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Structure fluctuations in proteins affect a broad range of cell phenomena, including stability of
proteins and their fragments, allosteric transitions, and energy transfer. This study presents a
statistical-thermodynamic analysis of relationship between the sequence composition and the
distribution of residue fluctuations in protein-protein complexes. A one-node-per-residue elastic
network model accounting for the nonhomogeneous protein mass distribution and the interatomic
interactions through the renormalized inter-residue potential is developed. Two factors, a protein
mass distribution and a residue environment, were found to determine the scale of residue
fluctuations. Surface residues undergo larger fluctuations than core residues in agreement with
experimental observations. Ranking residues over the normalized scale of fluctuations yields a
distinct classification of amino acids into three groups: �i� highly fluctuating-Gly, Ala, Ser, Pro, and
Asp, �ii� moderately fluctuating-Thr, Asn, Gln, Lys, Glu, Arg, Val, and Cys, and �iii� weakly
fluctuating-Ile, Leu, Met, Phe, Tyr, Trp, and His. The structural instability in proteins possibly
relates to the high content of the highly fluctuating residues and a deficiency of the weakly
fluctuating residues in irregular secondary structure elements �loops�, chameleon sequences, and
disordered proteins. Strong correlation between residue fluctuations and the sequence composition
of protein loops supports this hypothesis. Comparing fluctuations of binding site residues �interface
residues� with other surface residues shows that, on average, the interface is more rigid than the rest
of the protein surface and Gly, Ala, Ser, Cys, Leu, and Trp have a propensity to form more stable
docking patches on the interface. The findings have broad implications for understanding
mechanisms of protein association and stability of protein structures. © 2010 American Institute of
Physics. �doi:10.1063/1.3498743�

I. INTRODUCTION

A remarkable difference between sequence compositions
of regular and irregular secondary structure elements of pro-
teins has been attracting considerable attention for more than
30 years.1–6 Amino-acid composition profiles revealed that
the irregular regions �protein loops� are enriched in Gly, Pro,
Ser, and Asp. The regular regions ��-helices and �-strands�
contain less of these amino acids. Helices are enriched in
Leu, Ala, Glu, and Gln, and �-strands are enriched in Val,
Ile, Phe, and Tyr. Amino-acid composition of protein inter-
faces has been analyzed.7–10 Despite the extensive use of the
statistics in almost all aspects of protein modeling �e.g., in
computational algorithms for the secondary structure assign-
ments �see Ref. 11 for the review�, in knowledge-based ap-
proaches to prediction of protein structures12,13 receptor-
ligand docking14–16�, the understanding of mechanisms
underlying and amino-acid propensities is still incomplete
and poses a challenge for researchers in physics and biology.
Recent discoveries of chameleon sequences, that undergo
helix-sheet transitions,17–21 and intrinsically disordered pro-
teins or fragments, that undergo order-disorder
transitions,22–24 have added interest to the problem. One way

to tackle this puzzle is to study the distribution, the scale, and
features of structural and thermal fluctuations in proteins.

Protein functionality, encoded into the sequence, is based
on a dual ability of proteins to sustain and change their
structures.25 The relationship has different degrees of sensi-
tivity to the location and the scale of changes in protein
structures �e.g., CH3 group rotations, conversions of side-
chain rotamers, cis-trans isomerization of proline, or domain
shifts�. Last 10 years demonstrated increasing popularity of
low-resolution or coarse-grained models in conjunction with
harmonic potentials, called elastic network models �ENM�,
for deciphering and modeling various large-scale structural
changes �e.g., allosteric changes in protein structures,26–29

structural changes on transition pathways,26,30–36 and global
conformational changes upon protein-protein binding37–39�.
Other applications of these models include the analysis of
Debye–Waller factors of C� atoms,29,40–45 protein-protein38,46

and protein-ligand47 docking, x-ray crystallographic
refinement,48 and structural variations in ensembles of NMR
structures.49,50

