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THREE-LEVEL BDDC IN THREE DIMENSIONS∗

XUEMIN TU†

Abstract. Balancing domain decomposition by constraints (BDDC) methods are nonoverlap-
ping iterative substructuring domain decomposition methods for the solution of large sparse linear
algebraic systems arising from the discretization of elliptic boundary value problems. Their coarse
problems are given in terms of a small number of continuity constraints for each subdomain, which
are enforced across the interface. The coarse problem matrix is generated and factored by a direct
solver at the beginning of the computation and it can ultimately become a bottleneck if the num-
ber of subdomains is very large. In this paper, two three-level BDDC methods are introduced for
solving the coarse problem approximately for problems in three dimensions. This is an extension
of previous work for the two-dimensional case. Edge constraints are considered in this work since
vertex constraints alone, which work well in two dimensions, result in a noncompetitive algorithm
in three dimensions. Some new technical tools are then needed in the analysis and this makes the
three-dimensional case more complicated. Estimates of the condition numbers are provided for two
three-level BDDC methods, and numerical experiments are also discussed.
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condition number, Chebyshev iteration

AMS subject classifications. 65N30, 65N55

DOI. 10.1137/050629902

1. Introduction. Balancing domain decomposition by constraints (BDDC)
methods, which were introduced and analyzed in [4, 11, 12], are similar to the bal-
ancing Neumann–Neumann algorithms. The coarse problem in a BDDC algorithm
is given in terms of a set of primal constraints chosen for each subdomain, and the
matrix of the coarse problem is generated and factored by using a direct solver at the
beginning of the computation. We note that there are now computer systems with
more than 100,000 powerful processors, which allow very large and detailed simula-
tions. If there is a one to one or one to several relationship between processors and
subdomains, then we can have a large number of subdomains. The coarse compo-
nent of a two-level preconditioner can therefore become a bottleneck if the number
of subdomains is very large. One way to remove this difficulty is to introduce one or
more additional levels. In our recent paper [17], two three-level BDDC methods were
introduced for two-dimensional problems with vertex constraints. We solve the coarse
problem approximately by using the BDDC idea recursively and show that a good
rate of convergence still can be maintained. However, in three dimensions, vertex
constraints alone are not enough to obtain good polylogarithmic condition number
bounds due to much weaker interpolation estimates, and constraints on the averages
over edges or faces are needed. The new constraints lead to a considerably more com-
plicated coarse problem and the need for new technical tools in the analysis. In this
paper, we extend the two three-level BDDC methods in [17] to the three-dimensional
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1760 XUEMIN TU

case using primal edge average constraints. With the help of new technical tools, we
are able to provide estimates of the condition numbers of the system with these two
new preconditioners.

We note that, since this paper was submitted, several papers have appeared on
inexact solvers for BDDC (see [5, 10, 16, 15]) and dual-primal finite element tearing
and interconnecting (FETI-DP), which are iterative substructuring algorithms closely
related to BDDC (see [6]). For the study of the convergence rates of the BDDC
algorithms and their connection with the FETI-DP algorithms, see [11, 12, 9, 2].

The rest of the paper is organized as follows. We first review the two-level BDDC
methods briefly in section 2. We introduce our first three-level BDDC method and
the corresponding preconditioner M̃−1 in section 3. We give some auxiliary results
in section 4. In section 5, we provide an estimate of the condition number for the

system with the preconditioner M̃−1, which is of the form C(1+ log Ĥ
H )2(1+ log H

h )2,

where Ĥ, H, and h are typical diameters of the subregions, subdomains, and elements,
respectively. (We decompose the whole domain into subregions and each subregion is
then partitioned into several subdomains; see section 3 for details.) In section 6, we
introduce a second three-level BDDC method which uses Chebyshev iterations. We
denote the corresponding preconditioner by M̂−1. We show that the condition number

bound of the system with the preconditioner M̂−1 is of the form CC(k)
(
1 + log H

h

)2
,

where C(k) is a function of k, the number of Chebyshev iterations, and also depends
on the eigenvalues of the preconditioned coarse problem and on the two parameters
chosen for the Chebyshev iteration. C(k) goes to 1 as k goes to ∞; i.e., the condition
number approaches that of the two-level case. Finally, some computational results
are presented in section 7.

2. The two-level BDDC method. The two-level BDDC methods have been
studied extensively; see [4, 11, 12, 9]. In this section, we will briefly review this work
and introduce notation which will be used in the rest of the paper.

We will consider a second order scalar elliptic problem in a three-dimensional
region Ω as follows: Find u ∈ H1

0 (Ω) such that∫
Ω

ρ∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω),(2.1)

where ρ(x) > 0 for all x ∈ Ω. We decompose Ω into N nonoverlapping subdomains
Ωi with diameters Hi, i = 1, . . . , N , and set H = maxi Hi. We then introduce a
triangulation of all the subdomains. Let Γ be the interface between the subdomains
and let the set of interface nodes Γh be defined by Γh = (∪i∂Ωi,h) \∂Ωh, where ∂Ωi,h

is the set of nodes on ∂Ωi and ∂Ωh is the set of nodes on ∂Ω. The nodes of the
different triangulations match across Γ.

Let W(i) be the standard finite element space of continuous, piecewise trilinear
functions on Ωi; the algorithms and theory developed in this paper work for other
lower order finite elements as well. We assume that these functions vanish on ∂Ω.
Each W(i) can be decomposed into a subdomain interior part W

(i)
I and a subdomain

interface part W
(i)
Γ , i.e., W(i) = W

(i)
I

⊕
W

(i)
Γ , where the subdomain interface part

W
(i)
Γ will be further decomposed into a primal subspace W

(i)
Π and a dual subspace

W
(i)
Δ , i.e., W

(i)
Γ = W

(i)
Π

⊕
W

(i)
Δ . (They are called primal and dual in earlier works on

FETI algorithms, where the dual variables are controlled by Lagrange multipliers.)
Here, we will consider only edge average constraints over all the edges of all subdo-
mains as primal variables. We change the variables to make the edge average degrees

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THREE-LEVEL BDDC IN THREE DIMENSIONS 1761

of freedom explicit; see [7, section 4.2.1] and [9, section 2.3]. From now on, we assume
that all the matrices are written in terms of the new variables.

We denote the associated product spaces by W :=
∏N

i=1 W(i), WΓ :=
∏N

i=1 W
(i)
Γ ,

WΔ :=
∏N

i=1 W
(i)
Δ , WΠ :=

∏N
i=1 W

(i)
Π , and WI :=

∏N
i=1 W

(i)
I . Correspondingly, we

have W = WI

⊕
WΓ, and WΓ = WΠ

⊕
WΔ.

The elements of W can be discontinuous across the interface. However, the finite
element approximation of the elliptic problem is continuous across Γ. We denote
the corresponding subspace of W by Ŵ. Similarly, we denote the corresponding
subspaces of WΓ, WΔ, and WΠ by ŴΓ, ŴΔ, and ŴΠ, respectively.

In order to define the BDDC preconditioner, we further introduce an interface
subspace W̃Γ ⊂ WΓ, for which all the edge average primal constraints are enforced.
The space W̃Γ can be decomposed into W̃Γ = ŴΠ

⊕
WΔ. We also have ŴΓ ⊂ W̃Γ.

The global problem has the following form: Find (uI ,uΔ,uΠ) ∈ (WI ,ŴΔ,ŴΠ)
such that ⎛⎝ AII AT

ΔI AT
ΠI

AΔI AΔΔ AT
ΠΔ

AΠI AΠΔ AΠΠ

⎞⎠⎛⎝ uI

uΔ

uΠ

⎞⎠ =

⎛⎝ fI
fΔ
fΠ

⎞⎠ .(2.2)

This problem is assembled from the subdomain problems⎛⎜⎝ A
(i)
II A

(i)T

ΔI A
(i)T

ΠI

A
(i)
ΔI A

(i)
ΔΔ A

(i)T

ΠΔ

A
(i)
ΠI A

(i)
ΠΔ A

(i)
ΠΠ

⎞⎟⎠
⎛⎜⎝ u

(i)
I

u
(i)
Δ

u
(i)
Π

⎞⎟⎠ =

⎛⎜⎝ f
(i)
I

f
(i)
Δ

f
(i)
Π

⎞⎟⎠ .(2.3)

We also denote by FΓ, F̂Γ, and F̃Γ the dual spaces, that is, the spaces of the right-hand
sides corresponding to WΓ, ŴΓ, and W̃Γ, respectively.

