user is not displayed. First, Figure 5.1 (a) demonstrates the friendship graph –

solid lines indicate direct friendship relations, while dashed lines indicate users

without direct connections but sharing neighbors. All the lines are labeled with

the number of common friends (excluding the seed user). Next, Figure 5.1
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(b) summarizes the interactions among the users. Each edge is labeled with

(Nrp, Nrt), which indicates the number of replies and re-tweets between the two

users, respectively. Last, Figure 5.1 (c) demonstrates the content similarities

between each pair of users (only labels ≥ 0.0065 are shown). We show edges

with labels ≥ 0.01 in thick lines.

As shown in the graphs, three views confirm each other in some regions,

while they also complement each other. For instance, the strong connection

between nodes A and B in Figure 5.1 (a) is confirmed by the frequent interac-

tions in Figure 5.1 (b). The weak connection between C and E in Figure 5.1 (a)

could be eliminated given the facts in Figure 5.1 (b) and (c). Nodes G and F

are disconnected in Figure 5.1 (a), however, they have a large amount of inter-

actions and very high similarities in their tweet contents, which also indicates

a close relationship. In summary, we can identify three social circles from this

example: {(A,B,C); (D,E); (G,F )}. As we can see, different perspectives can

supplement and confirm each other, which may produce better clustering re-

sults. �

Formally, an ego network ES is defined as the subgraph of the social network

that includes all the friends of a seed user S. Note that the seed user himself is

not included in the ego network. In the Twitter data set that we use, two users

are defined as friends if and only if they follow each other. In the ego network,

each vertex (Ni) represents a friend of the seed user, while the edges are defined

differently for different views. In general, we have observed three phenomena

about users’ grouping behavior:

Observation 1. Users in the same circle are more likely to be connected and share

many friends in common.
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Observation 2. Users from the same social circle tend to share interests on similar

contents and opinions.

Observation 3. Users in the same circle are more likely to interact with each other.

From these observations, we propose to integrate three aspects of informa-

tion from users’ ego networks to automatically identify non-overlapping social

circles. We define six views that belong to three categories to model the ego net-

works. From the structural perspective, we capture: (1) the friendship links, and

(2) friends-in-common between pairs of users. From the content perspective, we

model: (3) similarities between two users’ posted/shared messages. Finally,

from the interaction perspective, we construct: (4) direct replies between pairs

of users, (5) re-tweet (similar to “forward”) of posts between pairs of users, and

(6) co-replies of the same message (posted by a third user).

The Structural Model. In social networking research, it is widely accepted

that a group of intensively connected nodes could be considered as a social

community. For each pair of users, they are more structurally connected if they

(1) are friends and/or (2) share more friends. We quantitatively capture the

structural features in these two layers and create two views correspondingly.

We use an adjacency matrix F to capture the first layer.

F (i, j) =

 1 if Ni and Nj are friends.

0 if Ni and Nj are not friends

Meanwhile, the matrix of shared friends (H ′) for an ego network ES is defined

as:

H ′(i, j) = |ENi ∩ ENj | − 1
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where ENi and ENj denote the ego networks of users Ni and Nj . Note that,

we consider shared friends within and outside of the ego network. We do not

count S as a shared friend, since S contributes equally to all (Ni, Nj) pairs.

Furthermore, the matrix is normalized by dividing each element by the largest

element in the matrix:

H(i, j) =
H ′(i, j)

max
i,j

H ′(i, j)

Eventually, we have generated two views F and H to capture the structural

relationships between pairs of users in the ego network.

The Content Model. From the content perspective, we examine the seman-

tic similarities of contents between pairs of users in ES . We collect all the

tweets, replies and re-tweet messages posted by a user. We exploit the tra-

ditional bag-of-words model, where all the messages posted by the user are

represented as a vector (Di) in the vector space. While the conventional TF-

IDF model is the most popular method in information retrieval applications, it

suffers some drawbacks, especially the ambiguity issue – synonyms are con-

sidered orthogonal axes in the term space. Hence, documents about similar

content but from different vocabulary will be assessed as highly irrelevant. To

tackle this problem, annotation-based approaches have been proposed to label

documents with pre-selected unambiguous terms (topics) so that documents

are represented in the new unambiguous “topic space”. In this dissertation, we

employ TagMe [42], which annotates text corpus with topics in Wikipedia. Each

tag is associated with a “goodness” score, ρ, which denotes the annotating con-

fidence. By setting a threshold for ρ, we can eliminate all the low-confident tags

to reduce noise and ambiguity, and improve the calculation efficiency. In prac-
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tice, we construct a document vector Ti for userNi, where each component rep-

resents the corresponding TF-IDF weight in the tag space. The content-based

similarity matrix C ′, with cosine similarity, is further defined as:

C ′(i, j) = sim(Ti,Tj) =
Ti ·Tj

|Ti||Tj|

We normalize C ′ in the same way as we normalize the shared-friend matrix

(H ′). Finally, we have constructed the content view for ego network ES , to

capture the content-based similarities among the users.

The Interaction Model. Interactions of online social network users have differ-

ent forms: reply on each other’s status or posted messages, “like” or “dislike”

on the messages, retweet. etc. For each pair of nodes within an ego network,

we consider three types of interactions: reply, retweet, and co-reply. For reply,

we count both directions – the total number of replies from Ni to Nj and replies

from Nj to Ni. Therefore, the reply matrix could be denoted as:

P (i, j) = |{~ri,j}|+ |{~rj,i}|

We do the same for retweet, while co-reply is undirected. In this way, we

generate three views, and normalize them as we do withH ′ and C ′. As a result,

we have constructed the reply view P , the re-tweet view T , and Co-reply view

O.

