A model for including thermal conduction in molecular dynamics simulations
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A technigue is introduced for including thermal conduction in molecular dynamics simulations
for solids. We develop a model to allow energy flow between the computational ceil and the
bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is
achieved by scaling the velocities of atoms in a transitional boundary layer. The scaiing factor
is obtained from the thermal diffusivity, and the resuits show good agreement with the solution
for a continuous medium at long times. We have investigated the effects of different
temperature and size of the system, and of variations in strength parameter, atomic mass, and
thermal diffusivity. In ali cases, no significant change in simulation results has been found.

L INTRODUCTION

Fourier’s law of heat conduction has been successfully
used to study thermal conduction in continuous media for
many years.' It seems obvious to propose that the heat fiux is
a function of the thermodynamic state and the temperature
gradient. The simplest approximation is that the heat flux is
linear in the temperature gradient, and with the assumption
of isotropic material we arrive at J = — &V 7. In this paper
we shall develop 2 micrescopic formulation to apply and test
the validity of this law.

In molecular dynamics (MD} calculations of solids, pe-
riodic boundary conditions are often used o simulate an
infinite system. In some cases, however, these convenient
conditions cannot be applied. For example, in: simulation of
surface melting,” the presence of the surface eliminates the
use of the vertical periodic boundary. In practice, atoms or
ions at the deeper-lying layers are kept fixed to simulate the
interaction between the surface region and the bulk of the
solid. When heat is applied 1o the surface, the velocities of
atoms in the surface layer are scaled to represent input of
energy. But the fixed lower boundary does not allow energy
flow into the bulk of the crystal, resulting in overestimation
of the melting process.

The heat transfer problem also occurs in the study of the
thermal refaxation in a dense liquid under shock compres-
sion.” A dense, three-dimensional column of a simple modi-
fied Lennard—Jones liquid is simulated, shock compression
is initiated by causing the column to move in the longitudinal
direction with a velocity of — U,. In the transverse direc-
tions, periodic boundaries are used. In this study, no thermal
conducting boundaries are included in the simnulation, but a
scaling of kinetic energy for all atoms is artifically intro-
duced to model thermal contact with the surrounding liquid.

Another similar example is given in a study of radiation-
induced electrostatic disruption of insulator surfaces.* After
solids are bombarded by energetic particles, some atoms are
ionized near the surface, and thus a sigaificant amount of
Coulomb potential energy is introduced into a local region of
the system. Obvicusly, lateral periodic boundary conditions
cannot realistically describe a charged insulator surface in
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the molecular dynamics simulation, since an infinite amount
of potential energy would be established by an infinite array
of charges. Therefore, we first adopted fixed boundaries for
the sides and bottom of the charged region, but, as for the
case of surface melting, no energy flow is allowed by the fixed
boundary. As a resulf, some extra energy is kept in the cell
and gives rise to an unphysical characterization of dynamic
behavior of the system, especially in a long time scale. In the
study of atomic ejection from rare-gas solids by low-energy
cascades,” this effect was also ignored. Therefore, a realistic
model for solving these problems should include thermal
conduction from the computational cell through its bound-
ary to the bulk of the solid.

il MODEL FOR THERMAL CONDUCTING BOUNDARY

For the MD calculations we consider a local region of 2
2D solid containing 144400 moving atoms. The simplest
nonperiodic boundary conditions are obtained with a fixed
boundary, which can be provided by surrounding the com-
putational cell with four layers of permanently fixed atoms.
(A reasonable cutoff distance for the LI potential between
atoms is 4.2 atomic spacings.) In this way, the local region
described by the computational cell is connected to the bulk
of the solid, but unfortunately no energy transfer is possibie
to the fixed atoms.

In order to model thermal conduction, we further intro-
duce a transition layer of atoms between the computational
cell and the fixed boundary. Atoms in this transition layer
are allowed to move, so they will interact with atoms both in
the cell and in the fixed boundary. The average temperature
of atoms in the transition layer is then scaled every few time
steps to simulate energy flow out of the computational cell.
We now proceed to obtain the scaling factor from an atomic
description of thermal conduction.

According to the definition of specific heat, the amount
of heat d{ entering a mass element &m: for a change of tem-
perature 47 is given by

dQ =8mcdTl = 6x 04 pc dT, (1
where ¢ is the specific heat, 8x the width of the transition
layer, p the density of the material, and 64 the unit area with
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normal direction perpendicular to the transition layer. The
rate of heat change is just

L (2)
dt

where the energy flux Jis related to the temperature gradient
by

7= —x2L, (3)

dx

where « is the thermal conductivity. With these relations we
fnd

S T (4

In order to apply this method to our molecular dynam-
ics model, we approximate d7/dx by (7, — T,)/6x, in
which 7, is the background temperature of the bulk solid
and 7, is the temperatuare of the atoms in the transition lay-
er. d7 /dtis also approximated by 87 /6¢. Equation (4) can
be rewritten as

