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Abstract. In this paper, we consider discrete and continuous QR algorithms for computing
all of the Lyapunov exponents of a regular dynamical system. We begin by reviewing theoretical
results for regular systems and present general perturbation results for Lyapunov exponents. We then
present the algorithms, give an error analysis of them, and describe their implementation. Finally,
we give several numerical examples and some conclusions.
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1. Introduction. Lyapunov exponents (or characteristic numbers) were first
introduced by Lyapunov [Ly] in order to study the stability of nonstationary solutions
of ordinary differential equations (ODEs) and have since been extensively studied in
the literature (e.g., see [Ce, NS, SC]). The Lyapunov exponent of a real valued function
f(t) defined for t ≥ 0 is

(1.1) λ = lim sup
t→∞

1
t

log(|f(t)|).

Thus, λ characterizes the long-time exponential behavior of f(t). For an n-dimensional
linear system

(1.2) ẏ(t) = A(t)y(t)

with a bounded coefficient matrix A(t), the characteristic number λ of the norm of
a solution trajectory is well defined. More generally, consider n linearly independent
solutions of (1.2) in the form yi = Y (t)pi, where Y (t) is a fundamental solution
matrix with Y (0) orthogonal, and {pi} is an orthonormal basis of R

n. Then, the
corresponding characteristic numbers

(1.3) λi = lim sup
t→∞

1
t

log(‖Y (t)pi‖)

are well defined; here, and throughout, ‖ · ‖ refers to the 2-norm. When the sum of
the characteristic numbers is minimized, the orthonormal basis {pi} is called normal
and the λi are called the Lyapunov exponents.
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ON THE COMPUTATION OF LYAPUNOV EXPONENTS 403

The Lyapunov exponents associated with a normal basis satisfy

(1.4)
n∑

i=1

λi ≥ lim sup
t→∞

1
t

t∫
0

trace(A(s))ds = lim sup
t→∞

1
t

log |detY (t)| .

When equality holds for a fundamental solution Y (t) with respect to some normal
basis, the linear system is called regular.

It can be readily seen that Lyapunov exponents are fixed under a change of vari-
ables of the type X(t) = T (t)Y (t) if T and T−1 are uniformly bounded. Furthermore,
Perron and Diliberto show (see [Le, C]) that for bounded continuous A(t), there exists
an orthogonal change of variables Q(t) such that X(t) = QT (t)Y (t) satisfies

(1.5) Ẋ(t) = Ã(t)X(t),

where Ã(t) is upper triangular. The following theorem indicates the importance of
such systems.

THEOREM 1.1 (see [Pe, Ly]). If A(t) ∈ R
n×n(t) is upper triangular with all entries

continuous and bounded, then a necessary and sufficient condition for regularity of
(1.2) is that

(1.6) lim sup
t→∞

1
t

t∫
0

Aii(s)ds + lim sup
t→∞

1
t

t∫
0

(−Aii(s))ds = 0 , i = 1, . . . , n .

This condition is equivalent to the existence of the limit

μi = lim
t→∞

1
t

t∫
0

Aii(s)ds, i = 1, . . . , n,

in which case μi ≡ λi.
Lyapunov exponents for (1.2) serve the same role in asymptotic stability analysis

as the real parts of the eigenvalues for the constant coefficient case A(t) ≡ A, and
indeed they are the same in this case. In the case of a periodic system, if A(t) ≡
A(t + ω) for positive period ω, then

λi = Re(ρi),

where the ρi are the Floquet exponents of the monodromy matrix (e.g., see [H]).
Given their fundamental importance, it is not surprising that Lyapunov exponents
have received a great deal of attention both theoretically and computationally.

Henceforth, unless stated otherwise, we assume that the system (1.2) is regular.
However, verifying regularity for a given system is difficult. An alternate approach of
Sacker and Sell [SaSe] uses the concept of the spectrum. The linear system (1.2) is
said to have exponential dichotomy if there exist constants K, L ≥ 1, α, β > 0, and
an orthogonal projection P such that

(1.7)
‖Y (t)PY −1(s)‖ ≤ Ke−α(t−s), t ≥ s,

‖Y (t)(I − P )Y −1(s)‖ ≤ Le−β(s−t), s ≥ t.

Exponential dichotomy implies, for example, that k fundamental solution components
are exponentially decreasing and n−k are exponentially increasing, where rank(P ) =
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404 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

k. The Sacker–Sell spectrum of (1.2) is the set of real values γ for which the translated
systems

(1.8) ẋ = [A(t) − γI]x

do not have exponential dichotomy. Equivalently, the spectrum of (1.2) is the com-
plement of the resolvent, which is the set of values γ for which (1.8) does have an
exponential dichotomy. In general, the spectrum is a collection of at most n compact
intervals. When each of these intervals is a point γi, i = 1, . . . , n (not necessarily
distinct), then the spectrum is termed point spectrum. In such case, each γi equals
a Lyapunov exponent λi (see [SaSe, Theorem 3, p. 338]); moreover, the system is
regular, as is shown below.

Consider the system (1.2) and its adjoint

(1.9) Ẏ = A(t)Y,

(1.10) V̇ = −AT (t)V, where V (t) = Y −T (t).

LEMMA 1.2. The value λ ∈ R is in the resolvent of (1.9) if and only if −λ is in
the resolvent of (1.10).

Proof. We prove only the sufficiency, as the necessity is proven in the same way.
Let λ be in the resolvent of (1.9), and let Yλ(t) be the fundamental solution of the
translated system Ẏλ = (A(t) − λI)Yλ(t). Thus,

‖Yλ(t)PY −1
λ (s)‖ ≤ Ke−α(t−s), t ≥ s,

‖Yλ(t)(I − P )Y −1
λ (s)‖ ≤ Ke−α(s−t), s ≥ t,

or, equivalently,

‖Y (t)PY −1(s)‖ ≤ Ke(λ−α)(t−s), t ≥ s,

‖Y (t)(I − P )Y −1(s)‖ ≤ Ke(−λ−α)(s−t), s ≥ t,

for appropriate projection P and positive constants K, α. Since we are using the
2-norm, we have

‖Y (t)PY −1(s)‖ = ‖Y −T (s)PT Y T (t)‖ = ‖V (s)PV −1(t)‖ .

By letting P̃ := I − P , s =: t̃, and t =: s̃, we see that −λ is in the resolvent of (1.10)
since

e−λ(t−s)‖Y (t)PY −1(s)‖ = ‖V−λ(t̃)(I − P̃ )V −1
−λ (s̃)‖ ≤ Ke−α(s̃−t̃) , s̃ ≥ t̃ ,

and, similarly,

‖V−λ(t̃)P̃ V −1
−λ (s̃)‖ ≤ Ke−α(t̃−s̃) , t̃ ≥ s̃ .

COROLLARY 1.3. Let system (1.9) have spectrum [a1, b1] ∪ · · · ∪ [ap, bp], where
ai ≤ bi, i = 1, . . . , p, and bi < ai+1, i = 1, . . . , p − 1. Then, the spectrum of (1.10) is
given by [−bp,−ap] ∪ · · · ∪ [−b1,−a1].

COROLLARY 1.4. If the system (1.9) has point spectrum, given by the values
λ1 ≥ λ2 ≥ · · · ≥ λn, then (1.10) has point spectrum given by −λ1 ≤ −λ2 ≤ · · · ≤ −λn.
In particular, (1.2) and (1.5) are regular, and

lim
t−s→∞

1
t − s

∫ t

s

Ãii(τ)dτ

exist for i = 1, . . . , n, where Ã(t) is defined in (1.5).
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ON THE COMPUTATION OF LYAPUNOV EXPONENTS 405

Proof. The first statement is an immediate consequence of Lemma 1.2. The
statement about regularity follows directly from a theorem by Perron [A, Theorem
3.6.1] stating that a given system is regular if and only if the Lyapunov exponents of
the system and those of its adjoint are symmetric with respect to the origin.