Overall, we construct six views from personal networks: two from the struc-

tural perspective, one for content, and the other three from user interactions.

Each view is represented as a matrix demonstrating similarities between each

pair of users within an ego network. The next step is to integrate these views
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Operator 1: LapEig(X, k) = Y

Input: X ∈ Rn×n and k ∈ N
Output: Y ∈ Rn×k

Operation:
1: Compute diagonal matrix D with D(ii) =

∑n
j=1X(ij)

2: Compute Laplacian L = D−1/2XD−1/2

3: Compute the top k eigenvectors of L, and store them in Y with each col-
umn as one eigenvector

to identify social circles.

5.3 Multi-View Clustering

5.3.1 Notations and Operators

We use capital letter to represent matrix, boldface to represent vector and

lower-case to represent scaler. Subscript without parenthesis is used to indi-

cate views, subscript with parenthesis is used to indicate elements in matrices

or vectors, and superscript is used to indicate iteration number in an iterative

algorithm. For example, X(m,n) represents the element of matrix X on row m

and column n, and X i
j represents matrix X of view j in the ith iteration. tr(S)

is used to denote the trace of S matrix, A ◦ B to denote the Hadamard product

(element-wise product) between matrix A and matrix B, and 1E to denote the

element-wise indicator function on E.

For convenience we define two operators in Operator 1 and Operator 2.

5.3.2 Co-trained Spectral Clustering: A Revisit

In this section we briefly review co-trained spectral clustering (CSC) [68],

which is a clustering algorithm for multi-view data. In spectral clustering, it
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Operator 2: Cls(X, k) = Y

Input: X ∈ Rn×k and k ∈ N
Output: Y ∈ Rn×n

Operation:
1: Normalize each row of X
2: Run k-means on rows of X to obtain an n by n matrix Y such that Y(i,j) = 1
if user i and user j are in the same cluster, and Y(i,j) = −1 if the two users are
not in the same cluster

has been shown that the eigenvectors of the graph Laplacian contains robust

discriminative information about the cluster, and hence by applying standard

clustering techniques on the eigenvectors may lead to a better clustering result.

When multiple views of data are available, CSC alternately refines the graph

Laplacian of one view based on the clustering result suggested by other views.

The refinement is realized by projecting and reconstructing the Laplacian of

one view onto the eigenvectors of the graph Laplacians of other views. This

process iterates and glues the graph edges within a cluster and differs edges

between clusters. The final clustering result is obtained by performing single-

view spectral clustering on the refined Laplacians of dominant views.

CSC assumes the graph of each view is completely observed, and transfers

the complete graph information across views. However, in our application,

graphs of many views are partially observed (hence extremely sparse). For ex-

ample, intimate users may communicate frequently by replying to each other,

while ignoring retweeting messages. In this scenario, we hypothesize that en-

forcing a completely agreement between the retweet view and other views will

mis-refine Laplacians and degenerate clustering performance. As we justified

in experimental study, this is indeed a problem.
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Algorithm 1 Selective Co-trained Spectral

Input: Similarity matrix of two views: K1, K2

Output: Cluster matrix C
Initialize: U0

j = LapEig(Sij, k), C0
j = Cls(U0

j , k), j ∈ Iv
Kall = {Kj}j∈Iv , C0

all = {C0
j }j∈Iv

for i = 1 to iter do
for j = 1 to views do

1: Ri
j = SO(Ci−1

all , Kall, j)
2: Sj = Ri

j ◦Kj

3: U i
j = LapEig(Sj, k)

4: Ci
j = Cls(U i

j , k)
end for
5: Ci

all = {Ci
j}j∈Iv

end for
6: Choose the dominant view j and run Cls(U i

j , k) to get the cluster matrix.

5.3.3 Selective Co-trained Spectral Clustering

In this section we propose the new multi-view clustering algorithm. We

identify a graph as partial if the number of non-zero entries (edges) in the graph

Laplacian is below a pre-specified threshold, and safely assume that only non-

zero edges in partial graphs are observed. Our intuition is that, only clustering

result on observed edges should be transferred from views with partial graphs.

The proposed Selective Co-trained Spectral Clustering (SCSC) multi-view

clustering approach is presented in Algorithm 1. The major difference between

SCSC and CSC are twofold: 1) CSC uses eigenvectors of the Laplacian of one

view to refine Laplacians of other views, while SCSC uses the clustering result

of one Laplacian to refine other Laplacians, which tends to be more precise; 2)

CSC transfers the complete graph information across views, while SCSC selec-

tively transfers graph information.

82



Operation SO(·) realizes the selective process. Let ρj be defined as

ρj =
# zeros in Kj

# all elements in Kj

, (5.1)

whereKj represents the similarity matrix of view j, and abbreviate SO(Ci−1
all , Kall, j)

as SO(j), we design

SO(j) = exp

(
Cj′ ◦

(
1{Kj′ 6=0}

)1{ρj′>ρthre}
)
, (5.2)

where Cj′ represents the clustering matrix of view j′ such that if user p and

user q are assigned to the same cluster in this view, then the pth row and qth

column of Cj′ is 1, otherwise it is zero. In addition, j′ ∈ Iv, j′ 6= j and ρthre is a

pre-specified threshold. The intuitions behind SO(j) are as follows:

• For Cj′ , if two users are assigned to the same cluster in view j′, then the

corresponding element in Cj′ is 1 and SO > 1 so their Laplacian in other

views will be boosted, and vice versa.

