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SPATIALLY DISCRETE FITZHUGH–NAGUMO EQUATIONS∗

CHRISTOPHER E. ELMER† AND ERIK S. VAN VLECK‡

Abstract. We consider pulse and front solutions to a spatially discrete FitzHugh–Nagumo
equation that contains terms to represent both depolarization and hyperpolarization of the nerve
axon. We demonstrate a technique for deriving candidate solutions for the McKean nonlinearity
and present and apply solvability conditions necessary for existence. Our equation contains both
spatially continuous and discrete diffusion terms.
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1. Introduction. By considering an electrical circuit model with a complicated
nonlinear resistor, Hodgkin and Huxley (along with Katz) modeled the ionic conduc-
tances that generate the action potential of nerve fibers. To develop their model they
performed voltage and space clamping experiments on the giant axon of squids, axons
which were relatively easy to work with because of their size. The Hodgkin–Huxley
equations are a four-variable model which may be reduced to a two-variable model
(the FitzHugh–Nagumo (FH-N) ODE model) which preserves much of the dynamics
of the Hodgkin–Huxley system by considering fast and slow variables and slaving the
other variables. When considering a chain of electrical circuits, diffusion is added as
a means of propagation in the spatial variable, thus obtaining the FH-N PDE model.
Since the seminal work of Hodgkin, Huxley, and Katz, similar experiments have been
performed on nerve axons of vertebrates and its been discovered that, electrically,
nerve fibers behave as spatially discrete periodic structures in vertebrates. This is
due to the periodically spaced active channels (nodes of Ranvier) in the myelin in-
sulation (in the coating by Schwann cells or oligodendrocytes). Thus it is not only
appropriate but correct to model motor nerves in vertebrates with equations which
also have a spatially discrete periodic structure, to model with nonlinear differential-
difference equations (DDEs), in particular an FH-N DDE model.

Our contribution in this paper is to consider front and pulse solutions for a
FitzHugh–Nagumo system with both continuous and discrete diffusion, thus allowing
one to compare and contrast the dynamics generated by spatially continuous and spa-
tially discrete models of action potential propagation. By employing a piecewise linear
bistable nonlinearity we reduce the problem to a linear inhomogeneous equation, for
which candidate solutions can be derived using transform methods. The candidate
solutions are then shown to be consistent with our ansatz of a front or pulse solution,
a necessary condition for existence. We focus on one-front and one-pulse solutions
and prove their existence using two approaches: (1) we show that consistency of the
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1154 CHRISTOPHER E. ELMER AND ERIK S. VAN VLECK

infinite interval solution may be reduced to showing consistency on a finite interval,
and (2) we use the implicit function theorem, thus showing that consistency can be
obtained with a perturbation argument. Once we have derived the exact solutions
and verified their existence, we investigate the solution behavior as a function of the
problem parameters.

Mathematical models of the electrical behavior of axons often come from postu-
lating an equivalent electrical circuit model (leaky underwater cable theory) of the
excitable axonal membrane. Consider a single nerve fiber (axon) coated with a lipid
material called myelin with periodically spaced gaps (which are commonly call nodes).
Assuming the axial currents are constant, the intracellular, Ii, and the extracellular,
Ie, currents between two consecutive nodes are (by Ohm’s law)

LriIi,n = −(vi,n+1 − vi,n) and LreIe,n = −(ve,n+1 − ve,n),

where L is the length of the myelin sheath between the nodes, ri and re are the
intracellular and extracellular resistances per unit length of material, and vi,n and ve,n
are the intracellular and extracellular voltages in the nth node. Using Kirchoff’s laws,
one obtains

Ii,n−1 − Ii,n = Ie,n − Ie,n−1 = µp

(
C
∂vn
∂t

+ Iion,n

)
,

where the quantities in the parentheses are the capacitive current and the ionic current
flowing through the nth node from inside to outside, vn = vi,n − ve,n, µ is the length
of each node (here they will all be assumed to be the same), p is the perimeter length
of the axon (assumed to be constant), C is the capacitance, and Iion,n is the ionic
current at each node. The total transmembrane current at a node n is thus given by

p

(
C
∂vn
∂t

+ Iion,n

)
=

1

µL(re + ri)
(vn+1 − vn + vn−1 − vn).(1.1)

The change of variables τ = t/(CR) nondimensionalizes time (where R has units
Ω cm2) and (1.1) becomes

dvn
dτ

= ρ(vn+1 − 2vn + vn−1) −RIion,n,

where ρ = R/(µLp(ri + re)). We want the transmembrane ionic current at each node
to possess both a sodium and a potassium component (like an actual nerve we want
both a “front” and “back” to our traveling waves), thus we use the analytically simple
RIion,n = f(vn)+wn, where f(vn) represents the sodium ion current component and
wn represents the potassium ion current contribution, and we add the governing
equation

∂wn

∂t
= b(vn − rwn)

for our potassium recovery variable wn. Note that by setting b = 0, one can assume
that the behavior is dominated by the leading edge behavior and that recovery is so
slow that it can be treated as constant.

Related to our work on the discrete FitzHugh–Nagumo equation is the work of
Anderson and Sleeman [1] on the existence and stability of equilibrium solutions, the
work of Binczak, Eilbeck, and Scott [9] on ephaptic coupling in systems related to
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DISCRETE FITZHUGH–NAGUMO EQUATIONS 1155

systems of discrete FitzHugh–Nagumo equations, the work of Tonnelier [38, 39, 40],
the work of Carpio and Bonilla [8], as well as the enlightening books of Keener and
Sneyd [28] and Scott [36]. Work on the discrete Nagumo equation includes the work
of Bell and Cosner [4], Keener [26, 27], and Zinner [44, 45] on existence, stability, and
propagation failure, and the work of Mallet-Paret [31, 32] establishing a Fredholm
theory for linear mixed type delay equations. Other works on discrete Nagumo type
equations include [3, 5, 6, 7, 11, 12, 13, 14, 19, 23, 24]. Notable work on the exis-
tence and stability on monotone traveling fronts for the Nagumo PDE include that
of Aronson and Weinberger [2] and Fife and McLeod [21] and the original work of
Nagumo, Arimoto, and Yoshizawa [34]. Existence and stability of fronts and pulses
for the FitzHugh–Nagumo PDE begins from the work of FitzHugh [22] (see also [34])
and includes the work on stability of Jones [25], Maginu [30], and Yanagida [43] (see
also [29]), the work on existence of Deng [10] and existence and stability results of
Evans [15, 16, 17, 18], Feroe [20], Wang [41, 42], Rinzel and Keller [35], and McK-
ean [33] for the piecewise linear nonlinearity considered here.

This paper is organized as follows. In section 2 we present the model equations
to be considered, including the nonlinearity, and derive traveling wave equations.
In section 3, using transform techniques, we derive the general form for candidate
front and pulse solutions. We consider one-front solutions in section 4 and show
similarities with monotone one-front solutions of Nagumo type equations. In sections
5 and 6, using the form of the candidate solutions found in section 3, we derive
conditions for the existence of one-pulse solutions. Two approaches are considered:
one is perturbative in that it shows under certain conditions the existence of one-pulse
solutions in a neighborhood of an existing one-pulse solution, while the other shows
the existence of a one-pulse solution more directly, but with assumptions that are
more difficult to verify. We present plots of the relationship between the driving force
and the speed of wave propagation, and we present waveforms obtained numerically,
in section 7.