Below we let λ[f ] denote the Lyapunov exponent of the function f(t) and use a
similar notation for Lyapunov exponents of vectors. We have the following.

LEMMA 1.5. Consider the system

(1.11) ẋ = L(t)x ,

where L(t) is a triangular matrix with integrable coefficients. Let

l+i = lim sup
t→∞

1
t

∫ t

0
Lii(s)ds , l−i = lim inf

t→∞
1
t

∫ t

0
Lii(s)ds .

Then, l+i and l−i lie in the same spectral interval of (1.11).
Proof. Without loss of generality, we assume that L(t) is lower triangular. Let

X(t, 0) be the fundamental matrix solution of (1.11) such that X(0, 0) = I, obtained
by successive forward integration. Although X(t, 0) is in general not normal, a the-
orem by Lyapunov (see [A, Theorem 2.4.2]) guarantees the existence of a unit lower
triangular matrix C such that X(t) := X(t, 0)C = {x1(t), . . . ,xn(t)} is normal. If
αk := λ[xk], k = 1, . . . , n, then clearly λ[Xkk] = l+k ≤ αk where Xkk(t) is the kth di-
agonal element of X(t). Let now Y (t) = {y1(t), . . . ,yn(t)} be the basis of the adjoint
system to (1.11) such that Y T (t)X(t) = I, and let λ[yk] = βk, k = 1, . . . , n. Notice
that

λ[Ykk] = λ[1/Xkk] = lim sup
t→∞

1
t

log |1/Xkk| = − lim inf
t→∞

1
t

log |Xkk| = −l−k ,

so that λ[yk] = βk ≥ −l−k . Since l−k ≤ l+k , we have

−βk ≤ l−k ≤ l+k ≤ αk .

It follows from [SaSe, Theorem 3] and Corollary 1.3 that αk ∈ [ak, bk], and βk ∈
[−bk,−ak], so [−βk, αk] is contained in a spectral interval of (1.11), and the result
follows.

One of the key theoretical tools for determining Lyapunov exponents is the con-
tinuous QR factorization of Y (t),

(1.12) Y (t) = Q(t)R(t) ,

where Q(t) is orthogonal and R(t) is upper triangular with positive diagonal elements
Rii , i = 1, . . . , n. This factorization is crucial in both [O] and [JPS]. The following
lemma underlies its importance.

LEMMA 1.6. Consider the system (1.2), and let Q(t) be a differentiable orthogonal
matrix for all t. Then the Lyapunov exponents of the system

(1.13) ż = Ã(t)z,

where

(1.14) Ã(t) = Q(t)T A(t)Q(t) − Q(t)T Q̇(t),
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406 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

are the same as the Lyapunov exponents of the original system (1.2). Moreover, the
spectra of (1.13) and (1.2) are identical.

Proof. If Y (t) is a fundamental solution of (1.2), then Z(t) = QT (t)Y (t) is a
fundamental solution of (1.13). Thus, the invariance of the Lyapunov exponents
follows from (1.3) and the norm-preserving property of Q(t). The equivalence of the
spectra is also a direct consequence of this orthogonality of Q(t).

Note that from (1.12)

(1.15) λi = lim
t→∞

1
t

log ||Y (t)pi|| = lim
t→∞

1
t

log ||R(t)pi||.

Q(t) in (1.14) is an example of a Lyapunov or kinematic similarity transformation,
and it has been known since Lyapunov [Ly] that regularity of a system is preserved
under such a transformation, so by Theorem 1.1

(1.16) λi = lim
t→∞

1
t

log |Rii(t)|, 1 ≤ i ≤ n .

The factorization (1.12) also proves to be a fundamental computational tool since
from (1.16) a change of variables

z(t) = Q(t)T y(t),

with differentiable Q(t), chosen so that Ã(t) in (1.14) has a triangular structure,
greatly simplifies the computation of the Lyapunov exponents.

After giving some results on exponential dichotomy and its relation to Lyapunov
exponents in section 2, we describe two techniques to achieve this change of variables
and then give a partial error analysis of these techniques in sections 3 and 4. To our
knowledge, ours are the first convergence results for these algorithms, which are the
most widely used techniques for computing Lyapunov exponents. One technique in-
volves performing a continuous QR decomposition of the fundamental solution matrix
Y (t); the other is a discrete QR method, where Y (t) is computed first and then an
orthogonal factorization is formed.

Remark 1.7. In this introduction and in the next section, we consider continu-
ous dynamical systems (i.e., differential equations). On the other hand, Lyapunov
exponents, as well as the concepts of regularity, exponential dichotomy, and point
spectrum, have immediate extensions to discrete dynamical systems, and only minor
modifications to our exposition are needed. Some of these modifications are in [DV].
In particular, results analogous to Theorem 1.1, Lemmas 1.2 and 1.5, and Corollary
1.4 hold, as well as discrete analogues of the results of the next section. We will make
use of these discrete extensions.

2. Some perturbation results. We now consider the effect of perturbations
of the matrix A(t) on the Lyapunov exponents of the linear problem (1.2). We shall
henceforth assume that (1.2) has point spectrum, which is given by its Lyapunov
exponents {λi}n

i=1.
Consider the perturbed system

(2.1) ż = [A(t) + E(t)] z,

where for the moment we assume that E(t) is a continuous matrix function such
that supt ‖E(t)‖ < δ for some small δ > 0. A relation between bounds on perturba-
tions of the Lyapunov exponents and perturbations in A(t) is given in the following
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ON THE COMPUTATION OF LYAPUNOV EXPONENTS 407

perturbation theorem of Sacker and Sell [SaSe] and then quantified in Theorem 2.3
below.

THEOREM 2.1. For each neighborhood V of the spectrum of (1.2), there exists a
neighborhood M of A(t) such that all linear systems whose coefficient matrices lie in
M have spectrum in V .

Let {Λi}p
i=1 be the distinct Lyapunov exponents of (1.2), with respective mul-

tiplicities n1, . . . , np. Suppose that the {Λi}p
i=1 are in ascending order, and let

Λ0 := −∞ and Λp+1 := +∞. Given Λi, for any positive η1 and ε1 satisfying
η1 > ε1 > 0, Λi+1 > Λi + ε1, and Λi+1 > Λi + η1 − ε1, it is possible to show
that there exist bounded constants K1 ≥ 1 and L1 ≥ 1 (depending on ε1, η1), and a
projection matrix P1 with rank(P1) = n1 + · · · + ni, such that

(2.2)
‖XΛi+ε1(t)P1X

−1
Λi+ε1

(s)‖ ≤ K1, t ≥ s,

‖XΛi+ε1(t)(I − P1)X−1
Λi+ε1

(s)‖ ≤ L1e
−(Λi+1−Λi−η1)(s−t), s ≥ t,

where Xγ(t) denotes a fundamental solution matrix of the translated system (1.8).
Analogously, given Λk, for any positive η2 and ε2 satisfying η2 > ε2 > 0, Λk >
Λk−1 +ε2, and Λk > Λk−1 +η2 −ε2, there exist bounded constants K2 ≥ 1 and L2 ≥ 1
(depending on ε2, η2), and a projection matrix P2 with rank(P2) = n1 + · · · + nk−1,
such that

(2.3)
‖XΛk−ε2(t)P2X

−1
Λk−ε2

(s)‖ ≤ K2e
−(Λk−Λk−1−η2)(t−s), t ≥ s,

‖XΛk−ε2(t)(I − P2)X−1
Λk−ε2

(s)‖ ≤ L2, s ≥ t.