In order to describe the BDDC algorithms, we need to introduce several restric-
tion, extension, and scaling operators between different spaces.

The restriction operators from the product spaces to the subdomain local spaces
are

ŴΓ
R

(i)
Γ−→W

(i)
Γ , ŴΓ

R̂
(i)
Δ−→W

(i)
Δ , W̃Γ

R
(i)
Γ−→W

(i)
Γ , ŴΠ

R
(i)
Π−→W

(i)
Π , and WΔ

R
(i)
Δ−→W

(i)
Δ .

Additionally, there are three restriction operators:

ŴΓ
R̂Π−→ŴΠ, W̃Γ

RΓΔ−→WΔ, and W̃Γ
RΓΠ−→ŴΠ.

We also introduce two extension operators:

ŴΓ
R̃Γ−→W̃Γ

RΓ−→WΓ,

where R̃Γ is the direct sum of the operators R̂
(i)
Δ and R̂Π, and RΓ is the direct sum

of the operators R
(i)

Γ .

Multiplying each element of the matrix R̂
(i)
Δ , which corresponds to a node x ∈ ∂Ωi,

with δ†i (x) gives us R̂
(i)
D,Δ. Here, we define the scale factor δ†i (x) as follows: For

γ ∈ [1/2,∞),

δ†i (x) =
ργi (x)∑

j∈Nx
ργj (x)

, x ∈ ∂Ωi,h ∩ Γh,(2.4)
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1762 XUEMIN TU

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj , and ρj(x) is
the coefficient of (2.1) at x in the subdomain Ωj .

The scaled extension operator R̃D,Γ is the direct sum of the operators R̂
(i)
D,Δ and

R̂Π. Equivalently, we can write R̃D,Γ = DR̃Γ, where D is a diagonal scaling matrix.
The diagonal elements of D, corresponding to the primal variables, are 1, and all
others are given by δ†i (x).

We also use the same restriction, extension, and scaled extension operators for
FΓ, F̂Γ, and F̃Γ.

We now reduce the global problem (2.2) to an interface problem. We first intro-

duce the subdomain Schur complement S
(i)
Γ by eliminating the subdomain interior

variables u
(i)
I in (2.3) as follows:

S
(i)
Γ =

(
A

(i)
ΔΔ A

(i)T

ΠΔ

A
(i)
ΠΔ A

(i)
ΠΠ

)
−
(

A
(i)
ΔI

A
(i)
ΠI

)
A

(i)−1

II

(
A

(i)T

ΔI A
(i)T

ΠI

)
and let

SΓ =

⎛⎜⎜⎝
S

(1)
Γ

. . .

S
(N)
Γ

⎞⎟⎟⎠ .

The partially assembled Schur complement S̃Γ is obtained from SΓ by assembling
the primal variables on the subdomain interface, i.e.,

S̃Γ = R
T

ΓSΓRΓ.

S̃Γ can be further assembled with respect to the variables of the W
(i)
Δ and the reduced

interface problem of (2.2) can be written as follows: Find uΓ ∈ ŴΓ such that

R̃T
Γ S̃ΓR̃ΓuΓ = gΓ,

where

gΓ =

N∑
i=1

R
(i)T

Γ

{(
f
(i)
Δ

f
(i)
Π

)
−
(

A
(i)
ΔI

A
(i)
ΠI

)
A

(i)
II

−1
f
(i)
I

}
.

The preconditioned two-level BDDC equation is of the form

M−1R̃T
Γ S̃ΓR̃ΓuΓ = M−1gΓ,

where the preconditioner M−1 = R̃T
D,ΓS̃

−1
Γ R̃D,Γ has the following form:

R̃T
D,Γ

⎧⎨⎩RT
ΓΔ

⎛⎝ N∑
i=1

(
0 R

(i)T

Δ

)( A
(i)
II A

(i)
IΔ

A
(i)
ΔI A

(i)
ΔΔ

)−1(
0

R
(i)
Δ

)⎞⎠RΓΔ + ΦS−1
Π ΦT

⎫⎬⎭ R̃D,Γ.

(2.5)

Here Φ is the matrix given by the coarse level basis functions of minimal energy
defined by

Φ = RT
ΓΠ −RT

ΓΔ

N∑
i=1

(
0 R

(i)T

Δ

)( A
(i)
II A

(i)
IΔ

A
(i)
ΔI A

(i)
ΔΔ

)−1(
A

(i)T

ΠI

A
(i)T

ΠΔ

)
R

(i)
Π .
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The coarse level problem matrix SΠ is determined by

SΠ =
∑N

i=1 R
(i)T

Π

⎧⎨⎩A
(i)
ΠΠ −

(
A

(i)
ΠI A

(i)
ΠΔ

)(
A

(i)
II A

(i)
IΔ

A
(i)
ΔI A

(i)
ΔΔ

)−1(
A

(i)T

ΠI

A
(i)T

ΠΔ

)⎫⎬⎭R
(i)
Π ,

(2.6)

which is obtained by assembling subdomain matrices; for additional details, cf. [4,
11, 9].

We know that, under certain assumptions, and for any uΓ ∈ ŴΓ,

uT
ΓMuΓ ≤ uT

Γ R̃
T
Γ S̃ΓR̃ΓuΓ ≤ C (1 + log(H/h))

2
uT

ΓMuΓ.(2.7)

These estimates can be established directly by using methods very similar to those
of certain studies of the FETI-DP algorithms. Denote by ED and PD, respectively,
the average and jump operators (see [14, Formulas (6.4) and (6.38)]) on the space

W̃Γ. Central to obtaining the condition number estimate for the preconditioned
two-level BDDC operator is a bound for the ED operators (see [12, Theorem 25]).
Since ED + PD = I (see [14, Lemma 6.10]), we need only find a bound for the PD

operator. We obtain a bound for the PD operator by using [14, Lemma 6.36] under
[14, Assumption 4.3.1] for the triangulation and using [14, Assumption 6.27.2] for the
coefficient ρ(x) of (2.1).

3. A three-level BDDC method. For the three-level cases, as in [17], the
coarse problem matrix SΠ defined in (2.6) will not be factored by a direct solver.
Instead, a new level is introduced and the coarse problem is solved approximately.
Call the new level the subregion level. To distinguish the spaces and operators for
the subregion level from those for the subdomain level, we use the subscript c for the
former.

We decompose Ω into Nc subregions Ωj with diameters Ĥj , j = 1, . . . , Nc. Each
subregion Ωj is the union of Nj subdomains Ωj

i with diameters Hj
i . Let Ĥ = maxj Ĥ

j

and H = maxi,j H
j
i , for j = 1, . . . , Nc, and i = 1, . . . , Nj . Then N , the total number

of subdomains, can be written as N = N1 + · · · + NNc
.

We introduce the subregional Schur complement as

S
(j)
Π =

Nj∑
i=1

R
(i)T

Π

⎧⎨⎩A
(i)
ΠΠ −

(
A

(i)
ΠI A

(i)
ΠΔ

)( A
(i)
II A

(i)
IΔ

A
(i)
ΔI A

(i)
ΔΔ

)−1(
A

(i)T

ΠI

A
(i)T

ΠΔ

)⎫⎬⎭R
(i)
Π(3.1)

and note that the coarse problem matrix SΠ can be assembled from the S
(j)
Π .

In the two-level case, SΠ is factored by a direct solver at the beginning of the
computation; cf. (2.5). Here, we build S̃−1

Π to approximate S−1
Π . Replacing S−1

Π in

(2.5) with S̃−1
Π gives us the three-level preconditioner M̃−1:

R̃T
D,Γ

⎧⎨⎩RT
ΓΔ

⎛⎝ N∑
i=1

(
0 R

(i)T

Δ

)( A
(i)
II A

(i)
IΔ

A
(i)
ΔI A

(i)
ΔΔ

)−1(
0

R
(i)
Δ

)⎞⎠RΓΔ + ΦS̃−1
Π ΦT

⎫⎬⎭ R̃D,Γ.

To define S̃−1
Π in detail, we need to introduce several spaces and operators.

