KU ScholarWorks

Combination of CDF and D0 W-Boson mass measurements

Item Type	Article
Authors	Baringer, Philip S.;Bean, Alice;Chen, G.;Clutter, Justace Randall;Sekaric, Jadranka;Wilson, Graham Wallace;Aaltonen, T.;Abazov, V. M.;Abbott, B.;Acharya, B. S.;Adams, M.;Adams, T.;Agnew, J. P.;Alexeev, G. D.;Alkhazov, G.;Alton, A.;Amerio, S.
Citation	Aaltonen, T. et al. (2013). "Combination of CDF and D0 W-Boson mass measurements." Physical Review D, 88(5):52018. http:// www.dx.doi.org/10.1103/PhysRevD.88.052018.
DOI	10.1103/PhysRevD.88.052018
Publisher	American Physical Society
Download date	2024-08-09 06:18:43
Link to Item	https://hdl.handle.net/1808/17884

Combination of CDF and D0 W-Boson mass measurements

T. Aaltonen,^{21,a} V. M. Abazov,^{13,b} B. Abbott,^{116,b} B. S. Acharya,^{81,b} M. Adams,^{98,b} T. Adams,^{97,b} J. P. Agnew,^{94,b} G. D. Alexeev,^{13,b} G. Alkhazov,^{89,b} A. Alton,^{32,b,ll} S. Amerio,^{40b,40a,a} D. Amidei,^{32,a} A. Anastassov,^{15,a,y} A. Annovi,^{17,a} J. Antos, ^{12,a} G. Apollinari, ^{15,a} J. A. Appel, ^{15,a} T. Arisawa, ^{53,a} A. Artikov, ^{13,a} J. Asaadi, ^{48,a} W. Ashmanskas, ^{15,a} A. Askew,^{97,b} S. Atkins,^{106,b} B. Auerbach,^{2,a} K. Augsten,^{63,b} A. Aurisano,^{48,a} C. Avila,^{61,b} F. Azfar,^{39,a} F. Badaud,^{66,b} W. Badgett,^{15,a} T. Bae,^{25,a} L. Bagby,^{15,b} B. Baldin,^{15,b} D. V. Bandurin,^{97,b} S. Banerjee,^{81,b} A. Barbaro-Galtieri,^{26,a} E. Barberis, ^{107,b} P. Baringer, ^{105,b} V. E. Barnes, ^{44,a} B. A. Barnett, ^{23,a} J. Guimaraes da Costa, ^{20,a} P. Barria, ^{42c,42a,a} J. F. Bartlett, ^{15,b} P. Bartos, ^{12,a} U. Bassler, ^{71,b} M. Bauce, ^{40b,40a,a} V. Bazterra, ^{98,b} A. Bean, ^{105,b} F. Bedeschi, ^{42a,a} D. Beecher,^{28,a} M. Begalli,^{58,b} S. Behari,^{15,a} L. Bellantoni,^{15,b} G. Bellettini,^{42b,42a,a} J. Bellinger,^{55,a} D. Benjamin,^{14,a} A. Beretvas,^{15,a} S. B. Beri,^{79,b} G. Bernardi,^{70,b} R. Bernhard,^{75,b} I. Bertram,^{92,b} M. Besançon,^{71,b} R. Beuselinck,^{93,b} P. C. Bhat,^{15,b} S. Bhatia,^{108,b} V. Bhatnagar,^{79,b} A. Bhatti,^{46,a} I. Bizjak,^{28,a} K. R. Bland,^{5,a} G. Blazey,^{99,b} S. Blessing,^{97,b} K. Bloom,^{109,b} B. Blumenfeld,^{23,a} A. Bocci,^{14,a} A. Bodek,^{45,a} A. Boehnlein,^{15,b} D. Boline,^{113,b} E. E. Boos,^{87,b} G. Borissov,^{92,b} D. Bortoletto,^{44,a} J. Boudreau,^{43,a} A. Boveia,^{11,a} A. Brandt,^{119,b} O. Brandt,^{76,b} L. Brigliadori,^{6b,6a,a} R. Brock,^{33,b} C. Bromberg,^{33,a} A. Bross,^{15,b} D. Brown,^{70,b} E. Brucken,^{21,a} X. B. Bu,^{15,b} J. Budagov,^{13,a} H. S. Budd,^{45,a} M. Buehler,^{15,b} V. Buescher,^{77,b} V. Bunichev,^{87,b} S. Burdin,^{92,b,mm} K. Burkett,^{15,a} G. Busetto,^{40b,40a,a} P. Bussey,^{19,a} C. P. Buszello,^{91,b} P. Butti,^{42b,42a,a} A. Buzatu,^{19,a} A. Calamba,^{10,a} E. Camacho-Pérez,^{84,b} S. Camarda,^{4,a} M. Campanelli,^{28,a} F. Canelli,^{11,a,ff} B. Carls,^{22,a} D. Carlsmith,^{55,a} R. Carosi,^{42a,a} S. Carrillo,^{16,a,o} B. Casal,^{9,a,m} M. Casarsa,^{49a,a} B. C. K. Casey,^{15,b} H. Castilla-Valdez,^{84,b} A. Castro,^{6b,6a,a} P. Catastini,^{20,a} S. Caughron,^{33,b} D. Cauz,^{49b,49c,49a,a} V. Cavaliere,^{22,a} M. Cavalli-Sforza,^{4,a} A. Cerri,^{26,a,h} L. Cerrito,^{28,a,t} S. Chakrabarti,^{113,b} K. M. Chan,^{103,b} A. Chandra,^{121,b} V. Cavaliere, ^{22,a} M. Cavalli-Sforza, ^{4,a} A. Cerri, ^{26,a,h} L. Cerrito, ^{28,a,t} S. Chakrabarti, ^{113,b} K. M. Chan, ^{103,b} A. Chandra, ^{121,b} E. Chapon, ^{71,b} G. Chen, ^{105,b} Y. C. Chen, ^{1,a} M. Chertok, ^{7,a} G. Chiarelli, ^{42a,a} G. Chlachidze, ^{15,a} K. Cho, ^{25,a} S. W. Cho, ^{83,b} S. Choi, ^{83,b} D. Chokheli, ^{13,a} B. Choudhary, ^{80,b} S. Cihangir, ^{15,b} D. Claes, ^{109,b} A. Clark, ^{18,a} C. Clarke, ^{54,a} J. Clutter, ^{105,b} M. E. Convery, ^{15,a} J. Conway, ^{7,a} M. Cooke, ^{15,b} W. E. Cooper, ^{15,b} M. Corbo, ^{15,a,bb} M. Corcoran, ^{121,b} M. Cordelli, ^{17,a} F. Couderc, ^{71,b} M.