Two types of ENMs are widely used: homogeneous and
nonhomogeneous models. A homogeneous ENM is a net-
work of nodes represented by C� atoms and connected by
Hooke springs if the distance between nodes is less than a
cutoff radius.26,29,31,35–37,39,41,42 All network nodes are as-a�Electronic mail: ruvinsky@ku.edu.
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signed an equal mass that smoothes protein mass density.
The homogeneous ENM has two parameters only, the cutoff
radius and the spring force constant. Nonhomogeneous
ENMs introduce structural and interaction inhomogeneity by
assigning residue masses to the network nodes represented
by C� atoms34,45 or by assigning distance- or residue type-
dependent force constants to interacting
nodes.28,30,32,34,40,44–46,51 The effect of protein sequence
variations on the spring force constants has been considered
recently.27 Double-well ENMs are used to model large-scale
conformational transition pathways.30,31,36,52 Merging resi-
dues into rigid blocks is used to consider properties of large
macromolecules within ENM of a lower resolution.26,35,43,53

Less “extreme” coarse graining keeps three translational de-
grees of freedom of C�-based nodes and degrees of freedom
of bond angles and dihedrals �see Refs. 52, 54, and 55�.

In the context of nonhomogeneous ENMs, we present a
novel method to account for the protein mass distribution
and interatomic contacts within the coarse-grained model.
We move network nodes from C� atoms to the centers of
mass of protein residues to bring in the effects of side chains
into the model. We derive a modified Tirion-like potential56

to bring in structural details of the atomic level and put for-
ward a statistical-thermodynamic formalism to calculate resi-
due fluctuations in a set of protein complexes.57 We show
that the scale of residue fluctuations increases from the core
to the surface of a protein in agreement with the experimen-
tal data.58–60 We suggest a classification of protein residues
based on the normalized scale of fluctuations and discuss
how the scale of fluctuations correlates with amino acid pro-
pensities in the secondary structure elements, chameleon se-
quences, and disordered fragments. Fluctuations of binding
site residues �interface residues� are compared with other
surface residues. The tendency of some residues to form
more stable docking patches on the interface is discussed as
well as the role of loops at early stages of protein thermal
denaturation.

II. MATERIALS AND METHODS

A modified nonhomogeneous ENM is used in calcula-
tions. Network nodes are placed in the centers of mass of
protein residues and residue masses are assigned to the cor-
responding network nodes. The following is a description of
a formalism to consistently transform the interatomic protein
energy landscape into the inter-residue landscape. As a re-
sult, we obtain a modified inter-residue harmonic potential
with a spring force constant proportional to the number of
interatomic contacts between residues �see Eq. �3� below�.

The interaction energy between protein residues i and k
is

Uik�R� i − R� k� = �
�,�

U���R� i + u��
i − R� k − u��

k � , �1�

where R� i,k are radius vectors of the centers of mass of resi-
dues i and k and u��,�

i,k are the radius vectors of atoms � and �
relative to the centers of mass of the residues i and k accord-
ingly. The sum in Eq. �1� runs over all pairs of atoms sepa-
rated by a distance less than the interaction cutoff. Introduc-

ing a residue-residue potential, one can rewrite Eq. �1� as
Uik�R� i−R� k�=NikV�R� i−R� k�, where Nik is a number of inter-
atomic interactions between residues i and k and V is aver-
aged interatomic potential. Assuming that inter-residue inter-
actions are in equilibrium in the native protein and using a
Lennard-Jones form of the inter-residue potential, we can
expand V�R� i−R� k� in Taylor series of deviations Rik−Rik

0 of
the inter-residue distance Rik= �R� i−R� k� from its equilibrium
Rij

0 . Expanding to the second order in Rij −Rij
0 yields

Uik�R� i − R� k� = − Nik� + 36Nik��Rik − Rik
0

Rik
0 	2

, �2�

where � is the depth of the Lennard-Jones potential. Equa-
tion �2� shows that inter-residue interactions are proportional
to the number of interatomic interactions and decrease with
the increase of the inter-residue distance as 1 / �Rik

