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Abstract. The dynamics of a closed loop thermosyphon are considered. The model assumes a
prescribed heat flux along the loop wall and the contribution of axial diffusion. The well-posedness
of the model which consists of a coupled ODE and PDE is shown for both the case with diffusion and
without diffusion. Boundedness of solutions, the existence of an attractor, and an inertial manifold
is proven, and an exact reduction to a low-dimensional model is obtained for the diffusion case. The
reduced systems may have far fewer degrees of freedom than the reduction to the inertial manifold.
For the three mode models, equivalence with the classical Lorenz equations is shown. Numerical
results are presented for five mode models.
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1. Introduction. In this paper we present an analytical and numerical analysis
of a class of models describing the motion of a fluid inside a closed loop circuit, driven
by gravity, natural convection, pumps, etc. These types of devices are called ther-
mosyphons and appear in numerous science and engineering fields. The first derivation
of the basic equations of motion goes back to [11] and [20], after which several other
generalizations, based on different physical assumptions, have been introduced; see,
for example, [2], [5], and [7]. The monograph [10] contains a broad overview of the
applications and the engineering interest in thermosyphons.

In all of these references, it is assumed that the loop is closed and completely
full of fluid. The cross sectional area of the loop is assumed to be constant, and the
velocity of the fluid is assumed to be independent of position in the circuit. This
means that velocity v(t) is assumed to be a scalar quantity depending only on time
and satisfying an ODE. On the other hand, the other relevant quantity, namely,
temperature, T (t, x), is a function of time and position along the loop and satisfies a
PDE.

In the absence of external pumping of the fluid, the mechanisms involved in the
onset and sustainment of the fluid motion are the differences in temperature, the
distribution of gravitational forces, the friction of the fluid at the inner wall of the
loop, and transport of temperature, i.e. natural convection. However, most of these
models neglect the contribution of axial heat diffusion. One of our goals in this paper
is to study the influence of the diffusion mechanism on the dynamics and performance
of thermosyphons.
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DIFFUSION INDUCED CHAOS IN A CLOSED THERMOSYPHON 1073

Thermosyphon models differ due to differences in the geometry of the loop (which
in most cases is assumed to be of simple type: either circular [5], [12] or consisting
of straight vertical/horizontal branches joined together [2], [11], [20]), the friction law
assumed at the inner wall of the circuit (linear in [5], [11], [20], quadratic in [2], [9],
[12]), the distribution of external heat sources or sinks around the loop, and the heat
flux the device exchanges with its surroundings. It is customary to take the prescribed
flux case, h = h(t, x) given [12], [9], or Newton’s linear cooling law h = k(Ta − T ),
where k is a positive quantity, sometimes depending on the velocity, and Ta(x) is the
(given) ambient temperature distribution, [2], [20], or a blend of these two cases [5].
General geometries have been considered in [9] and [19], where the former considers
a quadratic friction law and prescribed heat flux and the latter considers a general
friction law and Newton’s cooling law.

In this paper we study the model with axial diffusion and with a prescribed heat
flux




dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

∂T

∂t
+ v

∂T

∂x
= h(x) + ν

∂2T

∂x2
, T (0, x) = T0(x),

(1.1)

where we assume throughout that G(v), which specifies the friction law at the inner
wall of the loop, is positive and bounded away from zero; i.e., G(v) ≥ G0 > 0. It
is usually taken to be G(v) = G, a positive constant for the linear friction case [11],
[20], [5], or G(v) = |v| for the quadratic law [12], [9], or even a rather general function
given by G(v) = g(Re|v|)|v|, where Re is a Reynolds-like number that is assumed
to be large, and g is a smooth strictly positive function defined on (0,∞) such that
g(s) ≈ A/s as s → 0 where A is a positive constant and g(s) ≈ 1 as s → ∞ [19],
[14], [16]. The parameter ν ≥ 0 denotes the diffusion coefficient, x ∈ (0, 1) is the arc

length, and
∮

=
∫ 1

0
dx denotes integration along the closed path of the circuit. The

function f = dz
dx represents the variation in height along the circuit, so f describes the

geometry of the loop and the distribution of gravitational forces. Note that
∮
f = 0.

The function h represents the heat transfer law across the loop wall. The functions
G, f , and h incorporate relevant physical constants of the model, such as the cross
sectional areaD, the length of the loop L, the Prandtl, Rayleigh, or Reynolds numbers,
etc.

For (1.1) we obtain, for T (t, x) =
∑

k∈Z∗ ak(t)e
2πkix, h(x) =

∑
k∈K bke

2πkix, and

f(x) =
∑

k∈J cke
2πkix, where K,J ⊂ Z

∗ = Z \ {0}, a reduced system of the form




dv

dt
+G(v)v =

∑
k∈K∩J

ak(t)c̄k,

ȧk(t) + (2πikv(t) + ν4π2k2)ak(t) = bk, k ∈ K ∩ J,
(1.2)

where a−k = āk, b−k = b̄k, and c−k = c̄k.
We note that the reduced system here with diffusion resembles the reduced system

obtained without diffusion in [14] and [16] for models of the form




dv

dt
+G(v)v =

∮
Tf,

∂T

∂t
+ v

∂T

∂x
= H(v)(Ta − T )

(1.3)D
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1074 ANÍBAL RODRÍGUEZ-BERNAL AND ERIK S. VAN VLECK

with f and G as above and H a positive function bounded away from zero. The model
(1.3) corresponds to the one we consider in this paper in the case of no diffusion ν = 0,
and a heat flux given by Newton’s linear cooling law h = H(v)(Ta − T ) with Ta the
given ambient temperature. Assuming the same Fourier expansions as above for T
and f and assuming Ta(x) =

∑
k∈K bke

2πkix, it is shown in [14] that the dynamics of
the full system (1.3) is given by the reduced set of ODEs



dv

dt
+G(v)v =

∑
k∈K∩J

ak(t)c̄k,

ȧk(t) + (2πikv(t) +H(v(t)))ak(t) = H(v(t))bk, k ∈ K ∩ J.
(1.4)

Note the similarity between (1.2) and (1.4), despite the fact that from the physical
viewpoint the dissipative mechanism in these two models is completely different, as
are the equations (1.1) and (1.3) and their mathematical properties.

To understand this, note that the only nonlinearity in the temperature equations
in (1.1) and (1.3) comes from the coupling with the scalar velocity equation through
the transport term. Therefore, in many respects the equations behave as if they are
linear, and any set of Fourier modes is an invariant set in phase space (modulo effects
due to heating). As a result, there is no cascading of energy (as is the case for the
Navier–Stokes equations), and linear damping is sufficient to ensure exponential decay
at a uniform rate for those modes that are not driven. The dissipation due to the
Laplacian term in (1.1) is not fundamentally stronger than linear damping, and hence
one expects (1.1) and (1.3) to behave similarly. A similar argument was used for
equations describing rotating elastic beams by Bloch and Titi in [1].

For (1.1) we present an analysis beginning with well-posedness and boundedness
of solutions. For the case with diffusion ν > 0, the existence of an attractor and
an inertial manifold is shown and an explicit reduction to low-dimensional systems
is obtained. It is noteworthy that we are able to obtain an exact finite-dimensional
reduction (1.2) that may have a much lower number of degrees of freedom than the
reduction to the inertial manifold. This leads to the derivation of 2n+1 mode models
for n = 1, 2, . . .. In particular, the three-dimensional model is shown to contain the
Lorenz system as a special case. This can be considered as an example of diffusion
induced chaos since for ranges of the diffusion coefficient ν we obtain the Lorenz
model in the “chaotic” parameter range. Numerical results are presented for five mode
models, and Lorenz-type behavior is observed under realistic physical assumptions.
The numerical results illustrate the dependence on the diffusion parameter ν, and
for different values of ν we observe convergence to equilibria, convergence to periodic
solutions, as well as Lorenz-type behavior. On the other hand, in the case of no
diffusion ν = 0, the existence of unbounded solutions is shown, although our numerical
results suggest that stable bounded solutions do exist. In some cases reduction to low-
dimensional systems is also possible for ν = 0. See [3] for other Lorenz models.