-C. Cousinou, ^{68,b} C. A. Cox, ^{7,a} D. J. Cox, ^{7,a} M. Cremonesi, ^{42a,a} D. Cruz, ^{48,a} J. Cuevas, ^{9,a,aa} R. Culbertson, ^{15,a} D. Cutts, ^{118,b} A. Das, ^{95,b} N. d'Ascenzo, ^{15,a,x} M. Datta, ^{15,a,ii} G. Davies, ^{93,b} P. de Barbaro, ^{45,a} S. J. de Jong, ^{85,86,b} E. De La Cruz-Burelo, ^{84,b} F. Déliot, ^{71,b} R. Demina, ^{45,b} L. Demortier, ^{46,a} M. Deninno, ^{6a,a} D. Denisov, ^{15,b} S. P. Denisov, ^{88,b} M. D'Errico, ^{40b,40a,a} S. Desai, ^{15,b} C. Deterre, ^{76,b,oo} K. DeVaughan, ^{109,b} F. Devoto, ^{21,a} A. Di Canto, ^{42b,42a,a} B. Di Ruzza, ^{15,a,s} H. T. Diehl, ^{15,b} M. Diesburg, ^{15,b} P. F. Ding, ^{94,b} J. R. Dittmann, ^{5,a} A. Dominguez, ^{109,b} S. Donati, ^{42b,42a,a} M. D'Onofrio, ^{27,a} M. Dorigo, ^{49d,49a,a} A. Driutti, ^{49b,49c,49a,a} A. Dubey, ^{80,b} L. V. Dudko, ^{87,b} A. Duperrin, ^{68,b} S. Dutt, ^{79,b} M. Eads ^{99,b} K. Ehina ^{53,a} R. Edgar ^{32,a} D. Edmunds ^{33,b} A. Elagin ^{48,a} I. Ellison ^{96,b} V. D. Elvira ^{15,b} Y. Enari ^{70,b} M. Eads,^{99,b} K. Ebina,^{53,a} R. Edgar,^{32,a} D. Edmunds,^{33,b} A. Elagin,^{48,a} J. Ellison,^{96,b} V. D. Elvira,^{15,b} Y. Enari,^{70,b} R. Erbacher, ^{7,a} S. Errede, ^{22,a} B. Esham, ^{22,a} R. Eusebi, ^{48,a} H. Evans, ^{101,b} V. N. Evdokimov, ^{88,b} S. Farrington, ^{39,a} L. Feng, ^{99,b} T. Ferbel, ^{45,b} J. P. Fernández Ramos, ^{29,a} F. Fiedler, ^{77,b} R. Field, ^{16,a} F. Filthaut, ^{85,86,b} W. Fisher, ^{33,b} H. E. Fisk, ^{15,b} G. Flanagan, ^{15,a,v} R. Forrest, ^{7,a} M. Fortner, ^{99,b} H. Fox, ^{92,b} M. Franklin, ^{20,a} J. C. Freeman, ^{15,a} H. Frisch, ^{11,a} S. Fuess, ^{15,b} Y. Funakoshi, ^{53,a} C. Galloni, ^{42b,42a,a} A. Garcia-Bellido, ^{45,b} J. A. García-González, ^{84,b} A. F. Garfinkel, ^{44,a} P. Garosi, ^{42c,42a,a} V. Gavrilov, ^{34,b} W. Geng, ^{68,33,b} C. E. Gerber, ^{98,b} H. Gerberich, ^{22,a} E. Gerchtein, ^{15,a} Y. Gershtein, ^{110,b} S. Giagu, ^{47a,a} V. Giakoumopoulou,^{3,a} K. Gibson,^{43,a} C. M. Ginsburg,^{15,a} G. Ginther,^{15,45,b} N. Giokaris,^{3,a} P. Giromini,^{17,a} G. Giurgiu,^{23,a} V. Glagolev,^{13,a} D. Glenzinski,^{15,a} M. Gold,^{35,a} D. Goldin,^{48,a} A. Golossanov,^{15,a} G. Golovanov,^{13,b} G. Gomez,^{9,a} G. Gomez-Ceballos,^{30,a} M. Goncharov,^{30,a} O. González López,^{29,a} I. Gorelov,^{35,a} A. T. Goshaw,^{14,a} K. Goulianos,^{46,a} G. Gomez-Cebanos, M. Goncharov, P.O. Gonzalez Lopez, T. Gorelov, A. I. Goshaw, K. Gounanos, E. Gramellini,^{6a,a} P. D. Grannis,^{113,b} S. Greder,^{72,b} H. Greenlee,^{15,b} G. Grenier,^{73,b} S. Grinstein,^{4,a} Ph. Gris,^{66,b} J.-F. Grivaz,^{69,b} A. Grohsjean,^{71,b,nn} C. Grosso-Pilcher,^{11,a} R. C. Group,^{52,15,a} S. Grünendahl,^{15,b} M. W. Grünewald,^{82,b} T. Guillemin,^{69,b} G. Gutierrez,^{15,b} P. Gutierrez,^{116,b} S. R. Hahn,^{15,a} J. Haley,^{107,b} J. Y. Han,^{45,a} L. Han,^{60,b} F. Happacher,^{17,a} K. Hara,^{50,a} K. Harder,^{94,b} M. Hare,^{51,a} A. Harel,^{45,b} R. F. Harr,^{54,a} T. Harrington-Taber,^{15,a,p} K. Hatakeyama,^{5,a} J. M. Hauptman,^{104,b} C. Hays,^{39,a} J. Hays,^{93,b} T. Head,^{94,b} T. Hebbeker,^{74,b} D. Hedin,^{99,b} H. Hegab,^{117,b} J. Heinrich,^{41,a} A. P. Heinson, ^{96,b} U. Heintz, ^{118,b} C. Hensel, ^{76,b} I. Heredia-De La Cruz, ^{84,b,oo} M. Herndon, ^{55,a} K. Herner, ^{15,b}
G. Hesketh, ^{94,b,qq} M. D. Hildreth, ^{103,b} R. Hirosky, ^{122,b} T. Hoang, ^{97,b} J. D. Hobbs, ^{113,b} A. Hocker, ^{15,a} B. Hoeneisen, ^{65,b}
J. Hogan, ^{121,b} M. Hohlfeld, ^{77,b} J. L. Holzbauer, ^{108,b} Z. Hong, ^{48,a} W. Hopkins, ^{15,a,i} S. Hou, ^{1,a} I. Howley, ^{119,b} Z. Hubacek, ^{71,63,b} R. E. Hughes, ^{36,a} U. Husemann, ^{56,a} M. Hussein, ^{33,a,dd} J. Huston, ^{33,a} V. Hynek, ^{63,b} I. Iashvili, ^{112,b} Y. Ilchenko, ^{120,b} R. Illingworth, ^{15,b} G. Introzzi, ^{42e,42f,42a,a} M. Iori, ^{47b,47a,a} A. S. Ito, ^{15,b} A. Ivanov, ^{7,a,r} S. Jabeen, ^{118,b} M. Jaffré, ^{69,b} E. James, ^{15,a} D. Jang, ^{10,a} A. Jayasinghe, ^{116,b} B. Jayatilaka, ^{15,a} E. J. Jeon, ^{25,a} M. S. Jeong, ^{83,b} R. Jesik, ^{93,b} P. Jiang, ^{60,b} S. Jindariani, ^{15,a} K. Johns, ^{95,b} E. Johnson, ^{33,b} M. Johnson, ^{15,b} A. Jonckheere, ^{15,b} M. Jones, ^{44,a} P. Jonsson, ^{93,b} K. K. Joo,^{25,a} J. Joshi,^{96,b} S. Y. Jun,^{10,a} A. W. Jung,^{15,b} T. R. Junk,^{15,a} A. Juste,^{90,b} E. Kajfasz,^{68,b} M. Kambeitz,^{24,a}