0 �2.
Since R� i,k=R� i,k

0 +r�i,k, we obtain

Uik�r�i − r�k,R� ik
0 � = − �Nik + 36�

Nik

�Rik
0 �2�R� ik

0

Rik
0 �r�i − r�k�	2

, �3�

where r�i,k are the deviations of the residue centers of mass
from its equilibrium position. The main difference between
Eq. �3� and Tirion-like potentials56 used in nonhomogeneous
ENMs is the factor Nik which introduces the distribution of
interatomic interactions into the coarse-grained model. In
other words, the change of the protein model resolution from
the atomic to the residue level results in the appearance of
this factor in the inter-residue potential. The important role
of the factor Nik is supported by the local density model61

that was shown to be efficient in predicting atomic fluctua-
tions and B-factors. The nonbonded potential energy of an
atom in the local density model is proportional to the number
of interactions with noncovalent neighbor atoms. Relation-
ship of the optimized spring force constants to the average
number of the nearest C� atoms was shown to be important
for the Gaussian ENM.51

The protein Lagrangian,

L = �
i,k=1

N
mi

2
�dr�i

dt
	2

− Uik�r�i − r�k,R� ik
0 � , �4�

derives the following 3N equations of motions:

mir�̈i = − �
k=1

N

Cik��� ik�r�i − r�k���� ik, �5�

where mi is the mass of the residue i, �� ik=R� ik
0 /Rik

0 ,
Cik=72�Nik / �Rik

0 �2, and N is the number of protein residues.
As usual, following classical methodology �see Refs. 62–64
or elsewhere�, we seek an oscillatory solution of the form
r�k=A� k exp�i�t�, where Ak are some amplitude factors to be
determined. The substitution of the trial solution into the
equations of motions leads to the eigenvalue problem
�H−�2I�A=0, where A= 
A1

x ,A1
y ,A1

z ,A2
x ,A2

y , . . .� is a 3N col-
umn vector of the amplitude factors, I is a 3N�3N unit
matrix, and H is a 3N�3N matrix composed of 3�3 super-
elements,
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Hik�i � k� = �hik
xx hik

yx hik
zx

hik
xy hik

yy hik
zy

hik
xz hik

yz hik
zz 
, Hii = − �

k

�
Hik, �6�

where hik
ab=−Cik�ik

a �ik
b /mi and the upper indexes a ,b stand

for x ,y ,z projections of the vector �� ik.
The prime in sums over k in Eqs. �6� means that a term

i=k is not accounted for. We use our program to find protein
eigenfrequencies 
�� and normalized eigenvectors. The kth
oscillation can be written in the form

xk = �
i=1

3N−6

Gkici exp��it� = �
i=1

3N−6

Gki�i, �7�

where �i=Re�ci exp��it�� is the so-called normal coordinate,
Re stands for “real part of,” ci is a constant determined by
initial conditions, and columns of the matrix G are the nor-
malized eigenvectors. The normal modes are described by

H = �
i=1

3N−6
Mi

2
��̇i

2 + �i
2�i

2� , �8�

where Mi=�k=1
3N−6mkGki

2 is the effective mass of the ith normal
mode.62 Note that for a homogeneous ENM, mi is a constant
equal to some parameter m and, therefore, all modes will
have equal effective masses: Mi=�k=1

3N−6mGki
2 =m.

The mean-square fluctuation of the kth residue along the
coordinate axis x is �xkx

2 �=�ijGkxiGkxj��i� j�,
65 where the an-

gular brackets denote a Boltzmann average with Hamiltonian
�8� over the normal modes and kx,y,z are the numbers of de-
grees of freedom associated with the residue center of mass
oscillations along the coordinate axes x ,y ,z. Boltzmann av-
eraging of pair products ��i� j� of normal coordinates yields
��i� j�=�ijTkB / �Mi�i

2�, where T is the temperature, kB is the
Boltzmann constant, and �ij is the Kronecker delta ��ij =1 if
i= j and �ij =0 if i� j�. The total mean-square fluctuation of
the kth residue has the form

��r�k�2� = TkB �
i=1

3N−6 Gkxi
2 + Gkyi

2 + Gkzi
2

Mi�i
2 . �9�

It is important to note that the residue fluctuation, derived in
Eq. �9�, shows nonlocal dependence on the mass distribution
in a protein. This effect totally disappears in the framework
of a homogeneous ENM.