2. Models. The continuous FitzHugh–Nagumo equations (the FH-N PDEs) can
be derived as above by considering a smooth spatial domain (or a spatial scale where
the local behavior appears homogenous) and thus allowing the spatial difference terms
to go zero. This gives the model{

vt = vxx − f(v) − w, x ∈ R
N , t > 0,

wt = b(v − rw),
(2.1)

where b > 0 relates the time scales of the pulse front and the recovery, the pulse’s
tail, and r ≥ 0 indicates the strength of recovery.

In this paper we consider a differential-difference equation of FitzHugh–Nagumo
type which contains both the diffusion term derived by considering periodically nodes,
as in the introduction, and the diffusion term obtained by allowing the spatial domain
to be uniform. While this may not be a valid first principle derivation, it does allow
us to compare and contrast propagation of action potential in the two perspectives
(allowing for different length scale assumptions). The equations of interest are⎧⎪⎪⎨

⎪⎪⎩
v̇(η, t) =

N∑
i=1

diLiv(η, t) +

N∑
i=1

γi
∂2v

∂η2
i

(η, t) − f(v(η, t)) − w(η, t),

ẇ(η, t) = b[v(η, t) − rw(η, t)],

(2.2)

for
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1156 CHRISTOPHER E. ELMER AND ERIK S. VAN VLECK

• η ∈ R
N , t ∈ R

+, and ηi is the ith element of η,
• “ ˙ ” denotes differentiation with respect to t,
• di ≥ 0, γi ≥ 0, i = 1, . . . , N , b > 0, and r ≥ 0 are parameters,
• Liv(η, t) = v(η+ ei, t)−2v(η, t)+v(η− ei, t), where ei is the unit vector with

1 in the ith element, and
• in general, f is a function of “cubic” shape, but for our investigations, we

employ the piecewise linear f (as was done in [33, 35, 20, 41, 42, 19, 7, 12,
13, 38, 39, 40]),

f(v) ≡ v − h(v − a), where h(v − a) ≡

⎧⎪⎨
⎪⎩

0, v < a,

[0, 1], v = a,

1, v > a,

(2.3)

where a ∈ (0, 1) is a “detuning” parameter allowing for tuning the behavior
based on the behavior of the sodium channels.

While we have discussed only the derivation of the one-dimensional model of
propagation along a single nerve axon, the equations presented in (2.2) are three-
dimensional. This is simply a generalization we choose to explore and it may (or may
not) be used to gain insight into three-dimensional biological domains such as cardiac
tissue. We intend to study traveling waves (plane waves), and thus we now specify
a direction of propagation with the direction normal σ = {σ1, . . . , σN}T ∈ R

N , with∑N
i=1 σ

2
i = 1, and apply the classic traveling wave ansatz φ(η · σ − ct) = v(η, t) and

ψ(η ·σ−ct) = w(η, t) to (2.2) to obtain the system of differential-difference equations:⎧⎪⎪⎨
⎪⎪⎩
−cφ′(ξ) =

N∑
i=1

di[φ(ξ + σi) − 2φ(ξ) + φ(ξ − σi)] + γφ′′(ξ) − f(φ(ξ)) − ψ(ξ),

−cψ′(ξ) = b[φ(ξ) − rψ(ξ)],

(2.4)

where γ :=
∑N

i=1 γiσ
2
i and c is the unknown wave speed.

3. Multiple pulse and front solutions. Although our interest in this paper is
in one-pulse and one-front solutions, in this section we construct candidate solutions
with any number of pulses or fronts, i.e., for m ∈ Z

+ we construct
• m-pulse solutions where φ(−∞) = φ(+∞) = 0 and ψ(−∞) = ψ(+∞) = 0,

homoclinic connections between constant stable equilibrium solution 0 of
(2.4), and

• m-front solutions for r > 0 such that φ(−∞) = 0, φ(+∞) = r
1+r , and

ψ(−∞) = 0, ψ(+∞) = 1
1+r , heteroclinic connections between constant stable

equilibrium solutions of (2.4) for 0 < a < r
1+r .

Before we begin construction, using linear transforms, we now take a close look at
the piecewise linear nonlinearity f and its effects and a close look at the characteristic
equation of (2.4).

3.1. The nonlinearity. Because we intend to apply linear transforms to (2.4)
we rewrite the piecewise linear nonlinearity as

f(φ(ξ)) = φ(ξ) − h(φ(ξ) − a) = φ(ξ) −
n∑

k=0

(−1)kh(ξ − ξk),(3.1)

where the ξk are the unknown values of ξ, where φ = a, φ′ �= 0, n = 2m − 1 for
pulse solutions and n = 2m− 2 for front solutions. This implies that when finding an
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DISCRETE FITZHUGH–NAGUMO EQUATIONS 1157

m-pulse solution, one also needs to seek the values ξ0 < ξ1 < · · · < ξ2m−1 such that
φ(ξk) = a for k = 0, 1, . . . , 2m− 1 with

• φ(ξ) < a for ξ < ξ0, for ξk < ξ < ξk+1 with k odd, and for ξ > ξ2m−1; and
• φ(ξ) > a for ξk < ξ < ξk+1 with k even.

Similarly, for an m-front solution one also needs to seek 0 = ξ0 < ξ1 < · · · < ξ2m−2

where φ(ξk) = a for k = 0, 1, . . . , 2m− 2 with
• φ(ξ) < a for ξ < ξ0 and for ξk < ξ < ξk+1 with k odd; and
• φ(ξ) > a for ξ > ξ2m−2 and for ξk < ξ < ξk+1 with k even.

Because the solutions we seek are translationally invariant we pin down the solution
by choosing ξ0 = 0.

Remark 3.1. Due to the set-valued nature of the nonlinearity (2.3) and the
corresponding Heaviside functions in (3.1) we have that from (2.4)

lim
ξ→ξk−

cφ′(ξ) + γφ′′(ξ) �= lim
ξ→ξk+

cφ′(ξ) + γφ′′(ξ)

and⎧⎪⎪⎨
⎪⎪⎩
−cφ′(ξk) − γφ′′(ξk) ∈

N∑
i=1

di(φ(ξk + σi) − 2φ(ξk) + φ(ξk − σi)) − f(φ(ξk)) − ψ(ξk),

−cψ′(ξk) = b(φ(ξk) − rψ(ξk))

for k = 0, 1, . . . , n.