T. Kamon,^{25,48,a} P.E. Karchin,^{54,a} D. Karmanov,^{87,b} A. Kasmi,^{5,a} Y. Kato,^{38,a,q} I. Katsanos,^{109,b} R. Kehoe,^{120,b} S. Kermiche,^{68,b} W. Ketchum,^{11,a,jj} J. Keung,^{41,a} N. Khalatyan,^{15,b} A. Khanov,^{117,b} A. Kharchilava,^{112,b} Y. N. Kharzheev,^{13,b} B. Kilminster,^{15,a,ff} D. H. Kim,^{25,a} H. S. Kim,^{25,a} J. E. Kim,^{25,a} M. J. Kim,^{17,a} S. H. Kim,^{50,a} S. B. Kim,^{25,a} Y. J. Kim,^{25,a} Y. K. Kim,^{11,a} N. Kimura,^{53,a} M. Kirby,^{15,a} I. Kiselevich,^{34,b} K. Knoepfel,^{15,a} J. M. Kohli,^{79,b} S. B. Kill, T. J. Kill, T. K. Kill, T. K. Kill, W. Kilda, W. Kildy, T. Kiselevieli, K. Kildepiel, J. W. Kolli,
K. Kondo,^{53,a,c} D. J. Kong,^{25,a} J. Konigsberg,^{16,a} A. V. Kotwal,^{14,a} A. V. Kozelov,^{88,b} J. Kraus,^{108,b} M. Kreps,^{24,a} J. Kroll,^{41,a}
M. Kruse,^{14,a} T. Kuhr,^{24,a} A. Kumar,^{112,b} A. Kupco,^{64,b} M. Kurata,^{50,a} T. Kurča,^{73,b} V. A. Kuzmin,^{87,b} A. T. Laasanen,^{44,a}
S. Lammel,^{15,a} S. Lammers,^{101,b} M. Lancaster,^{28,a} K. Lannon,^{36,a,z} G. Latino,^{42c,42a,a} P. Lebrun,^{73,b} H. S. Lee,^{83,b}
H. S. Lee,^{25,a} J. S. Lee,^{25,a} S. W. Lee,^{104,b} W. M. Lee,^{97,b} X. Lei,^{95,b} J. Lellouch,^{70,b} S. Leo,^{42a,a} S. Leone,^{42a,a} J. D. Lewis,^{15,a} D. Li,^{70,b} H. Li,^{122,b} L. Li,^{96,b} Q. Z. Li,^{15,b} J. K. Lim,^{83,b} A. Limosani,^{14,a,u} D. Lincoln,^{15,b} J. Linnemann,^{33,b} V. V. Lipaev,^{88,b} E. Lipeles,^{41,a} R. Lipton,^{15,b} A. Lister,^{18,a,d} H. Liu,^{52,a} H. Liu,^{120,b} Q. Liu,^{44,a} T. Liu,^{15,a} Y. Liu,^{60,b} A. Lobodenko,^{89,b} S. Lockwitz,^{56,a} A. Loginov,^{56,a} M. Lokajicek,^{64,b} R. Lopes de Sa,^{113,b} D. Lucchesi,^{40b,40a,a} A. Lucà,^{17,a} J. Lueck,^{24,a} P. Lujan,^{26,a} P. Lukens,^{15,a} R. Luna-Garcia,^{84,b,rr} G. Lungu,^{46,a} A. L. Lyon,^{15,b} J. Lys,^{26,a} R. Lysak,^{12,a,g} A. K. A. Maciel,^{57,b} R. Madar,^{75,b} R. Madrak,^{15,a} P. Maestro,^{42c,42a,a} R. Magaña-Villalba,^{84,b} S. Malik,^{46,a} S. Malik,^{109,b} V. L. Malyshev,^{13,b} G. Manca,^{27,a,e} A. Manousakis-Katsikakis,^{3,a} J. Mansour,^{76,b} L. Marchese,^{6a,a,kk} F. Margaroli,^{47a,a} P. Marino,^{42d,42a,a} J. Martínez-Ortega,^{84,b} M. Martínez,^{4,a} K. Matera,^{22,a} M. E. Mattson,^{54,a} A. Mazzacane,^{15,a} P. Mazzanti,^{6a,a} R. McCarthy,^{113,b} C. L. McGivern,^{94,b} R. McNulty,^{27,a,l} A. Mehta,^{27,a} P. Mehtala,^{21,a} M. M. Meijer,^{85,86,b} A. Melnitchouk,^{15,b} D. Menezes,^{99,b} P. G. Mercadante,^{59,b} M. Merkin,^{87,b} C. Mesropian,^{46,a} A. Meyer,^{74,b} J. Meyer,^{76,b,tt} T. Miao, ^{15,a} F. Miconi, ^{72,b} D. Mietlicki, ^{32,a} A. Mitra, ^{1,a} H. Miyake, ^{50,a} S. Moed, ^{15,a} N. Moggi, ^{6a,a} N. K. Mondal, ^{81,b} H. E. Montgomery, ^{15,b,vv} C. S. Moon, ^{15,a,bb} R. Moore, ^{15,a,gg,hh} M. J. Morello, ^{42d,42a,a} A. Mukherjee, ^{15,a} M. Mulhearn, ^{122,b} M. Paulini,^{10,a} C. Paus,^{30,a} B. Penning,^{15,b} M. Perfilov,^{87,b} Y. Peters,^{76,b} K. Petridis,^{94,b} G. Petrillo,^{45,b} P. Pétroff,^{69,b} T. J. Phillips,^{14,a} G. Piacentino,^{42a,a} E. Pianori,^{41,a} J. Pilot,^{7,a} K. Pitts,^{22,a} C. Plager,^{8,a} M.-A. Pleier,^{114,b} V. M. Podstavkov,^{15,b} L. Pondrom,^{55,a} A. V. Popov,^{88,b} S. Poprocki,^{15,a,i} K. Potamianos,^{26,a} A. Pranko,^{26,a} M. Prewitt,^{121,b} D. Price,^{101,b} N. Prokopenko,^{88,b} F. Prokoshin,^{13,a,cc} F. Ptohos,^{17,a,j} G. Punzi,^{42b,42a,a} J. Qian,^{32,b} A. Quadt,^{76,b} B. Quinn, ^{108,b} N. Ranjan, ^{44,a} P. N. Ratoff, ^{92,b} I. Razumov, ^{88,b} I. Redondo Fernández, ^{29,a} P. Renton, ^{39,a} M. Rescigno, ^{47a,a} T. Riddick, ^{28,a} F. Rimondi, ^{6a,a,c} I. Ripp-Baudot, ^{72,b} L. Ristori, ^{42a,15,a} F. Rizatdinova, ^{117,b} A. Robson, ^{19,a} T. Rodriguez, ^{41,a} S. Rolli, ^{51,a,k} M. Rominsky, ^{15,b} M. Ronzani, ^{42b,42a,a} R. Roser, ^{15,a} J. L. Rosner, ^{11,a} A. Ross, ^{92,b} C. Royon, ^{71,b} P. Rubinov, ^{15,b} R. Ruchti, ^{103,b} F. Ruffini, ^{42c,42a,a} A. Ruiz, ^{9,a} J. Russ, ^{10,a} V. Rusu, ^{15,a} G. Sajot, ^{67,b} W. K. Sakumoto, ^{45,a} Y. Sakurai, ^{53,a} A. Sánchez-Hernández, ^{84,b} M. P. Sanders, ^{78,b} L. Santi, ^{49b,49d,49a,a} A. S. Santos, ^{57,b,ss} K. Sato, ^{50,a} G. Savage, ^{15,b} V. Saveliev, ^{15,a,x} A. Savoy-Navarro, ^{15,a,bb} L. Sawyer, ^{106,b} T. Scanlon, ^{93,b} R. D. Schamberger, ^{113,b} Y. Scheglov, ^{89,b} H. Schellman, ^{100,b} P. Schlabach, ^{15,a} E. E. Schmidt, ^{15,a} C. Schwanenberger, ^{94,b} T. Schwarz, ^{32,a} R. Schwienhorst, ^{33,b} L. Scodellaro, ^{9,a} F. Scuri, ^{42a,a} S. Seidel, ^{35,a} Y. Seiya, ^{38,a} J. Sekaric, ^{105,b} A. Semenov, ^{13,a} H. Severini, ^{116,b} F. Sforza, ^{42b,42a,a} E. Shabalina,^{76,b} S. Z. Shalhout,^{7,a} V. Shary,^{71,b} S. Shaw,^{33,b} A. A. Shchukin,^{88,b} T. Shears,^{27,a} R. Shekhar,^{14,a} P. F. Shepard,^{43,a} M. Shimojima,^{50,a,w} M. Shochet,^{11,a} V. Simak,^{63,b} A. Simonenko,^{13,a} P. Skubic,^{116,b} P. Slattery,^{45,b} K. Sliwa,^{51,a} D. Smirnov,^{103,b} J. R. Smith,^{7,a} F. D. Snider,^{15,a} G. R. Snow,^{109,b} J. Snow,^{115,b} S. Snyder,^{114,b} S. Söldner-Rembold,^{94,b} H. Song,^{43,a} L. Sonnenschein,^{74,b} V. Sorin,^{4,a} K. Soustruznik,^{62,b} R. St. Denis,^{19,a} M. Stancari,^{15,a} J. Stark,^{67,b} O. Stelzer-Chilton,^{31,a} D. Stentz,^{15,a,y} D. A. Stoyanova,^{88,b} M. Strauss,^{116,b} J. Strologas,^{35,a} Y. Sudo,^{50,a} A. Sukhanov,^{15,a} I. Suslov,^{13,a} L. Suter,^{94,b} P. Svoisky,^{116,b} K. Takemasa,^{50,a} Y. Takeuchi,^{50,a} J. Tang,^{11,a} M. Tecchio,^{32,a} I. Sukhanov, T. Sukhov, E. Sukh, F. Svolsky, K. Takemasa, T. Takeuchi, J. Tang, M. Tecchio, J. Sukhanov, T. Sukhov, E. Sukhanov, T. Svolsky, K. Takemasa, T. Takeuchi, J. Tang, M. Tecchio, J. Tang, A. S. M. Tecchio, J. Sukhanov, J. L. S. Vertogradov,^{42d,42a,b} M. Verzocchi,^{13,b} M. Vesterinen,^{15,b} M. Vidal,^{94,a} D. Vilanova,^{44,b} R. Vilar,^{71,a} J. Vizán,^{9,a} M. Vogel,^{9,a,ee} P. Vokac,^{35,b} G. Volpi,^{63,a} F. Vázquez,^{17,a} P. Wagner,^{41,a} H. D. Wahl,^{97,b} R. Wallny,^{15,a,m}