• For IKj′ 6=0, if two users have non-zero edges in the partial graph of view

j′, then I = 1 and their clustering result in view j′ will be transferred to

other views; otherwise SO = 1 and their Laplacian in other views will not

be affected.

• I{ρj′>ρthre}is used to identify which views have partial graphs based on

threshold ρthre. Given a view with partial graph, we have I = 1 and

hence the selective component I{Kj′ 6=0} will take effect; otherwise I = 0

and all information of the graph is transferred.

It is worthy to elaborate more on the convergence property of our algorithm.
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Consider an example of clustering three users with two views. From one view

we obtain the clustering result

C1 =


1 1 1

1 1 −1

1 −1 1

 , (5.3)

which implies user 1 and user 3 are similar while user 2 ad user 3 are not. For

view 2 we have the similarity matrix (not the Laplacian)

K2 =


1 0.8 0.1

0.8 1 0.6

0.1 0.6 1

 , (5.4)

which implies user 2 and user 3 are similar while user 1 and user 3 are not.

Apparently there is certain consistency between views. After refining K2 by C1

based on Algorithm 1, we have the updated similarity K ′2 such that

K ′2 =


2.7 2.2 0.3

2.2 2.7 0.2

0.3 0.2 2.7

 . (5.5)

It can be seen that after refinement, we manage to adjust user 2 and 3 in view

2, so that their updated (low) similarity becomes consistent with the clustering

result of view 1. However, for user 1 and 3, due to their strong evidence of

dissimilarity in view two, they remain dissimilar after refinement.

The above example tells that, our algorithm can effectively adjust and con-

verge on users whose similarity are “uncertain” in some views, but does not
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enforce agreement and converge on users with strong evidence on two views

that are against each other. This is the same issue with existing co-trained

spectral clustering, as evidenced by its empirical performance on real-world

data set that contain view-inconsistent (noisy) data. Moreover, in a view with

partial graph, we may have massive strong evidence of dissimilarity between

users, which are largely against their similarity in other views. In this case,

our selective algorithm is expected to gain much faster convergence rate than

non-selective clustering algorithms, as will be seen in our experimental study.

In addition, notice that since update matrix C is symmetric, the refined similar-

ity matrix K remain symmetric and corresponding Laplacian remains positive

semi-definite, which is guaranteed to have real positive eigenvalue.

To extend SCSC to multi-view setting, we let j = {1, 2, ..., `} and define

SO(j) as:

SO(j) = exp

∑̀
j′ 6=j
j′=1

Cj′ ◦
(
I{Kj′ 6=0}

)I{ρj′>ρthre}
 . (5.6)

The summation in (5.6) follows the majority voting principle: if two users are

grouped in more than half of the other views, then their similarity in the current

view should be boosted; otherwise their similarity should be decreased. More

interestingly, for Cj′ if half of the views grouped two users while the other half

separated them, then the summation equals zero and SO(j) = 1, in which case

we maintain the similarity of the current view.
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Chapter 6

Evaluation of Multi-view Clustering

for Social Circle Detection

6.1 Evaluation Metrics

To evaluate the quality of our clustering result is quite challenging since no

ground truth is provided and no feature matrix is available (in fact, not even

defined) in most views. This prevents the use of standard external evaluation

metrics such as random index or F-measure or internal evaluation metrics such

as Davies-Bouldin index and Dunn index. Hence we propose a new internal

metric that requires only the similarity matrix. We believe that better cluster-

ing should group users that are not only structurally cohesive (more friendship

relations among them), but also interact more frequently and post similar con-

tent. Based on this, our evaluation is tripartite.

We first propose the normalized similarity ratio to evaluate the performance

of clustering result for each view. Our design follows the same idea as Fisher

ratio [11], and consists of three parts, i.e., within-cluster similarity, between-
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cluster similarity and sparse degree. To prevent the result from being domi-

nated by extra-large clusters, we normalize each similarity by the size of as-

signed clusters. Consider an arbitrary view, let di denote the size of the cluster

(number of users in that cluster) assigned to user i, and recall thatK is the simi-

larity matrix and C is the cluster matrix. We define the within-cluster similarity

as

Swc =
1

Nw

∑̀
i=1

∑̀
j=1

K(i,j)I{C(i,j)>0} (6.1)

and the between-cluster similarity as

Sbc =
1

Nb

∑̀
i=1

∑̀
j=1

K(i,j)I{C(i,j)<0}, (6.2)

whereNw, Nb are the normalizers that respectively count the number of positive

and negative elements in C.

By definition, Swc denotes the average similarity between users in the same

cluster, and Sbc denotes the average similarity between users in different clus-

ters. For high quality clusters, it is quite natural to expect similarity within

groups are larger and similarity between groups are smaller. Hence we define

the Normalized Similarity Ratio as

NSR =
Swc

Sbc + α
, (6.3)

where α is a small constant in case Sbc = 0, which happens frequently on sparse

views.

It is worthy to note that, we do not directly penalize imbalance cluster re-

sults, since in applications some social circles, such as family, are indeed smaller

87



than other circles, such as friends. However, our metric will lower the score

when a super-large cluster appears.