To determine an interval containing a Lyapunov exponent of the perturbed system
(2.1), we consider the dichotomy as a function of the translate γ and locate where a
change in the rank of the projection occurs.

LEMMA 2.2 (see [SaSe, Lemma 9]). Suppose μ1 < μ2 are such that the translated
system (1.8) has exponential dichotomy for γ = μ1 and γ = μ2. Then, there exists a
value μ ∈ (μ1, μ2) such that (1.8) does not have exponential dichotomy for γ = μ if
and only if the rank of the projection onto the stable subspace (P in (1.7)) for γ = μ1
is less than the rank of the corresponding projection for γ = μ2.

We are now prepared for the main perturbation result.
THEOREM 2.3. Assume that (1.2) has point spectrum given by {λi}n

i=1. Let
{Λi}p

i=1 be the distinct Lyapunov exponents of (1.2), with respective multiplicities
n1, . . . , np, arranged in ascending order, and let Λ0 := −∞ and Λp+1 := +∞. Suppose
that δ > 0 is a bound on the perturbation E(t) in (2.1). For a given k = i, consider
εj , ηj , Kj , Lj defined for j = 1, 2 in (2.2) and (2.3) with k = i. Let constants α1, α2
such that α1 > δ ·4K2

1 and α2 > δ ·4L2
2 be given. If α1 < Λi+1 −Λi −ε1, β1 := (Λi+1 −

Λi −η1 −α1) > δ ·4L2
1, and α2 < Λi −Λi−1 −ε2, β2 := (Λi −Λi−1 −η2 −α2) > δ ·4K2

2 ,
then the Lyapunov exponent μi of (2.1) lies in the interval (Λi−ε2−α2,Λi+ε1+α1).

Proof. If γi = Λi + ε1 + α1, then γi < Λi+1 and

(2.4)
‖Xγi(t)P1X

−1
γi

(s)‖ ≤ K1e
−α1(t−s), t ≥ s,

‖Xγi(t)(I − P1)X−1
γi

(s)‖ ≤ L1e
−β1(s−t), s ≥ t;

i.e., the translated system (1.8) has exponential dichotomy for γ = γi with constants
α1, K1, β1, L1. By the roughness theorem for exponential dichotomy (see [C, p. 34]),
the perturbed translated system

(2.5) ẇ = [A(t) + E(t) − γI]w
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408 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

has exponential dichotomy for γ = γi; i.e.,

(2.6)
‖Wγi(t)Q1W

−1
γi

(s)‖ ≤ 5
2
K2

1e−(α1−2K1δ)(t−s), t ≥ s,

‖Wγi(t)(I − Q1)W−1
γi

(s)‖ ≤ 5
2
L2

1e
−(β1−2L1δ)(s−t), s ≥ t,

where rank(Q1) = rank(P1) and Wγ(t) is the fundamental solution matrix for (2.5).
Similarly, if ρi = Λi − ε2 − α2, then ρi > Λi−1 and

(2.7)
‖Xρi(t)P2X

−1
ρi

(s)‖ ≤ K2e
−β2(t−s), t ≥ s,

‖Xρi
(t)(I − P2)X−1

ρi
(s)‖ ≤ L2e

−α2(s−t), s ≥ t.

The roughness theorem implies that (2.5) has exponential dichotomy for γ = ρi, so

(2.8)
‖Wρi(t)Q2W

−1
ρi

(s)‖ ≤ 5
2
K2

2e−(β2−2K2δ)(t−s), t ≥ s,

‖Wρi(t)(I − Q2)W−1
ρi

(s)‖ ≤ 5
2
L2

2e
−(α2−2L2δ)(s−t), s ≥ t,

where rank(Q2) = rank(P2). Since rank(Q1) = n1 + · · · + ni and rank(Q2) = n1 +
· · · + ni−1, Lemma 2.2 gives the result.

Remark 2.4
(i) The terms ε1 and ε2 are necessary only if there is some type of subexponential

growth in the solution. For example, the function f(t) = tp for integer p > 0 has a
zero Lyapunov exponent, and for any ε > 0 there exists a K ≥ 1 such that f(t) ≤ Keεt

for t ≥ 0.
(ii) Theorem 2.3 relies on there being sufficient gaps between distinct Lyapunov

exponents of (1.2). Subject to the constraints α1 < Λi+1 − Λi − ε1, β1 > 4δL2
1, and

α2 < Λi − Λi−1 − ε2, β2 > 4δK2
2 , one should choose η1 > ε1 > 0 and η2 > ε2 > 0 to

minimize ε2 +α2 and ε1 +α1. Notice that, since α1 > 0, we must have Λi+1 > Λi +η1
and, similarly, Λi > Λi−1 + η2 for the assumptions in Theorem 2.3 to hold.

The following consequence of Theorem 2.3, showing that if several (distinct) Lya-
punov exponents of (1.2) are close together, then so are the Lyapunov exponents of
(2.1), is immediate.

COROLLARY 2.5. Let the assumptions of Theorem 2.3 be satisfied, except let k < i
in (2.3). Then the Lyapunov exponents μk, . . . , μi of the perturbed equation (2.1) lie
in the interval (Λk − ε2 − α2,Λi + ε1 + α1).

Remark 2.6. The assumption of E(t) being continuous in Theorem 2.3, and
Corollary 2.5, enable us to use the roughness theorem from the original formulation
given by Coppel. However, such an assumption is not necessary (see [J] and [Pa]). All
that is needed is that E(t) be a matrix of small norm with locally integrable entries;
for example, the roughness theorem holds when E(t) is a matrix of small norm with
essentially bounded entries. Under this weaker assumption, the explicit form of the
constants is changed, but the qualitative result is unchanged.

Nonlinear systems. As described in the seminal work of Oseledec [O], Lya-
punov exponents provide a meaningful way to characterize the asymptotic behavior
of a nonlinear dynamical system

(2.9) ẋ = f(x, t), x(0) = x0, x ∈ R
n,
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ON THE COMPUTATION OF LYAPUNOV EXPONENTS 409

where f(x, t) is continuously differentiable. They provide a generalization of the lin-
ear stability analysis for perturbations of steady state solutions to time-dependent
solutions. One of the most important consequences of the work of Oseledec is that
for ergodic dynamical systems, the Lyapunov exponents are the same for almost all
initial conditions x0 with respect to any invariant measure for the flow; i.e., their
values do not depend on a particular trajectory.

For a given solution trajectory x(t), one considers the linear variational equation

(2.10) Ẏ = Df(x)Y = A(t)Y, Y (0) = I,

where A(t) = (∂f/∂x) is the Jacobian at x(t). Then, for a fundamental solution
matrix Y (t) the symmetric positive definite matrix

(2.11) Λ = lim
t→∞ Λx0(t) := lim

t→∞(Y T (t)Y (t))
1
2t

is well defined [O]. If {pi, μi}n
1 denote the eigenvectors and associated eigenvalues of

Λ such that Λpi = piμi, or pT
i Λpi = μi, then the Lyapunov exponents with respect

to the trajectory x(t) of (2.9) (or the linear system (2.10)) are given by
(2.12)

λi = log(μi) = log( lim
t→∞ < Y (t)pi, Y (t)pi >

1
2t ) = lim

t→∞
1
t

log ||Y (t)pi||, i = 1, . . . , n,

where 〈z,y〉 := zT y and ‖z‖ := 〈z, z〉1/2. Thus, λi is a measure of the mean loga-
rithmic growth rate of perturbations in the subspace Eig(Λ, μi) = {pi ∈ R

n : Λpi =
μipi}, and {λi} describes how nearby trajectories for the dynamical system (2.9)
converge or diverge from x(t).