M. H. L. S. Wang,^{15,b} S. M. Wang,^{1,a} J. Warchol,^{103,b} D. Waters,^{28,a} G. Watts,^{123,b} M. Wayne,^{103,b} J. Weichert,^{77,b}

L. Welty-Rieger,^{100,b} W. C. Wester III,^{15,a} D. Whiteson,^{41,a,f} A. B. Wicklund,^{2,a} S. Wilbur,^{7,a} H. H. Williams,^{41,a}
M. R. J. Williams,^{101,b} G. W. Wilson,^{105,b} J. S. Wilson,^{32,a} P. Wilson,^{15,a} B. L. Winer,^{36,a} P. Wittich,^{15,a,i} M. Wobisch,^{106,b}
S. Wolbers,^{15,a} H. Wolfe,^{36,a} D. R. Wood,^{107,b} T. Wright,^{32,a} X. Wu,^{18,a} Z. Wu,^{5,a} T. R. Wyatt,^{94,b} Y. Xie,^{15,b} S. Yacoob,^{100,b}
R. Yamada,^{15,b} K. Yamamoto,^{38,a} D. Yamato,^{38,a} S. Yang,^{60,b} T. Yang,^{15,a} U. K. Yang,^{25,a} Y. C. Yang,^{25,a} W.-M. Yao,^{26,a}
T. Yasuda,^{15,b} Y. A. Yatsunenko,^{13,b} W. Ye,^{113,b} Z. Ye,^{15,b} G. P. Yeh,^{15,a} K. Yi,^{15,a,p} H. Yin,^{15,b} K. Yip,^{114,b}
J. Yoh,^{15,a} K. Yorita,^{53,a} T. Yoshida,^{38,a,n} S. W. Youn,^{15,b} G. B. Yu,^{14,a} I. Yu,^{25,a} J. M. Yu,^{32,b} A. M. Zanetti,^{49a,a}
Y. Zeng,^{14,a} J. Zennamo,^{112,b} T. G. Zhao,^{94,b} B. Zhou,^{32,b} C. Zhou,^{14,a} J. Zhu,^{32,b} M. Zielinski,^{45,b} D. Zieminska,^{101,b}

(^aCDF Collaboration) (^bD0 Collaboration)

¹Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

Argonne National Laboratory, Argonne, Illinois 60439, USA

³University of Athens, 157 71 Athens, Greece

⁴Institut de Fisica d'Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain

⁵Baylor University, Waco, Texas 76798, USA

^{6a}Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy

^{6b}University of Bologna, I-40127 Bologna, Italy

⁷University of California, Davis, Davis, California 95616, USA

⁸University of California, Los Angeles, Los Angeles, California 90024, USA

⁹Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

¹⁰Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

¹¹Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

¹²Comenius University, 842 48 Bratislava, Slovakia and Institute of Experimental Physics, 040 01 Kosice, Slovakia

¹³Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

¹⁴Duke University, Durham, North Carolina 27708, USA

¹⁵Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

¹⁶University of Florida, Gainesville, Florida 32611, USA

¹⁷Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

¹⁸University of Geneva, CH-1211 Geneva 4, Switzerland

¹⁹Glasgow University, Glasgow G12 8QQ, United Kingdom

²⁰Harvard University, Cambridge, Massachusetts 02138, USA

²¹Department of Physics, Division of High Energy Physics, University of Helsinki, FIN-00014, Helsinki, Finland

and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

²²University of Illinois, Urbana, Illinois 61801, USA

²³The Johns Hopkins University, Baltimore, Maryland 21218, USA

²⁴Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany

²⁵Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;

Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea;

Korea Institute of Science and Technology Information, Daejeon 305-806, Korea;

Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea;

and Ewha Womans University, Seoul, 120-750, Korea

²⁶Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

²⁷University of Liverpool, Liverpool L69 7ZE, United Kingdom

²⁸University College London, London WC1E 6BT, United Kingdom

²⁹Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain

³⁰Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

³¹Institute of Particle Physics: McGill University, Montréal, Québec H3A 2T8, Canada; Simon Fraser University, Burnaby,

British Columbia V5A 1S6, Canada; University of Toronto, Toronto, Ontario M5S 1A7, Canada;