3.2. The characteristic equation. We consider connecting orbits, homoclinic
and heteroclinic connections, between homogeneous equilibria. A central aspect is
the eigenstructure of the linearization about these equilibrium solutions. In contrast
with the case of continuous diffusion in which the characteristic equation is written
in terms of a polynomial, in the case of discrete diffusion the characteristic equation
is a transcendental equation with an infinite number of solutions. Three aspects are
especially important:

(i) that the equilibria are hyperbolic in the sense that there are not purely imag-
inary solutions to the characteristic equation;

(ii) that the dominant eigenvalues, those with smallest real part among those with
positive real part and those with largest real part among those with negative
real part, possess a gap (up to complex conjugates in the case of dominant
complex eigenvalue) in their real parts with respect to other eigenvalues; and

(iii) whether the dominant eigenvalues are real or a complex conjugate pair.
To study the characteristic equation of (2.4) we begin by linearizing around a constant
equilibrium solution such that f(φ) �= a to obtain the following linear differential
equation:⎧⎪⎪⎨

⎪⎪⎩
−cx′(ξ) =

N∑
i=1

di(x(ξ + σi) − 2x(ξ) + x(ξ − σi)) + γx′′(ξ) − x(ξ) − y(ξ),

−cy′(ξ) = b(x(ξ) − ry(ξ)).

On substituting x(ξ) = κ1 exp(λξ) and y(ξ) = κ2 exp(λξ) we obtain⎧⎪⎪⎨
⎪⎪⎩
−cλx(ξ) =

N∑
i=1

di(exp(λσi) − 2 + exp(−λσi))x(ξ) + γλ2x(ξ) − x(ξ) − y(ξ),

−cλy(ξ) = b(x(ξ) − ry(ξ)).

(3.2)D
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1158 CHRISTOPHER E. ELMER AND ERIK S. VAN VLECK

zbr

p(z) − (1 − br)

2
√
b

0
−2

√
b

0

z0

−2
∑n

i=1 di(cosh(zσi/c) − 1) − γz2/c2

Fig. 3.1. On the left is a plot of the function p(z)−(1−br). To find the real roots of p(z) one only
needs to plot the constant valued function br−1. On the right is a plot of −2

∑n
i=1 di(cosh(zσi/c)−

1) − γz2/c2 when c is finite.

When br �= cλ the second equation of (3.2) is y(ξ) = bx(ξ)/(br − cλ), which on
substitution into the first equation of (3.2) yields the characteristic equation

∆(λ) := 1 − 2

n∑
i=1

di(cosh(λσi) − 1) − γλ2 +
b

(br − cλ)
− cλ = 0.(3.3)

Consider the change of variables z = λc and let |c| → ∞. Then we have

p(z) = 0, where p(z) ≡ lim
|c|→∞

∆(z/c) = 1 +
b

(br − z)
− z.

For the following it may be illustrative to refer to Figure 3.1. Thus p′(z) = b/(br−z)2−
1, which equals zero when z± = br ±

√
b, one value on each side of the vertical

asymptote z = br. The function p has a maximum of p(z+) = 1 − 2
√
b− br at z+ =

br+
√
b and a minimum of p(z−) = 1+2

√
b−br at z− = br−

√
b. Therefore, in the limit

as |c| → ∞, there are two positive real roots (greater than br) to the characteristic
equation ∆(z/c) if p(z+) > 0, i.e., if r < (1 − 2

√
b)/b, and two positive real roots

(less than br) in the limit if p(z−) < 0, i.e., if r > (1 + 2
√
b)/b. If (1 − 2

√
b)/b < r <

(1 + 2
√
b)/b, then the roots in the limit are complex.

For c finite, the characteristic equation ∆(z/c) = p(z) − 2
∑n

i=1 di(cosh(zσi/c) −
1) − γz2/c2 always has one negative real root. If the roots in the limit are complex
with positive real part, then for all finite c there will not be real positive roots to the
characteristic equation. We are interested in cases where the characteristic equation
does not admit purely imaginary or zero solutions. In this case the following lemma
provides justification for our calculations.

Lemma 3.1. Let (φ, ψ) be a solution of (2.3), (2.4) for some c �= 0. Then there
exists δ0 > 0 such that for some K > 0,

|φ(ξ)| ≤ Keδ0ξ, |ψ(ξ)| ≤ Keδ0ξ, for ξ ≤ 0.

Proof. The proof follows the proof of Lemma 4.1 of [7]; see also the proof of
Lemma 3.1 of [13] and the proof of Lemma 2.1 of [12].
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DISCRETE FITZHUGH–NAGUMO EQUATIONS 1159

3.3. Construction of candidate solutions. We are now ready to construct
candidate solutions by employing the Fourier transform

φ̂δ(s) =

∫ +∞

−∞
e−isξφδ(ξ)dξ with φδ(ξ) = e−δξφ(ξ)

(and similarly for ψ) and δ > 0 is sufficiently small. Convergence of the integral is
guaranteed by Lemma 3.1, which implies that φδ(ξ) → 0 and ψδ(ξ) → 0 exponentially
fast, both as ξ → −∞ and ξ → +∞ for 0 < δ < δ0. Using (2.4) and (3.1) we have
that (φδ, ψδ) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−c− 2γδ)φ′
δ(ξ) =

N∑
i=1

di[e
δσiφδ(ξ + σi) − 2φδ(ξ) + e−δσiφδ(ξ − σi)] + γφ̈δ(ξ)

− (1 − cδ − γδ2)φδ(ξ) + e−δξ
n∑

k=0

(−1)kh(ξ − ξk) − ψδ(ξ),

−cψ′
δ(ξ) = bφδ(ξ) − [br − cδ]ψδ(ξ).

(3.4)

By applying the Fourier transform to (3.4) we obtain the following matrix equation:

M(s− iδ)

(
φ̂δ(ξ)

ψ̂δ(ξ)

)
=

1

is + δ

( ∑n
k=0(−1)ke−isξk

0

)
with M(s) :=

(
R(s) 1
−b B(s)

)
,

where

R(s) = −cis + A(s), A(s) = 1 + γs2 + 2

N∑
i=1

di(1 − cos(σis)), and B(s) = −cis + br.

(3.5)

The matrix function M(s) is invertible near the real axis. To see this note that
we have det(M(s)) = R(s)B(s) + b, and the imaginary part of the determinant is
bounded away from zero for s �= 0 near the real axis, while for s = 0 the real part of
the determinant is bounded away from zero since b > 0 and r ≥ 0.

Solving we obtain

φ̂δ(s) =
B(s− iδ)

(is + δ)[R(s− iδ)B(s− iδ) + b]

n∑
k=0

(−1)ke−isξk

and

ψ̂δ(s) =
b

(is + δ)[R(s− iδ)B(s− iδ) + b]

n∑
k=0

(−1)ke−isξk ,

and on applying the Fourier inversion theorem we obtain

φ(ξ) = eδξφδ(ξ) =
1

2π

∫ +∞

−∞
φ̂δ(s)e

(is+δ)ξds

=
1

2πi

∫ −iδ+∞

−iδ−∞

B(s)

s(R(s)B(s) + b)

n∑
k=0

(−1)keis(ξ−ξk)

=
1

2πi

(∫
Cδ

+

∫
Sδ

)
B(s)

s(R(s)B(s) + b)

n∑
k=0

(−1)keis(ξ−ξk)ds

(3.6)
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1160 CHRISTOPHER E. ELMER AND ERIK S. VAN VLECK

and

ψ(ξ) = eδξψδ(ξ) =
1

2πi

(∫
Cδ

+

∫
Sδ

)
b

s(R(s)B(s) + b)

n∑
k=0

(−1)keis(ξ−ξk)ds,(3.7)

where Cδ denotes the two half-lines (−∞,−δ] and [δ,∞), and Sδ is the half-circle
t → δeit for −π ≤ t ≤ 0. Upon simplification, and taking δ → 0 we next obtain