2. Well-posedness and boundedness. In this section we discuss the well-
posedness and boundedness of solutions of the thermosyphon model (1.1). Observe
that for ν ≥ 0 we have, integrating the equation for the temperature along the loop,
d
dt

∮
T =

∮
h and then

∮
T (t) =

∮
T0+t

∮
h. Therefore, the temperature is unbounded

as t → ∞, unless
∮
h = 0. However, taking θ = T − ∮ T and ĥ = h− ∮ h reduces to

the case
∮
T (t) =

∮
T0 =

∮
h = 0, since θ would satisfy

∂θ

∂t
+ v

∂θ

∂x
= ĥ(x) + ν

∂2θ

∂x2
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DIFFUSION INDUCED CHAOS IN A CLOSED THERMOSYPHON 1075

and
∮
Tf =

∮
θf , since

∮
f = 0. Therefore, hereafter we consider the system (1.1)

where all functions have zero average.

Also, if ν > 0 the operator νA = −ν ∂2

∂x2 , together with periodic boundary condi-
tions, is an unbounded, self-adjoint operator with compact resolvent in L2

per(0, 1) that

is positive when restricted to the space of zero average functions L̇2
per(0, 1). Hence

the second equation in (1.1) is of parabolic type for ν > 0.

2.1. The case with diffusion: ν > 0. We write the system (1.1) as

d

dt

(
v
T

)
+

(
0 0
0 −ν ∂2

∂x2

)(
v
T

)
=

(
F1(v, T )
F2(v, T )

)
(2.1)

with F1(v, T ) = −G(v)v+
∮
Tf and F2(v, T ) = h(x)− v ∂T∂x and initial data ( vT )(0) =

( v0T0
).
The operator

B =

(
0 0
0 −ν ∂2

∂x2

)

is a sectorial operator in R× L̇2
per(0, 1) with domain D(B) = R× Ḣ2

per(0, 1) and has
compact resolvent, where

L̇2
per(0, 1) =

{
u ∈ L2

loc(R), u(x+ 1) = u(x) a.e.,

∮
u = 0

}
,

Ḣm
per(0, 1) = Hm

loc(R) ∩ L̇2
per(0, 1).

The nonlinear terms satisfy F1 : R × L̇2
per(0, 1) → R, F2 : R × Ḣ1

per(0, 1) →
L̇2
per(0, 1), and F2 : R × L̇2

per(0, 1) → Ḣ−1
per(0, 1) and are Lipschitz and bounded on

bounded sets, provided f, h ∈ L̇2
per(0, 1).

Therefore, using the variations of constants formula for the system above, we look
for solutions of the fixed point problem

v(t) = v0 −
∫ t

0

G(v(s))v(s) ds+

∫ t

0

(∮
T (s)f

)
ds,(2.2)

T (t, x) = e−νAtT0(x) +

∫ t

0

e−νA(t−s)h(x) ds−
∫ t

0

e−νA(t−s)v(s)
∂T (s, x)

∂x
ds,(2.3)

where (v, T ) ∈ C([0, t0], Y ).
Then, using the results and techniques of [8], we obtain Theorem 2.1.
Theorem 2.1. Assume that G(v)v is locally Lipschitz, and that f, h ∈ L̇2

per(0, 1).

Then for every (v0, T0) ∈ R×L̇2
per(0, 1) there exists a unique solution of (1.1) satisfying

(v, T ) ∈ C([0,∞),R× L̇2
per(0, 1)) ∩ C((0,∞),R× Ḣ2

per(0, 1)),

(
v̇,
∂T

∂t

)
∈ C((0,∞),R× Ḣ2−δ

per (0, 1))

for every δ > 0. In particular, (1.1) defines a nonlinear semigroup in R× L̇2
per(0, 1).
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1076 ANÍBAL RODRÍGUEZ-BERNAL AND ERIK S. VAN VLECK

Proof. Local existence and regularity follow easily from the variation of constants
formula and [8]. For this, just note that the operator B, defined above, is also sectorial
in R × Ḣ−1

per(0, 1) with domain R × Ḣ1
per(0, 1) and has compact resolvent. Note that

in this context the operator L = − ∂2

∂x2 must be understood in the variational sense;

i.e., for every T, φ ∈ Ḣ1
per(0, 1),

〈L(T ), φ〉 =

∮
∂T

∂x

∂φ

∂x

and L̇2
per(0, 1) coincides with the fractional space of exponent 1/2 [8].

Now using that F2 : R × L̇2
per(0, 1) → Ḣ−1

per(0, 1) is Lipschitz and bounded on

bounded sets, we obtain local existence for initial data in R× L̇2
per(0, 1). In fact, from

the smoothing effect of the equations, we have (v, T ) ∈ C([0,M),R × L̇2
per(0, 1)) ∩

C((0,M),R × Ḣ1
per(0, 1)) and (v̇, ∂T∂t ) ∈ C((0,M),R × Ḣ1−δ

per (0, 1)) for some positive

M and any δ > 0. Now for ε > 0 small we have (v(ε), T (ε)) ∈ R × Ḣ1
per(0, 1) and,

therefore, since F2 : R × Ḣ1
per(0, 1) → L̇2

per(0, 1) is also Lipschitz and bounded on

bounded sets, we have (v, T ) ∈ C([ε,M),R × Ḣ1
per(0, 1)) ∩ C((ε,M),R × Ḣ2

per(0, 1))

and (v̇, ∂T∂t ) ∈ C((ε,M),R× Ḣ2−δ
per (0, 1)). Since ε is arbitrary, we obtain the regularity

of the local solution.
For global existence, we must show that solutions are bounded in the norm of

R × L̇2
per(0, 1) on finite time intervals. For this, note that multiplying the equation

for the temperature by T , integrating on (0, 1), and denoting by ‖ · ‖ the norm in
L̇2
per(0, 1), we have

1

2

d

dt
‖T‖2 + ν

∥∥∥∥∂T∂x
∥∥∥∥

2

=

∮
hT(2.4)

since
∮
T ∂T

∂x = 0 due to the periodic boundary conditions. On the other hand, inte-
grating the equation for the velocity, we have

v(t) = v0e
−
∫ t

0
G(v)

+

∫ t

0

(∮
Tf

)
e
−
∫ t

s
G(v)

ds.(2.5)

Hence we find that ‖T (t)‖ is bounded for finite time and so is |v(t)|, and hence we
have a global solution and a nonlinear semigroup in R× L̇2

per(0, 1).
In order to obtain asymptotic bounds on the solutions as t→∞, we make use of

the following result proven in [16].
Lemma 2.2 (l’Hôpital’s lemma). Assume f and g are real differentiable functions

on (a, b), b ≤ ∞, g′(x) 6= 0 on (a, b) and limx→b g(x) = ∞.

(i) If lim supx→b
f ′(x)
g′(x) = L, then lim supx→b

f(x)
g(x) ≤ L.

(ii) If lim infx→b
f ′(x)
g′(x) = L, then lim infx→b

f(x)
g(x) ≥ L.