and TRIUMF, Vancouver, British Columbia V6T 2A3, Canada

³²University of Michigan, Ann Arbor, Michigan 48109, USA

³³Michigan State University, East Lansing, Michigan 48824, USA

³⁴Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

³⁵University of New Mexico, Albuquerque, New Mexico 87131, USA

³⁶The Ohio State University, Columbus, Ohio 43210, USA

³⁷Okayama University, Okayama 700-8530, Japan

³⁸Osaka City University, Osaka 558-8585, Japan

³⁹University of Oxford, Oxford OX1 3RH, United Kingdom ^{40a}Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy ^{40b}University of Padova, I-35131 Padova, Italy ⁴¹University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA ^{42a}Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy ^{42b}University of Pisa, I-56127 Pisa, Italy ^{42c}University of Siena, I-56127 Pisa, Italy ^{42d}Scuola Normale Superiore, I-56127 Pisa, Italy ^{42e}INFN Pavia, I-27100 Pavia, Italy ^{42f}University of Pavia, I-27100 Pavia, Italy ⁴³University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA ⁴⁴Purdue University, West Lafayette, Indiana 47907, USA ⁴⁵University of Rochester, Rochester, New York 14627, USA ⁴⁶The Rockefeller University, New York, New York 10065, USA ^{47a}Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy ^{47b}Sapienza Università di Roma, I-00185 Roma, Italy ⁴⁸Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA ^{49a}Istituto Nazionale di Fisica Nucleare Trieste, I-34127 Trieste, Italy ^{49b}Gruppo Collegato di Udine, I-34127 Trieste, Italy ⁴⁹*c*University of Udine, I-33100 Udine, Italy ^{49d}University of Trieste, I-34127 Trieste, Italy ⁵⁰University of Tsukuba, Tsukuba, Ibaraki 305, Japan ⁵¹Tufts University, Medford, Massachusetts 02155, USA ⁵²University of Virginia, Charlottesville, Virginia 22906, USA ⁵³Waseda University, Tokyo 169, Japan ⁵⁴Wayne State University, Detroit, Michigan 48201, USA ⁵⁵University of Wisconsin, Madison, Wisconsin 53706, USA ⁵⁶Yale University, New Haven, Connecticut 06520, USA ⁵⁷LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil ⁵⁸Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ⁵⁹Universidade Federal do ABC, Santo André, Brazil ⁶⁰University of Science and Technology of China, Hefei, People's Republic of China ⁶¹Universidad de los Andes, Bogotá, Colombia ⁶²Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic ⁶³Czech Technical University in Prague, Prague, Czech Republic ⁶⁴Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic ⁶⁵Universidad San Francisco de Quito, Quito, Ecuador ⁶⁶LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France ⁶⁷LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France ⁶⁸CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France ⁶⁹LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France ⁷⁰LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France ⁷¹CEA, Irfu, SPP, Saclay, France ⁷²IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France ⁷³IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France ⁷⁴III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany ⁷⁵Physikalisches Institut, Universit Freiburg, Freiburg, Germany ⁷⁶II. Physikalisches Institut, Georg-August-Universitt Gttingen, Gttingen, Germany ⁷⁷Institut für Physik, Universitt Mainz, Mainz, Germany ⁷⁸Ludwig-Maximilians-Universitt München, München, Germany ⁷⁹Panjab University, Chandigarh, India ⁸⁰Delhi University, Delhi, India ⁸¹Tata Institute of Fundamental Research, Mumbai, India ⁸²University College Dublin, Dublin, Ireland ⁸³Korea Detector Laboratory, Korea University, Seoul, Korea ⁸⁴CINVESTAV, Mexico City, Mexico ⁸⁵Nikhef, Science Park, Amsterdam, The Netherlands ⁸⁶Radboud University Nijmegen, Nijmegen, The Netherlands ⁸⁷Moscow State University, Moscow, Russia ⁸⁸Institute for High Energy Physics, Protvino, Russia ⁸⁹Petersburg Nuclear Physics Institute, St. Petersburg, Russia

⁹⁰Institució Catalana de Recerca i Estudis Avanats (ICREA) and Institut de Física d'Altes Energies (IFAE), Barcelona, Spain ⁹¹Uppsala University, Uppsala, Sweden ⁹²Lancaster University, Lancaster LA1 4YB, United Kingdom ⁹³Imperial College London, London SW7 2AZ, United Kingdom ⁹⁴The University of Manchester, Manchester M13 9PL, United Kingdom ⁹⁵University of Arizona, Tucson, Arizona 85721, USA ⁹⁶University of California Riverside, Riverside, California 92521, USA ⁹⁷Florida State University, Tallahassee, Florida 32306, USA ⁹⁸University of Illinois at Chicago, Chicago, Illinois 60607, USA ⁹⁹Northern Illinois University, DeKalb, Illinois 60115, USA ¹⁰⁰Northwestern University, Evanston, Illinois 60208, USA ¹⁰¹Indiana University, Bloomington, Indiana 47405, USA ¹⁰²Purdue University Calumet, Hammond, Indiana 46323, USA ¹⁰³University of Notre Dame, Notre Dame, Indiana 46556, USA ¹⁰⁴Iowa State University, Ames, Iowa 50011, USA ¹⁰⁵University of Kansas, Lawrence, Kansas 66045, USA ¹⁰⁶Louisiana Tech University, Ruston, Louisiana 71272, USA ¹⁰⁷Northeastern University, Boston, Massachusetts 02115, USA ¹⁰⁸University of Mississippi, University, Mississippi 38677, USA ¹⁰⁹University of Nebraska, Lincoln, Nebraska 68588, USA ¹¹⁰Rutgers University, Piscataway, New Jersey 08855, USA ¹¹¹Princeton University, Princeton, New Jersey 08544, USA ¹¹²State University of New York, Buffalo, New York 14260, USA ¹¹³State University of New York, Stony Brook, New York 11794, USA ¹¹⁴Brookhaven National Laboratory, Upton, New York 11973, USA ¹¹⁵Langston University, Langston, Oklahoma 73050, USA ¹¹⁶University of Oklahoma, Norman, Oklahoma 73019, USA ¹¹⁷Oklahoma State University, Stillwater, Oklahoma 74078, USA ¹¹⁸Brown University, Providence, Rhode Island 02912, USA ¹¹⁹University of Texas, Arlington, Texas 76019, USA ¹²⁰Southern Methodist University, Dallas, Texas 75275, USA ¹²¹Rice University, Houston, Texas 77005, USA ¹²²University of Virginia, Charlottesville, Virginia 22904, USA ¹²³University of Washington, Seattle, Washington 98195, USA (Received 29 July 2013; published 23 September 2013)

We summarize and combine direct measurements of the mass of the W boson in $\sqrt{s} = 1.96$ TeV proton-antiproton collision data collected by CDF and D0 experiments at the Fermilab Tevatron Collider. Earlier measurements from CDF and D0 are combined with the two latest, more precise measurements: a CDF measurement in the electron and muon channels using data corresponding to 2.2 fb⁻¹ of integrated

^cDeceased.

^eVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

^fVisitor from University of California Irvine, Irvine, CA 92697, USA.

^JVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.

^oVisitor from Universidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal.

- ^sVisitor from Brookhaven National Laboratory, Upton, NY 11973, USA.
- ^tVisitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.
- ^uVisitor from University of Melbourne, Victoria 3010, Australia.

^dVisitor from University of British Columbia, Vancouver, BC V6T 1Z1, Canada.

^gVisitor from Institute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic.

^hVisitor from CERN, CH-1211 Geneva, Switzerland.

ⁱVisitor from Cornell University, Ithaca, NY 14853, USA.

^kVisitor from Office of Science, U.S. Department of Energy, Washington, DC 20585, USA.

¹Visitor from University College Dublin, Dublin 4, Ireland.

^mVisitor from ETH, 8092 Zürich, Switzerland.

ⁿVisitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

^pVisitor from University of Iowa, Iowa City, IA 52242, USA.

^qVisitor from Kinki University, Higashi-Osaka City, Japan 577-8502.

^rVisitor from Kansas State University, Manhattan, KS 66506, USA.

^vVisitor from Muons, Inc., Batavia, IL 60510, USA.

^wVisitor from Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan.

luminosity, and a D0 measurement in the electron channel using data corresponding to 4.3 fb⁻¹ of integrated luminosity. The resulting Tevatron average for the mass of the W boson is $M_W = 80387 \pm 16$ MeV. Including measurements obtained in electron-positron collisions at LEP yields the most precise value of $M_W = 80385 \pm 15$ MeV.

DOI: 10.1103/PhysRevD.88.052018

PACS numbers: 14.70.Fm, 12.15.Ji, 13.38.Be, 13.85.Qk

I. INTRODUCTION

In the standard model (SM), quantum corrections to the mass of the W boson (M_W) are dominated by contributions dependent on the mass of the top quark (m_t) , the mass of the Higgs boson (M_H) , the mass of the Z boson (M_Z) , and the fine-structure constant α . A precise measurement of M_W and m_t thus constrains M_H , once M_Z and α are known. Comparing this constraint with the mass of the Higgs boson recently discovered at the LHC [1] is a critical test of its nature and the consistency of the SM. Details of the experimental methods used in measurements of M_W are discussed in Ref. [2]. Prior to the combination reported here, the uncertainty on the world average M_W was 23 MeV [3,4]. Direct measurements of m_t at the Fermilab Tevatron collider have a combined uncertainty of 0.94 GeV [5], and the uncertainty on M_W would have to be 6 MeV [6] to provide equally constraining information on M_H . The experimental precision on the measured M_W is therefore currently the limiting factor on the constraints.