Let Γc be the interface between the subregions; note that Γc ⊂ Γ. For each

subregion Ωi, we denote by W
(i)
c the space corresponding to the subdomain edge
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average variables in this subregion. Let Wc =
∏Nc

i=1 W
(i)
c and let Ŵc be the subspace

of Wc of elements that are continuous across Γc. W
(i)
c can be decomposed into

a subregion interior part W
(i)
c,Ic

and a subregion interface part W
(i)
c,Γc

, i.e., W
(i)
c =

W
(i)
c,Ic

⊕
W

(i)
c,Γc

. We further decompose the subregion interface part W
(i)
c,Γc

into a

primal subspace W
(i)
c,Πc

and a dual subspace W
(i)
c,Δc

, i.e., W
(i)
c,Γc

= W
(i)
c,Πc

⊕
W

(i)
c,Δc

.
Here, we will consider only the use of edge average constraints over subregion edges.
Again, we should change the variables for all local coarse matrices corresponding to
these edge average constraints. We will assume that all matrices are written in the
new variables.

We denote the associated subregion interface product space by Wc,Γc :=
∏Nc

i=1 W
(i)
c,Γc

.
We note that the elements in Wc,Γc can be discontinuous across the subregion inter-

face Γc. Let Ŵc,Γc
and W̃c,Γc

be two subsets of Wc,Γc
. The elements are continuous

across Γc in Ŵc,Γc , whereas only the primal variables are continuous across Γc in

W̃c,Γc . We have Ŵc,Γc ⊂ W̃c,Γc ⊂ Wc,Γc . We also need two extension operators R̃Γc

and RΓc
,

Ŵc,Γc

R̃Γc−→W̃c,Γc

RΓc−→Wc,Γc
,

which are similar to R̃Γ and RΓ, respectively.
We denote by F̂c and F̂Γc the dual spaces of Ŵc and Ŵc,Γc , respectively. We

use the same operators for F̂c and F̂Γc .

We are now ready to explain how S̃−1
Π works on a vector in F̂c. Given a vector

Ψ ∈ F̂c, let y = S−1
Π Ψ and ỹ = S̃−1

Π Ψ. We write Ψ, y, and ỹ in terms of interior

and interface parts, i.e., Ψ = (Ψ
(1)
Ic

, . . . ,Ψ
(Nc)
Ic

,ΨΓc)
T , y = (y

(1)
Ic

, . . . ,y
(Nc)
Ic

,yΓc
)T , and

ỹ = (ỹ
(1)
Ic

, . . . , ỹ
(Nc)
Ic

, ỹΓc)
T .

To obtain y, we can solve SΠy = Ψ by block factorization. This vector satisfies

⎛⎜⎜⎜⎜⎜⎜⎝
S

(1)
ΠIcIc

0 0 S
(1)T

ΠΓcIc
R

(1)
Γc

0
. . . 0

...

0 0 S
(Nc)
ΠIcIc

S
(Nc)

T

ΠΓcIc
R

(Nc)
Γc

R
(1)T

Γc
S

(1)
ΠΓcIc

· · · R
(Nc)

T

Γc
S

(Nc)
ΠΓcIc

∑Nc

i=1 R
(i)T

Γc
S

(i)
ΠΓcΓc

R
(i)
Γc

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
y

(1)
Ic
...

y
(Nc)
Ic
yΓc

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
Ψ

(1)
Ic
...

Ψ
(Nc)
Ic

ΨΓc

⎞⎟⎟⎟⎟⎠ ,

where R
(i)
Γc

: Ŵc,Γc → W
(i)
c,Γc

is a restriction operator.

We solve y
(i)
Ic

in terms of yΓc and have

y
(i)
Ic

= S
(i)−1

ΠIcIc

(
Ψ

(i)
Ic

− S
(i)
ΠIcΓc

R
(i)
Γc

yΓc

)
.(3.2)
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We then obtain the subregion interface problem

(
Nc∑
i=1

R
(i)T

Γc
(S

(i)
ΠΓcΓc

− S
(i)
ΠΓcIc

S
(i)−1

ΠIcIc
S

(i)T

ΠΓcIc
)R

(i)
Γc

)
yΓc

= ΨΓc
−

Nc∑
i=1

R
(i)T

Γc
S

(i)
ΠΓcIc

S
(i)−1

ΠIcIc
Ψ

(i)
Ic
.

(3.3)

Let

T (i) = S
(i)
ΠΓcΓc

− S
(i)
ΠΓcIc

S
(i)−1

ΠIcIc
S

(i)T

ΠΓcIc

be the subregion Schur complement in (3.3).
Denote their direct sum by T :

T =

⎛⎜⎝ T (1)

. . .

T (Nc)

⎞⎟⎠ .

As on the subdomain level case, we introduce a partially assembled Schur com-
plement of SΠ, and denote it by T̃ . T̃ can be written as

T̃ = R
T

Γc
TRΓc .(3.4)

We define hΓc
∈ F̂Γc

by

hΓc = ΨΓc −
Nc∑
i=1

R
(i)T

Γc
S

(i)
ΠΓcIc

S
(i)−1

ΠIcIc
Ψ

(i)
Ic
.(3.5)

The reduced subregion interface problem (3.3) can be written as follows: Find

yΓc ∈ Ŵc,Γc
such that

R̃T
Γc
T̃ R̃Γc

yΓc = hΓc .(3.6)

To obtain the approximation ỹ = S̃−1
Π Ψ, we do not solve (3.6) exactly. Instead,

we compute ỹΓc as

ỹΓc = R̃T
Dc,Γc

T̃−1R̃Dc,Γc
hΓc .(3.7)

Here R̃Dc,Γc
is a scaled operator which is similar to R̃D,Γ; we can write R̃Dc,Γc =

DcR̃Γc , where Dc is a diagonal scaling matrix. The diagonal elements of Dc, cor-

responding to the primal variables, are 1, and all others are given by δ†c,i(x). Here

δ†c,i(x) is similar to δ†i (x), which is defined in (2.4), except that δ†c,i(x) is defined for
the subregion interface instead of the subdomain interface nodes. For an x on the

subregion interface, δ†c,i(x) is defined as follows: For γ ∈ [ 12 ,∞), δ†c,i(x) =
ργ
i (x)∑

j∈Nx
ργ
j (x)

,

where Nx is the set of indices j of the subregions such that x ∈ ∂Ωj and ρj(x) is the
coefficient of (2.1) at x ∈ ∂Ωj . (In our theory, we assume the ρi are constant in the
subregions.)

We will maintain the same relation between ỹ
(i)
Ic

and ỹΓcas for y
(i)
Ic

and yΓc in
(3.2), i.e.,

ỹ
(i)
Ic

= S
(i)−1

ΠIcIc

(
Ψ

(i)
Ic

− S
(i)
ΠIcΓc

R
(i)
Γc

ỹΓc

)
.(3.8)

4. Some auxiliary results. In this section, we will collect a number of results
which are needed in our theory. In order to avoid a proliferation of constants, we
will use the notation A ≈ B. This means that there are two constants c and C,
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independent of any mesh parameter and the coefficients of (2.1), such that cA ≤ B ≤
CA, where C < ∞ and c > 0. For the definition of discrete harmonic functions, see
[14, section 4.4].

Lemma 4.1. Let D be a cube with vertices A1 = (0, 0, 0), B1 = (H, 0, 0), C1 =
(H,H, 0), D1 = (0, H, 0), A2 = (0, 0, H), B2 = (H, 0, H), C2 = (H,H,H), and
D2 = (0, H,H) with a quasi-uniform triangulation of mesh size h. Then, there exists
a discrete harmonic function v defined in D such that v̄A1B1

≈ 1+log H
h , where v̄A1B1

is the average of v over the edge A1B1, |v|2H1(D) ≈ H
(
1 + log H

h

)
, and v has a zero

average over the other edges of the cube.
Proof. This lemma follows from a result by Brenner and He [1, Lemma 4.2]. Let

N be an integer and GN the function defined on (0, 1) by

GN (x) =

N∑
n=1

(
1

4n− 3
sin ((4n− 3)πx)

)
.

GN (x) is even with respect to the midpoint of (0, 1), where it attains its maximum
in absolute value. Moreover, we have

|GN |2
H

1/2
00 (0,1)

≈ 1 + logN and ‖GN‖L2(0,1) ≈ 1;

see [1, Lemma 3.7].
Let [−H, 0] and [0, H] have a mesh inherited from the quasi-uniform meshes on

D1A1 and A1B1, respectively, and let gh(x) be the nodal interpolation of GN (x+H
2H ).

