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THE PSEUDOSPECTRAL METHOD FOR THIRD-ORDER
DIFFERENTIAL, EQUATIONS*

WEIZHANG HUANG? AND DAVID M. SLOAN?

Abstract. Generalized quadrature rules are derived which assist in the selection of collocation points
for the pseudospectral solution of differential equations. In particular, it is shown that for an nth-order
differential equation in one space dimension with two-point derivative boundary conditions, an ideal choice
of interior collocation points is the set of zeros of a Jacobi polynomial. The pseudospectral solution of a
third-order initial-boundary value problem is considered and accuracy is assessed by examining how well
the discrete eigenproblem approximates the continuous one. Convergence is established for a special choice
of collocation points and numerical results are included to demonstrate the viability of the approach.
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Jacobi polynomials
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1. Introduction. Pseudospectral methods provide a useful alternative to finite
difference and finite element methods for the approximate solution of differential
equations. Theoretical studies and numerical experience have confirmed that for
problems with smooth solutions pseudospectral methods converge much faster than
finite difference or finite element methods [2]. Furthermore, nonlinearities do not create
any special difficulties. Pseudospectral methods have gained popularity in recent years
and they now feature in a wide range of applications [1].

In the pseudospectral method each dependent variable in the differential problem
is approximated by a polynomial of finite degree. The discrete approximating equations
are then obtained by setting residuals to zero at an appropriate set of collocation points
in the solution domain. The proper choice of collocation points is crucial in terms of
accuracy, stability, and ease of implementation of boundary conditions. A set of
collocation points is typically chosen as the set of nodes in an appropriate Gauss
quadrature formula. For equations of order or 2 it is known that collocation points
are the Gauss-Radau or Gauss-Lobatto nodes, respectively [2]. Interesting work by
Malek and Phillips [7] has recently shown that for fourth-order problems the ideal
choice of interior collocation points is the set of zeros of certain Gegenbauer poly-
nomials, these being nodes for some generalized Gaussian quadrature rules.. Generaliz-
ations of Gaussian quadrature rules are discussed, for example, by Golub and Kautsky
[4].

The objective of this paper is to construct generalized Gaussian quadrature rules
which assist in the choice of interior collocation points for the pseudospectral approxi-
mation of model differential equations of any finite order. The rules are then used to
construct pseudospectral methods for third-order boundary value or initial-boundary
value problems. The third-order problem is of mathematical interest since it lacks the
symmetry of the second-order problem [11]. It is of physical interest since it contains
the type of operator which appears in many commonly-occurring partial differential
equations such as the Korteweg-de Vries equation. Pseudospectral methods for a model
third-order problem have been considered by Mulholland [8].
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PSEUDOSPECTRAL METHOD 1627

In 2 of the paper we consider generalized quadrature rules. A function interpola-
tion approach is used, with function values specified at interior collocation points and
derivative values specified at endpoints. Section 3 deals with a pseudospectral method
for a third-order initial-boundary value problem. Accuracy is examined by considering
how well the discrete system approximates the associated third-order differential
eigenproblem. Section 4 contains numerical results on the pseudospectral solution of
some model third-order boundary value problems and the final section contains
comments.

2. Generalized quadrature rules. Generalized quadrature rules play an important
role in theory and applications of pseudospectral methods. In this section we will
follow the approach of Malek and Phillips [7] to construct a generalized quadrature
rule which helps us to choose the collocation points of the pseudospectral approxima-
tion to third-order differential equations.

Quadrature formulas are often constructed from interpolating polynomials. In
this way we can, in many cases, obtain quadrature formulas that are convenient to use
and that will give sufficiently accurate results. Therefore, at the beginning of this section
we consider a function interpolation problem.

2.1. Interpolation with multiple nodes. We assume that we are given N (maybe
N-l) distinct nodes -1 =Xl<X2<’’’<XN-I<XN-- 1 in the segment [-1, 1] and
that at these nodes we are given the values of the function f(x) and its derivatives as
follows:

fk=f(Xk), 2<--k<-N-1,

(2.1) f)=f()(Xl), 0<--_ v <-

f)=f()(xN), O<=v<-r,,,

where integers 1, and r, are given such that

(2.2) 1,+r,+2=n, l,>--1, rn>=-l,

and n is a natural number.
It is known (see, for example, [6, pp. 45-49]) that the polynomial PN+n-3 of degree