To evaluate the performance over all views, we define the total similarity

ratio. Let Swc[j] and Sbc[j] respectively denote the within-cluster and between-

cluster similarity ratio of view j, where j ∈ 1, 2, ..., `, we define the total simi-

larity ratio on one data set as

NSRT =

∑`
j=1 Swc[j]∑`
j=1 Sbc[j]

(6.4)

6.2 Data Collection and View Construction

At present, Facebook and Twitter are two most popular social networking

sites, judging by number of active users and daily traffic. Since Facebook users

mostly use real identities, it enforces constraints that prevent us from collecting

large amount of data. In this research, we collected our data sets from Twitter,

which is most recognizable for the “tweet” function – the microblog service.

We have implemented a crawler to collect Twitter data using its API, which

allows us to get a Twitter user’s profile, follower/following lists, and tweet

messages. We start with a random user as the seed, and crawl all his/her in-

formation (profile, follower/following lists and most recent 2,000 tweets). The

intersection of the follower list and the following list are regarded as friends. We

crawl the same set of information from the seed user’s friends. All the collected

data about a seed user and all his/her friends is considered as one data set. For

each user, we attempt to collect the following information: user name, screen

name, user id, profile create time, description (a personal statement), list of fol-

lowers, list of followings, location, time zone. Meanwhile, for each tweet, we
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collect the following: tweet id, post time, tweet location, in-reply-to user id,

in-reply-to status id, list of re-tweets (user id and tweet id), tweet content. The

attribute list is shown in Table 6.1. Note that not all the attributes are available

and accurate for all the users. For example, user location in user profiles is self-

generated textual description, where we have seen “Worldwide”, and “Coming

Soon Everywhere” etc. Meanwhile, tweet locations are accurate latitudes and

longitudes, but they are missing from most of the tweets.

Table 6.1. Attributes of user profiles and tweets data.
Profile

Name user name
Screen name displayed screen name

ID user id
Created at create time

Description a personal statement
# of followers number of followers
# of following number of followings

Location user location
Timezone user timezone

Tweet
ID tweet id

Create Time tweet post time
Location tweet location

In reply to (user id) replied user id
In reply to (status id) replied tweet id

# of retweeted number of retweets
Retweet (user id) retweeted user id
Retweet (tweet id) retweeted tweet id

Content tweet content

Twitter has enforced mandatory limits on the crawling rate, especially for

crawling account-specific information. We have collected 92 data sets – 92 seed

users and all their friends. In our data set, each seed user has 245 friends on

average. In total, we have collected information of more than 22K users, with
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approximately 3 million friendship links, and more than 27 million tweet mes-

sages.

We construct six views, as introduced in Section 5.2: content (V1), friend-

ship (V2), common friends (V3), reply (V4), re-tweet (V5), co-reply (V6). For each

data set, we have n users in total, and use Vk,[i,j] to denote the similarity be-

tween node Ni and node Nj in view Vk. In particular, for the content view,

we have set a threshold of ρ = 0.2 to remove 80% of the low-confidence tags

(Pareto principle, a.k.a. 80-20 rule). Meanwhile, all the matrices are normal-

ized by dividing every element by the maximum value in the matrix. Then all

diagonal elements are set to one, indicating that self-similarity is always the

highest among all. Among all views, we observe that interaction matrices are

very sparse in general, as can be seen in Table 6.2. This is largely because of the

nature of micro-blogs. Meanwhile, the fact that the microblogs are completely

open access also somehow prevented users from explicit interactions.

Table 6.2. Sparse Degree of Six Views. The SD is calculated as the ra-
tio between number of zeros in a matrix and the number of elements
in that matrix.

Category View 1-SD
Content Tag 97.31%
Structure Friend 2.94%
Structure Common Friend 51.92%
Interaction Reply 0.37%
Interaction Retweet 0.49%
Interaction Co-Reply 0.06%

6.3 Experiment Design

We first implement the Selective Co-trained Spectral Clustering (SCSC) al-

gorithm with six views, as described in Section 5.3.3. After the update iterations
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in the algorithm, we concatenate Uj’s of the most informative views to obtain

matrix V , and run k-means on rows of V to obtain the final clustering result. In

particular, we concatenate the spectral matrices Uj of the content and structure

views to obtain

V = [Ucontent, Ufriend, Ucommonfriend]. (6.5)

We choose these views because they are denser in information. It is worthy

to point out that, we did not concatenate interaction views since they may be

too sparse to provide accurate information for all users. However, their infor-

mation have already been (selectively) transferred to the content and structure

views through the multi-view algorithms, i.e. CSC and SCSC.

Baseline approaches. For comparison, we also employ three baseline approaches

on our data: SCAN, SC, CSC.

SCAN: Structural Clustering Algorithm for Networks, proposed in [144], is

based purely on friendship information of social networks. We run SCAN on

the friendship view and compare the results with SCSC.

Spectral Clustering: SC utilizes eigenvectors and eigenvalues of similarity ma-

trices (or derived matrices), to find the membership for each vertex. We run

spectral clustering on each view separately to obtain eigenvectors Uj’s. We then

column-wise concatenate Uj’s of the most informative views to obtain matrix

V , and run k-means on rows of V .

CSC (Co-trained Spectral Clustering:) Special type of spectral clustering that

exploits multiple sources of information, as mentioned in Section 5.3. We first

run CSC on six views. After the update iterations are done, we concatenate Uj’s

of the most informative views to obtain matrix V . Run k-means on rows of V .
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In the experiments, we observed similar trends of all approaches when

changing the number of clusters k from 3 to 10. Hence we set k = 5 for all

approaches except SCAN. We use default parameters for SCAN.