Then, we have

‖gh‖L∞(−H,H) ≈ 1 + log
H

h
, |gh|2H1/2

00 (−H,H)
≈ 1 + log

H

h
,(4.1)

and ‖gh‖L2(−H,H) ≈ H;

see [1, Lemma 3.7] or [17, Lemma 1].
Let τh(x) be a function on [0, H] defined as follows:

τh(x) =

⎧⎨⎩
x
h1
, 0 ≤ x ≤ h1,

1, h1 ≤ x ≤ H − h2,
H−x
h2

, H − h2 ≤ x ≤ H,

where h1 and h2 are the lengths of the two end mesh intervals of [0, H]. Then the
following estimates hold:

‖τh‖2
L2(0,H) ≈ H and |τh|2H1/2

00 (0,H)
≈ 1 + log

H

h
;(4.2)

see [1, Lemma 3.6].
Define the discrete harmonic function v as 0 everywhere on the boundary of D

except on the two open faces A1B1C1D1 and A1B1B2A2. On these two faces it is
defined by

v(x1, x2, 0) = gh(x2)τh(x1) for (x1, x2) ∈ A1B1C1D1,

v(x1, 0, x3) = gh(−x3)τh(x1) for (x1, x3) ∈ A1B1B2A2.
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THREE-LEVEL BDDC IN THREE DIMENSIONS 1767

It is clear that v̄A1B1
≈ 1 + log H

h and that v has a zero average over the other edges.
Since v is discrete harmonic in D, we have

|v|2H1(D) ≈ |v|2H1/2(∂D)

≈ |gh|2H1/2
00 (−H,H)

‖τh‖2
L2(0,H) + |τh|2H1/2

00 (0,H)
‖gh‖2

L2(−H,H)

≈ H

(
1 + log

H

h

)
,

where we have used (4.1), (4.2), and [1, Corollary 3.5].
Remark. In Lemma 4.1, we have constructed the function v for a cube D. By

using similar ideas, we can construct functions v for other shape-regular polyhedra
which will satisfy similar properties and bounds.

Lemma 4.2. Let Ωi
j be the subdomains of a subregion Ωi, j = 1, . . . , Ni, and let

V h
i,j be the standard continuous piecewise trilinear finite element function space for

the subdomain Ωi
j with a quasi-uniform fine mesh with mesh size of order h. Denote

by Ek, k = 1, . . . ,Kj, the edges of the subdomain Ωi
j. Given the average values of u,

ūEk
over each edge, let u ∈ V h

i,j be the minimal energy extension in each subdomain

Ωi
j with these average values given on the edges of Ωi

j, j = 1, . . . , Ni. Then, we have

(
1 + log

H

h

)⎛⎝ Ni∑
j=1

|u|2H1(Ωi
j)

⎞⎠ ≈
Ni∑
j=1

Kj∑
k1,k2=1

H|ūEk1
− ūEk2

|2.

Proof. Without loss of generality, we assume that the subdomains are hexahedral.
Denote the edges of the subdomain Ωi

j by Ek, k = 1, . . . , 12, and denote the average
values of u over these 12 edges by ūEk

, k = 1, . . . , 12, respectively.
According to Lemma 4.1, we can construct 11 discrete harmonic functions φm,

m = 2, . . . , 12, on Ωi
j such that

(φm)Ek
=

{
(ūEm − ūE1

) (1 + log H
h ), m = k,

0, m = k,

and with

|φm|2H1(Ωi
j)

≈ (ūEm − ūE1)
2
H

(
1 + log

H

h

)
, m = 2, . . . , 12.(4.3)

Let vj = 1
1+log H

h

(
∑12

m=2 φm) + ūE1
; we then have (v̄j)Ek

= ūEk
, for k = 1, . . . , 12, and

|vj |2H1(Ωi
j)

= | 1

1 + log H
h

(
12∑

m=2

φm

)
+ ūE1

|2H1(Ωi
j)

=

(
1

1 + log H
h

)2 ∣∣∣∣∣
12∑

m=2

φm

∣∣∣∣∣
2

H1(Ωi
j)

≤ 11

(
1

1 + log H
h

)2 12∑
m=2

|φm|2H1(Ωi
j)

≤
(

1

c1/2(1 + log H
h )

)2

H

(
1 + log

H

h

) 12∑
m=2

(ūEm − ūE1)
2

≤ 1

c(1 + log H
h )

12∑
k=1

H(ūEk
− ūE1)

2.

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1768 XUEMIN TU

Here, we have used (4.3) for the penultimate inequality.
By the definition of u, we have

|u|2H1(Ωi
j)

≤ |vj |2H1(Ωi
j)

≤ 1

c(1 + log H
h )

12∑
k=1

H(ūEk
− ūE1)

2.

Summing over all the subdomains in the subregion Ωi, we have

c

(
1 + log

H

h

)⎛⎝ Ni∑
j=1

|u|2H1(Ωi
j)

⎞⎠ ≤
Ni∑
j=1

12∑
k=1

H(ūEk
− ūE1)

2.

This proves one side of the equivalence.
We prove the other side as follows:

Ni∑
j=1

12∑
k=1

H(ūEk
− ūE1

)2 =

Ni∑
j=1

12∑
k=1

H|(u− ūE1)Ek
|2

≤ C

⎛⎝ Ni∑
j=1

12∑
k=1

H
1

H
‖u− ūE1‖2

L2(Ek)

⎞⎠ ≤ C

⎛⎝ Ni∑
j=1

(
1 + log

H

h

)
|u|2H1(Ωi

j)

⎞⎠
≤ C

(
1 + log

H

h

)⎛⎝ Ni∑
j=1

|u|2H1(Ωi
j)

⎞⎠ .

Here, we have used a standard finite element Sobolev inequality; see [14, Lemma 4.30]
for the second inequality and [14, Lemma 4.16] for the penultimate inequality.

We complete the proof of the other side of the equivalence by using the triangle
inequality.

We now introduce a new mesh on each subregion; we follow [3, 13]. The purpose
of introducing this mesh is to relate the quadratic form of Lemma 4.2 to one for a
more conventional finite element space.

Given a subregion Ωi and subdomains Ωi
j , j = 1, . . . , Ni, let T be a quasi-uniform

subtriangulation of Ωi such that its set of vertices includes the vertices and the mid-
points of the edges of Ωi

j . For the hexahedral case, we decomposed each hexahedron
into eight hexahedra by connecting the midpoints of the edges. We then partition the
vertices of the new mesh T into two sets. The midpoints of edges are called primary
and the other vertices of the new mesh T are called secondary. We call two vertices in
the triangulation T adjacent if there is an edge of T between them, as in the standard
finite element context; see Figures 1 and 2.

Let UH(Ω) be the continuous piecewise trilinear finite element function space with
respect to the new triangulation T . For a subregion Ωi, UH(Ωi) and UH(∂Ωi) are
defined as restrictions:

UH(Ωi) = {u|Ωi : u ∈ UH(Ω)}, UH(∂Ωi) = {u|∂Ωi : u ∈ UH(Ω)}.
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THREE-LEVEL BDDC IN THREE DIMENSIONS 1769

1 Subdomain

 New mesh

Primary node

Secondary node

Original subdomain mesh

Fig. 1. The new mesh and primary and secondary nodes in one subdomain of a subregion.
(Note that all the lines of the original subdomain mesh are drawn in the same way.)

1 Subregion with 4 subdomains

Original subdomain mesh

 New mesh

Primary node

Secondary node

Fig. 2. The new mesh and primary and secondary nodes in a subregion with four subdomains.
(Note that all the lines of the original subdomain mesh are drawn in the same way.)

We define a mapping IΩi

H of any function φ, defined at the primary vertices in Ωi,
to UH(Ωi) by

IΩi

H φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(x) if x is a primary node;

the average of the values at all adjacent primary nodes
on the edges of Ωi if x is a vertex of Ωi;

the average of the values at two adjacent primary nodes
on the same edge of Ωi if x is an edge secondary node of Ωi;

the average of the values at all adjacent primary nodes on the
boundary of Ωi if x is a face secondary boundary node of Ωi;

the average of the values at all adjacent primary nodes
if x is an interior secondary node of Ωi with some adjacent
primary nodes;

the average of the values at all adjacent nodes
if x is an interior secondary node of Ωi without any adjacent
primary nodes;

the result of trilinear interpolation using the vertex values
if x is not a vertex of T .