Removing the effect of the parameter � on the residue
fluctuations and normalizing them, we introduce a mobility
ratio �MR� of the kth residue in the form

Rk =
��r�k�2�
�r�2�av

, �10�

where �r��av
2 =�k=1

N ��r�k�2� /N is the averaged mean-square fluc-
tuation in a protein.

We computed the mobility ratios for each of the protein
residues in 184 proteins from the 92 nonobligate protein-
protein complexes selected from a docking benchmark set.57

For each of the proteins, MRs were grouped in 20 groups
according to names of standard amino acids and 20 average

MRs were computed. The obtained values were averaged
over the set of 184 protein structures. Figures 2–4 show
mean MRs and standard deviations.

III. RESULTS

A. Interaction cutoff

C�-based ENMs are commonly used for predicting
B-factors of C� atoms. Often, an interaction cutoff in
C�-based ENMs is chosen in a such way that it maximizes
the correlation between the B-factors of C� atoms and the
predicted fluctuations of C�-based nodes. In our case, how-
ever, it would seem that one should not expect high correla-
tion between the B-factors of C� atoms and fluctuations of
the residue centers of mass. Indeed, the mean-square fluctua-
tion of the center of mass of the kth residue is

��r�k�2� =���
�

m�

Mk
u��

k	2�
= �

�=1

N� m�
2

Mk
2 ��u��

k �2� + �
�,�

2m�m�

Mk
2 �u��

k u��
k �

=
3

8	2 �
�=1

N� m�
2

Mk
2B� + �

�,�

2m�m�

Mk
2 �u��

k u��
k � , �11�

where m� is the atomic mass and B� is the B-factor of the
atom �. Equation �11� shows that the fluctuation of the resi-
due center of mass depends on the B-factors of all atoms of
the residue and the pair correlations of atom motions. Figure
1 illustrates the typical behavior of the correlation between
the B-factors of C� atoms and the fluctuations of the residue
centers of mass �Eq. �10�� as a function of the cutoff for three
proteins �189l, 1a3h, 1cwy�. The proteins are of significantly
different sizes �164, 303, and 500 residues accordingly�. The
correlation coefficients for a subset of other structures from
the docking benchmark set are given in Supplementary Table
I.66 It is interesting to note that despite the complex relation
between ��r�k�2� and B� �Eq. �11��, for all the proteins the
correlation remains high until 10 Å and then decreases. The
values of the correlation coefficient in the vicinity of the

FIG. 1. Correlation coefficients between B-factors of C� atoms and fluctua-
tions of the residue centers of mass as a function of the cutoff for 1a3h
�circles�, 1cwy �triangles�, and 189l �squares�.
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maximum are similar to the ones reported by others �e.g., see
a comparative study of three common ENMs �Ref. 67��. Ric-
cardi et al.67 showed that the average correlation between
B-factors and the calculated fluctuations using the C� ENMs
vary between 0.39 and 0.63, depending on the way to ac-
count for the crystal environment. We obtained the average
correlation coefficient of 0.55 �see Supplementary Table I
�Ref. 66��. Higher correlations can be achieved by using en-
sembles of NMR structures.49 Therefore, the 10 Å cutoff was
chosen for prediction of the mobility ratios.