With this, we have Theorem 2.2.
Theorem 2.3. For any solution of (1.1) we have

lim sup
t→∞

‖T‖ ≤ ‖h‖
ν4π2

,(2.6)

lim sup
t→∞

|v(t)| ≤ ‖h‖‖f‖
ν4π2

lim sup
t→∞

1

G(v(t))
≤ ‖h‖‖f‖
ν4π2G0

.(2.7)
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DIFFUSION INDUCED CHAOS IN A CLOSED THERMOSYPHON 1077

Therefore, (1.1) has a global compact and connected attractor, A, in R× L̇2
per(0, 1).

Proof. From (2.4), 1
2
d
dt‖T‖2 + ν‖∂T∂x ‖2 =

∮
hT . Using the Cauchy–Schwarz and

Young inequalities and then the Poincaré inequality, since
∮
T = 0, we obtain

d

dt
‖T‖2 + ν4π2‖T‖2 ≤ ‖h‖2

ν4π2
,(2.8)

and by elementary integration we obtain (2.6).

Now let I(t) =
∮
T (t)f so that lim supt→∞ |I(t)| ≤ ‖h‖‖f‖

ν4π2 . From (2.5), v(t) =

v0e
−
∫ t

0
G(v)

+
∫ t
0
I(s)e

−
∫ t

s
G(v)

ds, and using l’Hôpital’s lemma for the function F (t) =∫ t
0
I(s)e

−
∫ t

s
G(v)

ds = (
∫ t
0
I(s)e

∫ s

0
G(v)

ds)/(e

∫ t

0
G(v)

), we have lim supt→∞ F (t) ≤
‖h‖‖f‖
ν4π2 lim supt→∞

1
G(v(t)) <∞ and we obtain (2.7).

Since the sectorial operator B defined above has compact resolvent the rest follows
from [6, Theorems 4.2.2 and 3.4.8].

2.2. The case with no diffusion: ν = 0. The system now reads




dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

∂T

∂t
+ v

∂T

∂x
= h(x), T (0, x) = T0(x),

(2.9)

and therefore it is no longer of parabolic type.
To prove that the system is well posed, note that if v(t) is a given continuous

function then the second equation can be integrated along characteristics to obtain

T (v)(t, x) = T0

(
x−

∫ t

0

v

)
+

∫ t

0

h

(
x−

∫ t

s

v

)
ds(2.10)

and plugging this into the equation for the velocity yields

dv

dt
+G(v)v =

∮
T (v)f, v(0) = v0.

It remains to find a solution of this nonlocal differential equation. Note that for
T0, h ∈ L̇2

per(0, 1), and since in this space the translations are continuous isometries,
(2.10) defines a continuous function of time with values in this space. Although we
restrict ourselves to L̇2

per(0, 1), many other choices of space are possible for solving
problem (2.9). In fact any Banach space of 1-periodic functions of x having zero mean
and in which translations are continuous isometries can be used as an “admissible
space”; see [14]. Also note that the function given in (2.10) is an integral solution
of the PDE, which is satisfied only if T0 and h are differentiable. In particular, if
T0, h ∈ Ḣ1

per(0, 1), then T (v) is continuous with values in Ḣ1
per(0, 1) and satisfies the

PDE in (2.9) as an equality in L̇2
per(0, 1) a.e. in time.

Then we have Theorem 2.3.
Theorem 2.4. Assume G(v)v is locally Lipschitz and T0, f, h ∈ L̇2

per(0, 1). More-

over, assume either f ∈ Ḣ1
per(0, 1) or T0, h ∈ Ḣ1

per(0, 1) and v0 ∈ R. Then there exists
a unique solution of (2.9) satisfying

(v, T ) ∈ C([0,∞),R× L̇2
per(0, 1)),
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1078 ANÍBAL RODRÍGUEZ-BERNAL AND ERIK S. VAN VLECK

and T satisfies the PDE in the sense of (2.10). If T0, h ∈ Ḣ1
per(0, 1), then the solution

is in fact in C([0,∞),R× Ḣ1
per(0, 1)) and (v̇, ∂T∂t ) ∈ C((0,∞),R× L̇2

per(0, 1)).
Proof. As noted above we need to solve the fixed point problem

v(t) = F(v)(t) = v0 −
∫ t

0

G(v(s))v(s) ds+

∫ t

0

(∮
T (v)(s)f

)
ds

on a space of continuous functions. More precisely, we take W = {v ∈ C[0, L], v(0) =
v0, |v(t)− v0| ≤ M}, endowed with the sup norm, with L and M to be chosen, and
prove that F is a contraction on W .

From the expression for T (v) we have ‖T (v)(t)‖ ≤ ‖T0‖+ t‖h‖ and this, together
with the local Lipschitz property of G(v)v, shows that for fixed M , F(W ) ⊂ W if L
is sufficiently small.

To show that F is a contraction it is clear that we must prove some Lipschitz
dependence on

∮
T (v)f with respect to v ∈W .

First, assume that T0, h ∈ Ḣ1
per(0, 1). Then verify that ‖T (· + s) − T (·)‖ ≤ c1|s|

for all s ∈ R. If vi ∈W for i = 1, 2, then
∣∣∣∣
∮ (

T0

(
x−

∫ t

0

v1

)
− T0

(
x−

∫ t

0

v2

))
f(x) dx

∣∣∣∣ ≤ c1‖f‖t sup
[0,t0]

|v1 − v2|

and∣∣∣∣
∫ t

0

∮ (
h

(
x−

∫ t

s

v1

)
− h

(
x−

∫ t

s

v2

))
f(x) dx ds

∣∣∣∣ ≤ c1‖f‖t2 sup
[0,t0]

|v1 − v2|.

With these we find that F is Lipschitz on W with a Lipschitz constant depending
on L and M that tends to zero as L→ 0 and then F is a contraction for small enough
L.

If instead f ∈ Ḣ1
per(0, 1), then ‖f(·+ s)− f(·)‖ ≤ c2|s| for all s ∈ R and

∣∣∣∣
∮ (

T0

(
x−

∫ t

0

v1

)
− T0

(
x−

∫ t

0

v2

))
f(x) dx

∣∣∣∣
=

∣∣∣∣
∮
T0(x)

(
f

(
x+

∫ t

0

v1

)
− f

(
x+

∫ t

0

v2

))
dx

∣∣∣∣
≤ c2‖T0‖t sup

[0,t0]

|v1 − v2|

and ∣∣∣∣
∫ t

0

∮ (
h

(
x−

∫ t

s

v1

)
− h

(
x−

∫ t

s

v2

))
f(x) dx ds

∣∣∣∣

=

∣∣∣∣
∫ t

0

∮
h(x)

(
f

(
x+

∫ t

s

v1

)
− f

(
x+

∫ t

s

v2

))
dx ds

∣∣∣∣ ≤ c2‖h‖t2 sup
[0,t0]

|v1 − v2|,

and we obtain the same conclusion. Therefore, local well-posedness follows.
To prove global existence note that it is sufficient to prove that v(t) is bounded

on finite time intervals, since then from

v(t)− v(r) = −
∫ t

r

G(v)v ds+

∫ t

r

(∮
T (v)f

)
ds

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



DIFFUSION INDUCED CHAOS IN A CLOSED THERMOSYPHON 1079

we find that v(t) is of Cauchy type as t→ t0 for finite t0. Consequently, the limit of
(v(t), T (t)) as t→ t0 exists in R× L̇2

per(0, 1) and the solution can be prolongated.

But again from (2.5), i.e., v(t) = v0e
−
∫ t

0
G(v)

+
∫ t
0
(
∮
T (v)f)e

−
∫ t

s
G(v)

ds, we obtain
boundedness on finite time intervals and global existence follows.