5T_=_ DTam:r()

—= -D=— 53

&t {&x)* (
where D is the thermal diffasivity D = «/pc. For 8¢ we use
8t = nds, (6)

where A¢ is the time interval for one step of the molecular
dynamics calculation, and n is the number of time steps after
which the velocities of the transition atoms are scaled. Then
we obtain

nl At

5T‘:~ e Th
(6x)*

(T, —~Ty) = —a(T, —Tp). (T}

The quantity « is called the scaling factor:

nb At
a= ST (8)
The new temperature T/, of the atoms in the transition layer
is given by
T, —-TF,=0T= —a(T, — T, {9)
From this result we obtain
T.=(1-a)T, +aT, (10}

Then we scale the velocities of all atoms in the transitional
layer so that

v =T /T,. (i1)

For 6x we take the nearest-neighbor distance as a reasonable
estimate. The time interval &f must be chosen small enough
so that the scaling factor « remains less than one in order to
ensure the validity of this scaling scheme. Since scaling of
velocities of atoms in the transition layer takes very little
computer time, we therefore decide to scale every time step
(i.e., » = 1} in all cases.

For situations we consider, some extra energy is added
to atoms in the computational cell, and we therefore expect
heat to flow our of the cell into the bulk. Because of tempera-
ture fluctuations for the small number of atoms in the transi-
tional layer, however, occasionally T, is less than T in this
circumstance our algorithm causes energy to flow back info
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the cell. This feature is in accordance with the physical be-
havior of a local region in thermal contact with a heat reser-
voir provided by the bulk solid. In effect, the atoms in the
computational cell now form a canonical, rather than a mi-
crocanonical ensemble. Consequently, the proper asympto-
tic behavior at long times is guaranteed, namely, the tem-
perature of the atoms in the cell and the boundary layer
approaches the background temperature 7,

Eqguation (7) has a form similar to Newton’s law of
cooling: The heat flux is proportional to a finite temperature
difference at the boundary of the computational cell. We
recognized this similarity, in fact, as we tried to formulate
the problem of establishing proper thermal contact between
the central cell and the bulk of material. But the situationis a
little different for our case, because we want to have a contin-
uocts connection between the cell and the surrounding mate-
rial, rather than an external serface that is usually used for
Newton’s law of cooling. Gur method for introducing the
thermal conductivity of the material on a microscopic scale
is indicated above. In a M study of thermal ignition in a
reactive bard sphere fluid, a thermal wall is also introduced,
partiaily through consideration of Wewton’s law of cooling.®
But the thermal wall is treated as an external surface, and the
rate of heat flow is controlied by conditions imposed arbi-
trarily at the surface, rather than by the thermal conductiv-
ity of the material.

fi. MOLECULAR DYNARMICS CALCULATIONS

The atomic interaction used is the well-known Len-
nard-Jones (6-12) potential. The strength and size param-
eters are wusually taken to be those for argon
(e = 167X 10" ¥erg, o = 3.4 A).” In addition, 2 hexagonal
Iattice is used for the 2D system:. In most cases, the computa-
tional cell contains 100 atoms plus 44 atoms in the transi-
tional layer, with all 144 atoms surrounded by a boundary of
four layers of fixed atoms. The positions and velocities of
moving atoms are updated at each time step by means of the
leap-frog algorithm.® The time step is Az = 0.05 ps, com-
pared to the Debye period 0.6 ps.

For the static lattice we calculate atomic spacing, cohe-
sive energy, and compressibility. Then the system is allowed
toreach thermal equilibrium at the background temperature
T, for 300 time steps. The temperature is obtained directly
from the average kinetic energy; the vibrational potential
energy is calculated by subtracting the cohesive energy of the
static latiice. Approach to thermal equilibrium is monitored
by observing the expected equipartition of kinetic and poten-
tial energy for a classical system. To establish a realistic
model, the lattice parameter R, is adjusted at each tempera-
ture to reduce the external pressure to approximately zero.*®

After thermalization, extra energy is introduced into the
system by increasing the thermal velocity of one atom in the
center of the system by 2 factor of 10. This atom collides with
other neighboring atoms; the extra energy gradually diffuses
outwards and is partitioned among both kinetic and poten-
tial energy. Eventually some exira energy reaches the transi-
tion layer. Velocities of atoms in the transition layer are
scaled at each time step to allow energy flow from the cell
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through the transition layer to the bulk. The results of all
computer runs, as illustrated in Figs. 1-3, show that the
average temperature of the cell is indeed reduced to the origi-
nal background temperature after a sufficiently long time.