N+ n- 3 interpolating data (2.1) is given by

N In
(2.3) PN+n-3(X) fkhk(X)+ f])h])(x)+ f)h(x),

k=2 t,=O =0

where

7r(x) (1 + x)1.+1 (x 1) rn+l
hk(X) 2 < k < N- 1

"n"(Xk)(X--Xk) (1 + Xk) ln+l (Xk 1) r"+l’

(2.4) h])(x) SI(X)

h)(x) SN(x) bl’)(x 1) , 0 <- t’--< r.,

From (2.1) it can be seen that if I,=-1 only N-1 nodes X2<X3<’’’<XN_ <XN= are used in
the segment (-1, 1] and if r, =-1 only N-1 nodes -1 x <x2 <. <xu_ are used in [-1, 1). However,
to simplify the presentation we shall henceforth refer to N nodes.
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1628 WEIZHANG HUANG AND DAVID M. SLOAN

and
N-1

(x) H (x- x,),
i=2

’(x) (x 1) rn+l
S,(x)

"’(Xl) (X 1)rn+1’

rr(x) (x+l) ’-+’
Su(x)

"IT(XN) (XN "31- l)/n

For the remainder of this section on interpolation we have the following lemma.
LEMMA 2.1. Iff(X) has a continuous derivative of order N+ n- 2 on [-1, 1 then

the remainder of (2.3) is

Ru[f x] f(x)- PN+n_3(X)

(2.6) f(S+"-Z)(x)
(N+n-2)!

qT(X)(X qt. 1 )ln+l(x 1 rn+l

where -1 < x < 1 for x [-1, 1 ].

2.2. Quadrature formulas. By using the interpolating polynomial (2.3) we can
construct a quadrature formula as follows"

(2.7)

where the weights are given by

Wk oo,,(x)hg(x) dx, 2 <= k <-_ N- 1,

(2.8)
-1

o= o,(xlhg(xl dx,

and %,(x) is a weight function, which is defined by

(2.9) oo,,t3(x)=(1-x)"(l+x)t3, -2-r,<a, -2-1,<ft.

The term EN[f] denotes the truncation error of the quadrature formula.
We notice that the integral on the left-hand side of (2.7) may not exist for some

function. Thus, we have to restrict our discussion to the function space

(2.10) B, f: f is measurable and w.(x)f(x) dx < +oe

Before we discuss the algebraic degree of precision of (2.7), we give a result about
the existence of integral

_
w,(x)f(x) dx, which is useful for our problem.

D
ow

nl
oa

de
d 

09
/1

5/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



PSEUDOSPECTRAL METHOD 1629

LEMMA 2.2. Suppose that the function u(x) on [-1, 1] satisfies the boundary
conditions

(2.11)
u’(-1) O, O<_v<_l,

u’(+l) O, O<__v-r,

where r,, l, are defined by (2.2), and suppose that u(x) has a continuous derivative oforder

r>-q (--max (r, + 1, I, + 1)).

Then (i)

(2.12) t(x)
u(x)

(1 x)r"+l(1 + X) In+l

is well defined;

(ii) (’Oa+rn+l,+ln+l(X)Jl(X)l dx < -11-oo
-1

implies

f.’ too,,13(x)[u(x)] dx < +oo;
-1

(iii) If u{P)(x), q <= p <- r, exist, then (P), 0 <= p <-_ r q, also exist.

Proof It is not difficult to obtain (i)-(iii) by using the assumptions and the Taylor
expansion formula with Cauchy remainder.

From (2.9) and this lemma it is obvious that any bounded function u(x) on [-1, 1
belongs to B,t when a > -1 and/3 > -1. Furthermore, any function u(x) that satisfies
(2.11) and has a bounded t(x) defined by (2.12), belongs to B, when a >-2-r,
and fl >-2-l,. Thus, P,,, which denotes the space containing all polynomials on
[-1, 1] of degree not greater than m, is contained in B,t when a >-1 and/3 >-1,
and all polynomials satisfying (2.11) belong to B, when a > -2- r, and/3 > -2- l,.
Also see Lemma 3.4 and Note 3.2. D

Now let us consider the algebraic degree of precision and the remainder of
quadrature formula (2.7).

From Lemma 2.1 the following lemma is trivial.
LEMMA 2.3. The quadrature rule (2.7) is exact for all polynomials p(x)

PN+n-3 B,,t
Then we have Theorem 2.1.
THEOREM 2.1. Suppose that the interior nodes Xk, 2 <= k <-_ N-1, are chosen to be

the zeros ofthe Jacobipolynomial P+_.+l"t+l,+l)(x) ofdegree N- 2. Then the quadrature
formula (2.7) is exact for all

p(x) P2N+n-5 B,,t.