As noted above, if T0, h ∈ Ḣ1
per(0, 1) then T satisfies the PDE in equation (2.9)

as an equality in L̇2
per(0, 1) a.e in time. In particular, we have ∂T

∂t ∈ C((0,∞),

L̇2
per(0, 1)).

The following result shows that in contrast to the case ν > 0, (2.9) is not a
dissipative system, since there may be unbounded solutions.

Proposition 2.5. Assume
∮
hf = 0 and

∮
T0f = 0. Then the solution of (2.9)

with initial data (0, T0) satisfies

v(t) = 0, T (t, x) = T0(x) + th(x) for all t ≥ 0.

Proof. Note that multiplying the equation for the temperature by f we have that
z(t) =

∮
T (t)f and v(t) are solutions of the nonautonomous system

v̇ +G(v)v = z, v(0) = 0,
ż +m(t)v = 0, z(0) = 0,

where m(t) =
∮ ∂T (t)

∂x f . By uniqueness we obtain v(t) = z(t) = 0, and then the

equation for the temperature reads ∂T
∂t = h(x) and the rest is obvious.

3. Asymptotic behavior: Reduction to finite-dimensional systems. Con-
sider the model (1.1) and the Fourier series expansions T (t, x) =

∑
k∈Z∗ ak(t)e

2πkix,

h(x) =
∑

k∈Z∗ bke
2πkix, and f(x) =

∑
k∈Z∗ cke

2πkix, where Z
∗ = Z \ {0}; then we

easily find that for k ∈ Z
∗, ak(t) is a solution of

ȧk(t) + (2πikv(t) + ν4π2k2)ak(t) = bk.(3.1)

Note that since all functions involved are real, one has a−k = āk, b−k = b̄k, and
c−k = c̄k. Therefore, (1.1) is equivalent to the infinite system of ODEs consisting of
(3.1) coupled with

dv

dt
+G(v)v =

∑
k∈Z∗

ak(t)c̄k.(3.2)

These two equations reflect two of the main features of (1.1): the coupling between
modes enters only through the velocity while diffusion acts as a linear damping term.
In what follows we will exploit this explicit equation for the temperature modes to
analyze the asymptotic behavior of the system and to obtain explicit low-dimensional
models.

3.1. The case with diffusion: ν > 0. We now consider the case ν > 0 and use
inertial manifold techniques, in the spirit of [14], to give an explicit low-dimensional
system of ODEs that describes the asymptotic dynamics of (1.1). The existence of
an inertial manifold does not rely, in this case, on the existence of large gaps in the
spectrum of the elliptic operator but on the invariance of certain sets of Fourier modes.
A similar explicit construction was given by Bloch and Titi in [1] for a nonlinear beam
equation where the nonlinearity occurs only through the appearance of the L2 norm
of the unknown. A related construction was given by Stuart in [18] for a nonlocal
reaction-diffusion equation.
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1080 ANÍBAL RODRÍGUEZ-BERNAL AND ERIK S. VAN VLECK

3.1.1. Attractors and inertial manifolds. We first improve the bounds on
the velocity and temperature of the previous section.

Proposition 3.1. For every solution of (1.1) we have

lim sup
t→∞

|ak(t)| ≤ |bk|
ν4π2k2

(3.3)

and

lim sup
t→∞

|v(t)| ≤ lim sup
t→∞

I0
G(v(t))

<∞,(3.4)

where I0 :=
∑

k∈Z∗
|bk||ck|
ν4π2k2 .

Proof. The estimate (3.3) is easily obtained from equation (3.1), since |ak(t)| ≤
|ak(0)|e−ν4π2k2t + |bk|

ν4π2k2 (1− e−ν4π2k2t) → |bk|
ν4π2k2 as t→∞.

Now let I(t) =
∑

k∈Z∗ ak(t)c̄k so that lim supt→∞ |I(t)| ≤ I0. From (2.5) we then

have v(t) = v0e
−
∫ t

0
G(v)

+
∫ t
0
I(s)e

−
∫ t

s
G(v)

ds. Applying l’Hôpital’s lemma to

F (t) =

∫ t

0

I(s)e
−
∫ t

s
G(v)

ds =

∫ t
0
I(s)e

∫ s

0
G(v)

ds

e

∫ t

0
G(v)

implies lim supt→∞ F (t) ≤ lim supt→∞
I0

G(v(t)) <∞ and we obtain (3.4).

Note that the previous bound on the velocity is not well suited to the case in which
G(v) = g(Re|v|)|v| since in this case the lower bound on G (and therefore the upper
bound on v) may depend on Re, for example, in the particular case g(s) = 1 + A

s ,

G(v) = |v|+ A
Re ≥ A

Re . To cover this case, we have Proposition 3.2.
Proposition 3.2. For any solution of (1.1) we have

lim sup
t→∞

|v(t)|2 ≤ I0 lim sup
t→∞

|v(t)|
G(v(t))

.(3.5)

In particular, if G(v) = g(Re|v|)|v|, then lim supt→∞ v2(t) ≤ lim supt→∞
I0

g(Re|v(t)|) ≤
I0
g0

where g0 = infs{g(s)}.
Proof. Multiplying the equation for the velocity in (3.2) by v, we have 1

2
d(v2)
dt +

G(v)v2 = vI(t) and from this we obtain, as in (2.5), v2(t) = v2
0e
−2
∫ t

0
G(v)

+
∫ t
0

2v(s)

× I(s)e
−2
∫ t

s
G(v)

ds. Therefore, from l’Hôpital’s lemma we find

lim sup
t→∞

v2(t) ≤ lim sup
t→∞

∫ t
0

2|v(s)||I(s)|e2
∫ s

0
G(v)

ds

e
2
∫ t

0
G(v)

≤ I0 lim sup
t→∞

|v(t)|
G(v(t))

,

and the rest is obvious.
As a consequence, we have the following result on the smoothness of the attractor

of (1.1).
Corollary 3.3. With the above assumptions, if h ∈ Ḣm

per(0, 1), for some m ≥ 0,
then

A ⊂ R× Ḣm+2
per (0, 1)

and A is a compact set in that space.
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DIFFUSION INDUCED CHAOS IN A CLOSED THERMOSYPHON 1081

Proof. From equation (3.3), for any (v, T ) ∈ A we have ν4π2k2|ak| ≤ |bk|. Since∑
k∈Z∗ |k|2m|bk|2 <∞, T ∈ Ḣm+2

per (0, 1) and A ⊂ [−M,M ]×B, where M is an upper

bound for the velocity, as in (2.7), (3.4), (3.5), and B = {T ∈ Ḣm+2
per (0, 1), ν4π2k2|ak| ≤

|bk|}. But the set B is compact in Ḣm+2
per (0, 1) since for any sequence {Tn} in B we

can extract a subsequence that we still denote {Tn} such that it converges weakly to
a function T and such that, for any k ∈ Z

∗, the Fourier coefficients verify ank → ak
as n→∞, where ak is the kth Fourier coefficient of T . Therefore, ν4π2k2|ak| ≤ |bk|
and for every integer M ,

‖Tn − T‖2m+2 ≤
M∑

|k|=1

|k|2m+4|ank − ak|2 + C
∞∑

|k|=M+1

|k|2m|bk|2,

where ‖ · ‖m+2 denotes the norm in Ḣm+2
per (0, 1). Hence the first term goes to zero

as n → ∞ and the second can be made arbitrarily small as M → ∞. Consequently,
T ∈ B and Tn → T in Ḣm+2

per (0, 1) and the result is proved.
Note that this result reveals in particular the asymptotic smoothing of (1.1). In

the next result we will prove that the dynamical system induced by (1.1) in R ×
L̇2
per(0, 1) has an inertial manifold. According to [4] we have the following definition.