The CDF and D0 experiments at the Fermilab Tevatron proton-antiproton collider reported several direct measurements of the natural width [7] and mass [8–18] of the W boson, using the $e\nu_e$ and $\mu\nu_{\mu}$ decay modes of the W boson. Measurements of M_W have been reported by CDF

with data sets collected during 1988–1989 [8], 1992–1993 [9], 1994–1995 [10], and 2001–2004 [11] and by D0 using data taken during 1992–1995 [12–15] and 2002–2006 [16].

This article describes a combination of M_W measurements including recent measurements from CDF using the 2002–2007 data set [17] and D0 using the 2006–2009 data set [18] denoted below as CDF (2012) and D0 (2012), respectively. The recent CDF (2012) measurement supersedes the previous measurement [11], which was based on an integrated luminosity of 200 pb⁻¹ and was used in previous combinations [3,19]. The combination takes into account the statistical and systematic uncertainties as well as correlations among systematic uncertainties and supersedes the previous combinations [3,19,20]. All the combinations presented in this article are done using the best linear unbiased estimator (BLUE) method [21], which prescribes the construction of a covariance matrix from partially correlated measurements.

II. W-BOSON MASS MEASUREMENT STRATEGY AT THE TEVATRON

At the Tevatron, W bosons are primarily produced in quark-antiquark annihilation, $q\overline{q'} \rightarrow W + X$, where X can include QCD radiation, such as initial-state gluon

^{aa}Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.

- ^{ee}Visitor from Universite catholique de Louvain, 1348 Louvain-La-Neuve, Belgium.
- ^{ff}Visitor from University of Zürich, 8006 Zürich, Switzerland.
- ^{gg}Visitor from Massachusetts General Hospital, Boston, MA 02114 USA.

- ⁱⁱVisitor from Hampton University, Hampton, VA 23668, USA.
- ^{ij}Visitor from Los Alamos National Laboratory, Los Alamos, NM 87544, USA.
- ^{kk}Visitor from Università degli Studi di Napoli Federico I, I-80138 Napoli, Italy.
- ¹¹Visitor from Augustana College, Sioux Falls, SD, USA.
- ^{mm}Visitor from The University of Liverpool, Liverpool, United Kingdom.
- ⁿⁿVisitor from DESY, Hamburg, Germany.

^{pp}Visitor from SLAC, Menlo Park, CA, USA.

- ^{rr}Visitor from Centro de Investigacion en Computacion IPN, Mexico City, Mexico.
- ^{ss}Visitor from Universidade Estadual Paulista, So Paulo, Brazil.

^{uu}Visitor from Office of Science, U.S. Department of Energy, Washington, D.C. 20585, USA.

^xVisitor from National Research Nuclear University, Moscow 115409, Russia.

^yVisitor from Northwestern University, Evanston, IL 60208, USA.

^zVisitor from University of Notre Dame, Notre Dame, IN 46556, USA.

^{bb}Visitor from CNRS-IN2P3, Paris, F-75205 France.

^{cc}Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.

^{dd}Visitor from The University of Jordan, Amman 11942, Jordan.

hhVisitor from Harvard Medical School, Boston, MA 02114 USA.

^{oo}Visitor from Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.

^{qq}Visitor from University College London, London, United Kingdom.

^{tt}Visitor from Karlsruher Institut für Technologie (KIT)-Steinbuch Centre for Computing (SCC).

^{vv}Visitor from Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA.

radiation, that results in measurable hadronic-recoil energy. The W-boson mass is measured using low-background samples of $W \rightarrow \ell \nu_{\ell}$ decays ($\ell = e, \mu$ at CDF and $\ell =$ e at D0) that are reconstructed using the CDF [22] and D0 [23] detectors. The mass is determined using three kinematic variables measured in the plane perpendicular to the beam direction: the transverse momentum of the charged lepton (p_T^{ℓ}) , the transverse momentum of the neutrino (p_T^{ν}) , and the transverse mass $m_T^\ell = \sqrt{2p_T^\ell p_T^\nu (1 - \cos \Delta \phi)}$, where $\Delta \phi$ is the opening angle between the lepton and neutrino momenta in the plane transverse to the beam. The magnitude and direction of p_T^{ν} is inferred from the vector mass is extracted from maximum-likelihood fits to the binned distributions of the observed p_T^{ℓ} , $\not\!\!\!E_T^{\ell}$, and m_T^{ℓ} values using a parametrized simulation of these distributions as a function of M_W . These simulations depend on the kinematic distributions of the W-boson decay products and also on detector effects that are constrained using theoretical calculations and control samples. The kinematic distributions are determined by several effects including the W-boson transverse momentum $p_T(W)$ and the parton distribution functions (PDFs) of the interacting protons and antiprotons. Major detector effects include energy response to leptons, hadronic recoil, the response to QED radiation, and multiple-interaction pileup, together with calorimeter acceptance effects and lepton-identification efficiencies. The detailed simulations developed at CDF and D0 enable the study of these effects to better than 1 part in 10⁴ precision on the observed value of M_W .

In the CDF (2012) and D0 (2012) measurements, the kinematic properties of *W*-boson production and decay are simulated using RESBOS [25], which is a next-to-leading order generator that includes next-to-next-to-leading logarithm resummation of soft gluons at low boson p_T [26]. The momenta of interacting partons in RESBOS are calculated as fractions of the colliding (anti)proton momenta using the CTEQ6.6 [27] PDFs. The radiation of photons from final-state leptons is simulated using PHOTOS [28].

III. CDF (2012) AND D0 (2012) MEASUREMENTS

A. CDF measurement

The CDF (2012) measurement uses data corresponding to an integrated luminosity of 2.2 fb⁻¹, collected between 2002 and 2007. Both the muon $(W \rightarrow \mu \nu_{\mu})$ and electron $(W \rightarrow e\nu_e)$ channels are considered. Decays of J/ψ and Y mesons into muon pairs are reconstructed in a central tracking system to establish the absolute momentum scale. A measurement of the Z-boson mass (M_Z) in $Z \rightarrow \mu\mu$ decays is performed as a consistency check. This measurement, which uses the tracking detector, yields $M_Z =$ 91180±12(stat)±10(syst) MeV, consistent with the world average mass of 91188±2 MeV [29], and is therefore also used as an additional constraint on the momentum scale. The electromagnetic calorimeter energy scale and nonlinearity are determined by fitting the peak of the E/p distribution of electrons from $W \rightarrow e\nu$ and $Z \rightarrow ee$ decays, where *E* is the energy measured in the calorimeter and *p* is the momentum of the associated charged particle. The lower tail of the E/p distribution is used to determine the amount of material in the tracking detector. The *Z*-boson mass measured in $Z \rightarrow ee$ decays is used as a consistency check and to constrain the energy scale. The value of $M_Z = 91230 \pm 30(\text{stat}) \pm 14(\text{syst})$ MeV from the calorimetric measurement is also consistent with the world average.

B. D0 measurement

The D0 (2012) measurement uses data corresponding to 4.3 fb^{-1} of integrated luminosity recorded between 2006 and 2009. D0 calibrates the calorimeter energy scale using $Z \rightarrow ee$ decays. Corrections for energy lost in uninstrumented regions are based on a comparison between the shower-development profiles from data and from a detailed GEANT-based simulation [30] of the D0 detector. The world average value for M_{Z} [29] is used to determine the absolute energy scale of the calorimeter, which is thereafter used to correct the measurement of the electron energy from the W-boson decay. This M_W measurement is therefore equivalent to a measurement of the ratio of W- and Z-boson masses. This calibration method eliminates many systematic uncertainties common to the W- and Z-boson mass measurements, but its precision is limited by the size of the available Z-boson data set.