φ(ξ) =

(
1 + (−1)n

4

)(
r

1 + r

)
+

∫ ∞

0

W (s)

n∑
k=0

(−1)k sin(s(ξ − ξk))ds

+

∫ ∞

0

X(s)

n∑
k=0

(−1)k cos(s(ξ − ξk))ds and

ψ(ξ) =

(
1 + (−1)n

4

)(
1

1 + r

)
+

∫ ∞

0

Y (s)

n∑
k=0

(−1)k sin(s(ξ − ξk))ds

+

∫ ∞

0

Z(s)

n∑
k=0

(−1)k cos(s(ξ − ξk))ds,

(3.8)

where

W (s) =
1

π

[
b2r + C(s)A(s)

sD(s)

]
, X(s) =

c

π

[
−b + C(s)

D(s)

]
,(3.9)

Y (s) =
b

π

[
brA(s) + b− c2s2

sD(s)

]
, and Z(s) =

bc

π

[
A(s) + br

D(s)

]
,(3.10)

with C(s) := b2r2 + c2s2 and

D(s) := (R(s)B(s) + b)(R(−s)B(−s) + b) = c2s2(A(s) + br)2 + (brA(s) − c2s2 + b)2.

Remark 3.2. The construction of candidate solutions is also applicable to more
general diffusive operators. For example, consider for N = 1, the term (see also [3])∑N

i=1 di(v(η + ei, t) − 2v(η, t) + v(η − ei, t)) +
∑N

i=1 γi
∂2v
∂η2

i
(η, t) in (2.2) replaced by

d

⎛
⎝−2v(η, t) +

∞∑
j=1

αj{v(η + j, t) + v(η − j, t)}

⎞
⎠ + γ

∂2v

∂η2
i

(η, t),

∞∑
j=1

αj = 1.

The main change to the derivation is that A(s) in (3.5) becomes

A(s) = 1 + γs2 + 2d

∞∑
j=1

αj(1 − cos(js)).

4. Further discussion of one-front candidate solutions. The potential so-
lutions derived in (3.8)–(3.10) are one-front solutions when n = 0. Notice that to
satisfy the boundary conditions, the detuning parameter a must be restricted so that
a ∈ [0, r/(1 + r)]. From (3.8)–(3.10) we have the following symmetry property:

φ(ξ, c) =
r

1 + r
− φ(−ξ,−c) and ψ(ξ, c) =

1

1 + r
− ψ(−ξ,−c).(4.1)
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DISCRETE FITZHUGH–NAGUMO EQUATIONS 1161

By (3.6) we have that |φ(ξ)| = O(eδξ) as ξ → −∞, so the boundary condition
φ(−∞) = 0 holds. By (4.1), φ(+∞) = r

1+r and the boundary conditions for ψ
are satisfied similarly using (3.7) and (4.1).

In certain limits the existence of one-front solutions is known. For instance, if
we let b = ε in (2.4), then in the limit as ε → 0, ψ(ξ) = ψ0, a constant, and we
can then consider the Nagumo equation with nonlinearity f̃(φ) = f(φ)−ψ0 provided
1 − a < ψ0 < a, in which case we seek a one-front solution such that φ(−∞) = ψ0

and φ(+∞) = 1+ψ0. In this case previous results (see, e.g., [7]) concerning one-front
solutions scaled so that φ̃(−∞) = 0 and φ̃(+∞) = 1 are applicable by considering a
fixed ψ0 and considering the correspondence φ(ξ) = φ̃(ξ) + ψ0.

Similarly, if we let r = 1/ε and let ε → 0, then ψ0 = 0 and results in [7] on
propagation failure, monotonicity of one-front solutions, and monotonicity of the (a, c)
relationship are directly applicable. Furthermore, we expect these behaviors to persist
in a neighborhood of the limiting parameter value.

4.1. Verification of candidate one-front solution. First, we have assumed
φ(0) = a, so by (3.8),

a =
1

2

(
r

1 + r

)
+

∫ ∞

0

X(s)ds.(4.2)

The candidate solution found in (3.8)–(3.10) is consistent with our ansatz of (3.1)
with n = 0 provided φ(ξ) > a for ξ > 0 and φ(ξ) < a for ξ < 0, where φ is defined
by (3.8) and a is defined in (4.2). Since the boundary conditions are satisfied, if the
roots of the corresponding characteristic equation (3.3) do not lie on the imaginary
axis, then for |ξ| large enough the solution φ in (3.8) is bounded away from a. Thus
it is enough to check φ(ξ) > a for ξ > 0 and φ(ξ) < a for ξ < 0 over a finite interval
of values ξ. Clearly, we expect to have one-front solutions for b ≈ 0 and for r large
enough.

5. Further discussion of one-pulse candidate solutions. The derivation in
section 3 relied on the assumption that there exists an m-pulse solution (or a front
solution). This allowed us to write the nonlinear term as a linear term and a sum of
Heaviside functions. In this section we give conditions under which these assumptions
may be verified for one-pulse solutions.

Existence of ξ1. Our assumption for one-pulse solutions was that φ(0) = a and
φ(ξ1) = a for some ξ1 > 0 and φ(ξ) < a for ξ < 0 and for ξ > ξ1 with φ(ξ) > a for
0 < ξ < ξ1. Using the form of the candidate solutions (3.8), (3.9), and (3.10), to have
φ(0) = φ(ξ1) = a, there must be ξ1 > 0 such that g(ξ1) = 0, where∫ ∞

0

X(s)(2 − 2 cos(sξ))ds =
2c

π

∫ ∞

0

−b + C(s)

D(s)
(1 − cos(sξ1))ds ≡

2c

π
g(ξ).

The existence of such a ξ1 > 0 that satisfies g(ξ1) = 0 for c �= 0 is a necessary condition
for the existence a one-pulse solution to (2.3) and (2.4). Let

Q(s) = −b + C(s),

so we can write

g(ξ1) =

∫ ∞

0

Q(s)

D(s)
(1 − cos(sξ1))ds.(5.1)
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0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

K

b

1/
√
b

r

Fig. 5.1. In this example, the shaded area K indicates values of (b, r) which satisfy the condi-
tions of Theorem 5.1. The dashed line is br2 = 1. N = γ = d1 = c = 1.

Remark 5.1. This same type of idea could be applied to verifying the existence of
general m-pulse solutions. However, in that case, the existence of a zero for a system
of 2m− 1 equations in 2m− 1 unknowns must be verified.

The idea behind the following theorem is to show that for ξ1 > 0 g is positive
for ξ1 small and g is negative for ξ1 large. It is motivated by the situation for the
spatially continuous problem (2.1) with the piecewise linear nonlinearity (2.3). In the
spatially continuous diffusion operator case, D(s) is proportional to s6 as s → ∞ so
that g, g′, and g′′ are defined by absolutely convergent integrals.

Theorem 5.1. There exists a positive zero of g defined in (5.1) for wave speed
c �= 0 provided br2 < 1, ∫ ∞

0

Q(s)

D(s)
ds < 0,(5.2)

and for all ν > 0 sufficiently small

−
∫ s∗

0

s2 Q(s)

D(s)
ds <

∫ ∞

s∗
s2 Q(s)

D(s) + νs6
ds,(5.3)

where s∗ =
√

b(1−br2)
c2 .