Definition 3.4. Let S(t), t ≥ 0, be a nonlinear semigroup in a Banach space Y
that has a global attractor A. Then a smooth manifold M ⊂ Y is called an inertial
manifold if

(i) M is positively invariant, i.e., S(t)M⊂M for every t ≥ 0;
(ii) M contains the attractor, i.e., A ⊂M;
(iii) M is exponentially attracting in the sense that there exists a constant M > 0

such that for every bounded set B ⊂ Y there exists a constant C = C(B) such that

dist(S(t)B,M) ≤ Ce−Mt

for every t ≥ 0.
See, for example, [4], [15].
Assume now the heat flux is given by

h(x) =
∑
k∈K

bke
2πkix ∈ L̇2

per(0, 1),

where K ⊂ Z
∗. Then denote by V the closed linear subspace of L̇2

per(0, 1) spanned

by {e2πkix, k ∈ K}, and consider the following spectral decomposition in L̇2
per(0, 1):

T = T1 +T2, where T1 denotes the projection of T onto V and T2 the projection onto
the space generated by {e2πkix, k /∈ K}. Note that (1.1) is equivalent to




dv

dt
+G(v)v =

∮
(T1 + T2)f, v(0) = v0,

∂T1

∂t
+ v

∂T1

∂x
= h(x) + ν

∂2T1

∂x2
, T1(0) = T01,

∂T2

∂t
+ v

∂T2

∂x
= ν

∂2T2

∂x2
, T2(0) = T02.

(3.6)

Note that from (3.1) if bk = 0 then the kth mode for the temperature is damped out
exponentially and therefore the space V attracts the dynamics for the temperature.
This is precisely stated in the following result.
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1082 ANÍBAL RODRÍGUEZ-BERNAL AND ERIK S. VAN VLECK

Theorem 3.5. With the notation above, M = R× V is an inertial manifold for
the flow of (1.1) in R× L̇2

per(0, 1).

Moreover, if f ∈ V the inertial manifold M has the exponential tracking property;
that is, for every (v0, T0) ∈ R × L̇2

per(0, 1) there exists (v1, T1) ∈ M such that if
(vi(t), Ti(t)), i = 0, 1, are the corresponding solutions of (1.1), then (v0(t), T0(t)) −
(v1(t), T1(t)) → 0 in R× L̇2

per(0, 1), at an exponential rate, as t→∞.

Proof. Since the third equation in (3.6) is linear in T2, if T02(x) = 0, then
T2(t, x) = 0 for every t; i.e., M is an invariant manifold. Now, observe that

distY ((v(t), T (t)),M) = distL̇2
per

(T (t), V ) = ‖T2(t)‖ ≤ ‖T02‖e−ν4π2t,

and the manifold is exponentially attracting. Note that the last inequality comes from
(2.4), with h = 0, and the Poincaré inequality.

To prove the exponential tracking property just note that the flow inside M is
given by setting T2 = 0 in (3.6), i.e.,




dv

dt
+G(v)v =

∮
T1f,

∂T1

∂t
+ v

∂T1

∂x
= h(x) + ν

∂2T1

∂x2
,

T2 = 0.

(3.7)

Therefore, if f ∈ V , then
∮
Tf =

∮
T1f and then if (v(t), T (t)) ∈ R × L̇2

per(0, 1)
is a solution of (3.6), then (v(t), T1(t)) ∈ M and it is still a solution of (3.7). Hence

(v(t), T (t))−(v(t), T1(t)) = (0, T2(t)) and the right-hand side is of order e−ν4π2t. Thus
the theorem is proved.

In particular, note that if the set K is finite then the inertial manifold M is of
finite dimension and then (3.7) is equivalent to the system of ODEs

{
dv
dt +G(v)v =

∑
k∈K ak(t)c̄k,

ȧk(t) + (2πikv(t) + ν4π2k2)ak(t) = bk, k ∈ K.

3.1.2. The reduced subsystem. Assume now that the heat flux and the ge-
ometry of the loop are given, respectively, by

h(x) =
∑
k∈K

bke
2πkix, K ⊂ Z

∗, and f(x) =
∑
k∈J

cke
2πkix, J ⊂ Z

∗.

In view of (3.1) and (3.2) it is clear that the modes in K ∩J will play an essential role
in the dynamics as we now show. With the above notation, we further decompose T1

as follows:

T1 = τ + θ,

where τ is the projection onto the space generated by {e2πkix, k ∈ K ∩ J} and θ is
the projection onto the space generated by {e2πkix, k ∈ K \ J}. Finally, denote by P
the projection P (v, T ) = (v, τ) and Q = I −P . With this notation, and decomposing
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DIFFUSION INDUCED CHAOS IN A CLOSED THERMOSYPHON 1083

h, as h = τh + θh, (1.1) and (3.6) can be decomposed as a system of the form


dv

dt
+G(v)v =

∮
(τ + T2)f, v(0) = v0,

∂τ

∂t
+ v

∂τ

∂x
= τh(x) + ν

∂2τ

∂x2
, τ(0) = (T0)τ ,

∂θ

∂t
+ v

∂θ

∂x
= θh(x) + ν

∂2θ

∂x2
, θ(0) = (T0)θ,

∂T2

∂t
+ v

∂T2

∂x
= ν

∂2T2

∂x2
, T2(0) = T02

(3.8)

since
∮
θf = 0. Note that, when setting T2 = 0, the first three equations give the flow

inside the inertial manifold M, i.e., they are equivalent to (3.7), while the first two
are the only nonlinearly coupled equations. Therefore, once this subsystem is solved
the other unknowns are determined through linear nonhomogeneous equations.

To make this idea more precise in terms of semigroups and attractors, we proceed

as follows. We denote by S(t) the semigroup generated by (1.1) on Y
def
= R×L̇2

per(0, 1)
and by SI(t) its restriction to the inertial manifold M, i.e., the semigroup generated

by (3.7). We will find below a reduced semigroup on the reduced space YR
def
= P (Y ),

denoted SR(t), that, in a sense, determines the asymptotic behavior of SI(t) and
therefore that of S(t). Note that S(t) and SI(t) have the same attractor, while the
dimension of the space YR might be much smaller than that of M. The next result
states, in particular, that the attractor of the full system can be reconstructed from
the attractor of the reduced one.

Theorem 3.6. With the notation above we have the following conditions.
(i) The system of equations




dv

dt
+G(v)v =

∮
τf, v(0) = v0,

∂τ

∂t
+ v

∂τ

∂x
= τh(x) + ν

∂2τ

∂x2
, τ(0) = τ0

(3.9)

defines a nonlinear semigroup, denoted SR(t), on YR = P (Y ) that can be identified
with PSI(t)P = PSI(t) restricted to YR.

(ii) If A denotes the maximal attractor of (1.1), then AR = P (A) is the maximal
attractor of (3.9). Moreover

A = G(AR),

where G : AR → A is continuous.
(iii) If the set K ∩ J is finite, (3.9) is equivalent to a system of complex ODEs

of the form (1.2). Consequently, the asymptotic behavior of (1.1) is described by an
explicit system of ODEs in R

N with N = |K ∩ J |+ 1 an odd number.
Proof.
(i) The proof of the existence and uniqueness of globally defined solutions for (3.9)

follows the same lines as for (1.1). Therefore, the semigroup SR(t) is well defined. On
the other hand, from (3.8) it is clear that the projection onto YR of any solution of
this system lying in the inertial manifold M, i.e., with T2 = 0, is a solution of (3.9);
that is, SR(t) = PSI(t). At the same time, it is also clear that PSI(t) = PSI(t)P .
Note that, however, YR is not invariant for SI(t).