Proof Any polynomial p(x) P2N+n-5 ["] B,, .can be written as

(2.13)
p(x) (x- 1)-+l(x + 1)I"+IPI+_;"+I’t+I"+I)(x

QN-3(X) + RN+,-3(X),
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1630 WEIZHANG HUANG AND DAVID M. SLOAN

where QN_3(X) C PN-3 and RN+n_ PN+n-3 (’] B,t are the quotient and remainder,
respectively, when p(x) is divided by (x-1)r-+(x+ 1) -+("+r-N_2n+l’+ln+l(x). Upon
multiplying (2.13) by w,,(x) and integrating over [-1, 1] we obtain

O)ce,(x)p(x dx--- O00+rn+l,fl+ln+l(X)(--1) rn+l
-1

(2.14) 19(e+r +1,/3+1 +1)
--N-2" ON-3 dx

+ W,t(X)RN+n-3(X).
-1

]9(ce+r +l,fl+/ +l)(x) is orthogonal to QN_3(X) with respect to weightHaving noticed that --N_
tOo+r,+,,+l,,+(X) and applying Lemma 2.3 to the second term of the right-hand side
of (2.14), we have

N-1

O,t3(x)p(x) dx= 2 60kgN+n-3(Xk)
-1 k=2

’) d,RN+n_3
(2.15) + i w (-1)

+ i w dRN+"-3 (+1).
=o dx

Using the assumption about Xk, 2 <= k <-_ N-1, (2.13) implies that

p(x)=Ru+,_3(x), 2<_k<=N-1,

dP dR+n-3 (-1), 0 < u<(2.16) -(-1) dx

dP dRN+n-3 (+1), 0 < ’<
dx

Combining (2.15) with (2.16), the statement of the theorem follows. U
THEOREM 2.2. Suppose that the assumption of Theorem 2.1 is satisfied and that

f(x) B,,t3 has a continuous derivative oforder 2N + n -4 on [-1, 1]. Then the truncation
error of (2.7) is given by

(2.17)
Eu[f]

(__ l )r.+ f(ZN+n-4)( rl
(2N+n-4)!

O0o+rn+l,3+ln+l(X)( 7"(X))2 dx

where -1 < rl < 1.

Proof Let Pu+,_5(x) be the polynomial interpolating the data

f(Xk),f’(Xk), 2<--k<--N-I,

(2.18) f((-1), 0<= v<=ln,

f)(+l), O<-u<=r..
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PSEUDOSPECTRAL METHOD 1631

Then

/u[f; x] =-f(x)-

(2.19) (-1)r"+lf(2m+n-4)(x) [r(x)]2(1 + x)/-+l(1 --x)rn+1,
(2N+n-4)!

where -1 <:x < 1 and P2u+.-s B,. Multiplying (2.19) by w,(x) and integrating
over [-1, 1], it follows that

w,(x)f(x) dx= w,(x)Pz+._s(x) dx

(--1)r.+1+
(2N+n-4)!

m,(xg(+-4()[(x)](1 + x)’+(1 x)-+1
-1

Then (2.17) follows by applying Theorem 2.1 and the mean-value theorem to the first
term and second term of the right-hand side of the above equation, respectively, and
by using the data (2.18).

.3. Te eigts f te rtre rle. In the applications of quadrature formula
(2.7) the properties of the weights are often needed. In this section we will give some
results about the weights under the assumption of Theorem 2.1.

First, we have the following.
THEOREM 2.3. W > 0, 2 N k N N- 1.

Proo For any k, 2 N k N N- 1, define

(.o A(x
x -x (+x’,,+ ( -x+

It is obvious that f(x) P+_ B, and f(x) O, f(x) O. By substituting (2.20)
in (2.7) we obtain that m

_
,(x)A(x) x> o.