The shaded region of Figure 5.1 illustrates values of (b, r) which satisfy the con-
ditions of this theorem, for N = γ = d1 = c = 1. They were verified by comparison,
bounding D(s) with functions of the form c1s

6 + c2s
3 + c3.

Proof. We have D(s) > 0 for s ≥ 0 and since br2 < 1, Q(s∗) = 0, Q(s) < 0
for s < s∗, and Q(s) > 0 for s > s∗. We want to show that g(ξ1) > 0 for ξ1 > 0
sufficiently small and g(ξ1) < 0 for ξ1 > 0 sufficiently large.

To this end note that for any bounded continuous function κ defined for s ≥ 0,
for x > 0 ∫ ∞

0

κ(s) cos(sx)ds =

∫ ∞

0

1

x
κ(u/x) cos(u)du → 0 as x → ∞.

Thus, g(ξ1) < 0 for ξ1 > 0 sufficiently large follows from (5.2).
Next observe that g(0) = 0 and define

h(ξ1) =

∫ s∗

0

Q(s)

D(s)
(1 − cos(sξ1))ds +

∫ ∞

s∗

Q(s)

D(s) + νs6
(1 − cos(sξ1))ds.

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



DISCRETE FITZHUGH–NAGUMO EQUATIONS 1163

Then

h′(ξ1) =

∫ s∗

0

s
Q(s)

D(s)
sin(sξ1)ds +

∫ ∞

s∗
s

Q(s)

D(s) + νs6
sin(sξ1)ds,

and so h′(0) = 0. Similarly,

h′′(ξ1) =

∫ s∗

0

s2 Q(s)

D(s)
cos(sξ1)ds +

∫ ∞

s∗
s2 Q(s)

D(s) + νs6
cos(sξ1)ds,

and since for s ≥ s∗, Q(s) ≥ 0 and (D(s) + νs6)−1 < (D(s))−1, (5.3) implies that
g is increasing for ξ1 = 0, so that g(ξ1) > 0 for ξ1 > 0 sufficiently small. Thus,
since g is continuous and changes sign at least once, there exists a ξ1 > 0 such that
g(ξ1) = 0.

Corollary 5.1. There exists a positive zero of g defined in (5.1) for wave speed
c �= 0 provided br2 < 1 and either

(i) for d1 = · · · = dN = 0 and γ > 0, (5.2) holds and (5.3) holds with ν = 0, or
(ii) for dj ≥ 0, with at least one dj > 0, j = 1, . . . , N , and γ = 0, (5.2) holds.
Proof. When d1 = · · · = dN = 0 and γ > 0, then the integral on the right-hand

side of (5.3) is absolutely convergent with ν = 0. However, for dj ≥ 0, with at least
one dj > 0, and γ = 0, the right-hand side of (5.3) approaches +∞ as ν → 0, and so
in this case (5.3) is always satisfied.

6. Existence of solutions. An important aspect of employing the McKean
nonlinearity (2.3) is that (3.8)–(3.10) provide an explicit form (up to quadrature) for
candidate solutions. This explicit form is useful in determining {ξk}nk since for ξ0 = 0
and n ≥ 1, {ξk}nk satisfies the system of nonlinear equations

φ(0) − φ(ξk) = 0, k = 1, . . . , n,(6.1)

and in subsequently verifying

(−1)k(φ(0) − φ(ξ)) > 0, ξ ∈ (ξk−1, ξk), k = 0, . . . , n,(6.2)

where we have set ξ−1 = −∞ and ξn+1 = +∞. A necessary condition for (6.2) is that

(−1)k lim
ξ→ξk±

φ′(ξ) > 0,(6.3)

which for c > 0 involves only a one-sided limit since

(−1)k lim
ξ→ξk−

φ′(ξ) > (−1)k lim
ξ→ξk+

φ′(ξ).(6.4)

One needs only to determine if the inequalities (6.2) are satisfied outside a neighbor-
hood of {ξk}nk=1 if (6.3) holds.

The existence of {ξk}nk=0 is trivial for one-front solutions, n = 0, since we may
choose ξ0 = 0 by translation invariance, while for one-pulse solutions, n = 1, The-
orem 5.1 and Corollary 5.1 provide criteria for the existence of ξ1 > 0. In general
for n ≥ 2 establishing the existence of {ξk}nk such that (6.1) holds is more difficult
since this results in a nonlinear system of n ≥ 2 equations in n unknowns. In the
case of n ≥ 2 perturbation/continuation techniques are more promising. One-front
(n = 0) and one-pulse (n = 1) solutions provide building blocks for more general
n ≥ 2 solutions.

We are interested in connecting orbits between hyperbolic equilibria in which
there is gap between
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1164 CHRISTOPHER E. ELMER AND ERIK S. VAN VLECK

(1) the dominant solution(s) to the characteristic equation
(2) and the rest of the solutions to the characteristic equation.

The following lemmas show that for the characteristic equation (3.3) of (2.4) with
(2.3) with N = 1, d1 = d > 0, and γ = 0

• there are no purely imaginary solutions
• and if sinh((1 + 2d −

√
4d2 + c2)/c) �= −c/(2d), then all the solutions are

simple.

Lemma 6.1. Let λ1, λ2 denote two solutions to the characteristic equation (3.3).
Write λj = aj + ibj for j = 1, 2 and let c > 0 be given. If (br− ca1)

2 + (cbj)
2 > 0 for

j = 1, 2, then a1 = a2 implies b1 = ±b2.

Proof. We have that λj is a solution of the characteristic equation provided

(br − caj)Rj + cbjIj = 0, Rj = 1 − 2d(Re(cosh(λj)) − 1) − caj ,
where

−cbjRj + (br − caj)Ij = 0, Ij = −2d(Im(cosh(λj))) − cbj ,

for j = 1, 2. Thus, if a1 = a2 and (br− ca1)
2 + (cbj)

2 > 0, then Rj = 0 and Ij = 0 for
j = 1, 2, and so

1 − 2d(cos(bj) cosh(aj) − 1) − caj = 0, −2d sin(bj) sinh(aj) − cbj = 0(6.5)

for j = 1, 2. Using the first equation in (6.5), if a1 = a2, then cos(b1) = cos(b2), and
so sin(b1) = ± sin(b2). If sin(b1) = sin(b2), then the second equation in (6.5) implies
that c(b1 − b2) = 0, and if sin(b1) = − sin(b2), then the second equation in (6.5) gives
c(b1 + b2) = 0.

Lemma 6.2. If c > 0, b > 0, r ≥ 0, and d > 0, then any root λ = x+ iy of (3.3)
has x �= 0.

Proof. If we write ∆(λ) = 0 as N(λ) + b/(br− cλ) = 0, then r = 0 implies λ �= 0.
If r > 0 and λ = 0 is a solution, then N(0) + 1/r = 0, so 1− 2d(cos(0)− 1) + 1/r = 0,
which cannot occur for r > 0. If x = 0, but y �= 0, then by the argument in the proof
of Lemma 6.1, Re(N(λ)) = 0 and Im(N(λ)) = 0, so we have 1 + 2d− cos(y) = 0 and
−cy = 0, which cannot both be simultaneously satisfied.