(ii) The existence of the attractor for SR(t) is the same as for (1.1). Therefore, AR

is well defined. Moreover, since SR(t) = PSI(t)P = PSI(t) on YR, and SI(t)A = A,
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1084 ANÍBAL RODRÍGUEZ-BERNAL AND ERIK S. VAN VLECK

P (A) is compact and invariant for SR(t); i.e., SR(t)P (A) = P (A). To see this, just
note that

SR(t)P (A) = PSI(t)P (A) = PSI(t)(A) = P (A).

Since AR is the maximal bounded invariant set for SR(t) [6], we obtain P (A) ⊂ AR.
Conversely, if (v0, τ0) ∈ AR, we show below that there exists a unique θ0 such

that (v0, τ0+θ0) ∈ A. That would prove that AR ⊂ P (A). While proving this, we will
actually show that θ0 = F(v0, τ0), where F is a continuous function. With this, we
will have proved that A = G(AR) with G = (Id,F) and G continuous. Therefore, the
attractor of the full system A can be reconstructed from the attractor of the reduced
one AR.

So, if θ0 is such that (v0, τ0 + θ0) ∈ A, then the solution of (1.1) is defined for
t ∈ R and then from the equation for θ in (3.8) and for t > s we have

θ(t, x) = U(t, s)θ(s, x) +

∫ t

s

U(t, z)θh(x) dz,(3.10)

where U(t, s) is the evolution operator generated by the solutions of the initial value

problem, at time s, for the time dependent equation ∂θ
∂t + v(t) ∂θ∂x = ν ∂2θ

∂x2 ; see Lemma
3.1 below.

Since the solution is on the attractor, the θ component is bounded and then
setting t = 0 and letting s→ −∞, we find

θ0 =

∫ 0

−∞
U(0, z)θh dz = F(v0, τ0),(3.11)

which is well defined, since by Lemma 3.1 the integral of the norm converges.
Conversely, it is easy to check that the solution of (3.8) starting at (v0, τ0, θ0, 0)

actually exists globally and is bounded. Hence it lies on the attractor A. Note that
the θ component is given by

θ(t, x) =

∫ t

−∞
U(t, z)θh(x) dz, t ∈ R.

It just remains to prove that F is continuous. To this end, we denote, for M > 0,

FM (v0, τ0) =

∫ 0

−M
U(0, z)θh dz.

We will prove in the lemmas below that FM is continuous. Assuming this, for a
moment, we can prove that FM → F uniformly on AR, and this proves that F is

continuous. In fact, we have F(v0, τ0) − FM (v0, τ0) =
∫ −M
−∞ U(0, z)θh(x) dz so the

right-hand side goes to zero uniformly in (v0, τ0) as M goes to ∞.
(iii) The proof is obvious. Just note that K ∩J is a symmetric set and 0 /∈ K ∩J ,

so |K ∩ J | is even. Also, the equations for ak and a−k = āk are conjugate, so when
employing real variables, ak = xk + iyk, we have a system in R

N with N = |K∩J |+1
odd.

Note that given a heat flux term h, or geometry f , one can design the other such
that K ∩ J has any predefined even number of elements. Therefore, one can design
geometries or fluxes in such a way that (1.2) has any desired odd number of variables.
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DIFFUSION INDUCED CHAOS IN A CLOSED THERMOSYPHON 1085

Also note that the set K ∩ J can be much smaller than the set K and therefore the
reduced subsystem may possess far fewer degrees of freedom than the system on the
inertial manifold. At the same time, observe that if f or h is perturbed such that
one adds a new pair of conjugates modes to the set K ∩ J , i.e., we pass from an n
mode model to an n + 2 mode model, the former set of equations is included in the
latter, and this shows the increasing complexity of the dynamics of system (1.2) as
the number of elements in K ∩ J increases.

The simplest situation is described next.
Corollary 3.7. Assume K ∩ J = ∅; then the attractor of (1.1) reduces to the

point (0, θ∞(x)), where θ∞(x) is the unique solution in Ḣ2
per(0, 1) of

ν
∂2θ

∂x2
= h(x).

Proof. If K ∩J = ∅, then in (3.8) τ = 0, θ = T1, and T2 → 0 exponentially. Since
G is strictly bounded away from zero it follows that v(t) → 0 exponentially and then

the function θ̂ = θ − θ∞ satisfies the equation

∂θ̂

∂t
+ v(t)

∂θ̂

∂x
= ν

∂2θ̂

∂x2
− v(t)

∂θ∞
∂x

.

As for (2.4) we have

1

2

d

dt
‖θ̂‖2 + ν

∥∥∥∥∥
∂θ̂

∂x

∥∥∥∥∥
2

= −v(t)
∮

∂θ∞
∂x

θ̂,

and proceeding as in (2.8) and using v(t) → 0 we prove θ̂(t) → 0.
Observe that this result implies in particular that the regularity of the attractor

obtained in Corollary 3.1 is optimal. On the other hand, note that the modes cor-
responding to k /∈ K ∩ J are determined as solutions of the linear nonhomogeneous
equations

ȧk(t) + (2πikv(t) + ν4π2k2)ak(t) = bk, k /∈ K ∩ J(3.12)

with initial data ak(0) ∈ C. Therefore, we call these the slave modes. Observe that
solving (3.12) is equivalent to solving the equations for θ and T2 in (3.8).

Now we prove the technical results needed in the proof of Theorem 3.2.
Lemma 3.8. Let v ∈ C1(R) be given, and consider the initial value problem

∂θ

∂t
+ v(t)

∂θ

∂x
= ν

∂2θ

∂x2
, θ(s) = θ0

with t ≥ s.
(i) Then the initial value problem defines a family of evolution operators U(t, s),

where θ(t) = U(t, s)θ0, that satisfies

‖U(t, s)‖ ≤ e−ν4π2(t−s) for t ≥ s.

(ii) If θh is a fixed function, then the unique solution of

∂θ

∂t
+ v(t)

∂θ

∂x
= θh(x) + ν

∂2θ

∂x2
, θ(s) = θ0
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1086 ANÍBAL RODRÍGUEZ-BERNAL AND ERIK S. VAN VLECK

with t ≥ s, is given by

θ(t, x) = U(t, s)θ0(x) +

∫ t

s

U(t, z)θh(x) dz.

Proof. The construction of U(t, s) follows from [8, Theorem 7.1.3], since the
time dependent part B(t)θ = v(t) ∂θ∂x is Lipschitz continuous in time with values in

L(X1/2, X). The reader is referred to this result for several other properties of the
family U(t, s).

The estimate on the norm of U(t, s) follows from (2.4), with h = 0, and the
Poincaré inequality, while the second part of the result is just a particular case of [8,
Theorem 7.1.4].

Lemma 3.9. The function FM is continuous on AR.
Proof. Recalling the definition of FM , let (v0,i, τ0,i) ∈ AR, for i = 1, 2, and

consider the corresponding solutions of (3.9), denoting by θi(t, x) the solution of

∂θ

∂t
+ vi(t)

∂θ

∂x
= ν

∂2θ

∂x2
, θ(t0) = θh

with 0 ≥ t > t0 ≥ −M . Set W = θ1 − θ2; then W satisfies W (t0, x) = 0 and

∂W

∂t
+ v1(t)

∂W

∂x
+ (v1(t)− v2(t))

∂θ2
∂x

= ν
∂2W

∂x2
.

Multiplying by W and integrating in x, we obtain

1

2

d

dt
‖W‖2 + ν

∥∥∥∥∂W∂x
∥∥∥∥

2

= (v2(t)− v1(t))

∮
∂θ2
∂x

W = (v1(t)− v2(t))

∮
θ2
∂W

∂x
.