For the representations of the weights, noticing that

1
15 + + fl + ln +(2.21) r(x) -u-z" )(x),

’)/U -2

where yu-2 is the leading coefficient of -u-2"r’+r+1,+1.+1), using the properties of Jacobi
polynomials and the Christoffel-Darboux formula (see Szeg6 [9] and Erd61yi [3]), we
can establish

(2.22)

,+l<=i-<-l., 0=< ,=<1.;
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1632 WEIZHANG HUANG AND DAVID M. SLOAN

and

(2.24)

(2.25)

(2.26)

"(N+a+fl+rn+ln+l)i=i-1
N-i+j+l-2]

v+l=<i_-<r,

2(++r’,+l,,+l)(2N "-t- a. + [3 + r + ln)2 F(N + a + r,)F(N + ,8 + ln)
OOk= (N_l)Z(N+a++r,,+l,,+l)2 (N-2)!F(N+a++r,+l,,+l)

o(1 +Xk)t"(1 Xk) [aN-i
2<=k<__N-1

F(N+a+r,)

(N-2)’(N+/3+N-2/"-l)
1. 2++i+lF(fl + i+ 1)(N+l,-i-2)!

"2
=,. (ln-i)!F(N+a+fl+rn+i+l)

0 <- v < I,

r(N+B+/.)

(N-2)!(N+ceN-2+rn-1)
(-1)’2’++’+lF(a+i+l)r(N+rn-i-1) bl,, ),

i--,. F(rn-i+l)F(N+ot+fl+l,,+i+l)

where (’) and (m) are defined as m(m 1) (m + 1) ]/l! and m(m + 1) (m +
l- 1), respectively

() and bl)From (2.22) and (2.23), we get the asymptotic representations of a as
follows"

() O(N2(-")), v < <1., 0 < v <In,
(2.27) v,h!)=O(N2(i-)), v<i<r.,= O<v<rn=
as N- for any fixed a, fl, In, and r,, and therefore, from (2.5), (2.6) it follows that

(2.28) w)= O(N-2(++’)), 0-< u-< l,,

(2.29) w)-- O(N-2(v+’+l)), 0<= v<= r

as N- for any fixed a, fl, In, and rn. In order to construct the asymptotic formula
of tOg, we write (2.24) as

(2.30)
2("++.+t.+3)F(N + a + r.)F(N +/3 + l,)

2 -< k =< N 1.r +2FD(+r +1,3+1 +1)’/. "-I2(’Ok
(N 2)lF(N+a+fl+r,+l,+l)(l+xk)l"+2(1--.,,,k.

Then, using the asymptotic properties of the first-order derivative (formula (8.8.1) in
Szeg6 [9, p. 234]) and of the zeros [9, p. 236] of the Jacobi polynomial, we have

2<=k<=[N/2],
(2.31) tOg= O((N_k)2,+IN_2(,+)), [N/2]<_k<=N_I.
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PSEUDOSPECTRAL METHOD 1633

(o)It is interesting to notice that at nodes near the right end, Wk O(N-2(‘+1)) tON,
and that at nodes near the left end, tOk O(N-2(+l))=w). At nodes near x=0,
tog O(N-I). The asymptotic orders of tOk (2=<k--<_ N-1) and to), to are indepen-
dent of n!

THEOREM 2.4. For any a >-r,- 2, >-I- 2, we have

2’+;3+r’+/’+3F(ce + r + 2)F(fl + In + 2)
r(a + fl + r + l. + 4)

(2.32)

Furthermore, if a > 1, fl > 1, then

2’+t+lF(a + 1)F(/ + 1) u-’

k-k- O(N-min(2(+)’2(/+))).(2.33)
r(,+B+2) =

Proof The results are easy to prove by substituting (1-x).+(l+x)1.+ or 1 in
(2.7) and using (2.28), (2.29), (2.31), and the asymptotic properties of the zeros of the
Jacobi polynomial, r]

2.4. Some remarks. In previous sections we have shown that for given data (2.1)
the interior nodes should be chosen to be the zeros of the Jacobi polynomial

+l,O+l +l)(x in order to obtain a quadrature rule with the highest algebraic degreeN--2

of precision. This conclusion seems to suggest that an optimal choice for the interior
o(+ +1,+1 +l(x when the pseudospectralcollocation points is the set of zeros of --N_2

method is applied to solve numerically nth-order differential equations in one
dimension subject to the boundary conditions

u()(-1) 0, Ol,’ln,
(2.34) u)(+l) =0 O<-v<-r,,.

Adopting this choice, Table 2.1 lists several examples for some known typical cases.
From the discussion in the previous subsections we know that the difference

between twice the degree of interpolating polynomial (2.3) and the precision degree

TABLE 2.1
Examples of collocation points corresponding to zeros of the Jacobi polynomial p(N_2 +l,O+ln+l)(x).

(a+r.+l>-l,/3+I.+1>-1.)