6.4 Results and Performance Analysis

We first examine the performance of SC, CSC and SCSC approaches on six

views of one data set, which contains 386 users. We iterate CSC and SCSC

for 20 times and report their normalized similarity ratio (NSR) on each view

in Figure 6.1. We see a general trend that CSC improves its performance as

more iterations are done. This coincides with the spirit of co-trained style al-

gorithms. However, the convergence rate is relatively slow and improvements

are not very significant on Tag and Reply views. On the Friend and Co-reply

views, CSC does not improve the performance of single-view clustering. As

we explained before, this may due to the ignorance ofCSC on inconsistency be-

tween views, especially sparse views. On the other hand, our SCSC approach

efficiently and significantly boosts the performance after just one or two itera-

tions. On Common Friend view, we observe a degeneration of SCSC, which

may be because this view has lower correlation to other views.

We further examine the balance of the output clusters by each algorithm at

their best iterations. An iteration is called the best iteration of an algorithm if

the algorithm reaches the highest total similarity ratio across all iterations. In

Table 6.3 we summarize the size of each group generated by one algorithm.

It can be seen that CSC encourages more balanced clusters, and both SC and

SCSC output one big cluster. From the algorithm point of view, this may be

because CSC enforces stronger consistency across views and hence making
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Figure 6.1. Normalized Similarity Ratio on Six Views. In each fig-
ure, the y-axis represents NSR and x-axis represents the number of
update iterations. Blue dot curve represents SC approach, green dash
curve represents CSC and red solid curve represents our SCSC ap-
proach.

Table 6.3. Size of Each Cluster in the Clustering Result. std stands
for standard deviation of all group sizes.

Cluster 1 2 3 4 5 std
SC 8 12 13 25 44 14.6
CSC 16 17 20 24 25 4.04
SCSC 10 10 13 15 54 18.9

the similarity matrix of each view smoother than before. In practice, we think

imbalance clusters are acceptable in many applications. For example, a family

circle is usually much smaller than a friend circle.

Next we evaluate the performance of all approaches on 92 data sets. The

total similarity ratio of each data set is shown in Figure 6.2 (data sets are or-

dered by the total similarity ratio (TSR) from SCSC approach). It is clear that

SCSC outperforms single-view spectral clustering (SC), while CSC performs

the worst. This coincides with our observation in Figure 6.1, as well as our anal-
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ysis of the limitation of CSC: enforcing the complete similarity information to

transfer from one view to another may contaminate other views and worse the

performance. Finally, the Mean TSR (MTSR) for SC is 108.8, MTSR for CSC is

24.8, and MTSR for SCSC is 187.4.

Figure 6.2. Total similarity ratio (TSR) of all data sets.

Figure 6.3. Normalized Similarity Ratio of all Seed Users on Friend
View.

Last, we compare all approaches with SCAN, which is designed for structure-

based clustering. Since SCAN filters out outliers, we evaluate all approaches

only on the non-outlier users, to be fair. Total similarity ratio of all data sets
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are shown in Figure 6.3. In particular, the ATSR for SCAN is 71.9, while the

updated ATSR for SC is 79.5, ATSR for CSC is 20.9, and ATSR for SCSC is 100.6.

It is clear that the performance of SCAN is worse than either SC or SCSC, but

better than CSC.

6.5 Manual Evaluation

Ultimately, the quality of the discovered social circles must be assessed by

users. To include users in the loop, we launch a manual evaluation for bound-

ary nodes. As it is impractical to manually examine all users, we attempt to

evaluate the nodes that are most doubtful in the clustering process. A bound-

ary node N represents a user who is clustered by SCSC into cluster Ci, but is

far away from the centroid of the cluster. In particular, we select the bound-

ary node with the largest distance (i.e., least similarity) from each data set. For

each selected N , we identify the cluster Cj , which is (on average) the closest to

N other than Ci. We ask users to evaluate if N should be clustered into Ci or

Cj .

In the evaluation, we randomly select 5 nodes from cluster i and j, respec-

tively. For each selected node nk, we display it with N to an external evaluator,

and ask the evaluator to answer the question “Do you think N should be in the

same social circle as nk?” In particular, each evaluator marks the node pair (N ,

nk) with a score from 1 to 5: 5: strongly agree – they belong to the same circle;

4: somewhat agree; 3: neutral; 2: somewhat disagree; and 1: strongly disagree

– they do not belong to the same circle. Please note that the evaluation is blind.

That is, the evaluators do not know whether the pair of nodes are clustered

into the same circle or not. In the experiment, we asked 5 external evaluators
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(not the authors) to evaluate 60 boundary nodes, which means examining 600

node pairs. As a result, node pairs from the same cluster, as identified by SCSC,

earned an average score of 2.63, while node pairs from different circles earned

an average score of 2.52.

From the experiment results, we can conclude that our multi-view clus-

tering approach is effective in clustering users’ ego networks into circles. Al-

though the margin appears to be very small, however, we would like to empha-

size that we have selected the boundary nodes (N ) that SCSC is least confident

with in the evaluation. Therefore, the result appears to be acceptable.