(4.4)
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We recall that W
(i)
c is the discrete space of the values at the primary nodes given

by the subdomain edge average values. IΩi

H can be considered as a map from W
(i)
c to

UH(Ωi) or as a map from UH(Ωi) to UH(Ωi).

Let I∂Ωi

H be the mapping of a function φ defined at the primary vertices on the

boundary of Ωi to UH(∂Ωi) and defined by I∂Ωi

H φ = (IΩi

H φe)|∂Ωi , where φe is any

function in W
(i)
c such that φe|∂Ωi = φ. The map is well defined since the boundary

values of IΩi

H φe depend only on the boundary values of φe.
Finally, let

ŨH(Ωi) = {ψ = IΩi

H φ, φ ∈ UH(Ωi)}, ŨH(∂Ωi) = {ψ|∂Ωi , ψ ∈ ŨH(Ωi)}.

I∂Ωi

H also can be considered as a map from W
(i)
c,Γc

to ŨH(∂Ωi).

Remark. We carefully define the operators IΩi

H and I∂Ωi

H so that, if the edge

averages of wi ∈ W
(i)
c,Γc

and wj ∈ W
(j)
c,Γc

over an edge E are the same, we have

(I∂Ωi

H wi)E = (I∂Ωj

H wj)E . Here we need to use a weighted average which has a larger
weight at the two end points since we consider an edge as an open set and the two
end primary points have only one neighboring secondary node on the edge. But this
will not affect our analysis. We could also define a weighted edge average of wi and

wj and obtain (I∂Ωi

H wi)E = (I∂Ωj

H wj)E for the usual average.
We list some useful lemmas from [3]. For proofs of Lemmas 4.3 and 4.4, see [3,

Lemmas 6.1 and 6.2], respectively.
Lemma 4.3. There exists a constant C > 0, independent of H and |Ωi|, the

volume of Ωi, such that

|IΩi

H φ|H1(Ωi) ≤ C|φ|H1(Ωi) and ‖IΩi

H φ‖L2(Ωi) ≤ C‖φ‖L2(Ωi) ∀φ ∈ UH(Ωi).

Lemma 4.4. For φ̂ ∈ ŨH(∂Ωi),

inf
φ∈ŨH(Ωi), φ|∂Ωi=φ̂

‖φ‖H1(Ωi) ≈ ‖φ̂‖H1/2(∂Ωi),

inf
φ∈ŨH(Ωi), φ|∂Ωi=φ̂

|φ|H1(Ωi) ≈ |φ̂|H1/2(∂Ωi).

Lemma 4.5. For all wi ∈ W
(i)
c,Γc

, we have

ρiC1|I∂Ωi

H wi|2H1/2(∂Ωi) ≈
(

1 + log
H

h

)
(T (i)wi, wi),

where (T (i)wi, wi) = wT
i T

(i)wi = |wi|2T (i) and T (i) = S
(i)
ΠΓcΓc

− S
(i)
ΠΓcIc

S
(i)−1

ΠIcIc
S

(i)T

ΠΓcIc
.
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Proof. By the definition of T (i), we have(
1 + log

H

h

)
(T (i)wi, wi) =

(
1 + log

H

h

)
inf

v∈W
(i)
c , v|∂Ωi=wi

|v|2
S

(i)
Π

= inf
v∈W

(i)
c , v|∂Ωi=wi

ρi

(
1 + log

H

h

)⎛⎝ Ni∑
j=1

inf
u∈V h

i,j , ūEl
=vl, El⊂∂Ωi

j

|u|2H1(Ωi
j)

⎞⎠
≈ inf

v∈W
(i)
c , v|∂Ωi=wi

ρi

Ni∑
j=1

Kj∑
k1,k2=1

H|ūEk1
− ūEk2

|2

≈ inf
v∈W

(i)
c , v|∂Ωi=wi

ρi

Ni∑
j=1

Kj∑
k1,k2=1

H|vk1 − vk2
|2

≈ inf
v∈W

(i)
c , v|∂Ωi=wi

ρi|IΩi

H v|2H1(Ωi) ≈ inf
φ∈ŨH(Ωi), φ|∂Ωi=I∂Ωi

H wi

ρi|φ|2H1(Ωi)

≈ ρi|I∂Ωi

H wi|H1/2(∂Ωi).

We use Lemma 4.2 for the third bound, the definitions of IΩi

H and I∂Ωi

H for the fourth
and fifth bounds, and Lemma 4.4 for the final bound.

To be fully rigorous, we assume that there is a quasi-uniform coarse triangulation
of each subregion. We can then obtain uniform upper and lower bounds for each
subregion as is required in Lemma 4.5.

We define the interface average operator EDc on W̃c,Γc as EDc = R̃ΓcR̃
T
Dc,Γc

,
which computes the averages across the subregion interface Γc and then adopts these
averages at the boundary points of the subregions.

The interface average operator EDc has the following property.
Lemma 4.6.

|EDcwΓc |2T̃ ≤ C

(
1 + log

Ĥ

H

)2

|wΓc |2T̃

for any wΓc ∈ W̃c,Γc , where C is a positive constant independent of Ĥ, H, h, and

the coefficients of (2.1). Here T̃ is defined in (3.4).

Proof. Let wi = R
(i)

Γc
wΓc

∈ W
(i)
c,Γc

, where R
(i)

Γc
is the restriction operator from

W̃c,Γc to W
(i)
c,Γc

. We rewrite the formula for v := wΓc − EDcwΓc for an arbitrary

element wΓc
∈ W̃c,Γc , and find that for i = 1, . . . , Nc,

vi(x) := (wΓc
(x) − EDc

wΓc
(x))i =

∑
j∈Nx

δ†c,j(wi(x) − wj(x)), x ∈ ∂Ωi ∩ Γc.(4.5)

Here Nx is the set of indices of the subregions that have x on their boundaries.
We have

|EDcwΓc |2T̃ =

Nc∑
i=1

|wi − vi|2T (i) ≤ 2

Nc∑
i=1

|wi|2T (i) + 2

Nc∑
i=1

|vi|2T (i) and |wΓc |2T̃ =

Nc∑
i=1

|wi|2T (i) .

We can therefore focus on the estimate of the contribution from a single subregion Ωi

and proceed as in the proof of [14, Lemma 6.36].
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We will also use the simple inequality

ρiδ
†2
c,j ≤ min(ρi, ρj) for γ ∈ [1/2,∞).(4.6)

By Lemma 4.5,

(T (i)vi, vi) ≤ C
1

(1 + log H
h )

ρi|I∂Ωi

H (vi)|2H1/2(∂Ωi).(4.7)

Let li = I∂Ωi

H (vi). By using a partition of unity as in [14, Lemma 6.36], we have

li =
∑

F⊂∂Ωi

IH(θF li) +
∑

E⊂∂Ωi

IH(θE li) +
∑

V∈∂Ωi

θV li(V),

where IH is the nodal piecewise linear interpolant on the coarse mesh T . We note
that the analysis of face and edge terms is almost identical to that in [14, Lemma

6.36]. But the vertex terms are different because of I∂Ωi

H . We need only consider
the vertex term when two subregions share at least an edge. This make the analysis
simpler than in the proof of [14, Lemma 6.36].

Face terms. First, consider

IH(θF li) = IH(θFI
∂Ωi

H (δ†c,j(wi − wj))).

Similar to [14, Lemma 6.36], we obtain, by using (4.6),

(4.8)

ρi|IH(θFI
∂Ωi

H (δ†c,j(wi − wj)))|2H1/2(∂Ωi)

= ρiδ
†2
c,j |IH(θFI

∂Ωi

H (wi − wj))|2H1/2(∂Ωi)

≤ min(ρi, ρj)|IH(θF ((I∂Ωi

H wi − (I∂Ωi

H wi)F ) − (I∂Ωi

H wj − (I∂Ωi

H wj)F )

+ ((I∂Ωi

H wi)F − (I∂Ωi

H wj)F )))|2H1/2(∂Ωi)

≤ 3 min(ρi, ρj)
(
|IH(θF (I∂Ωi

H wi − (I∂Ωi

H wi)F ))|2H1/2(∂Ωi)

+ |IH(θF (I∂Ωi

H wj − (I∂Ωi

H wj)F ))|2H1/2(∂Ωi)

+ |θF ((I∂Ωi

H wi)F − (I∂Ωi

H wj)F )|2H1/2(∂Ωi)

)
.