In this work, we only consider the linear system (2.10) and neglect the errors
involved in computing it from (2.9). The perturbation results of Theorem 2.3 and
Corollary 2.5 apply to the nonlinear system (2.9) if the Jacobian of the computed
trajectory is uniformly close to the Jacobian of some exact trajectory, although (at
best) one approximates the Lyapunov exponents of some solution trajectory. In the
ergodic case in which the Lyapunov exponents are almost everywhere independent
of initial conditions with respect to an ergodic measure, however, the perturbation
results ensure that the approximations are close by. It is important to note that this
is an ergodic result, which means that it holds in the limit as t → ∞. But different
initial conditions can, and generally do, produce different finite time approximations
to the Lyapunov exponents. To have the Jacobians close, we need some restrictions on
the systems. One important case is for systems in which the Lipschitz constant for Df
is small and shadowing results hold (e.g., see [CVV1, E]). Also, an inexact Jacobian
with error uniformly small in t occurs when there is noise in the original nonlinear
system or noise in the Jacobian, or when only a finite difference approximation of the
Jacobian is available.

3. Basic numerical methods. In theory, one simply needs to perform a QR
(or SVD) decomposition of Y (T ) for T sufficiently large, but in practice the columns
of Y (t) become numerically linearly dependent (each component eventually under-
goes exponential growth as determined by the largest Lyapunov exponent), and it is
necessary to keep the columns linearly independent by periodically factoring Y (t).

Discrete QR method. The most popular method for computing Lyapunov ex-
ponents is some variation of the discrete QR algorithm. It is suggested by Benettin,
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410 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

Galgani, Giorgilli, and Strelcyn [BGGS], who use a Gram–Schmidt algorithm to com-
pute the QR decompositions, and it is implemented in [WSSV]. This algorithm is
modified by Eckmann and Ruelle [ER], who implement the approach used theoreti-
cally in [JPS], using Householder transformations.

Algorithm description. The gist of the approach is to indirectly compute the QR
factorization of Y (t) at the points t0 < t1 < · · · < tj < tj+1 < · · · . Specifically, given

(3.1) Y0 := Q0 = I,

for j = 0, 1, . . ., one solves

(3.2) Żj = AZj , Zj(tj) = Qj , tj ≤ t ≤ tj+1,

for Zj(t), and then takes the QR decomposition

(3.3) Zj(tj+1) = Qj+1Rj+1,

where Rj+1 has positive diagonal entries. Since Q0 = I, by letting Yj := Y (tj) one
has

Yj+1 = Zj(tj+1)QT
j Yj = Qj+1Rj+1Q

T
j Yj = · · ·

= Qj+1Rj+1 . . . R1Q0 = Qj+1

1∏
k=j+1

Rk.

From (1.16), the Lyapunov exponents can thus be obtained as

(3.4) λi = lim
j→∞

1
tj

log ‖(Rj)ii · · · (R1)ii‖ = lim
j→∞

1
tj

j∑
k=1

log ‖(Rk)ii‖ .

Note that Rk expresses the local growth rates of the fundamental solution components
on [tk, tk+1].

Continuous QR method. The continuous QR method is considered in [BGGS,
GSO, GPL]. Various difficulties with the method are reported, and, in fact, in [GPL]
it is found to be not competitive with the discrete QR approach. However, we shall
see that, properly implemented, it is often much better than the discrete QR method.

Algorithm description. We have

(3.5) Y (t) = Q(t)R(t) , Ẏ = Q̇R + QṘ = AQR,

so

(3.6) QT Q̇ − QT AQ = −ṘR−1.

Since ṘR−1 is upper triangular, the skew symmetric matrix H(t, Q) := QT Q̇ satisfies

(3.7) Hij =

⎧⎪⎨
⎪⎩

(QT AQ)ij , i > j,

0, i = j,

−(QT AQ)ji, i < j .

Therefore, the matrix system

(3.8) Q̇ = Q H(t, Q)
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ON THE COMPUTATION OF LYAPUNOV EXPONENTS 411

can be solved for Q(t). From (3.6)

(3.9) Ṙ = ÃR ,

where Ã is defined in (1.14), and since Hii = 0, i = 1, . . . , n,

(3.10) Ṙii = (QT AQ)iiRii, i = 1, . . . , n.

Thus,

(3.11) λi = lim
t→∞

1
t

log Rii(t) = lim
t→∞

1
t

∫ t

0
Ãii(s)ds , Ãii(t) = (QT (t)A(t)Q(t))ii .

The matrix Q(t) with Q(0) = Y (0)R−1(0) and the resulting Ã(t) are unique. If
Y (0) = Q(0) = I, this method is the closure of the discrete QR method since (if
integrations are done exactly) R(tj+1) =

∏1
k=j+1 Rk.

In many cases of interest, the fundamental solution matrix Y (t) has both ex-
ponentially increasing and decreasing modes; the problem of computing this type of
(dichotomic) solution matrix arises also when solving boundary value problems for
ODEs (e.g., see [AMR]). Not surprisingly, there has been a parallel development of
the discrete and continuous QR methods in this area. The discrete QR algorithm has
been examined extensively, and there is reliable software (see [G, SW]). While the
continuous QR algorithm has also been investigated, its numerical properties are not
as well understood [Me, Da, DRV].

4. Error analysis. The two chief sources of error to consider are (a) the error
from truncation of the infinite time problem to a finite one and (b) the discretization
errors from numerical integration of the differential equations.

Truncated time exponents. In practice, computation of Lyapunov exponents
is done for finite time, and we need the following.

DEFINITION 4.1. For given time T < ∞, the truncated time (Lyapunov) expo-
nents are the exact values obtained by truncating the infinite limits to the value T .
For regular systems this reduces to

(4.1) λi(T ) =
1
T

∫ T

0
Ãii(s)ds =

1
T

log Rii(T ) ,

where Ãii(t) and Rii(t) are the diagonal entries of upper triangular Ã(t) and R(t)
defined in (1.14) and (1.12), respectively.

Recall that the Lyapunov exponents and the spectra of (1.2) and (1.13) are the
same. To analyze the error in a truncated time approximation to λi, for γ = λi, we
consider the diagonal terms of the upper triangular fundamental solution matrix of
(1.13). Letting φλi(t) = e−λitφi(t) and

φi(t) = e

t∫
0

Ãii(s)ds
,

we have that for any ξi > 0 and ρi > 0 there exist Ki, Li ≥ 1 such that

(4.2)
|φλi+ξi

(t)φ−1
λi+ξi

(s)| ≤ Ki, t ≥ s,

|φλi−ρi
(s)φ−1

λi−ρi
(t)| ≤ Li, t ≥ s .
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412 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

Setting s = 0 and t = T > 0 gives

(4.3)
|e−(λi+ξi)T φi(T )| ≤ Ki,

|e−(λi−ρi)T φi(T )| ≥ L−1
i .

From (4.1) we obtain

(4.4) −ρi − 1
T

log(Li) ≤ 1
T

T∫
0

Ãii(s)ds − λi ≡ λi(T ) − λi ≤ ξi +
1
T

log(Ki),

which is summarized as follows.
LEMMA 4.2. Let λi be a Lyapunov exponent of (1.2). Then, given ξi, ρi > 0,

there exist constants Ki, Li ≥ 1 such that the error bound (4.4) for the truncated time
Lyapunov exponents holds.

A way to estimate Ki, Li and the subexponential growth and decay constants
ξi, ρi while computing the Lyapunov exponents is presented in section 5.

Numerical integration error. The first results we have are for the constant
and periodic coefficient cases, which are the two simplest instances of systems which
have point spectrum (in particular, they are regular; see Corollary 1.4).