6.6 Keyword Extraction for Clusters

To have a direct perception on the content of the circles, we attempt to find

the most unique tags for each cluster. To do so, we calculate the probability of

“representativeness” for each tag in each cluster. Intuitively, a tag with larger

bias towards a cluster better represents the content of the cluster. Formally, the

probability of tag t in cluster C, denoted by P (t|C) can be defined as:

P (t|C) =

∑
i∈C tfnorm(i, t)

|C|

tfnorm(i, t) =
tf(i, t)

max{tf(i, t)|t ∈ Ti}

tf(i, t) is the frequency of tag t in user i’s content, and the max function returns

the largest frequency for all tags in i’s content. To find the most representative

tags in a certain cluster, we propose to utilize Kullback-Leibler Divergence (KL-

divergence). In particular, we first construct 2 discrete probability distributions
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Pt(i) and Qt(i) as.

Pt(i) =
P (t|Ci)∑
Ci∈C P (t|Ci)

Qt(i) =
1

|C|

We further calculate the bias of tags:

BiasKL(t) =
∑
i

(Pt(i) ln
Pt(i)

Qt(i)
)

For each cluster Ci, we can find the tags with largest BiasKL, and having

max P (t|C) in Ci as the representative tags for Ci. The top 3 tags for 5 clusters

of a randomly selected data set are shown in Table 6.4. For clusters having less

than 3 representative tags, we just show all of them. From this example, we

can see different groups have different topics. For instance, group 2 is leaning

towards entertainment, group 4 seems to be interested in health care informa-

tion, while group 5 is quite technical. The extracted content has been confirmed

by our manual examination of the circles. As a result, we can actually perceive

the separations of different circles in the ego network.

Table 6.4. Representative tags for clusters of a seed
Cluster Representative Tags
C1 Human,Sleep
C2 Valentine’s Day,Dance,Sport
C3 Ireland,Beer,Coffee
C4 Social media,Health,Cancer
C5 Yahoo!,WHATS’On (Software),Android
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6.7 Discussions

Computational complexity of SCSC. Compared with CSC, the SCSC algo-

rithm introduces an extra k-means clustering procedure (step 4 in Algorithm

2) when updating the similarity matrices. Theoretically, the dominant compu-

tational complexity of k-means is O(nk2), where n is the number of friends of

a seed user, and k is the number of clusters expected. In application of per-

sonalized social network, we may expect that both n and k are not too large:

a typical seed user we crawled has around 200 friends, and it is quite unlikely

for one to create and maintain more than 10 circles of his or her friends. For

more information about the efficiency of k-means, readers are referred to [5].

In practice, we observe an average time around one minute to run SCSC with

20 update iterations for one seed user. Moreover, the extra computational bur-

den brought by SCSC can be released from multiple aspects. As shown by our

empirical study, SCSC converges much faster than CSC. Hence only a few

number of extra k-means clustering will be introduced. We may also update all

views in parallel within one iteration, freeing the extra computational burden

from being accumulated over views. As evidenced in our empirical study, by

trading certain efficiency for adaptiveness, SCSC significantly improved the

clustering performance.

Non-overlapping vs. overlapping circles. In the ego network ES of seed S, if

we allow any user Ni to belong to multiple circles, it is regarded as overlapping

circles. Meanwhile, if each user Ni is allowed in exactly one circle, it is non-

overlapping circles. In the literature, both types of circles have been used. In this

dissertation, we select non-overlapping circles for two major reasons. First, our

approach is primarily motivated by privacy protection and information bound-
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ary enforcement in social networks. When two social circles in the ego network

overlaps, the overlapping users observe information from both circles. Such

users may also easily violate the boundaries by moving information from its

origin circle to the other overlapping circles. This is the online version of “social

gossip”. On the other hand, in theory, overlapping and non-overlapping circles

are essentially equivalent. That is, two overlapping circles A and B could be

converted to three non-overlapping circlesA∩B;A\B;B\A. Contained circles

A ⊂ B could be converted to two non-overlapping circles A;B \ A.

In reality, there exist users who have close connections with multiple cir-

cles (for now, we consider two circles). They actually cause difficulties in our

clustering approach. When we manually examine the clustering results, we

discover different outcomes: (1) in most cases, such nodes are assigned into

the one circle, with which he/she has stronger connections; (2) when there are

many nodes connecting to two circles and the nodes strongly connect to each

other, we may end up identifying three circles; (3) it is also possible that we dis-

cover one combined circle, due to the existence of multiple users in the overlap.

Applications of social circles. As suggested in [125,126], social circles are used

to protect information privacy, by delivering messages to designated circles

and enforcing circle boundaries. Automatically clustered circles are presented

to users, so that they could further re-organize and configure such circles. In so-

cialization, messages are posted to the selected circles. Meanwhile, social circle

enforcement becomes particularly challenging when some social networking

sites allows breaches in privacy protection (e.g., when users are allowed to “re-

share” private posts of their friends). However, those issues are outside of the

scope of this dissertation.
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On the other hand, the discovered social circles could be used to improve

the efficiency of ad delivery, targeted advertising, and opinion mining in social

groups. Social circles could also be used to study users’ socialization behav-

ior and social network information flow. If temporal information is added to

the data, we can extend our model to further study the development of social

circles and evolution of ego networks.
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Chapter 7

Automatic Circle Recommendation

and Proof-of-Concept

Implementation

In this chapter, we will present our proof-of-concept implementation of au-

tomatic social circle discovery and message recommendation system to demon-

strate the practicality of using social circles for privacy protection.