From the previous lemma, ‖θ2‖ ≤ e−ν4π2(t−t0)‖θh‖ ≤ ‖θh‖, and using Young’s in-
equality and the Poincaré inequality we have

d

dt
‖W‖2 + 4π2ν‖W‖2 ≤ ‖θh‖

ν
|v1(t)− v2(t)|2,

and integrating on (t0, 0) we obtain

‖W (0)‖2 ≤ ‖θh‖
ν

∫ 0

t0

|v1(r)− v2(r)|2e4π2νr dr

and W (0) = U1(0, t0)θh − U2(0, t0)θh.
But then [8, Theorem 3.4.1] gives the continuous dependence of the mapping

(v0, τ0(x)) 7→ (v(t), τ(t, x)) on compact time intervals, and this shows that FM (v0,1, τ0,1)−
FM (v0,2, τ0,2) is small if v0,1 − v0,2 and τ0,1(x)− τ0,2(x) are small.

3.1.3. The three-dimensional model: Lorenz chaos. Now we assume K ∩
J = {±k} and that G is constant. Recalling (1.2) in this case and using the fact that
the equation for −k is conjugate to that for k, we have

dv

dt
+Gv = 2Re(ak(t)c̄k),

ȧk(t) + (2πikv(t) + ν4π2k2)ak(t) = bk.
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DIFFUSION INDUCED CHAOS IN A CLOSED THERMOSYPHON 1087

First, by changing variables as ak → ak c̄k
1
λ and bk → bk c̄k

1
λ , where λ is a real

parameter to be chosen below, we find

dv

dt
+Gv = 2λRe(ak(t)),

ȧk(t) + (2πikv(t) + ν4π2k2)ak(t) = bk.

Taking real and imaginary parts and denoting ak(t) = x(t) + iy(t) and bk = A+ iB,
we have

v′ +Gv − 2λx = 0,
x′ + ν4π2k2x− 2πkvy = A,
y′ + 2πkvx+ ν4π2k2y = B.

Now changing y → B − y, rescaling v as v → 2πkv, and choosing λ = G
4πk , we obtain

v′ +Gv −Gx = 0,
x′ + ν4π2k2x−Bv + vy = A,

y′ + ν4π2k2y − vx = 0,

which for the case A = 0 corresponds precisely to the standard Lorenz system [13],
[17] with parameters σ = G, b = ν4π2k2, and r = B, except for the extra ν4π2k2

in the second equation that is equal to one in the Lorenz system. Note that this
coefficient could be set to one by a suitable time rescaling. For σ > b + 1 and r
larger than some critical value rh, see [17], the Lorenz equations are known to possess
complicated dynamics. All of these behaviors are translated to the three-dimensional
model of the thermosyphon. Note that the number k plays a role in the dissipative
part of the equations; thus for larger k, larger friction and larger B are needed to
enter the chaotic regime of the Lorenz system. Our numerical experiments described
in the next section show that the same kind of behavior is actually present when G
is a nonlinear function of the velocity.

3.2. The case with no diffusion: ν = 0. Now we consider the case with no
diffusion, and although we showed the system is not dissipative, we can, however,
reduce it to a finite-dimensional system in several situations.

First note that when ν = 0, (3.1) and (3.2) read

dv
dt +G(v)v =

∑
k∈Z∗ ak(t)c̄k,

ȧk(t) + 2πikv(t)ak(t) = bk, k ∈ Z
∗.

Assume now that the geometry of the loop is given by

f(x) =
∑
k∈J

cke
2πkix, J ⊂ Z

∗,

and observe that only the modes in the set J actually appear in the equation for
the velocity above. This motivates us to consider the projection of a function T ∈
L̇2
per(0, 1) onto the closed linear subspace of L̇2

per(0, 1) spanned by {e2πkix, k ∈ J},
denoted TJ , and write T = TJ + T#, and then (2.9) is equivalent to



dv

dt
+G(v)v =

∮
TJf, v(0) = v0,

∂TJ
∂t

+ v
∂TJ
∂x

= hJ(x), TJ(0) = T0J ,

∂T#

∂t
+ v

∂T#

∂x
= h#(x), T#(0) = T0#,

(3.13)
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1088 ANÍBAL RODRÍGUEZ-BERNAL AND ERIK S. VAN VLECK

and the equation for T# is a linear nonautonomous PDE, once the subsystem of the
first two equations is solved. Therefore, we have Proposition 3.3.

Proposition 3.10. If the set J is finite, then the first two equations in (3.13)
are equivalent to the finite-dimensional system




dv

dt
+G(v)v =

∑
k∈J

ak(t)c̄k,

ȧk(t) + 2πikv(t)ak(t) = bk, k ∈ J,

(3.14)

where a−k = āk, b−k = b̄k, and c−k = c̄k which is equivalent to a system of ODEs in
R
N with N = |J |+ 1 an odd number.

The remaining modes of the solution of (2.9), i.e., the modes of the component
T#, are determined by the solution of

ȧk(t) + 2πikv(t)ak(t) = bk, k /∈ J(3.15)

and initial data ak(0) ∈ C.
On the other hand, assume also that the heat flux is given by

h(x) =
∑
k∈K

bke
2πkix, K ⊂ Z

∗.

Then we have the following result that, in particular, applies to the case of insu-
lated boundaries, i.e., h(x) = 0.

Proposition 3.11. Assume K ∩ J = ∅; then the first two equations in (3.13)
are equivalent to a second-order nonlinear damped ODE of the form

e′′(t) +G(e′(t))e′(t) + F (e(t)) = 0

with F (e) = − ∮ T0J(x− e)f(x) dx and the ω-limit set of any solution of the ODE is
included in the set of equilibria {(e, 0), F (e) = 0}.

In particular, the solution of (3.13) verifies v(t) → 0, and for every sequence
tn →∞ there exists a subsequence that we still denote tn such that

TJ(tn, x) → T0J(x− e),

where e is such that
∮
T0J(x− e)f(x) dx = 0. If the zeros of F are isolated then e is

independent of the sequence we choose and then

TJ(t, x) → T0J(x− e)

as t→∞.
Proof. Since K ∩ J = ∅, hJ = 0 in (3.13) and we have TJ(t, x) = T0J(x − ∫ t

0
v)

and the equation for the velocity reads

dv

dt
+G(v)v =

∮
T0J

(
x−

∫ t

0

v

)
f(x) dx.

Now define e(t) =
∫ t
0
v; then e(0) = 0 and e′(0) = v0 and

e′′(t) +G(e′(t))e′(t) + F (e(t)) = 0,
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DIFFUSION INDUCED CHAOS IN A CLOSED THERMOSYPHON 1089

where the force term is F (e) = − ∮ T0J(x − e)f(x) dx and the potential is V (e) =∫ e
0
F (r) dr. Note that F is continuous, 1-periodic and

∫ 1

0
F (r) dr = − ∮ f(x)

∫ 1

0
T0J(x−

r) dr dx = (
∮
f)(
∮
T0J) = 0. Therefore, V is a bounded and periodic potential. Fi-

nally, observe that F (e) = 0 for all e ∈ R if and only if T0J = 0 and in this case
TJ(t, x) = 0 and v(t) → 0 exponentially. Therefore, we assume henceforth that F (e)
is not identically zero.

The energy E(e, e′) = |e′|2
2 +V (e) is a Lyapunov function for the nonlinear second-

order differential equation above, since

Ė(t) +G(e′(t))(e′(t))2 = 0

and Ė = 0 only for equilibrium points, i.e., for e such that F (e) = 0 and e′ =
0. Also, since V is bounded below, the limt→∞E(t) always exists and moreover∫∞
0

G(e′(t))(e′(t))2 dt <∞.
From La Salle’s invariance principle, if a solution is bounded, then its ω-limit

set is contained in the set of equilibria. Therefore, we must show that there are no
unbounded solutions. Note that since the energy is bounded above and below, e′(t)
is always bounded.