Constant and periodic coefficient matrices. We shall show the following.
Claim 1. Let A be constant and let the discrete QR method be used with a fixed

stepsize h > 0. Let R(Ah) be a rational matrix function approximating eAh such that
R(Ah) is invertible, with no eigenvalues on the negative real axis. Then, in the limit
the discrete QR method computes the Lyapunov exponents of the system ż = Bz
exactly, as real parts of the eigenvalues of a logarithm matrix B, where R(Ah) = ehB.

Claim 2. Let A(t) be ω periodic, A(t + ω) = A(t), and choose the stepsize
sequence for the discrete QR algorithm so that tJ = ω for some index J . Moreover,
let the stepsize sequence used over the first period for the approximation of the Zj

matrices be used also for every other time period. Then, in the limit the discrete QR
method computes the real parts of the Floquet exponents of the computed approxi-
mation to the monodromy matrix exactly. In particular, the significant error is that
over one period, and it does not accumulate.

Remark 4.3. There are noteworthy similarities between computing Lyapunov
exponents in the two cases above and “orthogonal iteration,” a well-known method
which is a prototype for computing eigenvalues of a matrix C. It consists of the
following: given C and Q0 (e.g., Q0 = I), let

Zj+1 = CQj ,

and then form the QR decomposition of Zj+1,

Zj+1 = Qj+1Rj+1,

for j = 0, 1, 2, . . . (cf. (3.2), (3.3)). It is well known (e.g., see [SB]) that the sequence
QT

j CQj (Schur iteration) converges to a Schur decomposition of C if the eigenvalues
of C are all real and distinct. If there are multiple eigenvalues (or complex conjugate
eigenvalues) the sequence of Qj may not actually converge, and neither do the QT

j CQj .
But in all cases, as j → ∞, QT

j CQj approaches a quasi-triangular structure whose
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ON THE COMPUTATION OF LYAPUNOV EXPONENTS 413

eigenvalues are the eigenvalues of C. Technically, failure to converge can occur for
columns whose eigenvalues have equal modulus.

To show Claim 1, suppose that we use the discrete QR method (3.1)–(3.3) for
computing the Lyapunov exponents for a constant coefficient problem. We are really
doing the following: given Q0 (e.g, Q0 = I), we have Zj(tj+1) = eAhQj , and then
Zj(tj+1) = Qj+1Rj+1 for j = 0, 1, . . . . Note that Ah is a logarithm of eAh. Thus, we
obtain the Lyapunov exponents as

λi =
1
h

lim
j→∞

1
j

log |(Rj)ii · · · (R1)ii| ,

which in the limit converges to the real part of the ith eigenvalue of A. In practice,
we compute a rational approximation R(Ah) to eAh. Under the assumptions, R(Ah)
has a real logarithm hB such that ehB = R(Ah). Therefore, in the limit we actually
compute the real parts of the eigenvalues of B, as claimed.

The argument for periodic problems is similar. Recall that a monodromy matrix
D satisfies Y (t + ω) = Y (t)D, and for periodic problems Y (t) = P (t)eBt, where B
has constant coefficients and P (t) has period ω. Thus, without loss of generality we
can consider the monodromy matrix Y (ω) with Y (0) = I. Under the assumptions of
Claim 2, we are doing the following: given Q0 = I, we form Zj(t(j+1)J) = Y (ω)Qj

and then Zj(t(j+1)J) = Qj+1R(j+1)J for j = 0, 1, . . . . Thus, we obtain the Lyapunov
exponents as

λi =
1
ω

lim
k→∞

1
k

log |(RkJ)ii · · · (RJ)ii| ,

which in the limit converges to the real part of the ith eigenvalue of B. In practice,
one cannot compute Y (ω) exactly, and this must be replaced by an approximation
W (ω). By periodicity of the system, and the assumption on the stepsize sequence, we
obtain as approximate Lyapunov exponents 1/ω times the real parts of the eigenvalues
of a logarithm of W (ω), as claimed.

General matrices. In the case of a general coefficient matrix A(t), the situation
is not as well established as in the constant and periodic coefficient cases. We present
two types of results. The first is an idealized case assuming no error propagation
during numerical integration; this idealized setting is insightful in order to understand
the relative merits of discrete and continuous QR techniques. The second type of
result relies upon a more realistic interpretation of what the discrete QR algorithm
does, for which we can give estimates of the error (assuming that the original system
has point spectrum).

Idealized error analysis. In this case we account for the local error on a given step
but assume that local errors do not accumulate. More precisely, we assume that we
restart with exact values at each new step.

For the discrete QR method, consider the problem

(4.5)

{
Ẏ i = AY i, t ∈ [ti, ti+1], i = 0, 1, . . . ,

Y i(ti) = Q(ti),

where Q(ti) is the Q factor in the QR factorization of the exact Zi−1(ti) defined in
the theoretical description of the discrete QR algorithm in (3.1)–(3.4).

THEOREM 4.4. Given ti = t0 + ih for i = 1, 2, . . . , suppose that Y i(t) is the
fundamental solution matrix of problem (4.5) and suppose that Yi = Y i−1(ti) + Wi is
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414 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

the computed approximation to Y i−1(ti) with ||Wi|| < δ, where δ is a bound on the
local error. Then, for δ sufficiently small, the computed Lyapunov exponent λ̂j using
the discrete QR method with (4.5) satisfies

|λ̂j − λj | < Cδ ,

where to first order the constant C is shown in the proof below.
Proof. Let Y i−1(ti) = Q(ti)Ri−1(ti) denote the unique QR factorization of

Y i−1(ti). By [St, p. 516] we have

‖Ri−1(ti) − Ri‖ ≤ ‖Wi‖ + b(‖Y i−1(ti)‖ + ‖Wi‖)

with

b ≤ 3||Y i−1(ti)−1|| ||Wi||
1 − 2||Y i−1(ti)−1|| ||Wi|| .

Therefore, for appropriately defined C1, for any i

‖Ri−1(ti) − Ri‖ < δ

(
1 +

3[κ(Y i−1(ti)) + ||Y i−1(ti)−1||δ]
1 − 2||Y i−1(ti)−1||δ

)
≤ δC1 ,

where κ(Y i−1(ti)) denotes the condition number of Y i−1(ti).
If Y i−1(ti) denotes the solution of (4.5), then from (3.4)

λj = lim
k→∞

1
tk

k∑
i=1

log(Ri−1
jj (ti)) ,

whereas the computed exponents satisfy

λ̂j = lim
k→∞

1
tk

k∑
i=1

log(Ri−1
jj (ti) + C(i)δ),

where |C(i)| ≤ C1 , i = 1, . . . . Thus, to first order we have

|λj − λ̂j | ≈ C1δ

h
· lim

k→∞
1
k

k∑
i=1

1
Ri−1

jj (ti)
.

Remark 4.5. Note that limk→∞ 1
k

∑k
i=1

1
Ri−1

jj (ti)
≤ 1

Rmin
jj

, where Rmin
jj denotes the

minimum value of Ri−1
jj (ti), so difficulties can be expected for negative Lyapunov

exponents of large magnitude, even if the approximate fundamental solution matrix
is accurate. This explains some observations in the literature regarding the difficulty
of computing negative Lyapunov exponents with the discrete QR method.

For the continuous QR method we discretize in two steps: (i) compute the Q factor
of Y (t) by integrating the matrix system (3.8) and (ii) approximate the Lyapunov
exponent using (3.11). Computationally, these two steps are replaced as follows.

(a) To integrate (3.8), we use unitary schemes (see [DRV]), so that the computed
approximation remains orthogonal. We assume that the scheme is of order p, with
local truncation error O(hp+1), that the stepsize h is constant, and that Qk is an
accurate approximation to Q(tk), i.e., ‖Q(tk) − Qk‖ ≤ δ, with δ small. This latter
assumption is more unrealistic the longer the interval of integration.