7.1 Automatic Circle Recommendation

In our system, we implement the automatic circle recommendation func-

tionality: when users enter a message, it will recommend a circle to post the

message. But the question is how to make such recommendation. In this sec-

tion, we first propose 3 theoretical approaches for circle recommendation to

fulfill this function, and continue to present our implementation in details in

the next section.
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Intuitively, social circle recommendation could be based on: (1) user per-

ception: infer what the user would do with each message (2) attributes: extract

attributes from each message and manage attributes in each circle (3) content:

calculate content similarities between a message and circles and select the circle

with the highest similarity. Here we briefly discuss all 3 approaches.

7.1.1 User-perception-based Circle Recommendation

Ultimately, we expect the circle recommendation mechanism to be consis-

tent with user perception. That is, when a user enters a message, the circle

recommendation mechanism attempts to guess which circle the user would

choose and make the suggestion accordingly. As an example, if a soccer fan

wants to post a message: “Germany vs Argentina, the world cup final would

be great!!!”, he/she may more likely choose a circle composed of other soccer

fans or sport lovers. So for this approach, the system aims to reproduce user

perceptions precisely.

However, it’s extremely difficult to capture and model user perception, to

do so we have to: (1) fully understand the message content, (2) fully under-

stand the user perception, and (3) fully understand the circles. All these tasks

require machine learning or artificial intelligence techniques which are still

open problems and challenging to solve. In this project, we use an approxi-

mation. We assume that a user wants to discuss a topic with a group of friends

that he/she has discussed similar topics with. That is, for a new message m, a

user is more likely to select a circle where he/she has already posted messages

similar to m.

In addition, in this approach, we always allow users to override the system
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suggestions, which further ensures user perception.

7.1.2 Attribute-based Circle Recommendation

For this approach, we assume that attackers can extract attributes from mes-

sage. We have already claimed in Chapter 3, attributes need to be protected,

and intuitively, we can use attributes to suggest circles for newly inputed mes-

sages while preserving their privacy. A messagem could be delivered to a circle

C without compromising user privacy, if: (1) the attributes covered in m is al-

ready in C; or (2) the user explicitly authorizes the attributes to be delivered to

C.

The main idea of this approach is to identify privacy related attributes from

unstructured messages (in other words, free text, such as Status, Diaries, etc.),

such as Education, Age, Job, Location, etc. As an example, if a user writes a

message, “The traffic jam of Los Angeles highway is too bad to go to work

on time!!!,” we can know several privacy attributes: Location=“Los Angeles”,

HavingJob=“true”. Another example is from the message, “Today I graduated

from High School,” we can probably get Education=“High School”, AgeGroup=“15-

20”.

Users can specify which attributes can be disseminated to which circles. For

example, Age attributes are available to be sent to “Family” circles. When un-

specified attributes are intended to be disclosed to a circle, the system will warn

users. When attributes are already visible within a circle, we allow them to be

distributed to the same circle again (e.g., when the user has already disclosed

that he/she has a new born baby in a circle, he/she could send more mes-

sages about the baby to the same circle). When users attempt to disclose new

103



attributes to the circle, we firstly identify the attributes from user input and

based on some analysis tools such as machine learning models to learn from

user specifications, and make decisions on whether to disclose the attributes to

a circle.

However, to implement the attribute-based circle recommendation is ex-

tremely difficult. The attribution (also called “attribute discovery” or “attribute

mining”) is still a difficult and unsolved problem. To extract attributes from

unstructured user input, we can use natural language processing techniques

based on machine learning or probabilistic models, but this is extremely hard

to obtain and still an open problem in the research community. As a result,

this approach is beyond the scope of this dissertation, and we choose not to

implement based on this method.

7.1.3 Content-based Circle Recommendation

As we have discussed, user-perception-based and attribute-based circle rec-

ommendation approaches are theoretically sound. However, practically they

are both extremely challenging to implement. As a compromise, we developed

content-based circle suggestion, which is based on a relatively fuzzy concept,

“content”. In this approach, if a new message is similar to the content of a circle,

we assume that it could be delivered to this circle. In practice, we use tag-based

and term-distribution-based similarity.

In our implementation, we use a tag-based Bayesian-probability method.

Our goal is to calculate P (ci|m), i.e. the probability of a message m belonging

to a circle ci. The tag-based idea is to firstly tag the message using TagMe and

obtain several tags with their ρ (tag goodness indicator). Then we can calculate
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P (ci|m) as:

P (ci|m) =
∑
j

P (ci|tj)ρj

which means that for each tag, multiply ρ with its probability belonging to ci

and sum the values for all the tags. For P (ci|tj), we can use Bayesian theory to

calculate it:

P (ci|tj) =
P (tj|ci)P (ci)

P (tj)

where

P (tj) =
∑
ci∈C

P (tj|ci)P (ci)

and we can use the equation in 6.6 to calculate P (tj|ci). If we assume the prob-

ability for each circle is the same,

P (ci) =
1

|C|

where C represents the number of circles for a seed user. Then we can calculate

P (ci|tj) and P (ci|m), so as to find the circle with the highest probability for

circle suggestion.

7.2 Implementation

In this section, we will present the details of our proof-of-concept imple-

mentation of the social circle model.

7.2.1 System Architecture

The architecture of our system is shown in Figure 7.1. It is a 2 layer client

server connection architecture. After users enter the starting page, they input

105



their login information (since for Twitter users, we don’t actually need their

login information to get their data, for convenience, we use user names to rep-

resent their login information) and send a request to the server for automatic

circle detection results. The server will receive user requests with their login

information (names), and render the result web page using JSP techniques.