Let V0 be the maximum value of the potential V (e) and consider the compact set
I = {(e, e′), E(e, e′) ≤ V0}. Then I is invariant for the ODE, contains the real axis,
is invariant under translations e 7→ e + 1, and contains the set of equilibrium points
{(e, 0), F (e) = 0}. Moreover the subset of equilibria {(e, 0), V (e) = V0} separates
the connected components of the interior of I.

If a solution that is not an equilibrium enters I in finite time, then it enters the
interior of I and remains in one of the connected components. Consequently the
solution remains bounded and La Salle’s principle applies. Assume there is a solution
such that limt→∞E(t) ≥ V0 + ε for some ε > 0. Then |e′(t)|2 ≥ 2ε and this is absurd,
since G0

∫∞
0

(e′(t))2 dt ≤ ∫∞
0

G(e′(t))(e′(t))2 dt <∞.
Therefore, assume there exists an unbounded solution such that limt→∞E(t) =

V0. We fix e0 > 0; then there exists a sequence tn →∞ such that |e(tn)| = e0+n = en.
From the energy we obtain

E(tn+1)− E(tn) =
|e′(tn+1)|2

2
− |e′(tn)|2

2
= −

∫ tn+1

tn

G(e′(s))(e′(s))2 ds→ 0

as n → ∞. But on the other hand |e′(t)|2 ≥ 2(V0 − V (e(t))) and integrating on
(tn, tn+1) we obtain

∫ 1

0

√
2(V0 − V (z)) dz =

∫ en+1

en

√
2(V0 − V (z)) dz ≤

∫ tn+1

tn

(e′(s))2 ds→ 0,

where we have used the change of variables z = e(s) in the integral to the right and
the fact that V is periodic of period 1. Therefore, we have a contradiction and then
all solutions enter the set I and La Salle’s principle applies.

The rest follows from the definition of the ω-limit set and the fact that it is
included in the set of equilibria. If tn →∞, for some subsequence that we still denote
by tn, (e(tn), e′(tn)) → (e, 0), so F (e) = 0, but this implies v(tn) → 0 and T (tn, x) →
T0J(x−e). Since the limit for the velocity is independent of the subsequence, we have
v(t) → 0 and the rest is obvious.

Remark 3.1. Observe that if K ∩ J = ∅, then Proposition 2.1 applies and this
shows that the component T# becomes unbounded.

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1090 ANÍBAL RODRÍGUEZ-BERNAL AND ERIK S. VAN VLECK

Also, note that in the proposition above the second-order ODE depends on the
projection of the initial data T0J .

Remark 3.2. If hJ(x) is nonzero, then TJ(t, x) = T0J(x−∫ t
0
v)+

∫ t
0
hJ(x−∫ t

s
v) ds

and the equation for the velocity is now

dv

dt
+G(v)v =

∮
T0J

(
x−

∫ t

0

v

)
f(x) dx+

∮ ∫ t

0

hJ

(
x−

∫ t

s

v

)
f(x) ds dx.

Now we have∮ ∫ t

0

hJ

(
x−

∫ t

s

v

)
f(x) ds dx =

∫ t

0

∮
hJ

(
x−

∫ t

s

v

)
f(x) dx ds

=

∫ t

0

∮
hJ

(
x+

∫ s

0

v

)
f

(
x+

∫ t

0

v

)
dx ds,

and then using again e(t) =
∫ t
0
v we have

e′′(t) +G(e′(t))e′(t) + F (e(t)) = H(t, e(t))

with H(t, e(t)) =
∫ t
0
J(e(t), e(s)) ds and J(y, z) =

∮
f(x + y)hJ(x + z) dx, which is a

damped nonlinear second-order differential equation “with memory.”

4. Numerical results. In this section we describe the results of numerical ex-
periments that were obtained using the five mode model. These experiments illustrate
some of the interesting behavior in the model but do not represent an exhaustive nu-
merical exploration. In particular, these experiments show that Lorenz-like behavior
is not restricted to the case where G is constant. All simulations were performed
on a Silicon Graphics Indigo2 workstation in double precision with machine epsilon
εM ≈ 2.2 × 10−16. The simulations were performed using a fourth-order implicit
Runge–Kutta method, the fourth-order Gauss–Legendre method. Variable timestep-
ping was employed by comparing the approximation obtained using two half steps
with the approximation obtained using one full step to satisfy a local error tolerance
of 10−6. The nonlinear equations obtained after discretization were solved using a
full Newton iteration with LAPACK subroutines used to solve the resulting linear
systems.

We assume that K ∩ J = {±k,±j}, and changing variables as an → anc̄n and
bn → bnc̄n for n = k, j and using real and imaginary parts, we obtain from (1.2)

v′ +G(v)v − 2x− 2u = 0,
x′ + ν4π2k2x− 2πkvy = A,
y′ + 2πkvx+ ν4π2k2y = B,
u′ + ν4π2j2u− 2πjvw = C,
w′ + 2πjvu+ ν4π2j2w = D,

where ak(t) = x(t) + iy(t), bk = A+ iB, and aj(t) = u(t) + iw(t), bj = C + iD. Note
that the three mode model is obtained by making C = D = u = w = 0.

We consider G(v) = |v| + 10−4 and investigate the interaction between the first
and second temperature modes. We use ν as a tuning parameter, take k = 1 and
j = 2, and set A = C = 0, B = 30, D = 20. The initial conditions used are v(0) = 0,
x(0) = −0.1, y(0) = 1, u(0) = 10−2, and w(0) = 1.

Although the system is not dissipative when ν = 0 we observed numerically stable
bounded orbits, Figure 1(a). As ν is increased we observed Lorenz-type behavior in
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Fig. 1. (a) (u,w) plot for ν = 0.0 and (b) (x, y, v) plot for ν = 1.0× 10−2.

Figure 1(b) for ν = 1.0 × 10−2. At ν = 1.5 × 10−2 in Figure 2(a) convergence to a
periodic solution was observed. Again we observed Lorenz-type behavior in Figure
2(b) for ν = 2.5× 10−2. For large values of ν convergence to equilibria was observed.

5. Discussion. In this paper a closed loop thermosyphon model with and with-
out diffusion and with a prescribed heat flux at the loop wall is analyzed. The existence
of an attractor and an inertial manifold is proven, and an exact explicit reduction to
a low-dimensional system is obtained. The reduced models are odd dimension ODEs
and contain as a special case a three-dimensional model that corresponds exactly to
the Lorenz equations in the case of linear friction. Also, the form of the reduced
system allows for suitable design of geometries and/or heat fluxes to produce any
desired odd number of variables. Moreover, the Fourier coefficients of the geometryD
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Fig. 2. (a) (u,w) plot for ν = 1.5× 10−2 and (b) (u,w, v) plot for ν = 2.5× 10−2.

and heat flux can be chosen such that, in combination with the diffusion coefficient,
the reduced model contains interesting nontrivial complex dynamics.

There are several questions that require further analysis. For example, an es-
timate of the Hausdorff or fractal dimension of the attractor in terms of physically
relevant quantities would be of interest. Also, the existence of a low-dimensional in-
ertial manifold when the set K ∩ J is not finite would be of interest. In addition,
more numerical exploration is needed on five and higher mode models to obtain, in
particular, an understanding of the dependence of the dimension of the attractor on
the number of modes and of bifurcations produced as the diffusion coefficient and
other parameters are varied.
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