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ON THE COMPUTATION OF LYAPUNOV EXPONENTS 415

(b) After truncating the time interval at some finite value T , we approximate the
integral in (4.1) by the composite trapezoidal rule where the exact values of Ãii(tk) =
(QT (tk)A(tk)Q(tk))ii are replaced by the approximations Ãc

ii(tk) = (QT
k A(tk)Qk)ii.

From the assumptions above, |Ãii(tk) − Ãc
ii(tk)| = O(δ). Let λc

i (tJ) be the com-
puted approximation obtained using the composite trapezoidal rule, so that

λc
i (tJ) =

1
tJ

h

2

J∑
j=1

[(QT
j−1A(tj−1)Qj−1)ii + (QT

j A(tj)Qj)ii]

=
1
tJ

h

2

J∑
j=1

[Ãii(tj−1) + Ãii(tj)] .

Assuming that A(t) ∈ Ck, k ≥ 2, if |Ã′′
ii| denotes the maximum of |Ã′′

ii(t)| over
[tj−1, tj), j = 1, . . . , J , we obtain

|λi(tJ) − λc
i (tJ)| =

1
tJ

∣∣∣∣∣∣
J∑

j=1

(
−h3

12

)
Ã′′

ii(ξj)

∣∣∣∣∣∣ + O(δ)

≤ h2

12
|Ã′′

ii| + O(δ) ,

which implies

|λi(T ) − λc
i (T )| = O(δ) + O(h2) .

Notice that there is no indication of a deterioration for negative exponents which
there is in the discrete QR case. Another advantage of the continuous QR method
over its discrete counterpart is that we do not need to integrate the original system,
which is often dichotomic. We instead integrate the Lyapunov equation (3.8), which
is neutrally stable since the growth behavior of the fundamental solution is in the R
factor, which we never explicitly integrate (only a quadrature is needed, and only for
the diagonal entries).

General error analysis. Here we use the main perturbation result of section 2 to
find bounds on the error in the Lyapunov exponents obtained using the discrete QR
method (for systems with point spectrum).

Let a segmentation 0 = t0 < t1 < · · · < tk < tk+1 < · · · with hk := tk+1 − tk be
given. Let Φ(t, tk) be the transition matrices of the problems

(4.6) Φ̇(t, tk) = A(t)Φ(t, tk) , Φ(tk, tk) = I ,

and define the matrices Bk by hkBk = log Φ(tk, tk+1), k = 1, 2, . . . , where we are
taking the principal logarithm. The original problem Ẏ = A(t)Y, Y (0) = I, can thus
be rewritten as the piecewise constant problem

(4.7) Ẏ = B(t)Y , Y (0) = I ; B(t) = Bk, tk ≤ t < tk+1 .

In exact arithmetic the discrete QR method can be viewed as successively solving the
piecewise constant problems

(4.8) Żk(t) = BkZk(t) , Zk(tk) = Qk ,
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416 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

for t ∈ [tk, tk+1), where QkRk = Zk−1(t−k ). Of course, in general the transition
matrices, and hence the matrices Bk, are not known explicitly.

A numerical implementation of the discrete QR method can also be viewed as
solving exactly piecewise constant problems

(4.9) Ẇk(t) = CkWk(t) , Wk(tk) = Hk ,

for t ∈ [tk, tk+1), where HkUk is the unique QR factorization of Wk−1(t−k ) and hkCk

is the principal logarithm of the computed approximation to the transition matrix.
In other words, one is using the discrete QR method on piecewise constant problems

(4.10) Ẏ = C(t)Y , Y (0) = I ; C(t) = Ck, tk ≤ t < tk+1 , k = 0, 1, . . . .

We now use Theorem 2.3 (see also Remark 2.6) to obtain bounds on the distance
from the Lyapunov exponents of (4.10) to the exact λi’s for (4.7).

If Yk+1 is the exact solution of (4.10) at t−k+1, then

Yk+1 = ehkCkYk = Wk(t−k+1)H
T
k Yk = · · · = Hk+1Uk+1Uk · · ·U1 ,

and since the matrices Hk are orthogonal, the Lyapunov exponents of (4.10) are the
same as those of the (discrete) triangular system

Ψk+1 = UkΨk , Ψ0 = I .

Moreover, given any η > 0, there exists a time T ≡ T (η) > 0 such that for any tk > T ,

−η + lim inf
j→∞

1
tj

log(Uj · · ·U1)ii ≤ 1
tk

log(Uk · · ·U1)ii ≤ lim sup
j→∞

1
tj

log(Uj · · ·U1)ii + η.

From Lemma 1.5, the above lim inf and lim sup lie in a spectral interval of (4.10), so
in the limit we actually compute an approximation contained in a spectral interval.
If (4.10) is a regular system, then these limits coincide, which raises the interesting
question of how to guarantee that a chosen numerical method for a regular system
(4.7) produces a regular system (4.10).

Precise error bounds, i.e., precise widths of the spectral intervals for (4.10) as
related to the point spectrum of (4.7), depend upon the particular formula used to
approximate (4.6). To illustrate, we consider the simplest case of Euler’s method
to integrate (4.6). For different approximations, an appropriate modification of this
argument is generally straightforward.

We have

hkCk = log(I + hkA(tk)) ,

from which the error can be quantified as follows: on [tk, tk+1), let A(t) = A(tk) +
hkȦ(ξk), where Ȧ(ξk) is a matrix whose coefficients are the derivatives of those of
A(t), evaluated at (different) points ξij . Thus, on [tk, tk+1)

(4.11) ‖Ck − A(t)‖ ≤ (hk‖Ȧ(ξk)‖ + ‖Ck − A(tk)‖) .

For Euler’s method, the bound on the perturbation in the coefficient matrix depends
on two factors: (i) the first derivative of A(t) and (ii) the first-order approximation
to the matrix exponential. If we could compute matrix exponentials exactly, then the
first factor shows that the perturbation is small in norm when A(t) is slowly varying.
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ON THE COMPUTATION OF LYAPUNOV EXPONENTS 417

In practice, one can proceed adaptively by monitoring the first derivative of A(t),
thereby guaranteeing that hkȦ(ξk) is always small in norm.

The term ‖Ck − A(tk)‖ in (4.11) can be bounded as follows. If

c1 := ‖I + hkA(tk) − ehkA(tk)‖ ,

then a crude bound on c1 is given by

c1 ≤ 1
2
h2

k‖A(tk)‖2ehk‖A(tk)‖ .

Letting

c2 = ‖ log′(ehkA(tk))‖ ,

where log′(·) is the Fréchet derivative of the log matrix function, then using [DMP,
Remark 2.2(iii), p. 573] we have

‖hk(Ck − A(tk))‖ ≤ c2c1 + O(c2
1) .

If hk is sufficiently small that c3 := ‖I − ehkA(tk)‖ < 1, then c2 ≤ 1
1−c3

from [DMP,
Equation (3.2)]. Therefore, for small hk, we have

‖Ck − A(tk)‖ ≤ hk

2
‖A(tk)‖2ehk‖A(tk)‖

1 − c3

to first order in hk. If c3 ≥ 1, an a priori bound on c2 can still be obtained but is
somewhat more involved [DMP, Equation (3.14)]. Using this in (4.11) we have a full
first-order control on the perturbation in the coefficient matrix. Thus, Theorem 2.3
guarantees that as the stepsize goes to zero, the approximate Lyapunov exponents
converge to the exact ones.

5. Implementation. In this section we describe our implementations of the
discrete and continuous QR methods and present an algorithm for approximating
the dichotomy constants used to bound the error in the truncated time exponents.
Practically, a nontrivial task is determining a suitable truncation time T over which
the solution behavior is revealed, but we simply assume that this has been achieved.