The created result page will be send to users, and when users receive the re-

sult page, their web browsers will display the result and execute the JavaScript

code accordingly. Similarly, when users are on the circle detection result page,

they can enter a message and request for the automatic circle suggestion result.

The server will receive this request with the message, and create a web page

with the suggestion result. The created page will be sent to users, and their

browsers will display the automatic circle suggestion result as instructed.

For this implementation, we mainly used web-based techniques such as:

HTML and HTML CSS, JSP, JavaScript and DOM, JQuery and JQuery UI. HTML

and HTML CSS are used to build up the web pages and add effects to them.

JSP is used to combine Java with web pages. JavaScrip and DOM are used to

dynamically change web page elements, and JQuery and JQuery UI are used

to realize special effects such as input text auto-complete and accordion lists.

7.2.2 Search Interface

The search interface is the starting point of our system, where users can

enter their names (simulated as the login process). As shown in Figure 7.2.

Users can input names in the text field after “Name”.

By JQuery UI auto-complete function, we can suggest possible names in

our system to users, as shown in Figure 7.3. The back-end suggestion lists are
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Figure 7.1. System Architecture

extracted from all the seed names in our data sets.

7.2.3 Automatic Circle Detection Result Presentation

After users click the “Enter” button on the keyboard, the circle detection

result obtained by our multi-view clustering method will be presented on the

next page, as show in Figure 7.4. The system will read the corresponded seed

user’s circle detection result file using JSP.

On this page, the profile image of the logined user is shown and also its

name and Twitter ID. Each circle is listed in an accordion group titled as circle

id with its corresponded key words extracted using techniques presented in

6.6. JSP is used to read the key word file, and by the JQuery UI accordion,
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Figure 7.2. System Interface

Figure 7.3. Name Suggestion

when users click on one of the circle titles, detailed information is faded in, as

presented in Figure 7.5.
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Figure 7.4. Result Presentation

Figure 7.5. Circle Detail

This frame demonstrates all the users’ profile images from this circle. And

when you move the mouse over each image, it will fade in the corresponded
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user’s name and Twitter ID, as shown in Figure 7.6.

Figure 7.6. Detailed Circle User Info

Similarly, when you move the mouse over the seed user name text field, the

detailed information of the seed user is faded in with its name and description,

as shown in Figure 7.7.

All the images are inputed by including their source file urls into HTML,

which are obtained by Twitter4J Java libraries.

As shown in these figures, there is also an input message field on this page,

where users can enter messages they want to post, and when the “Submit”

button is clicked, the automatically designated circle will be highlighted on the

next page.
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Figure 7.7. Seed User Info

7.2.4 Automatic Message Designation

After users enter a message and click the submit button, as shown in Figure

7.8, the message designation page will be directed. The directed JSP file will

run the Java code implementing the circle suggestion technique presented in

Section 7.1.3, which will firstly connect to TagMe in order to tag the input mes-

sage and then run the Bayesian Probability method to identify the appropriate

circle. The system recommended circle is highlighted with transparent deep

sky blue, as shown in Figure 7.9.
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Figure 7.8. User Input Message

Figure 7.9. Designation Result
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Chapter 8

Conclusion

We have proposed thorough research about user privacy online. In this dis-

sertation, we first study the vulnerabilities of user attributes and contents, in

particular, the identifiability of the users when the adversary learns a small

piece of information about the target. We further employ an information the-

ory based approach to quantitatively evaluate the threats of attribute-based re-

identification. We have shown that large portions of users with online presence

are highly identifiable.

The notion of privacy as control and information boundary has been intro-

duced by the user-oriented privacy research community, and partly adopted

in commercial social networking platforms. However, such functions are not

widely accepted by the users, mainly because it is tedious and labor-intensive

to manually assign friends into such circles. To tackle this problem, we intro-

duce a social circle discovery approach using multi-view clustering. The multi-

view clustering technique is based on 3 observations: users belonging to the

same circle are very likely to: (1) be friends and share many common friends,

(2) be interested in similar content, and (3) have more interactions with each
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other. From these 3 observations, we model 6 views and propose a selective

co-trained spectral clustering technique to combine these different aspects of

information together. Our experiment is performed on real-world Twitter data,

including approximately 3 million friendship links, and more than 27 million

tweet messages. From the presented result, multi-view clustering renders more

accurate circle detection than single-view clustering, and our method gains sig-

nificantly higher similarity ratio than the original co-trained spectral cluster-

ing technique. As a result, by utilizing our automatic social circle detection

technique, users can get natural “information boundaries” for privacy control,

while not loosing the practicality and convenience of the online social network

environment.

At last, we build an automatic social circle detection and suggestion proof-

of-concept system, using multiple state-of-the-art web techniques, such as JSP,

JavaScript, JQuery, etc. In the goal of making a user-friendly demonstration

system, users can log in and obtain their circle detection results, and after they

enter a message, the system can suggest a social circle to post the message.

From this demonstration, we can show the usefulness of our techniques based

on the social circle model. Users can get relatively accurate grouping of their

friends, which is created automatically by the system. They can post messages

to appropriate social circles, which are also automatically suggested by the sys-

tem. By this function, users can control the accessibility of their private infor-

mation, while still preserving the ability to socialize normally.

In conclusion, in this dissertation, we have studied the vulnerability of users’

private information online, proposed an automatic social circle detection method

to solve this problem, and presented a proof-of-concept implementation, all in
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the goal of better understanding online social network user privacy and help-

ing build a secure socializing environment for them.
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