Our choice of the cutoff is supported by protein studies
at both all-atom and coarse-grained resolutions. Indeed, since
the 10 Å cutoff is often used in all-atom molecular dynamics
of proteins �e.g., Refs. 68–70� and corresponds to the last
peak of the pair distribution function in proteins,71 intuitively
one could expect structural importance of the interactions up
to this cutoff for low-resolution models as well. The reason is
that the change of the resolution should not change the scale
of interactions due to the conservation of energy. The 10 Å
cutoff was recommended for using with the anisotropic
ENMs by Riccardi et al.67 and was used in other studies
�e.g., Refs. 72–74�. It is important to note that the 10 Å

cutoff results in a desired low level of the cutoff-related rug-
gedness of the protein-protein energy landscape,75,76 which
follows from the theory of minimally frustrated energy
landscapes.77

B. The analysis of protein residue fluctuations

The analysis of the mobility ratios using Eq. �10� shows
that large equilibrium fluctuations �R
1� of protein struc-
tures are associated with the oscillations of the center of
mass of Gly, Ala, Ser, Pro, and Asp �group I� which are the
most lightweight residues with the exception of Asp �Fig. 2�.
Modest fluctuations �R=0.7–1.0; group II� are associated
with six polar residues �Thr, Asn, Gln, Lys, Glu, Arg� and
two nonpolar residues �Val, Cys�. The small fluctuations
�R=0.3–0.7; group III� are associated with six nonpolar
residues �Ile, Leu, Met, Phe, Trp� and polar residues His and
Tyr. It is interesting to note that, with regards to hydrophilic-
ity, groups I, II and III can be characterized as mixed, mostly
polar and mostly nonpolar. Further we show that the groups
occur due to the interplay between two factors determining
the mobility ratios: the protein mass distribution and the
core/surface locus of the residue.

Analysis of the scale of fluctuations of surface and core
residues shows that on average all surface residues demon-
strate larger fluctuations than the core residues �Fig. 3�. Sur-
face �core� residues are defined here as those residues which
have relative solvent accessible surface area higher�lower�
than 25% and are identified using NACCESS.78 The difference
is readily explained by the difference in numbers of nearest
neighbors of surface and core residues �the environment ef-
fect�. In comparison with the core residues, the surface resi-
dues have fewer nearest neighbors.79 Therefore, they are less
restricted and experience larger fluctuations. First reports of
this effect go back to crystallographic studies of
myoglobin59,60 and lysozyme.58 It has been shown that
atomic mean-square displacements increase from the protein
core to the protein surface. It was suggested59 that, in gen-
eral, proteins have a condensed core and a semiliquid sur-
face. This was supported by the results of molecular dynamic
simulations of carboxy myoglobin.80 We would like also to
note that the significant difference between mobility ratios of

FIG. 2. The mobility ratios of protein residues calculated using Eq. �10�
arranged in the order of increasing mass. The error bars show the standard
deviations.

FIG. 3. The mobility ratios of surface and core residues. Surface �core�
residues are defined as those residues with solvent accessible surface area
higher�lower� than 25%. The error bars show the standard deviations.

FIG. 4. The mobility ratios of interface and noninterface surface residues.
The error bars show the standard deviations.
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the most lightweight and most heavyweight residues �Fig. 2�
as well as the nonmonotonic behavior for the midweight resi-
dues do not disappear if one considers core and surface resi-
dues separately �see Fig. 3�. The likely reason for this is the
interplay between the mass and packing effects. Indeed, in
general, small residues are most-lightweight and maintain a
smaller number of the atomic contacts with their structural
neighbors than the larger residues, regardless of the residue
position. Thus, they are less constrained and more mobile.

The same environment effect appears as a small root
mean-square deviation between bound and unbound states of
pocket side chains81 or as a decreased number of rotamers
allowable for buried amino-acids in comparison with the sur-
face amino-acids.82,83 This also clears up a seemingly strik-
ing difference in hydrophilicity between residues of Groups
II and III. Indeed, amino acid residues are distributed non-
homogeneously in proteins. Polar residues prefer surface po-
sitions, but nonpolar residues are more often found in a pro-
tein core. That is why the mostly polar Group II
demonstrates higher mobility ratios than the mostly nonpolar
Group III. On the other side, high mobility ratios of nonpolar
residues Gly and Ala suggest that the environment effect is
not the only factor. The amplitude of fluctuations is inversely
proportional to the effective amino acid masses �see Eq. �9��.
As a result, the largest fluctuations are associated with Gly
and Ala, the most lightweight residues, but the smallest fluc-
tuations are associated with Tyr and Trp, the most heavy
residues �Fig. 2�.