Approximation of dichotomy constants. An interesting side benefit of com-
puting the Lyapunov exponents is that the dichotomy constants, i.e., the values in
(4.2), can be approximated at little extra cost. The dichotomy constants are essential,
via Theorem 2.3 and (4.4), to obtain quantitative error bounds for the approxima-
tions of the Lyapunov exponents. Since we are considering error bounds for individual
Lyapunov exponents, it suffices to compute the weak dichotomy constants in (4.4) for
each of them. The basic approach is introduced in [CVV2].

Let λ̂ be the approximation to the Lyapunov exponent λi, for which we are
computing the dichotomy constants. Below, let m = 0 for λ̂ < 0 and m = 1 for λ̂ > 0;
a(t) := Ãii(t); T := Nh > 0 for some N and for a fixed stepsize h; and

(5.1) Mj := sup
τ−t=jh

e(−1)mI(τ,t) , 1 ≤ j ≤ N ,

where I(t, τ) is the computed approximation of
∫ τ

t
a(s)ds. Set L := MNe−(−1)mλ̂Nh

and let
(5.2)

ε :=
{

(−1)m log(MN )
hN − λ̂, if L 
= 1;

0, otherwise,
and K := sup

1≤j≤N
Mje

−(−1)m(λ̂+ε)jh,
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418 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

so for arbitrary t ≤ τ with τ − t a multiple of h, we have

(5.3)
e(−1)mI(t,τ) = e(−1)mI(t,t+Nh) · · · e(−1)mI(t+(k−1)Nh,t+kNh)e(−1)mI(t+kNh,τ)

≤ (MN )ke(−1)mI(t+kNh,τ) ≤ Ke(−1)m(λ̂+ε)(τ−t) .

In practice we have found that approximating the dichotomy constants in con-
junction with the Lyapunov exponents works well.

Remark 5.1.
(i) The case of a zero Lyapunov exponent may be treated as a stable or an unstable

case, i.e., m = 0 or 1.
(ii) During numerical integration, several values of N may be considered simulta-

neously, and then one of them chosen to minimize a given function of K and ε subject
to (5.3), for instance log(K)

t + ε.

Implementation details: Discrete QR. Our implementation of the discrete
QR method follows the outline given in (3.1)–(3.4). We integrate the matrix equa-
tion (3.2) using either the second-order Runge–Kutta method (Heun’s method), the
classical fourth-order Runge–Kutta method, or the fourth-order variable step solver
RKF45. These are denoted by “Disc RK2,” “Disc RK4,” and “Disc RKF45,” respec-
tively. The QR decomposition (3.3) is done by the modified Gram–Schmidt method
(which is stable [GvL]) and, for simplicity, this decomposition is performed for each
integration step. We used this Gram–Schmidt procedure because the R factor must
be kept “smooth,” say by minimizing the variation in the Rii, and the standard im-
plementation of the Householder factorization is not suitable for this (it attempts to
minimize roundoff errors and does not generally deliver a slowly changing R). In
the nonlinear case, the original problem (2.9) and the variational equation (3.2) are
integrated simultaneously with the same numerical integrator.

Implementation details: Continuous QR. Our implementation of the con-
tinuous QR method follows the approach outlined in (3.5)–(3.11). We integrate the
nonlinear skew system (3.8) using either projected or automatic unitary integrators
[DRV] in order to preserve orthogonality of the solution. A projected integrator con-
sists of a standard integrator combined with a modified Gram–Schmidt process. We
use Heun’s method, classical fourth-order Runge–Kutta and RKF45 as the projected
integrators, and denote them by “Cont PRK2,” “Cont PRK4,” and “Cont PRKF45.”
We use the second-order and fourth-order Gauss Runge–Kutta methods as the au-
tomatic unitary integrators and denote them by “Cont GRK2” and “Cont GRK4.”
For the nonlinear case, we use only the projected unitary integrators because imple-
mentation of automatic unitary integrators is less straightforward. The nonlinear and
linearized problems are integrated simultaneously, and then the integral in (3.11) is
approximated using the composite trapezoidal rule.

6. Numerical examples. In this section, we present numerical results for the
continuous and discrete QR methods. We display at least five digits for the computed
Lyapunov exponents. The CPU time is recorded in seconds, and all computations
have been done in double precision on a Sparc Station 1 with a machine epsilon of
approximately 1.E − 16.

Example 6.1. We construct a linear problem with coefficient matrix A(t) =
Q(t)Ã(t)QT (t) + Q̇(t)QT (t), where Ã(t) = diag(λ1, cos(t),− 1

2
√

t+1 , λ4). Here, λ1 = 1,
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ON THE COMPUTATION OF LYAPUNOV EXPONENTS 419

TABLE 1
Example 6.1: Fixed step methods.

Method T Δt λ1 λ2 λ3 λ4 CPU
Exact - - 1 0 0 −10 -

Cont GRK2 100 0.1 .99981 −.00655 −.08892 −9.99990 268.
Cont GRK4 100 0.1 .999999999 −.00505 −.09051 −9.99999999 323.
Cont PRK2 100 0.1 .99966 −.00776 −.08800 −9.99946 42.4
Cont PRK4 100 0.1 .999999 −.00505 −.09050 −9.99999 56.8
Disc RK2 100 0.1 1.00977 −.00420 −.08965 −7.18290 9.63
Disc RK4 100 0.1 .99995 −.00414 −.09045 −9.83400 17.7
Cont PRK2 100 0.01 .9999999 −.00506 −.09050 −9.9999999 414
Cont PRK4 100 0.01 1 −.00506 −.09050 −10.0000000000 559.
Disc RK2 100 0.01 1.00008 −.00506 −.09051 −9.98317 97.0
Disc RK4 100 0.01 .99999999 −.00506 −.09050 −9.99999 177.
Cont PRK2 1000 0.1 .99965 −.01035 −.01966 −9.99945 418.
Cont PRK4 1000 0.1 .999999 .00082 −.03065 −9.99999 562.
Disc RK2 1000 0.1 1.00974 −.00131 −.02680 −7.18233 99.5
Disc RK4 1000 0.1 .99995 .00086 −.03064 −9.83388 177.

TABLE 2
Example 6.1: Variable step methods.

Method T Tol λ1 λ2 λ3 λ4 CPU
Exact - - 1 0 0 −10 -

Cont PRKF45 100 1E−6 .999999999999 −.00541 −.09052 −9.99999999999 144.
Disc RKF45 100 1E−6 .99975 −.00544 −.09099 −9.97581 1220.

Cont PRKF45 1000 1E−6 .999999999999 .00083 −.03064 −9.99999999999 1420.

TABLE 3
Example 6.1: Dich const (PRK4, h = 0.1, T = 1000, J = 63).

i εi Ki

1 1.E−8 1 + 1.E−6
2 3.5E−3 7.32
3 1.5E−2 1 + 1.E−3
4 1.E−8 1 + 1.E−6

λ4 = −10, and

Q(t) = diag(1, Qβ(t), 1)·diag(Qα(t), Qα(t)),

where Qγ(t) =
(

cos(γt) sin(γt)
− sin(γt) cos(γt)

)
,

and α = 1, β =
√

2. By construction, λ2 = 0 and λ3 = 0. Numerical results are
summarized in Tables 1 and 2. The accuracy of λ3 is more sensitive to the length
of the integration interval than are the other Lyapunov exponents. The continuous
QR method performs well, and the global error is apparently determined by the time
truncation factor. The discrete QR method yields poor accuracy for the negative Lya-
punov exponent λ4, as expected. Note the large CPU time and error when a variable
stepsize integrator is used with the discrete QR method. The large CPU time can
be attributed to the fact that integration for the fundamental matrix solution forces
a small step as compared with integration of the neutrally stable Lyapunov equation
for the continuous QR method. Table 3 gives the computed values of dichotomy
constants with Ki = max(Li, Mi) and εi = max(ξi, ρi) (see (4.4)).
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420 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

TABLE 4
Example 6.3: Fixed step methods.