Interior points
are zeros of

n r. 1,, (’")PN-2 Examples Name of collocation points

-1" 0 (a,/3+ 1) a=-1/2,/3=--
a=0, /3=-1

2 0 0 (a+l,/3+l) a=-, /3=-
a=-l, /3=-1

=-1/2, t =-1/2
3 0 (a + 1, + 2) This paper
4 (a+2, fl+2)

Gauss-Radau-Chebyshev
Gauss-Radau-Legendre
Gauss-Lobatto-Chebyshev
Gauss-Lobatto-Legendre
Gauss-Lobatto-Chebyshev (extrema)

See [7]

For this case, there is no boundary condition on the right end.
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1634 WEIZHANG HUANG AND DAVID M. SLOAN

of quadrature rule (2.7) is n- 1. Therefore the difference exceeds unity when n > 2,
and it follows that the generalized quadrature rule (2.7) is more accurate than a standard
Gauss quadrature rule for n > 2.

3. Pseudospectral method for a third-order initial-boundary value model problem.
Consider the pseudospectral method for the following model problem

(3.1) ut=u,,,x in (-1, 1)x(0, T]

with initial condition

(3.2) u(x,O)=uo(x)

and boundary conditions

(3.3)
u(+l, t) =0,

u()(-1, t)=0, 0=< v < 1.

Given N- 2 interior collocation points xk, 2 =< k =< N- 1, the projection operation
pU can be chosen as

N-1

(3.4) u N PNu u,h,(x),
k=2

where u u(x) and the h(x)s are defined in (2.4) and (2.5) with n 3, 1, 1, rn 0.
Then the collocation equations are

(3.5)
Ou N 03 N

(xk, t)--
U

Ot OX,3 (x, t), 2<=k<=N-1

with initial condition

(3.6) u u (x, O) Uo(X,), 1 <- k <= N.

If the N 2 interior collocation points are chosen as the zeros ofJacobi polynomial
p+1,/3+2)-2 as suggested in 2, the hs can be rewritten as

(3.7)
hk(x)=(1-x)(l+x)2 (a+l,t+2)(x

D(c + 1,/3+2)’(Xk)(x Xk)(l+xk)2(1 X)---2

2<=k<=N-1.

Throughout this section we assume that the interior collocation points are the
zeros of p+1,+2-2 (x) and that a and /3 assume values in (-2,) and (-3,),
respectively. In the following section we shall deal specifically with the problem
described by (3.1)-(3.3). We begin by giving some indication of the accuracy that
might be achieved by the approximation described by (3.4)-(3.7).

3.1. The resolution of the eigenfunctions by polynomial interpolation. The analysis
of resolution of the eigenfunctions by polynomial interpolation can often give a natural
explanation of how well the discrete scheme (3.5) approximates to the continuous
problem (3.1)-(3.3). Our analysis follows the approach of Weideman and Trefethen
[11]. The starting point is the well-known Hermite formula (such as Krylov [6, p. 48])
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PSEUDOSPECTRAL METHOD 1635

for the error in polynomial interpolation (2.3)"

RN[f X] f(x) PN+.-.3,(x)

(3.8) AN+,,_:(x) f(z)
2rri au+,,_z(Z)(Z x)

where

dz

N-1

AN+n-2(Z)=(Z--1)r"+I(z+I)I"+I l-I (Z--Xk)
(3.9) k=2

(Z--1)r +l(Z-k-" 1)/"+ll(a+r-N-2"+l’t+/"+l)( Z)/TN-2,
and yu-2 is the leading coefficient of P2.+’+l.+(x), is any simple closed curve
in the complex plane that encloses [-1, 1] in its interior. Taking absolute values yields

1
]RN[/; x]] N max

2yN-2 -lx=l

(3.10)

f, If(zl Idzl.

By noticing that the limiting distribution (x) of the zeros of the Jacobi polynomial
as Nm is

(x)
-1

and following the procedure in [11], we find from (3.10),

IN.If; x]l
1

max I(x- 1)r+(x + 1)’+P++’+’+(x)l
N--1 --1NxNI

(3.
e+. max If(z)l/,

where is taken as a contour

(3.12) l= {z: In (2/Iz+z- 11) c},

which encloses [-1, 1] in its interior.
From [9, pp. 63, 167] we have

(3.13)

and

(3.14)

max [(X--1)r"+I(x+ 1)1.+, OCa+r__N_2. +l.t+l.+’(X)I
x_<__

O(Nmax {--1/2,o--(r,,+),13--(1.+)})

=2_(rv_2)(2N+a+fl+rn+/,-2)TN-2 N 2

0(2N-!/:z)
as N- c. Then we have from (3.11)-(3.14)