Lemma 6.3. If for c > 0 and d > 0 one has sinh((1 + 2d −
√

4d2 + c2)/c) �=
−c/(2d), then there does not exist a double root to (3.3) for λ not purely imaginary.

Proof. If there is a double root, λ, then ∆(λ) = 0 and ∆′(λ) = 0. Write
∆(λ) as N(λ) + b/(br − cλ), so ∆′(λ) = N ′(λ) + cb/(br − cλ)2. Thus, ∆′(λ) =
N ′(λ) + c

bN
2(λ), so by the argument in the proof of Lemma 6.1, Re(N(λ)) = 0 and

Im(N(λ)) = 0, and if there is a double root, then ∆′(λ) = N ′(λ) = 0. Then for
λ = x+ iy, −2d cos(y) sinh(x)− c = 0 and −2d sin(y) cosh(x) = 0, we have sin(y) = 0,
and since Im(N(λ)) = 0, we have −2d sin(y) sinh(x) − cy = 0, so y = 0. Thus,
−2d sinh(x)− c = 0, which implies sinh(x) = −c/(2d) and cosh(x) =

√
4d2 + c2/(2d).

Hence, the only way for Re(N(λ)) = 0 is if x = (1 + 2d−
√

4d2 + c2)/c.

6.1. Existence of one-pulse solutions. Given existence of ξ1 > 0 such that
g(ξ1) = 0 for g in (5.1), we now turn our attention to showing existence of one-pulse
solutions. We proceed in two ways: in the first we assume the existence at a particular
value of the wave speed c and then show existence (under certain conditions) in a
neighborhood (Theorem 6.4); in the second we verify that φ(ξ) < a only when ξ < 0
and ξ > ξ1 (φ(ξ) > a for ξ ∈ (0, ξ1)) and then show that this condition can in certain
cases be reduced to checking on finite intervals (Theorems 6.5 and 6.6).
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DISCRETE FITZHUGH–NAGUMO EQUATIONS 1165

Theorem 6.4. Suppose for fixed values of the parameters and (a, c) = (a∗, c∗)
with c∗ > 0 we have a one-pulse solution defined for ξ1 > 0 such that

for ξ ∈ (0, ξ1), φ(ξ) − φ(0) > 0, for ξ < 0 and ξ > ξ1, φ(ξ) − φ(0) < 0,(6.6)

lim
ξ→0±

φ′(ξ) > 0 and lim
ξ→ξ±1

φ′(ξ) < 0,(6.7)

and

0 <

∣∣∣∣
∫ ∞

0

sQ(s)

D(s)
sin(sξ1)ds

∣∣∣∣ < ∞.(6.8)

Then for all c in a neighborhood of c∗ there exist one-pulse solutions to (2.3),
(2.4).

Proof. We argue by the implicit function theorem. We need to show that ξ1
depends smoothly on c. This follows from (6.8) since by direct calculation

ξ′1(c) = −
∫∞
0

Q1(s)
D2(s) (1 − cos(sξ1))ds∫∞
0

sQ(s)
D(s) sin(sξ1)ds

,(6.9)

where Q1(s) = Qc(s)D(s)−Q(s)Dc(s) and Qc and Dc are the derivatives of Q and D
with respect to c, respectively. Now by the implicit function theorem, (6.6) and (6.7)
hold in a neighborhood of c∗ since the derived solution (3.8)–(3.10) and the one-sided
derivatives at ξ = 0 and ξ = ξ1 depend smoothly on ξ1 and c.

Inequalities (6.2), when satisfied over the entire real line, imply existence; see
Theorem 6.5. Lemmas 6.1–6.3 that show the hyperbolicity of the equilibria and the
gap condition are used to show that is sufficient to check these inequalities over a
certain finite interval; see Theorem 6.6.

Theorem 6.5. If g(ξ1) = 0 for ξ1 > 0 and

∫ ∞

0

W (s)[sin(s(ξ1 + δ)) − sin(sδ) − sin(sξ1)]ds <

∣∣∣∣
∫ ∞

0

X(s)[cos(s(ξ1 + δ)) − cos(sδ)]ds

∣∣∣∣,
(6.10)

if δ > 0,

−
∫ ∞

0

W (s)[sin(s(ξ1 + δ)) − sin(sδ) − sin(sξ1)]ds <

∫ ∞

0

X(s)[cos(s(ξ1 + δ)) − cos(sδ)]ds,

(6.11)

if −ξ1 < δ < 0, then there exists a one-pulse solution to (2.3), (2.4).
Proof. We assume there exists a positive zero, ξ1, of g. Then for this ξ1 > 0 we

have φ(0) = a and φ(ξ1) = a. We show that (6.10) implies that φ(ξ) < a for ξ < 0
and ξ > ξ1 and (6.11) implies φ(ξ) > a for 0 < ξ < ξ1. Recalling that g(ξ1) = 0
implies

∫∞
0

X(s)(1 − cos(sξ1)) ds = 0 along with the solution equalities (3.8)–(3.10),
(6.10) can be rewritten as

−φ(0) < −φ(−δ) and −φ(0) < −φ(δ + ξ1), δ > 0,

which implies φ(ξ) < a ≡ φ(0) for ξ < 0 and for ξ > ξ1. Similarly (6.11) can be
rewritten as

φ(0) < φ(δ + ξ1), −ξ1 < δ < 0,

which implies φ(ξ) > a ≡ φ(0) for 0 < ξ < ξ1.
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1166 CHRISTOPHER E. ELMER AND ERIK S. VAN VLECK

Theorem 6.6. Suppose for some value c > 0 and all other parameter values fixed
there exists ξ1 > 0 such that g(ξ1) = 0. Suppose that the characteristic equation (3.3)
has no solutions on the imaginary axis and order the solutions with positive real parts
by the real parts: Re(λ+

1 ) ≤ Re(λ+
2 ) ≤ Re(λ+

3 ) ≤ · · · and similarly for the solutions
with negative real parts as: Re(λ−

1 ) ≥ Re(λ+
2 ) ≥ Re(λ+

3 ) ≥ · · · . If λ+
1 = λ̄+

2 assume
ε+0 := Re(λ+

3 ) − Re(λ+
2 ) > 0. If λ+

1 �= λ̄+
2 assume ε+0 := Re(λ+

2 ) − Re(λ+
1 ) > 0.

Similarly, assume ε−0 > 0 for the solutions with negative real parts. Then there exist
T+ > 0 and T− < 0 such that (6.10) and (6.11) need only be checked on (0, T+) and
(0,−T−), respectively.