Method T Δt λ1 λ2 CPU
Exact - - 0 -

Cont PRK2 100 0.1 .00414 −1.05452 2.40
Cont PRK4 100 0.1 .00099 −1.05729 3.83
Disc RK2 100 0.1 .00249 −1.05020 .79
Disc RK4 100 0.1 .00192 −1.05625 1.12

Cont PRK2 100 0.1 .00104 −1.05730 20.8
Cont PRK4 100 0.1 .00101 −1.05732 33.6
Disc RK2 100 0.01 .00102 −1.05726 7.40
Disc RK4 100 0.01 .00101 −1.05732 11.2

Cont PRK2 100 0.01 .00245 −1.05737 20.8
Cont PRK4 100 0.01 .00026 −1.05866 34.0
Disc RK2 1000 0.1 −4.5028E−5 −1.05407 7.35
Disc RK4 1000 0.1 2.62499E−4 −1.05869 11.1

TABLE 5
Example 6.3: Variable step methods.

Method T Tol λ1 λ2 CPU
Exact - - 0 -

Cont PRKF45 100 1E−6 2.30895E−4 −1.05880 4.23
Disc RKF45 100 1E−6 1.58738E−4 −1.05640 17.8

Cont PRKF45 1000 1E−6 −5.08003E−4 −1.06020 42.6
Disc RKF45 1000 1E−6 −5.87591E−4 −1.05777 178.

The computed dichotomy constants are generally accurate approximations to the
exact dichotomy constants εi = 0 for i = 1, . . . , 4 and K1 = 1, K2 = e2, K3 = 1, K4 =
1, although their accuracy depends on the accuracy of the corresponding approximate
exponents. With these values of Ki (for εi = 0 and exact λi), the values corresponding
to any other εi and λi may be determined using (4.4) and setting εi = max{ρi, ξi}.

Example 6.2. Lyapunov [Ly] presented the nonregular system with coefficient
matrix

A(t) =
(

cos(log(t + 1)) sin(log(t + 1))
sin(log(t + 1)) cos(log(t + 1))

)
.

Since nonregular systems do not satisfy (1.16), we cannot expect the QR-based numer-
ical methods to properly compute the Lyapunov exponents. The QR-based methods
do approximate the time average of the trace of A(t) for any time T . For this example,
the sum of the Lyapunov exponents is +2 while

lim sup
t→∞

1
t

t∫
0

trace(A(s))ds =
√

2 and lim inf
t→∞

1
t

t∫
0

trace(A(s))ds = −
√

2,

so the computed sum of the Lyapunov exponents oscillates between −√
2 and

√
2.

Our computations for both methods also exhibit this behavior.
Example 6.3. Consider the unforced van der Pol equation ü − k(1 − u2)u̇ + u =

0, k > 0. For this problem, every trajectory (except u = 0) approaches the attracting
limit cycle, so one Lyapunov exponent is zero and the other negative. In Tables 4, 5,
and 6 we present some typical results for k = 1 and (u(0), u̇(0)) = (0, 2.1).
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ON THE COMPUTATION OF LYAPUNOV EXPONENTS 421

TABLE 6
Example 6.3: Dich const (PRK4, h = 0.1, T = 1000, J = 1000).

i εi Ki

1 .001 1.84
2 .015 5.18

TABLE 7
Example 6.4: Variable step methods (T = 1000).

Method ρ Tol λ1 λ2 λ3 CPU
[SN] 40.0 - 1.37 0.0 −22.37 -

Cont PRKF45 40.0 1.E−6 1.36006 .00570 −22.36576 1270.
Disc RKF45 40.0 1.E−6 1.33961 −.01055 −22.30930 6090.

[WSSV] 45.92 - 1.497 0.0 −22.458 -
Cont PRKF45 45.92 1.E−6 1.48804 .00452 −22.52772 1330.
Disc RKF45 45.92 1.E−6 1.47829 −.01086 −22.44645 6030.

Example 6.4. Next, consider the Lorenz equation [Lo]⎛
⎝ ẋ

ẏ
ż

⎞
⎠ =

⎛
⎝ σ(y − x)

ρx − xz − y
xy − βz

⎞
⎠ .

Many different algorithms have been used trying to approximate its Lyapunov expo-
nents, but all results ought to be looked at with some caution, since it is not known
whether or not the linearized system is regular. Nonetheless, we test our algorithms
against previous results. We use the parameter values σ = 16 and β = 4.0 and vary
ρ. The initial condition is (x0, y0, z0) = (0, 1, 0). We compare with the discrete QR
methods of [SN, WSSV] in Table 7.

Note that lim supt→∞
1
t

∫ t

0 trace(A(s))ds = −σ − β − 1 = −21. The computed
Lyapunov exponents satisfy

∑3
1 λi ≈ −21, so their sum attains its minimum possible

value.

7. Conclusions. Despite the large body of literature on the computation of
Lyapunov exponents, there has been little analysis of the computational error. The
need for such analysis is demonstrated by the fact that the computation of Lyapunov
exponents is a delicate task. In this work we have considered regular linear systems
and concentrated on QR-based methods, which in principle are suitable for such
systems. Although regularity has been recognized as a natural condition to have for
a long time (see [Ly]), it is not a sufficiently strong condition to guarantee stability of
the Lyapunov exponents with respect to perturbations. Our stability result, expressed
as the perturbation Theorem 2.3, makes use of a point spectrum assumption, and such
assumption appears to us to be essential to make any progress. With this stability
result, a backward error analysis can be used to guarantee that the numerical results
are reliable.

There are at least two basic difficulties in approximating Lyapunov exponents.
The first is intrinsic: do the Lyapunov exponents exist as limits, and if so, how does one
find a suitable finite time to truncate the process? The second difficulty is numerical,
and it boils down to understanding the effect that the numerical method itself has
on the approximation. One should also be aware that the perturbation due to the
numerical method might in principle produce nonregular systems, and then there is
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422 LUCA DIECI, ROBERT D. RUSSELL, AND ERIK S. VAN VLECK

no longer any guarantee that the QR techniques give accurate approximations to the
exponents. As a consequence, it is extremely difficult to say something meaningful
about the approximations in the case of a general variable coefficient system without
resorting to strong assumptions.

In this paper, we have fully analyzed constant and periodic coefficient problems.
For general variable coefficient problems, we have assumed that the original system
has point spectrum and then used the perturbation result to obtain some estimates.
Also, we have provided some general insight into the relative merits of the discrete
and continuous QR methods. Our argument suggests that the discrete QR method
performs well for positive Lyapunov exponents but has difficulties for negative (large)
Lyapunov exponents. The continuous QR method is shown to be robust when imple-
mented using unitary integrators, which ensure orthogonality of the approximations
to Q(t). In both cases, the error in the truncated approximations is given in terms
of weak dichotomy constants. These constants also arise in the bounds in the basic
perturbation theorem. We give an algorithm for estimating these constants and find
it to give accurate estimates of the error.

Our focus on linear problems is partly justified by Theorem 2.3, which shows
that the potential change in the Lyapunov exponents due to a perturbation in the
linear system is a function of the gap between them. The analysis is thus applicable
to nonlinear systems for which some type of global error bounds on the computed
solutions are available. Finally, we have only considered the QR methods for finding
all Lyapunov exponents; the case where only the first few exponents are computed is
treated in [DV].

Acknowledgment. We are indebted to the referees who are responsible for sub-
stantial improvements in the paper.
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