Average mobility ratios of the binding site �interface�
and of other surface residues vary in intervals �0.4,2.6� and
�0.6,3.0� correspondingly. Comparing fluctuations of the in-
terface residues with other surface residues, we found that
although, on average, interface is less mobile than the rest of
the protein surface �Fig. 4�, the noticeable difference �R j

sur

−R j
int�0.25, R j

int,sur is the mobility ratio of the interface or
other surface residue j� relates to Gly, Ala, Ser, Cys, Leu, and
Trp. The average relative variance of the mobility ratios
1 /6� j=1

6 �R j
sur−R j

int� /R j
int of these residues is 39%. Standard

errors of the average mobility ratios of the interface and non-
interface surface residues vary in intervals �0.02,0.14� and
�0.02,0.13� and are by the order of magnitude less than the
average mobility ratios �see Supplementary Table II �Ref.
66��. Four of these residues �Gly, Ala, Leu, and Ser� are the
most common residues at protein interfaces, and residues
Cys and Trp are the most infrequent interface residues.7,8 The
most conserved interface residue Trp �Ref. 9� also is the most
stable one �see Fig. 4�. Two other highly conserved interface
residues �Met and Phe�9 demonstrate decreased mobility in
binding sites to a lesser extent. Note that the difference be-
tween the binding sites and the rest of the protein surface
relates mainly to fluctuations of the nonpolar residues with
the exception of Ser, a polar residue. These results are in
agreement with the experimental observation of reduced
fluctuations in binding sites of myoglobin84 and
bacteriorhodopsin85 in comparison with fluctuations of the
rest of macromolecules. Frauenfelder and McMahon84 also
noted that four �Leu29, Phe43, Val68, and Ile107� of the six
residues with reduced fluctuations surrounding the oxygen
molecule are nonpolar. The two other residues are His64 and

His93 �RHis
sur −RHis

int =0.16�. The solvent-mediated attraction
between nonpolar residues of a receptor and a ligand results
in the hydrophobic contribution to binding free energy,
which is considered to be one of the major factors stabilizing
protein-protein complexes.86,87 We suppose that Gly, Ala,
Ser, Cys, Leu, and Trp form low-mobility surface “pads” that
constitute a “landing ground” for binding proteins.

Figure 5 illustrates high stability �gray surface� of a
binding groove in the porcine pancreatic �-amylase. The
groove contains three catalytic residues Asp197, Glu233, and
Asp300, which showed low mobility ratios. The binding site
is surrounded by highly and moderately fluctuating convex
areas, which is in agreement with the environment effect
discussed above.

The larger ability to fluctuate of Group I residues pro-
vides an insight into the inability of sequences abundant in
Gly, Ala, Ser, Pro, and Asp to fold into regular protein sec-
ondary structure elements ��-helices or �-strands�. High mo-
bility prevents the formation of long-range order, thus con-
tributing to irregular protein secondary structure elements
�loops�. We computed the correlation coefficient between the
mobility ratios and corresponding percentages of amino-acid
residues in the data set of loops2 �see Fig. 6�. The analysis
showed significant correlation with 0.9 correlation coeffi-
cient.

We suggest that the same reasoning explains features of
amino-acid distributions observed in chameleon
sequences17,19,20 and disordered proteins.22,23 Indeed, highly
and moderately fluctuating amino-acid residues �in particu-
lar, Gly, Ala, Ser, Glu, and Lys� are abundant in disordered
and “dual personality” protein fragments, whereas the resi-
dues with the low mobility ratio �e.g., Tyr, Trp, Phe, and Ile�
are rarely found there.22,23

Statistics of protein residues in chameleon sequences
show that Ala, Ile, Leu, and Val are the most frequent resi-
dues in chameleon sequences.17,19 Since only Ala belongs to
the Group I of highly fluctuating residues �Fig. 1�, we can
hypothesize that an instability driving helix↔sheet transi-