By the definition of I∂Ωi

H ,

IH(θF (I∂Ωi

H wj)) = IH(θF (I∂Ωj

H wj)) and (I∂Ωi

H wj)F = (I∂Ωj

H wj)F .

By [14, Lemma 4.26], the first and second terms in (4.8) can be estimated as
follows:

min(ρi, ρj)(|IH(θF (I∂Ωi

H wi − (I∂Ωi

H wi)F ))|2H1/2(∂Ωi)

+ |IH(θF (I∂Ωi

H wj − (I∂Ωi

H wj)F ))|2H1/2(∂Ωi))

= min(ρi, ρj)(|IH(θF (I∂Ωi

H wi − (I∂Ωi

H wi)F ))|2H1/2(∂Ωi)

+ |IH(θF (I∂Ωj

H wj − (I∂Ωj

H wj)F ))|2H1/2(∂Ωi))

≤ C

(
1 + log

Ĥ

H

)2 (
ρi|I∂Ωi

H wi|2H1/2(∂Ωi) + ρj |I∂Ωj

H wj |2H1/2(∂Ωj)

)
.
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THREE-LEVEL BDDC IN THREE DIMENSIONS 1773

Let E ⊂ ∂F . Since the edge averages of wi and wj are the same, we have, by

the definition of I∂Ωi

H and I∂Ωj

H , that (I∂Ωi

H wi)E = (I∂Ωj

H wj)E . As we have pointed out
before, we use a weighted average which has a larger weight at the two end points.

We then have

|(I∂Ωi

H wi)F − (I∂Ωj

H wj)F )|2

≤ 2
(
|(I∂Ωi

H wi)E − (I∂Ωi

H wi)F |2 + |(I∂Ωj

H wj)E − (I∂Ωj

H wj)F |2
)
.

(4.9)

It is sufficient to consider the first term on the right-hand side. Using [14, Lemma
4.30], we find

|(I∂Ωi

H wi)E − (I∂Ωi

H wi)F |2

= |(I∂Ωi

H wi − (I∂Ωi

H wi)F )E |2 ≤ C/Ĥi‖I∂Ωi

H wi − (I∂Ωi

H wi)F‖2
L2(E),

and, by using [14, Lemma 4.17] and the Poincaré inequality given as [14, Lemma
A.17], we have

|(I∂Ωi

H wi)E − (I∂Ωi

H wi)F |2 ≤ C

Ĥi

(
1 + log

Ĥ

H

)
|I∂Ωi

H wi − (I∂Ωi

H wi)F |2H1/2(F).

Combining this with the bound for θF in [14, Lemma 4.26], we have

min(ρi, ρj)|θF ((I∂Ωi

H wi)F − (I∂Ωi

H wj)F )|2H1/2(∂Ωi)

≤ C

(
1 + log

Ĥ

H

)2 (
ρi|I∂Ωi

H wi|2H1/2(∂Ωi) + ρj |I∂Ωj

H wj |2H1/2(∂Ωj)

)
.

Edge terms. We can develop the same estimate as in [14, Lemma 6.34]. For
simplicity, we consider only an edge E common to four subregions Ωi, Ωj , Ωk, and Ωl.
Then,

ρi|IH(θE li)|2H1/2(∂Ωi)

≤ ρi

(
|IH(θEI

∂Ωi

H (δ†c,j(wi − wj)))|2H1/2(∂Ωi)

+ |IH(θEI
∂Ωi

H (δ†c,k(wi − wk)))|2H1/2(∂Ωi)

+ |IH(θEI
∂Ωi

H (δ†c,l(wi − wl)))|2H1/2(∂Ωi)

)
.(4.10)

We recall that δ†c,j , δ
†
c,k, and δ†c,l are constants.

By the definition of I∂Ωi

H , I∂Ωj

H , I∂Ωk

H , and I∂Ωl

H , we have

θE(I∂Ωi

H wj) = θE(I∂Ωj

H wj), θE(I∂Ωi

H wk) = θE(I∂Ωk

H wk), θE(I∂Ωi

H wl) = θE(I∂Ωl

H wl),

and

(I∂Ωi

H wi)E = (I∂Ωj

H wj)E = (I∂Ωk

H wk)E = (I∂Ωl

H wl)E .

We assume that Ωi shares a face with Ωj as well as Ωl and shares an edge only
with Ωk.
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First, we consider the second term in (4.10). By [14, Lemmas 4.19 and 4.17] and
(4.6), we have

ρi|IH(θEI
∂Ωi

H (δ†c,k(wi − wk)))|2H1/2(∂Ωi)

≤ Cρiδ
†2
c,k‖IH(θE(I∂Ωi

H wi − (I∂Ωi

H wi)E) − θE(I∂Ωk

H wk − (I∂Ωk

H wk)E))‖2
L2(E)

≤ 2C
(
ρi‖IH(θE(I∂Ωi

H wi − (I∂Ωi

H wi)E))‖2
L2(E)

+ ρk‖IH(θE(I∂Ωk

H wk − (I∂Ωk

H wk)E))‖2
L2(E)

)
≤ 2C

(
ρi‖I∂Ωi

H wi − (I∂Ωi

H wi)E‖2
L2(E) + ρk‖I∂Ωk

H wk − (I∂Ωk

H wk)E‖2
L2(E)

)

≤ 2C

(
1 + log

Ĥ

H

)(
ρi|I∂Ωi

H wi|2H1/2(Fi) + ρk|I∂Ωk

H wk|2H1/2(Fk)

)

≤ 2C

(
1 + log

Ĥ

H

)(
ρi|I∂Ωi

H wi|2H1/2(∂Ωi) + ρk|I∂Ωk

H wk|2H1/2(∂Ωk)

)
,

where F i is a face of Ωi, Fk is a face of Ωk, and F i and Fk share the edge E .
The first and third terms can be estimated similarly.
Vertex terms. We can apply techniques similar to those of the proof in [14,

Lemma 6.36]. We have

ρi|θV li(V)|2H1/2(∂Ωi) = ρi|θV(I∂Ωi

H vi)(V)|2H1/2(∂Ωi).(4.11)

By (4.5) and the definition of I∂Ωi

H , we see that (I∂Ωi

H vi)(V) is nonzero only when
two subregions share one or several edges with a common vertex V.

In the definition of IΩi

H , we denote by Ei,m, m = 1, 2, 3, . . . , the edges in ∂Ωi which
share V. Denote by pi,m the primary nodes on the edges Ei,m which are adjacent to
V.

By the definition of IΩi

H , (4.11), and |θV |2H1/2(∂Ωi)
≤ CHi, we have

ρi|θV(I∂Ωi

H vi)(V)|2H1/2(∂Ωi) ≤ Cρi|
∑
m

vi(pi,m)|2|θV |2H1/2(∂Ωi)

≤ CρiHi

∑
m

|vi(pi,m)|2.(4.12)

Let us look at the first term in (4.12); the other terms can be estimated in the

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THREE-LEVEL BDDC IN THREE DIMENSIONS 1775

same way. We find that

ρiHi|vi(pi,1)|2

= ρiHi|
∑

j, Ei,1⊂∂Ωj

δ†c,j(wi(pi,1) − wj(pi,1))|2

≤ C
∑

j, Ei,1⊂∂Ωj

min(ρi, ρj)Hi|wi(pi,1) − wj(pi,1)|2

= C
∑

j, Ei,1⊂∂Ωj

min(ρi, ρj)Hi|I∂Ωi

H wi(pi,1) − I∂Ωj

H wj(pi,1)|2

≤ C
∑

j, Ei,1⊂∂Ωj

min(ρi, ρj)Hi

(
|I∂Ωi

H wi(pi,1) − (I∂Ωi

H wi)Ei,1
|2

+ |I∂Ωj

H wj(pi,1) − (I∂Ωj

H wj)Ei,1 |2
)

≤ C
∑

j, Ei,1⊂∂Ωj

min(ρi, ρj)
(
Hi|
(
I∂Ωi

H wi − (I∂Ωi

H wi)Ei,1

)
(pi,1)|2

+ Hi|
(
I∂Ωj

H wj − (I∂Ωj

H wj)Ei,1

)
(pi,1)|2

)
≤ C

∑
j, Ei,1⊂∂Ωj

min(ρi, ρj)
(
‖I∂Ωi

H wi − (I∂Ωi

H wi)Ei,1‖2
L2(Ei,1)

+ ‖I∂Ωj

H wj − (I∂Ωj

H wj)Ei,1‖2
L2(Ei,1)

)
≤ C

∑
j, Ei,1⊂∂Ωj

(
1 + log

Ĥ

H

)(
ρi|I∂Ωi

H wi|2H1/2(∂Ωi) + ρj |I∂Ωj

H wj |2H1/2(∂Ωi)

)
.