The results obtained with the two most sensitive observables m_T^e and p_T^e are combined to determine the *W*-boson mass of $M_W = 80367 \pm 13(\text{stat}) \pm 22(\text{syst}) \text{ MeV}$. A summary of the uncertainties is presented in Table II.

TABLE I. Uncertainties of the CDF (2012) M_W measurement determined from the combination of the six measurements.

Source	Uncertainty (MeV)		
Lepton energy scale and resolution	7		
Recoil energy scale and resolution	6		
Lepton removal from recoil	2		
Backgrounds	3		
Experimental subtotal	10		
Parton distribution functions	10		
QED radiation	4		
$p_T(W)$ model	5		
Production subtotal	12		
Total systematic uncertainty	15		
W-boson event yield	12		
Total uncertainty	19		

T. AALTONEN et al.

TABLE II. Uncertainties of the D0 (2012) M_W measurement determined from the combination of the two most sensitive observables m_T^e and p_T^e .

Source	Uncertainty (MeV)
Electron energy calibration	16
Electron resolution model	2
Electron shower modeling	4
Electron energy loss model	4
Recoil energy scale and resolution	5
Electron efficiencies	2
Backgrounds	2
Experimental subtotal	18
Parton distribution functions	11
QED radiation	7
$p_T(W)$ model	2
Production subtotal	13
Total systematic uncertainty	22
W-boson event yield	13
Total uncertainty	26

This D0 (2012) measurement is combined with a previous D0 measurement [16] corresponding to an integrated luminosity of 1.0 fb⁻¹, which uses data recorded between 2002 and 2006, to yield $M_W = 80375 \pm 11(\text{stat}) \pm 20(\text{syst})$ MeV.

IV. COMBINATION WITH PREVIOUS TEVATRON MEASUREMENTS

The CDF measurements from Ref. [8] (1988–1989) and Ref. [9] (1992–1993) were made using superseded PDF sets and have been corrected [19] using recent PDF sets. The previous results are also adjusted to use the same combination technique (the BLUE method) as in later combinations. The templates for fitting M_W assume the Breit-Wigner running-width scheme propagator, $1/(\hat{s} - M_W^2 + i\hat{s}\Gamma_W/M_W)$, which makes the value of M_W determined by the fit dependent on Γ_W . Here, \hat{s} is the square of the center-of-mass energy in the parton reference frame and Γ_W is the total width of the W boson. Different measurements have used different values of Γ_W , yielding a shift in measured values of the W-boson mass [19], $\Delta M_W = -(0.15 \pm 0.05) \Delta \Gamma_W$, where $\Delta \Gamma_W$ is the difference between the value of Γ_W predicted by the SM, $\Gamma_W =$ 2092.2 ± 1.5 MeV [31], and that used in a particular analysis. The prediction of Γ_W assumes $M_W = 80385 \pm$ 15 MeV, which is a preliminary world-average combination result [32] of this article. The impact of the corrections on the final M_W combination reported in this article is found to be less than 0.2 MeV. Table III summarizes all inputs to the combination and the corrections made to ensure consistency across measurements.

V. CORRELATIONS IN THE CDF AND D0 M_W MEASUREMENTS

The increased statistical power of CDF (2012) and D0 (2012) M_W measurements necessitates a more detailed treatment of the systematic uncertainties due to the *W*-boson production and decay model that are independent of the data-sample size. We assume that for each uncertainty category, the smallest uncertainty across measurements is fully correlated while excesses above that level are generally assumed to be due to uncorrelated differences between measurements. One exception corresponds to the two D0 measurements that use very similar models and are treated as fully correlated [16,18].

The experimental systematic uncertainties of the D0 measurement are dominated by the uncertainty in the

	CDF [8]	CDF [9]	CDF [10]	D0 [12–15]	D0 [16]	CDF [17]	D0 [18]
_	(1988–1989)	(1992–1993)	(1994–1995)	(1992–1995)	(2002–2006)	(2002–2007)	(2006–2009)
-	4.4 pb^{-1}	18.2 pb ⁻¹	84 pb ⁻¹	95 pb ⁻¹	$1.0 {\rm ~fb^{-1}}$	2.2 fb^{-1}	4.3fb^{-1}
Mass and width							
M_W	79 910	80 410	80 470	80 483	80 400	80 387	80 367
Γ_W	2 100	2 064	2 096	2 062	2 099	2 094	2 100
M_W uncertainties							
PDF	60	50	15	8	10	10	11
Radiative corrections	10	20	5	12	7	4	7
Γ_W	0.5	1.4	0.3	1.5	0.4	0.2	0.5
Total	390	181	89	84	43	19	26
M_W corrections							
$\Delta\Gamma_W$	+1.2	-4.2	+0.6	-4.5	+1.1	+0.3	+1.2
PDF	+20	-25	0	0	0	0	0
Fit method	-3.5	-3.5	-0.1	0	0	0	0
Total	+17.7	-32.7	+0.5	-4.5	+1.1	+0.3	+1.2
M_W corrected	79 927.7	80 377.3	80 470.5	80 478.5	80 401.8	80 387.3	80 368.6

TABLE III. The input data used in the M_W combination. All entries are in units of MeV.

TABLE IV. Relative weights of the contributions to the combined Tevatron measurement of M_W .

Measurement	Relative weight in %		
CDF [8]	0.1		
CDF [9]	0.5		
CDF [10]	1.9		
D0 [12–15]	2.8		
D0 [16]	7.9		
CDF [17]	60.3		
D0 [18]	26.5		

energy scale for electrons and are nearly purely of statistical origin, as they are derived from the limited sample of $Z \rightarrow ee$ decays. CDF uses independent data from the central tracker to set the muon and electron energy scales. Thus, we assume no correlations between the experimental uncertainties of CDF and D0, or between independent measurements by either experiment.

Three sources of systematic uncertainty due to modeling of the production and decay of W and Z bosons are assumed to be at least partially correlated across all Tevatron measurements: (1) the choice of PDF sets, (2) the assumed Γ_W value, and (3) the electroweak radiative corrections.

A. PDF sets

Both experiments use the CTEQ6.6 [27] PDF set in their *W*-boson production model. D0 uses the CTEQ6.1 [33] uncertainty set to estimate the PDF uncertainties, while CDF uses MSTW2008 [34] and checks consistency with the CTEQ6.6 uncertainty set. Since these PDF sets are similar and rely on common inputs, the uncertainties introduced by PDFs in the recent measurements are assumed to be correlated and treated using the prescription for partial correlations described above.

B. Assumed Γ_W value

We assume that the small uncertainty due to Γ_W is fully correlated across all measurements.

C. QED radiative corrections

Current estimates of the uncertainties due to electroweak radiative corrections include a significant statistical component due to the size of the simulated data sets used in the uncertainty-propagation studies. The PHOTOS [28] radiative correction model is used in the recent measurements with consistency checks from W(Z)GRAD [35] and HORACE [36]. These studies yield model differences consistent within statistical uncertainties. We assume that uncertainties from purely theoretical sources, totaling 3.5 MeV, are correlated while remaining uncertainties, partially dependent on detector geometry, are uncorrelated.

VI. COMBINATION OF TEVATRON M_W MEASUREMENTS

The measurements of M_W obtained at Tevatron experiments included in this combination are given in Table III and include both the latest measurements [17,18] discussed above, but exclude the superseded 0.2 fb⁻¹ CDF measurement [11]. Table IV shows the relative weight of each measurement in the combination. The combined value of the W-boson mass obtained from measurements performed at Tevatron experiments is

$$M_W = 80387 \pm 16$$
 MeV. (1)

The χ^2 for the combination is 4.2 for 6 degrees of freedom, with a probability of 64%. The global correlation matrix for the seven measurements is shown in Table V.