V. CONTINUUM SOLUTION

We wish to compare these results with the solution ob-
tained from thermal conduction for a 2D continuous medi-
um. First, in simulation of thermal conduction, the area of
the computational cell is rectangular. However, in obtaining
the solution to the thermal diffusion eguation, we asume
cylindrical symmetry for simplicity. Therefore, we deter-
mine a radius R, by equating 7R 2 to the area 4 of the cell
that contains 144 atoms. Second, the central atom is given 10
times the rms thermal velocity in the computer simulation;

this initial condition at 7 = 0 is characterized for the contin-
uous medium by a delta function T,48(r), in which T, isthe
average temperature of each atom measured from the back-
ground temperature. Because of equipartition of energy, half
of the extra kinetic energy will be converted into potential
energy. Thus, the extra energy can be expressed as an aver-
age temperature T, = 307,/N, where N is the total number
of atoms in the computational ceil.

The continuum soiution for the initial condition dis-

cussed above is

T A

Tirt) =—Lf—exp ( — ——Fi—)
LY 793 4¢

The average temperature of atoms within a circle of radius
R, is obtained by integration:

(12)
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where T, is the background temperature. Note that the time
scale can be conveniently expressed in terms of r, = R 2/4D.
Thus, we obtain a single universal curve for the contin-
aum solution. The length scale R, is determined by the size
of the local region, and there is a corresponding time scale 7,
as defined above. We find, for instance, that T,,, = 0.65T,
+T,att=1¢, and 7,, = 0095 4 T, at 1= 10¢,. In the
next section, we investigate the behavior of the MD calcula-
tions for changes in various parameters, such as atomic mass

and thermal conductivity.

Y. DISCUSSION OF RESULTS

The thermal diffusivity is calculated from experimental
values of thermal conductivity, specific heat, and density for
the system.'® In most cases, the thermal diffusivity
(D = 0.0143 cm?/s) of argon is used, except for Fig. 3(b).
Figure 1 displays the average temperature against time in
comparison with the continuum solution for background
temperatures 20 and 50 ¥. Since the velocity of the central
atom is increased by a factor of 10 at ¢ = 0, we use smaller
time steps &7 = 0.005 ps at the beginning of the run to ensure
the stability of calculations. After this large velocity decays
away through collisions with neighboring atoms, we use rel-
atively larger time steps such as &7 = .01 or 0.05 ps. The
temperature T, is averaged for 144 moving atorms in the
system, and it is also based upon a running time average for
five or ten time steps. Because of the small number of atoms,
there are still noticeable fluctuations in the MD resuits.

The simulations results indeed show the correct asymp-
totic behavior for both background temperatures, but there
is a discrepancy between simulation results and the contin-
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disagreement stems from the fact that in molecular dynam-
ics it takes about four vibration periods to convert half of the
extra energy to potential energy. After the extra energy is
shared by both kinetic and potential energy, both methods
yield comparable behaviors.

In Fig. 2(a) we show tests of the size of initial puise and
of the size of the computational cell. For Fig. 2{a) we in-
crease the thermal velocities of seven atoms in the center of
the system by a factor of 10. In this case, the initial tempera-
ture becomes

T, = 50N, Ty/N,

where N, is the number of the atoms whaose velocities are
increased. The result also shows good agreement with the
continuum solution. For Fig. 2(b) we include 400 moving
atoms, from which 76 atoms are included in the transition
layer and 324 atoms are included in the computational cell.
In addition, the velocities of three atoms in the cenier are
magnified instead of seven as in Fig. 2(a). No significant
change in asymptotic behavior is observed in Fig. 2(b).
However, the results from molecular dynamics are a little
farger than that of the analytic solution from 7=1¢, to
t = 4z,, This may be attributed to the fact that relatively
fewer atoms are included in the transition layer; thus, the
scaling is not as effective as in the other cases.

Finally, we study the effects of different values of atomic
mass, strength parameter, and thermal diffusivity on the
simulation results. The change in the atomic mass has been
shown to have no effect on the melting porcess for alkali
halide crystals.’’ The strength parameter in the Lennard—
Jones potential can be increased to simulate stronger insula-
tors, based upon a corresponding state argument in which
the melting temperature is proportional to the cohesive ener-
gy. In Figs. 3(a) and 3(b}, the strength parameter £is scaled
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up to 8¢, and the carbon atomic mass is used. In Fig. 3(b), a
larger value of thermal diffusivity (D = 0.034 cm?/s} ap-
propriate for a NaCl crystal is used. The simulation resuits
demionstrate reasonable agreement with the continuum so-
tution in both cases at sufficiently long times.

Vi. CONCLUSION

We have developed a technique for including a thermal
conducting boundary in MD calculations for solids. Testson
various physical parameters and different simulation condi-
tions show no significant effect on the overall behavior. The
proper asympiotic dependence at long times establishes
agreement between the microscopic and macroscopic treat-
ments of thermal conduction. This study provides a method
for accurate inclusion of thermal conduction in simulations
of surface melting and in radiation-induced electrostatic dis-
ruption of insulator surfaces.
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