(3.15) ]R[f; x]l- O(4,(N) e(+Nc-N ln 2)

\ maXz, If(z)l),
where b(N) is a certain polynomial in N.
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1636 WEIZHANG HUANG AND DAVID M. SLOAN

Now let us estimate [RN[f; x]l for our problem (3.1)-(3.3).
It is known [8] that the corresponding eigenproblem of (3.1) and (3.3)

d3u
-h3u in (-1, 1),

dx
(3.16)

u(+l) =0,

u((-1) 0, O_<vl

has the negative eigenvalues A, (k 1, 2,...), which satisfy the equation

(3.17) egk 2 sin (,/Ak +).
This equation has asymptotic solution

(3.8) -- k+ ,/

and the corresponding eigenfunction is given by

x/Akx
(3.19) A ek + B e-x/ cos+Ce-"’/ sin

2

where A, B, and C are constants such that the eigenfunction satisfies the boundary
conditions in (3.16).

Then from (3.15) and (3.19) we obtain that

(3.20) IRN[eX; x] O 4(N) exp -Nxo --Yk -t-
Xo

and

(3.21)
Ru[exp{ AkX VAkX} ]--+i "x

2

O ( qb(N) exp {-N(x+x/Y) [ -y--k2 Xo + vyo
where Xo> 1 and yo > 0 are the intersection points of the contour (3.12) with the positive
half real axis and the positive half imaginary axis, respectively, and the relation between
Xo and Y0 is given by

Xo+/Xo- l yo +/y + l.

In (3.20) and (3.21) we have used the symbol

(3.22) V=- =N
Noticing that the function 1/xoln (Xo+X/xo2-1) attains its maximum (=0.662743) at

xo1.81003 and the function ln(xo+x/Xg-1)/(Xo+x/yo) attains its maximum
(0.280327) at Xo 1.45188, then we have from (3.20) and (3.21) that RN[eXX; x]0
and R[exp[-(AkX/2)+ i(AkX/2)]; X]0 asN if Yk <0.560654. Thus we have
proved the following theorem.
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PSEUDOSPECTRAL METHOD 1637

THEOREM 3.1. A sufficient condition for convergence in the sense of
max Ifk(x) P(x)I 0 as S c
--lxl

< 0.309105(3.23)
N

where fk (X) is the kth eigenfunction given by (3.19) of eigenproblem (3.16) and PN (x)
is its interpolation polynomial defined by (2.3).

A related condition was obtained in [8] for Chebyshev collocation using a different
approach.

3.2. Differentiation matrices and numerical observations. In this section we con-
tinue to observe the pseudospectral approximation to eigenvalues of (3.16).

By using (3.4) and (3.5) and noticing that hj(x) can be rewritten as

l+x
(3.24) hi(x) l(x), 2 <-j <- N- 1,

l+xj
where /(x) is the Lagrange interpolating polynomial

(3.25)
N X Xk/(x) II
k=l XjXk
kj

it is not difficult to obtain third-order differentiation matrices as follows"

(3.26)
with

(3.27)

where

(3.28)

and

D (d(3akj ]k=2,...,N-I,j=2,...,N-1

d(3) [(l+x,)q(d)+3q(,],i+x k,j=2,. ,N-l,

3qkj[(qkk)2__ 2qkk + 2 1

(3) (Xk Xj) (Xk Xj)2- ik (Xk Xi)2
q’J

1 1(q)3 3q
x X )+ 2

X X,

[ l ]2qk qk-- jk,
q)= Xk X

1(q)2 ,k (Xk X)2 j k,

a
)’

jek,
q a x, x, j=k,

k Xk X

N

ak I-[ (Xk
i=1
i#k

In (3.28) the sum is over from 1 to N.
Let the eigenvalues of D( be ordered as

(3.29) Re (z,) _-> Re (7-2) e’’"
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1638 WEIZHANG HUANG AND DAVID M. SLOAN

The numerically computed Re (rl) is shown in Fig. 3.1 as a function of parameters a

and /3 at N-32. Recall that in this section we assume that the interior collocation
+1’+2)(x), and that a and/3 assume values in (-2, ) andpoints are the zeros of --s_2

(--3, ), respectively. Observe that when/3 > 0 (excluding/3 =0) the scheme (3.5) is
unstable since Re (rl) > 0. Figure 3.2 shows the function N*(N, a,/3) which is defined
as

(3.30)

k
if ’k is real, ’k < 0

N-2

N*(N, a,/3) and
[Zk--Aak[
IA-<O.O1, l<=k<-k*,

O, otherwise.