FIG. 5. The crystal structure of porcine pancreatic �-amylase in complex
with the microbial inhibitor Tendamistat �blue� �Ref. 88�. Highly fluctuating
�R
1�, moderately fluctuating �R=0.7–1.0� and weakly fluctuating
�R�0.7� residues of the hydrolase are in red, pink, and gray.
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tions may often originate at Ala residues if the other highly
fluctuating residues are absent. Frequencies of occurrence of
Gly and Ser residues increase with the increase of the length
of the sequence.17 Thus, in general, chameleon sequences
may have several islands of instability. By exciting these
islands locally �e.g., by mutations that change interactions of
the islands with the rest of the protein or by ligands bound in
the vicinity of the chameleon sequence�, one could trigger a
helix↔sheet transition. Mutations of a chameleon sequence,
that change the mobility ratio of a sequence position signifi-
cantly, can also provoke such transitions. It has been reported
that a single mutation from Pro to Ala �RAla−RPro=0.4�
converts a �-strands into an �-helix.18 Mutations of two con-
secutive residues from Phe28Phe29 to Pro28Ile29
�RPro−RPhe=0.7, RIle−RPhe=0.2� converts an �-helix into
a �-strand.21

The residue fluctuations derived by Eq. �9� increase with
the increase of temperature. Therefore, we could expect that
at the very early stages of protein thermal denaturation
amino acid residues of the enhanced ability to fluctuate
�Group I� and their structural neighbors will form first seeds
of the unfolded phase. Since the majority of Group I amino
acids �Gly, Ser, Pro, and Asp� shows higher propensities for
loops than for helices or sheets,1 it is possible that the nucle-
ation of the unfolded phase starts in protein loops. Due to the
increased ability to fluctuate, Group I residues can also be
involved more often than other residues in equilibrium local
folding-unfolding reactions scattered over the protein
surface.89,90

The estimates of the residues’ ability to fluctuate devel-
oped in this study are most likely to improve predictions of
protein flexibility. Our results solve a longstanding contradic-
tion of Vihinen et al.91 classification that puts Gly, “generally
considered to be the most flexible amino acid,” in the middle
of the flexibility scale. Although the Vihinen et al. classifi-
cation is widely used,22,23 this contradiction was noted by the
authors91 and others.22 In the residue, classification based on
our results Gly has the highest ability to fluctuate. The en-
hanced mobility of Gly has been commonly associated with
the lack of a side chain, and thus greater conformational

flexibility. The model developed here does not involve ex-
plicit side chains. However, it is able to reproduce the mobile
character of Gly. This again points to the role of the two
factors—the residue mass and the inter-residue contacts—in
protein flexibility within the framework of the ENM and
encourages using the model in the studies of the Gly-rich
proteins and fragments �e.g., collagen, HIV-1 protease
flaps,92,93 or structural hinges94�.

IV. CONCLUSIONS

The current work focuses on the fundamental relation-
ship between the protein sequence, ability to fluctuate, and
functionality of protein structures. We have considered the
relationship within a framework of a novel elastic network
model that allows accounting for the distribution of inter-
atomic interactions within a coarse-grained approach. The
model modifies a commonly used form of the Tirion poten-
tial with a spring constant proportional to the number of
interatomic contacts between residues. We demonstrated that
two factors, a protein mass distribution and a residue envi-
ronment, determine the scale of fluctuations. The surface
residues undergo larger fluctuations than the core residues in
agreement with experimental observations.58–60 On average,
the protein interface is less mobile than the rest of the protein
surface and contains low-mobility pads associated mainly
with the nonpolar residues. We hypothesize that the confor-
mational instability of protein loops, chameleon sequences,
and disordered proteins relates to the high content of highly
mobile residues and the lack of weakly fluctuating residues.
The results show high correlation between fluctuations and
the sequence composition of protein loops. Analysis of resi-
due fluctuations and their propensities in secondary structure
elements allows one to conclude that upon thermal denatur-
ation the nucleation of the unfolded phase proceeds from
protein loops. The results provide insight into structural fluc-
tuations of proteins and facilitate better understanding of
protein association mechanisms.
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