Proof. Consider (3.6) and observe that if λ ∈ C is a solution of the characteristic
equation (3.3), then −iλ is a zero of R(s) + b/B(s) in (3.6). First assume that
0 < ε+ < ε+0 and shift the contour in (3.6) from Im s = −δ to Im s = −(Re(λ+

1 )+ ε+).
Then there are two cases: λ+

1 = λ̄+
2 and λ+

1 �= λ̄+
2 . If λ+

1 = λ̄+
2 , then we obtain

φ(ξ) = − B(s){eisξ − eis(ξ−ξ1)}
s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

1

− B(s){eisξ − eis(ξ−ξ1)}
s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

2

+
1

2πi

∫ −i(Re(λ+
1 )+ε+)+∞

−i(Re(λ+
1 )+ε+)−∞

B(s){eisξ − eis(ξ−ξ1)}
s(R(s)B(s) + b)

ds

= C+{eλ
+
1 ξ − eλ

+
1 (ξ−ξ1)} + O(e(λ+

1 +ε+)ξ)

as ξ → −∞. Observe that

C+ = − B(s)

s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

1

− B(s)

s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

2

.

If λ+
1 �= λ̄+

2 (and λ+
1 , λ

+
2 real), then we obtain

φ(ξ) = − B(s){eisξ − eis(ξ−ξ1)}
s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

1

+
1

2πi

∫ −i(λ+
1 +ε+)+∞

−i(λ+
1 +ε+)−∞

B(s){eisξ − eis(ξ−ξ1)}
s(R(s)B(s) + b)

ds

= C+{eλ
+
1 ξ − eλ

+
1 (ξ−ξ1)} + O(e(λ+

1 +ε+)ξ)

as ξ → −∞, where C+ = − B(s)
s(R′(s)B(s)+R(s)B′(s)) |s=−iλ+

1
. Thus, there exists T− < 0

such that φ(ξ) < φ(0) =: a for ξ ≤ T−.
The argument for solutions to the characteristic equation (3.3) with negative real

parts is treated similarly by moving the contour up.

7. Numerical results. In this section we present numerical results obtained by
numerical integration of (3.8)–(3.10) and for one-pulse solutions by determining the
positive zeros of (5.1). We approximate the integrals using the adaptive Gaussian
quadrature code adapt of [37] after truncation to the interval [0, 106]. To find zeros
of g we use the combined secant/bisection code zero of [37]. We focus on one-front,
one-pulse, and two-pulse solutions, exhibit (a, c) curves, and waveforms of (3.8)–(3.10)
with both continuous and discrete diffusion.

7.1. (a, c) curves. In Figure 7.1 we plot (a, c) curves for one-front solutions
by approximating (4.2). We set N = d1 = d = 1 and γ = 0 and vary b and r.
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0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10
Curve (i)

Curve (ii)

Curve (iii)

Curve (iv)

Curve (v)

Curve (vi)

a

c

Fig. 7.1. Plot of (a, c) curves (moving from left to right) for (i) (d, γ, b, r) = (1, 0, 10−4, 1),
(ii) (d, γ, b, r) = (1, 0, 10−2, 1), (iii) (d, γ, b, r) = (1, 0, 1, 1), (iv) (d, γ, b, r) = (1, 0, 1, 101),
(v) (d, γ, b, r) = (1, 0, 1, 102), and (vi) (d, γ, b, r) = (1, 0, 0, 0), the discrete Nagumo equation.

0   0.04 0.08 0.12 0.16
0

1

2

3

4

5
Curve (i)

Curve (ii)

Curve (iii)

Curve (iv)

a

c

Fig. 7.2. Plot of (a, c) curves (moving from left to right) for (i) (d, γ, b, r) = (1, 0, 1, 0),
(ii) (d, γ, b, r) = (0.8, 0.2, 1, 0), (iii) (d, γ, b, r) = (0.4, 0.6, 1, 0), and (iv) (d, γ, b, r) = (0, 1, 1, 0).

Notice the nonuniqueness suggested for (b, r) = (10−2, 1) and (b, r) = (1, 1). The
curves limit to r/(r + 1) as c → ∞. In Figure 7.2 we plot (a, c) curves for one-pulse
solutions (these are actually (a, c) curves obtained when there exists ξ1 > 0 such
that g(ξ1) = 0) for various values of the parameters d, γ, b, r. The plot illustrates the
difference between the behavior with continuous and discrete diffusion. In the case of
continuous diffusion it is known that the fast waves, i.e., those above the tip on the
(a, c) curve, are stable (see [43, 30, 25, 29]), while the slow waves (those below the tip)
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0   0.1 0.2 
0

1

2

3

4

5
Curve (i)

Curve (ii)

Curve (iii)

Curve (iv)

Curve (v)

a

c

Fig. 7.3. Plot of (a, c) curves (moving from left to right) for (i) (d, γ, b, r) = (1, 0, 1, 0),
(ii) (d, γ, b, r) = (1, 0, 10−1, 0), (iii) (d, γ, b, r) = (1, 0, 10−2, 0), (iv) (d, γ, b, r) = (1, 0, 10−3, 0), and
the limiting (a, c) curve obtained from the discrete Nagumo equation.

are unstable. In Figure 7.3 we highlight the dependence of the (a, c) relationship on
the parameter b > 0 and compare it with the limiting (a, c) curve obtained from the
discrete Nagumo equation, i.e., b = 0. Notice how the range of propagation failure in
the discrete Nagumo equation limits tip of the (a, c) curve. The range of propagation
failure limits the size of a for which there are one pulse solutions. Observe the larger
values of a that are possible when b is small and the larger values of a obtained for
the plot of the continuous (a, c) curve with γ = 1 as compared to the discrete for
d = 1. In Figure 7.4 we vary the parameter r > 0. We set b = 1 and then have the
requirement from Theorem 5.1 that r2 < 1. In the plot for r > 0 there is an upper
bound in c as well as a lower bound in c on the (a, c) curve.

7.2. Waveforms. In Figure 7.5 we plot one-front waveforms φ(ξ) and ψ(ξ) fixing
(d, c, γ) = (1, 1, 0) and varying (b, r). In Figure 7.6 we plot one-pulse waveforms φ(ξ)
and ψ(ξ) fixing (b, r) = (1, 0), setting (d, γ) = (1, 0), and varying the wavespeed c.
Refer to Figure 7.2 for the parameter values in the (a, c) curve. The plot for c = 0.6
does not satisfy our assumption of a one-pulse solution since it violates φ(ξ) < a for
ξ > ξ1. Note, however, that c = 0.6 is one of the smaller values of c obtained in
the (a, c) curve in Figure 7.2. In Figure 7.7 we plot waveforms φ(ξ) and ψ(ξ) fixing
(b, r) = (1, 0), setting (d, γ) = (0, 1), and varying the wavespeed c. The waveforms
for the continuous operator are smooth compared to the waveforms for the discrete
operator especially for small wavespeeds. The two-pulse solution in Figure 7.8 is
obtained by superimposing two identical one-pulse solutions, using the superimposed
one-pulse solutions as an initial guess and then applying Newton’s method. The one-
pulse solution is obtained from (d, γ, c, b, r) = (1, 0, 1, 1, 0) and the pulses are put at
a distance (in ξ) of 40 units apart. The value of a is slightly perturbed from the
value of a for the one-pulse as one might expect (see [41]). In Figure 7.9 we plot
the dependence of the parameter a on the distance between the pulses, ξ2 − ξ1, and
compare with the value of a obtained for the one-pulse solution.
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0.02 0.04 0.06 0.08 0.1 
0

1

2

3

4

5
Curve (i)
Curve (ii)
Curve (iii)
Curve (iv)

a

c

Fig. 7.4. Plot of (a, c) curves (moving from left to right) for (i) (d, γ, b, r) = (1, 0, 1, 0),
(ii) (d, γ, b, r) = (1, 0, 1, 1/16), (iii) (d, γ, b, r) = (1, 0, 1, 1/8), and (iv) (d, γ, b, r) = (1, 0, 1, 1/4).