The value of N* gives the proportion of discrete eigenvalues which closely approximate
the corresponding eigenvalues ofthe continuous problem. Note, again, that the approxi-

Re (’1) x 10- ’:a’O0.o
\ -a.oo.oo t\ -.o:.o
\... i:.,.oo.oo , .o

2 .0
2.00 I.
1,50

0.0

.00 ".0
0 .0 0.0

2

.0

3.0

.0

-2,

FIG. 3.1. Re (’1) as a function of a and fl at N=32. Re (rl) is defined by (3.29).

N* xl0
5.0-

4

3.0-

2.0-

00-
5.0

2.(?"

-2.0 -1.0

-3.0 -2.0

5.0

4.0

3.0

2.0

1.0

FIG. 3.2. N*(N, a, fl) as a function of a and fl at N=32. N*(N, a,) is defined by (3.30).
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PSEUDOSPECTRAL METHOD 1639

mation process fails if/3 > 0. Figure 3.3 shows how well the discrete eigenvalue, 7"k,

approximates the corresponding continuous eigenvalue, A, for 1 <_-k<_-N-2 and
N 32. The continuous line and the circles show loglo [A] and log10 ]’k], respectively,
as functions of k. The plots are shown for a selection of parameter sets (a,/3) in Figs.
3.3(a)-(f). Note, in particular, Figs. 3.3(a)-(c) where the interior collocation points
are, respectively, the zeros of P(-1/Z’-l/Z)(x) (Lobatto-Chebyshev), P(’)(x) (Lobatto-
Legendre), and P(l/2’1/2)(x) (Lobatto-Chebyshev extrema). In these three cases the

logloleigenvaluel

N=32
5

(Ct,)= (-,-) (Lobatto-Chebyshev)

10 15 20 25 30

lOgl0leigenvaluel
8-

(a)

N=32

(,)=(- ,-2) (Lobatto-Legendre)

I,
10 15 20 25 30

(b)

FIG. 3.3. Comparison of eigenvalues of the continuous problem (3.16) (located on solid line) with those

of the discrete problem (located on circles), loglo I1 and loglo Ix,l are shown as functions of k.
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1640 WEIZHANG HUANG AND DAVID M. SLOAN

log101eigenvaluel
7’

" N=32 *4"

;3.

2,

10 :1.5 20 25 30

(c)

log 10leigenvaluel

(,13)=(o,o)

10 15 20 25

()

FIG. 3.3. Continued.

values of N* defined by (3.30) are 0.36667, 0.40000, and 0.36667, respectively, and
the corresponding values of k* are 11, 12, and 11. The Legendre approximation of
the eigenvalues is superior to the two Chebyshev approximations. The best approxima-
tion displayed in Fig. 3.3 is that shown in (f) where (ce,/3) =(3, -1) gives N* =0.43333
and k*= 13. It is of interest to note that recent work by Trefethen [10] suggests that
sinceD is not normal accuracy should be assessed by considering pseudo-eigenvalues
rather than exact eigenvalues. This point deserves further examination.
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PSEUDOSPECTRAL METHOD 1641

log01eigenvaluel
7-

0

. N=32

o

3.

I0 15 20 25 30

(e)

logloleigenvaluel

N=32

k
10 15 20 25 30

(f)

FIG. 3.3. Continued.

3.3. Convergence. In order to prove convergence we need the following result.
LEMMA 3.1. Let u satisfy u(+l) =0, u’(-1) =0 and have a continuous second-order

derivative; then

(3.31 UUxx dx <- O.

Proof. This is trivially established using integration by parts.
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1642 WEIZHANG HUANG AND DAVID M. SLOAN

Using this result it is not difficult to prove the stability of the collocation method
with a 0,/3 0 for (3.1)-(3.3).

THEOREM 3.2 (Stability). Let uu be the pseudospectral approximation (3.4) with
x O, 0 to (3.1)-(3.3). Then

(3.32)
N-1

Z [uU(xk, t)]Zwk<=[2+O(N-2)] max [Uo(X)l2.
k=2 -lxl

Proof Multiplying the kth equation of (3.5) by uN(xk, t) and tag and summing
over k from 2 to N-1, we have

1 d N-1 N-1 03 N

2 o[u(x, t)]= 2 ,ou(x, t) ,u,,,(3.33)
2 dt =2 =2 Ox

(x, t).