For the third equality, we use that pi,1 is a primary node. For the fourth inequality, we

use that (I∂Ωi

H wi)Ei,1
= (I∂Ωj

H wj)Ei,1
. We use [14, Lemmas B.5] for the sixth inequality

and [14, Lemma 4.17] for the last inequality.
Combining all face, edge, and vertex estimates, we obtain

ρi|I∂Ωi

H (vi)|2H1/2(∂Ωi) ≤ C

(
1 + log

Ĥ

H

)2 ∑
j: ∂Ωj∩∂Ωi �=∅

ρj |I∂Ωi

H (wj)|2H1/2(∂Ωj).(4.13)

Using (4.13), Lemma 4.5, and (4.7), we obtain

(T (i)vi, vi) = |vi|2T (i) ≤ C
1

(1 + log H
h )

ρi|I∂Ωi

H (vi)|2H1/2(∂Ωi)

≤ C

(
1 + log Ĥ

H

)2

(1 + log H
h )

∑
j: ∂Ωj∩∂Ωi �=∅

ρj |I∂Ωi

H (wj)|2H1/2(∂Ωj)

≤ C

c

(
1 + log

Ĥ

H

)2 ∑
j: ∂Ωj∩∂Ωi �=∅

(T (j)wj , wj)

=
C

c

(
1 + log

Ĥ

H

)2 ∑
j: ∂Ωj∩∂Ωi �=∅

|wj |2T (j) .
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Lemma 4.7. Given any uΓ ∈ ŴΓ, let Ψ = ΦT R̃D,ΓuΓ. We have,

ΨTS−1
Π Ψ ≤ ΨT S̃−1

Π Ψ ≤ C

(
1 + log

Ĥ

H

)2

ΨTS−1
Π Ψ.

Proof. Using (3.2), (3.5), and (3.6), we have

ΨTS−1
Π Ψ =

Nc∑
i=1

Ψ
(i)T

Ic
y

(i)
Ic

+ ΨT
Γc

yΓc

=

Nc∑
i=1

Ψ
(i)T

Ic

(
S

(i)−1

ΠIcIc
(Ψ

(i)
Ic

− S
(i)
ΠIcΓc

R
(i)
Γc

yΓc)
)

+

(
hΓc +

Nc∑
i=1

R
(i)T

Γc
S

(i)
ΠΓcIc

S
(i)−1

ΠIcIc
Ψ

(i)
Ic

)T

yΓc

=

Nc∑
i=1

Ψ
(i)T

Ic
S

(i)−1

ΠIcIc
Ψ

(i)
Ic

+ hT
Γc

yΓc
=

Nc∑
i=1

Ψ
(i)T

Ic
S

(i)−1

ΠIcIc
Ψ

(i)
Ic

+ hT
Γc

(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc .

Using (3.8), (3.5), and (3.7), we also have

ΨT S̃−1
Π Ψ =

Nc∑
i=1

Ψ
(i)T

Ic
ỹIc(i) + ΨT

Γc
ỹΓc

=

Nc∑
i=1

Ψ
(i)T

Ic

(
S

(i)−1

ΠIcIc
(Ψ

(i)
Ic

− S
(i)
ΠIcΓc

R
(i)
Γc

ỹΓc
)
)

+

(
hΓc

+

Nc∑
i=1

R
(i)T

Γc
S

(i)
ΠΓcIc

S
(i)−1

ΠIcIc
Ψ

(i)
Ic

)T

ỹΓc

=

Nc∑
i=1

Ψ
(i)T

Ic
S

(i)−1

ΠIcIc
Ψ

(i)
Ic

+ hT
Γc

ỹΓc
=

Nc∑
i=1

Ψ
(i)T

Ic
S

(i)−1

ΠIcIc
Ψ

(i)
Ic

+ hT
Γc

(
R̃T

Dc,Γc
T̃−1R̃Dc,Γc

)
hΓc .

We need only compare hT
Γc

(R̃T
Γc
T̃ R̃Γc)

−1hΓc and hT
Γc

(R̃T
Dc,Γc

T̃−1R̃Dc,Γc)hΓc for any

hΓc ∈ F̂Γc
. We follow the proofs of [8, Theorem 1].

Let

wΓc
=
(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc
∈ Ŵc,Γc

and vΓc
= T̃−1R̃Dc,Γc

hΓc
∈ W̃c,Γc

.(4.14)

Noting the fact that R̃T
Γc
R̃Dc,Γc = R̃T

Dc,Γc
R̃Γc = I and using (4.14), we have

hT
Γc

(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc
= hT

Γc
wΓc

= hT
Γc
R̃T

Dc,Γc
R̃Γc

wΓc

= hT
Γc
R̃T

Dc,Γc
T̃−1T̃ R̃Γc

wΓc =
(
T̃−1R̃Dc,Γc

hΓc

)T
T̃ R̃Γc

wΓc

= vT
Γc
T̃ R̃Γc

wΓc = 〈vΓc , R̃Γc
wΓc〉T̃

≤ 〈vΓc ,vΓc〉
1/2

T̃
〈R̃ΓcwΓc , R̃ΓcwΓc〉

1/2

T̃

=
(
hT

Γc

(
R̃T

Dc,Γc
T̃−1R̃Dc,Γc

)
hΓc

)1/2
(
hT

Γc

(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc

)1/2

.

We obtain

hT
Γc

(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc ≤ hT
Γc

(
R̃T

Dc,Γc
T̃−1R̃Dc,Γc

)
hΓc .
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On the other hand,

hT
Γc

(
R̃T

Dc,Γc
T̃−1R̃Dc,Γc

)
hΓc = wT

Γc

(
R̃T

Γc
T̃ R̃Γc

)(
R̃T

Dc,Γc
T̃−1R̃Dc,Γc

)
hΓc

=
〈
wΓc , R̃

T
Dc,Γc

(
T̃−1R̃Dc,Γc

hΓc

)〉
(R̃T

Γc
T̃ R̃Γc)

=
〈
wΓc , R̃

T
Dc,Γc

vΓc

〉
(R̃T

Γc
T̃ R̃Γc)

≤ 〈wΓc ,wΓc〉
1/2

(R̃T
Γc

T̃ R̃Γc)

〈
R̃T

Dc,Γc
vΓc , R̃

T
Dc,Γc

vΓc

〉1/2

(R̃T
Γc

T̃ R̃Γc)

=

(
hT

Γc

(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc

)1/2 〈
R̃ΓcR̃

T
Dc,Γc

vΓc , R̃ΓcR̃
T
Dc,Γc

vΓc

〉1/2

T̃

=

(
hT

Γc

(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc

)1/2

|EDc
vΓc |T̃

≤ C

(
1 + log

Ĥ

H

)(
hT

Γc

(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc

)1/2

|vΓc |T̃

= C

(
1 + log

Ĥ

H

)(
hT

Γc

(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc

)1/2 (
hT

Γc

(
R̃T

Dc,Γc
T̃−1R̃Dc,Γc

)
hΓc

)1/2

,

where we use Lemma 4.6 for the penultimate inequality.
We finally obtain

hT
Γc

(
R̃T

Dc,Γc
T̃−1R̃Dc,Γc

)
hΓc ≤ C

(
1 + log

Ĥ

H

)2(
hT

Γc

(
R̃T

Γc
T̃ R̃Γc

)−1

hΓc

)
.