-20 0 10
-0.5

0

1
(i), (b,r) = (10-2 ,1)

φ
ψ

 -20 0 10
 -0.5

0

1
(iii) = (1,102)

φ
ψ

 -20 0 10
 -0.5

0

1
φ
ψ

(ii), (b,r) = (10 -1,1)

ξ ξ ξ

Front Solutions

Fig. 7.5. Plot of one-front waveforms φ(ξ) and ψ(ξ) for fixed (d, c, γ) = (1, 1, 0), and (i)
(b, r) = (10−2, 1), (ii) (b, r) = (10−1, 1), and (iii) (b, r) = (1, 102).

7.3. Mixed continuous/discrete model. As an example of a model with con-
tinuous diffusion in one direction and discrete diffusion in the other coordinate direc-
tion we consider (2.2) with N = 2, d1 = d, d2 = 0, and γ1 = 0, γ2 = γ. Consider the
direction of propagation σ ∈ R

2 such that ||σ||2 = 1, and apply the traveling wave
ansatz u(η, t) = φ(η · σ − ct) and w(η, t) = ψ(η · σ − ct) to obtain (see (2.4)){

−cφ′(ξ) = d(φ(ξ + σ1) − 2φ(ξ) + φ(ξ − σ1)) + γσ2
2φ

′′(ξ) − f(φ(ξ)) − ψ(ξ),

−cψ′(ξ) = b(φ(ξ) − rψ(ξ)).
(7.1)
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-10 0  10 
-0.5

0

1
(i), c = 0.6

 -10 0 10
 -0.5

0

1
(ii), c = 1.0

 -10 0 10
 -0.5

0

1
(iii), c = 1.5

φ
ψ

φ
ψ

φ
ψ

ξ ξ ξ

Discrete

Fig. 7.6. Discrete. Plot of waveforms for fixed (b, r) = (1, 0), and (i) (d, γ, c) = (1, 0, 0.6),
(ii) (d, γ, c) = (1, 0, 1), (iii) (d, γ, c) = (1, 0, 1.5).

-1 0 0 10
-0.5

0

1
(i), c = 0.6

 -10 0 10
 -0.5

0

1
(ii), c = 1.0

 -10 0 10
 -0.5

0

1
(iii), c = 1.5

φ
ψ

φ
ψ

φ
ψ

ξ ξ ξ

Continuous

Fig. 7.7. Continuous. Plot of waveforms for fixed (b, r) = (1, 0), and (i) (d, γ, c) = (0, 1, 0.6),
(ii) (d, γ, c) = (0, 1, 1), (iii) (d, γ, c) = (0, 1, 1.5).

If we rescale variables x = ξ/σ1 and c̃ = c/σ1, then (7.1) becomes{
−c̃φ′(x) = d(Lφ)(x) + gφ′′(x) − f(φ(x)) − ψ(x),

−c̃ψ′(x) = b(φ(x) − rψ(x)),
(7.2)

where g = γ
σ2
2

σ2
1

for σ1 �= 0 and (Lφ)(x) = φ(x + 1) − 2φ(x) + φ(x− 1).

In Figure 7.10 we set (d, γ, b, r) = (1, 1, 1, 0) and (d, γ, b, r) = (1, 0, 1, 0), set c = 1
and c = 2, let σ1 = cos(θ) and σ2 = sin(θ) for 0 ≤ θ ≤ 2π. The plot in Figure 7.10(i)
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-1 0 0 10 20 30 40
-0.5

0

1
φ
ψ

ξ

Fig. 7.8. Plot of two-pulse waveforms for (d, c, γ, b, r) = (1, 1, 0, 1, 0) obtained as a perturbation
of a superposition of two identical one-pulse solutions.

20 24 28 32 36
0.0971

0.09712

0.09714

ξ2 − ξ1

a

Fig. 7.9. Plot of computed a obtained for (d, c, γ, b, r) = (1, 1, 0, 1, 0) as a function the distance
between the two pulses, ξ2 − ξ1, and compared with the horizontal line, the computed a value for the
one-pulse solution.

is a polar plot of a versus θ for the mixed continuous/discrete model and what we
observed is that smaller values of a are obtained for σ1 ≈ 1 and compared with σ1 ≈ 0.
This may be compared with the lack of anisotropy for the continuous model in Figure
7.10(ii) and the four-fold symmetry for the discrete model in Figure 7.10(iii).
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  0.1

  0.2
π/2

π 0

  0.1

  0.2

π/2

3π/2

0

  0.1

  0.2
π/2

3π/2

π 0

                (iii)             
c = 2          , c = 1           

3π/2

π

               (ii)             
c = 2          , c = 1           

                 (i)             
c = 2          , c = 1           

continuous/discrete continuous discrete

Fig. 7.10. Polar plot of (θ, a(θ)) for (b, r) = (1, 0); see (7.2). In plot (i) (d, g) = (1, 1) with
c = 2 and c = 1 for the mixed continuous/discrete version of the equation, in plot (ii) (d, g) = (0, 1)
with c = 2 and c = 1 for the continuous version of the equation, and in plot (iii) (d, g) = (1, 0) with
c = 2 and c = 1 for the discrete version of the equation.

8. Conclusion. For a particular version of the FitzHugh–Nagumo equation (one
which includes both spatially discrete and spatially continuous diffusive operators)
with the McKean nonlinearity describing excitability, we have demonstrated how to
construct candidate traveling wave solutions and have given tools for verifying if they
are indeed solutions. This equation is meant to include models of action potential
propagation on several length scales, from the internodal scale to the scale where
a pulse becomes a spike. We begin by discussing the infinite number of eigenvalues
obtained from linearizing. Leading edge behavior is governed by real eigenvalues, pulse
trailing tails by complex ones (with nonzero real parts). Since solutions approach
fixed points exponentially as we approach either plus or minus infinity, we can and do
use the Fourier transform to derive candidate solutions. The one-front solutions (no
recovery) we find have appeared in the Nagumo equation literature and their existence
verification is relatively straightforward. The existence of pulse solutions, however,
is more difficult. We have related existence to the pulse’s relation to the “unstable
root” of the reaction term, i.e., φ = a, pointwise. At any point along the solution
the solution is either above, below, or crossing a. The series of lemmas and theorems
presented supply conditions, based on the derived candidate solutions, for verifying
that these conditions are true, i.e., that a one-pulse solution crosses a exactly twice.
Among the items that our numerical investigations of the solution behavior illustrate
are

• that for single fronts more than one solution can exist;
• that for single pulses there is a range of a values such that there exists at

least two distinct pairs of solution pulses;
• that the speed of front solutions can be seen as a bound for the speed of pulse

solutions;
• that the distance between multiple pulse shows a dependence on the param-

eter a;
• that the spatially discrete diffusion operator retards propagation when com-

pared to the spatially continuous diffusion operator.
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