VII. WORLD AVERAGE

We also combine the Tevatron measurements with the value $M_W = 80376 \pm 33$ MeV determined from $e^+e^- \rightarrow W^+W^-$ production at LEP [29]. Assuming no correlations, this yields the currently most precise value of the W boson mass of

$$M_W = 80385 \pm 15$$
 MeV. (2)

The combination of the seven statistically independent Tevatron measurements and the LEP measurement yields a χ^2 of 4.3 for 7 degrees of freedom with a probability of 74%. Figure 1 shows the individual measurements and the most recent combined world average of M_W .

VIII. SUMMARY

The latest high-precision measurements of M_W performed at the CDF and D0 experiments, combined with

TABLE V. Correlation coefficients among measurements.

	CDF [8]	CDF [9]	CDF [10]	D0 [12–15]	D0 [<mark>16</mark>]	CDF [17]	D0 [18]
CDF [8]	1	0.002	0.003	0.002	0.007	0.015	0.011
CDF [9]		1	0.007	0.005	0.014	0.033	0.024
CDF [10]			1	0.009	0.029	0.066	0.049
D0 [12–15]				1	0.019	0.044	0.032
D0 [<mark>16</mark>]					1	0.137	0.137
CDF [17]						1	0.230
D0 [18]							1

FIG. 1 (color online). *W*-boson mass determinations from the CDF and D0 Run I (1989 to 1996) and Run II (2001 to 2009) measurements, the new Tevatron average, the LEP combined result [29], and the world average obtained by combining the Tevatron and LEP averages assuming no correlations between them. The world-average uncertainty (15 MeV) is indicated by the shaded band.

previous measurements by the Tevatron experiments, improve the uncertainty on the combined Tevatron M_W value to 16 MeV. The combination of this measurement with the LEP average for M_W further reduces the uncertainty to 15 MeV. The substantial improvement in the experimental precision on M_W leads to tightened indirect constraints on the mass of the SM Higgs boson. The direct measurements of the mass of the Higgs boson at the LHC [1] agree, at the level of 1.3 standard deviations, with these tightened indirect constraints [37]. This remarkable success of the standard model is also shown in Fig. 2, which includes the new world average W-boson mass, the Tevatron average top-quark mass measurement [5], and shows consistency among these with the calculation of M_W [6], assuming Higgs-boson mass determinations from the ATLAS and CMS experiments [1].

FIG. 2 (color online). The most recent world average of M_W is displayed along with the mass of the top quark m_t [5] at 68% C.L. by area. The diagonal line is the indirect prediction of M_W as a function of m_t , in the SM given by Ref. [6], assuming the measurements of the ATLAS and CMS [1] experiments of the candidate Higgs-boson masses of 126.0 GeV and 125.3 GeV respectively.

ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions and acknowledge support from the DOE and NSF (U.S.A.); ARC (Australia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); NSERC (Canada); CAS and CNSF (China); Colciencias (Colombia); MSMT and GACR (Czech Republic); the Academy of Finland; CEA and CNRS/IN2P3 (France); BMBF and DFG (Germany); DAE and DST (India); SFI (Ireland); INFN (Italy); MEXT (Japan); the Korean World Class University Program and NRF (Korea); CONACyT (Mexico); FOM (The Netherlands); MON, NRC KI, and RFBR (Russia); the Slovak R&D Agency (Slovakia); the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010 (Spain); the Swedish Research Council (Sweden); SNSF (Switzerland); STFC and the Royal Society (United Kingdom); and the A.P. Sloan Foundation (U.S.A.).

- G. Aad *et al.* (ATLAS Collaboration), Phys. Lett. B **716**, 1 (2012); S. Chatrchyan *et al.* (CMS Collaboration), Phys. Lett. B **716**, 30 (2012).
- [2] A. V. Kotwal and J. Stark, Annu. Rev. Nucl. Part. Sci. 58, 147 (2008).
- [3] CDF and D0 Collaborations, and Tevatron Electroweak Working Group, arXiv:0908.1374.
- [4] We use units where c = 1 throughout this article.
- [5] T. Aaltonen *et al.* (CDF and D0 Collaborations), Phys. Rev. D 86, 092003 (2012).
- [6] M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, Phys. Rev. D 69, 053006 (2004).
- [7] CDF and D0 Collaborations, and Tevatron Electroweak Working Group, arXiv:1003.2826.

- [9] F. Abe *et al.* (CDF Collaboration), Phys. Rev. D **52**, 4784 (1995).
- [10] T. Affolder *et al.* (CDF Collaboration), Phys. Rev. D 64, 052001 (2001).
- T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. Lett.
 99, 151801 (2007); Phys. Rev. D 77, 112001 (2008).
- [12] S. Abachi *et al.* (D0 Collaboration), Phys. Rev. Lett. 77, 3309 (1996).
- [13] B. Abbott *et al.* (D0 Collaboration), Phys. Rev. D 58, 012002 (1998).
- [14] B. Abbott *et al.* (D0 Collaboration), Phys. Rev. D 62, 092006 (2000).
- [15] V. M. Abazov *et al.* (D0 Collaboration), Phys. Rev. D 66, 012001 (2002).
- [16] V. M. Abazov *et al.* (D0 Collaboration), Phys. Rev. Lett. 103, 141801 (2009).
- [17] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. Lett. 108, 151803 (2012).
- [18] V. M. Abazov *et al.* (D0 Collaboration), Phys. Rev. Lett. 108, 151804, (2012).
- [19] CDF and D0 Collaborations, and Tevatron Electroweak Working Group, arXiv:0808.0147.
- [20] V. M. Abazov *et al.* (CDF and D0 Collaborations), Phys. Rev. D 70, 092008 (2004).
- [21] L. Lyons, D. Gibaut, and P. Clifford, Nucl. Instrum. Methods Phys. Res., Sect. A 270, 110 (1988); A. Valassi, Nucl. Instrum. Methods Phys. Res., Sect. A 500, 391 (2003).
- [22] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. D **77**, 112001 (2008).
- [23] V. M. Abazov *et al.* (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 565, 463 (2006).

- [25] C. Balázs and C.P. Yuan, Phys. Rev. D 56, 5558 (1997).
- [26] F. Landry, R. Brock, P. M. Nadolsky, and C.-P. Yuan, Phys. Rev. D 67, 073016 (2003).
- [27] P. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan, Phys. Rev. D 78, 013004 (2008).
- [28] P. Golonka and Z. Was, Eur. J. Phys. C 45, 97 (2006).
- [29] S. Schael *et al.* (ALEPH, DELPHI, L3 and OPAL, SLD Collaborations, and LEP Electroweak Working Group, SLD Electroweak, and Heavy Flavor Groups), Phys. Rep. **427**, 257 (2006); ALEPH, DELPHI, L3, OPAL Collaborations, and LEP Electroweak Working Group, Report No. CERN-PH-EP/2013-022, arXiv:1302.3415.
- [30] R. Brun and F. Carminati, CERN Program Library Long Writeup No. W5013, 1993.
- [31] P. Renton, arXiv:0804.4779; (private communication).
- [32] CDF and D0 Collaborations, and Tevatron Electroweak Working Group, arXiv:1204.0042.
- [33] D. Stump, J. Huston, J. Pumplin, W. K. Tung, H. L. Lai, S. Kuhlmann, and J. F. Owens, J. High Energy Phys. 10 (2003) 046.
- [34] A.D. Martin, W.J. Stirling, R.S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).
- [35] U. Baur, S. Keller, and D. Wackeroth, Phys. Rev. D 59, 013002 (1998).
- [36] C. M. Carloni Calame, G. Montagna, O. Nicrosini, and A. Vicini, J. High Energy Phys. 10 (2007) 109.
- [37] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, R. Kogler, K. Mönig, M. Schott, and J. Stelzer (GFitter Collaboration), Eur. Phys. J. C 72, 2205 (2012).