5. Condition number estimate for the new preconditioner. In order to
estimate the condition number for the system with the new preconditioner M̃−1, we
compare it to the system with the preconditioner M−1.

Lemma 5.1. Given any uΓ ∈ ŴΓ,

uT
ΓM

−1uΓ ≤ uT
ΓM̃

−1uΓ ≤ C

(
1 + log

Ĥ

H

)2

uT
ΓM

−1uΓ.(5.1)

Proof. We have, for any uΓ ∈ ŴΓ,

uT
ΓM

−1uΓ

= uT
Γ R̃

T
D,Γ

⎧⎨⎩RT
ΓΔ

N∑
i=1

(
0 R

(i)T

Δ

)( A
(i)
II A

(i)
IΔ

A
(i)
ΔI A

(i)
ΔΔ

)−1(
0

R
(i)
Δ

)
RΓΔ

⎫⎬⎭ R̃D,ΓuΓ

+ uT
Γ R̃

T
D,ΓΦS−1

Π ΦT R̃D,ΓuΓ

and

uT
ΓM̃

−1uΓ

= uT
Γ R̃

T
D,Γ

⎧⎨⎩RT
ΓΔ

N∑
i=1

(
0 R

(i)T

Δ

)( A
(i)
II A

(i)
IΔ

A
(i)
ΔI A

(i)
ΔΔ

)−1(
0

R
(i)
Δ

)
RΓΔ

⎫⎬⎭ R̃D,ΓuΓ

+ uT
Γ R̃

T
D,ΓΦS̃−1

Π ΦT R̃D,ΓuΓ.
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We obtain our result by using Lemma 4.7.
Theorem 5.2. The condition number for the system with the three-level precon-

ditioner M̃−1is bounded by C(1 + log Ĥ
H )2(1 + log H

h )2.
Proof. Combining the condition number bound, given in (2.7) for the two-level

BDDC method, and Lemma 5.1, we find that the condition number for the three-level

method is bounded by C(1 + log Ĥ
H )2(1 + log H

h )2.

6. Using Chebyshev iterations. Another approach to the three-level BDDC
methods is to use an iterative method with a preconditioner to solve (3.6). Here, we

consider a Chebyshev method with a fixed number of iterations and use R̃T
Dc,Γc

T̃−1R̃Dc,Γc

as a preconditioner. Denoting the eigenvalues of (R̃T
Dc,Γc

T̃−1R̃Dc,Γc
)(R̃T

Γc
T̃ R̃Γc

) by λj ,
we need two input parameters l and u, which are estimates for the minimum and max-
imum values of λj , for the Chebyshev iterations. From our analysis above, we know

that l = 1 and maxj λj ≤ C(1 + log Ĥ
H )2(1 + log H

h )2. We can use the conjugate
gradient method to obtain an estimate for the largest eigenvalue at the beginning of
the computation to choose a proper u.

Let α = 2
l+u , μ = u+l

u−l , and σj = 1− αλj . As for the two-dimensional case in [17,
section 6], we have the following theorem. No new ideas are required.

Theorem 6.1. The condition number using the three-level preconditioner M̂−1

with k Chebyshev iterations is bounded by C C2(k)
C1(k) (1 + log H

h )2, where

C1(k) = min
j

(
1 − cosh(k cosh−1(μσj))

cosh(k cosh−1(μ))

)
,

C2(k) = max
j

(
1 − cosh(k cosh−1(μσj))

cosh(k cosh−1(μ))

)
,

and C2(k)
C1(k) → 1 as k → ∞.

7. Numerical experiments. We have applied our two three-level BDDC algo-
rithms to the model problem (2.1), where Ω = [0, 1]3. We decompose the unit cube

into N̂ × N̂ × N̂ subregions with the side-length Ĥ = 1/N̂ and each subregion into
N×N×N subdomains with the side-length H = Ĥ/N . Equation (2.1) is discretized,
in each subdomain, by conforming piecewise trilinear elements with an element diam-
eter h. The preconditioned conjugate gradient iteration is stopped when the norm of
the residual has been reduced by a factor of 10−6.

We have carried out two different sets of experiments to obtain iteration counts
and condition number estimates. All the experimental results are fully consistent with
our theory.

In the first set of experiments, we use the first preconditioner M̃−1. We take the
coefficient ρ ≡ 1 in case 1. In case 2, ρ is constant in one direction with a checkerboard
pattern in the cross sections, where we take ρ = 1 or ρ = 100. The coefficients in
both cases satisfy [14, Assumption 6.27.2]; i.e., for all pairs of subdomains which have
a vertex but not an edge in common, there exists an acceptable edge path (see [14,
Definition 6.26]) between these two subdomains. Table 1 gives the iteration counts
and condition number estimates with a change of the number of subregions. We find
that the condition numbers are independent of the number of subregions. Table 2 gives
results with a change of the number of subdomains and the size of the subdomain
problems.
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Table 1

Eigenvalue bounds and iteration counts with the preconditioner M̃−1 with a change of the

number of subregions, Ĥ
H

= 3 and H
h

= 3.

Case 1 Case 2
Num. of subregions Iter. Cond. # Iter. Cond. #

3 × 3 × 3 9 2.6603 9 2.2559
4 × 4 × 4 10 2.8701 10 2.5245
5 × 5 × 5 11 2.9668 11 2.8074
6 × 6 × 6 11 3.0190 11 2.8477

Table 2

Eigenvalue bounds and iteration counts with the preconditioner M̃−1 with a change of the
number of subdomains and the size of subdomain problems with 3 × 3 × 3 subregions.

Case 1 Case 2 Case 1 Case 2
Ĥ
H

Iter. Cond. # Iter. Cond. # H
h

Iter. Cond. # Iter. Cond. #

3 9 2.6603 9 2.2559 3 9 2.6603 9 2.2559
4 9 3.0446 10 2.5183 4 9 2.7261 10 2.3299
5 10 3.3570 11 2.7782 5 10 2.8381 10 2.4353
6 10 3.6402 11 3.0078 6 10 2.9601 11 2.5488

Table 3

Eigenvalue bounds and iteration counts with the preconditioner M̂−1, u = 2.3, 3 × 3 × 3

subregions, Ĥ
H

= 6, and H
h

= 3.

k Iter. C1(k) λmin λmax Cond. #
1 13 0.6061 0.6167 2.3309 3.7797
2 9 0.9159 0.9255 1.8968 2.0496
3 8 0.9827 1.0000 1.8835 1.8836
4 8 0.9964 1.0016 1.8854 1.8825
5 8 0.9993 1.0009 1.8797 1.8780

Table 4

Eigenvalue bounds and iteration counts with the preconditioner M̂−1, u = 3, 3×3×3 subregions,
Ĥ
H

= 6, and H
h

= 3.

k Iter. C1(k) λmin λmax Cond. #
1 15 0.5000 0.5093 2.0150 3.9562
2 10 0.8571 0.8678 1.9744 2.2753
3 8 0.9615 0.9900 1.8821 1.9012
4 8 0.9897 1.0015 1.8955 1.8927
5 8 0.9972 1.0020 1.8903 1.8866

In the second set of experiments, we use the second preconditioner M̂−1 and take
the coefficient ρ ≡ 1. We use the preconditioned conjugate gradient (PCG) to esti-

mate the largest eigenvalue of (R̃T
Dc,Γc

T̃−1R̃Dc,Γc)(R̃
T
Γc
T̃ R̃Γc

), which is approximately

2.3249. For 18 × 18 × 18 subdomains and H
h = 3, we have a condition number esti-

mate of 1.8767 for the two-level preconditioned BDDC operator. We select different
values of u, the upper bound eigenvalue estimate of the preconditioned system, and
of k to see how the condition number changes. We take u = 2.3 and u = 3 in Tables
3 and 4, respectively. We also evaluate C1(k) for k = 1, 2, 3, 4, 5. From these two
tables, we find that the smallest eigenvalue is bounded from below by C1(k) and the
condition number estimate becomes closer to 1.8767, the value for the two-level case,
as k increases. We also see that if we can get a more precise estimate for the largest
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eigenvalue of (R̃T
Dc,Γc

T̃−1R̃Dc,Γc
)(R̃T

Γc
T̃ R̃Γc

), we need fewer Chebyshev iterations to
get a condition number close to that of the two-level case. However, the iteration
count is not very sensitive to the choice of u.
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