Noticing that the degree of polynomial u u (03u N/Ox3) is less than 2N- 2 and that this
polynomial satisfies the boundary conditions (3.3), we have from Theorem 2.1 (here
n=3)

(3.34)
1 d N-1 fl 03 N

k
tOk[U (xk, t)]2= J O%,(x)uN(x, t) U_ (X, t) dx.

2 dt =2 -1 Ox3

From Lemma 3.1, we get from c 0,/3 0 that

d N-1

y. Wk[uN(xk, t)]2--<0;
dt k-’=2

therefore,

N-1 N-1

(3.35) Y COk[UN(xk, t)]2<-- COk[Uo(Xk)]2.
k=2 k =2

Then (3.32) follows from (2.33) in Theorem 2.4.
The next step for showing convergence is to show consistency. In order to do this,

we first give some results concerning the expa.nsion of functions in Jacobi polynomials.
LEMMA 3.2. The Jacobi polynomial --k X > 1, > 1 satisfies

dx
(1 x) S+l(1 + x) fi+l d

xP’ =-/z"PS’(1-x)S(l+x)d’

where

k k(k+c/+fl + 1).

For the proof we refer the reader to [9, pp. 60-61].
LEMMA 3.3. For c>-l, fi>-l, we suppose that u(P(x), O<-p<=r, where r is a

nonnegative integer, satisfies

Then the coefficients dk of the expansion of u(x) in Jacobi polynomials

u(x)= E ,P’’fi(x)
k=0
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PSEUDOSPECTRAL METHOD 1643

have the asymptotic property

k O(k-2t(r+1/2]) as k-c.

Proof. Having noticed that the coefficient dk in the expansion may be expressed
in the form

w2(X)U(X)P(k2)(X) dx,Olk Z -1

where

Ak w,2(x)[PkS’)(X)] dx,
--1

we can easily establish the required result by using Lemma 3.2 and integrating by
parts.

LEMMA 3.4. Suppose that u(x) satisfies boundary conditions

u((-1) O,

u(+l) O, O<__v<--r,

and has a continuous derivative of order r (>- q =- max (r, + 1, 1 + 1)). Furthermore, we

suppose that

(3.36) OOo+rn+l,fl+in+l(X)ll(P)(x)] 2 dx < +oo, O<-p<=r-q,
--1

where x) is thefunction defined in Lemma 2.2. Then the coefficients ak in the expansion

of u (x) in Jacobi polynomials

(3.37) U(X)--(1--x)r.+I(I +x)I.+I akP(k’+r.+l,+l.+’)(X)
k-0

have the following asymptotic property:

ak O(k-2[(r+1-0)/2]) as ko.

Proof. From Lemma 2.2, it is known that if(x) is well defined and ffCP(x),
0 _-< p -< r- q, exists. Then Lemma 3.3 is applied to if(x) with c7 a + r. + 1,/3 fl / I. + 1
and the conclusion is obtained.

Note 3.1. In the expansion (3.37), the coefficient ak may be expressed as

(3.38) ak-- to,,t(X)U(X)P(l,’+r"+l"t+l"+l)(x) dx/Ak,
-1

where

Ak Ot)a+rn+l,+ln+l(X)[P(ka+rn+l’+ln+l)(x)]2 dx.

Note 3.2. The condition (3.36) is not very strong because we can express u(x) as

(1- 01) -ln!
(l+x) +lU(t +1)(--1+01(X+1)) Xe[--1 O]

u(x)
(1_ 0) r"

rn!
(--I+x) +lu(r +1)(+1 + 02(X-- 1)), XG[0, 1]
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1644 WEIZHANG HUANG AND DAVID M. SLOAN

by using Taylor expansion with Cauchy remainder. Here 0 < t91, 192 < 1 are constants
that depend on u (x). Therefore, we can express if(x) as

(1 01) In U(ln+l)(--1 -’i- Ol(X + 1))
l,! (1 x),.+

x [-1, 0],
a(x)

(1 0)- U(r"+l)(+l + O2(X-- 1))
r,! (1 +X)/.+

x [0, 1].

Then, if u(x) C and u(x) satisfies the boundary conditions, (3.36) can be satisfied.
Note 3.3. For the values of In and rn used in this section, we have

(3.39) ak O(k-2[(r-1)/2]) as k

Now we are ready to show consistency for a > -2,/3 > -3. In view ofthe discussion
in [5, p. 48] the truncation error is given by

PN---X U
OX

where u e C is the solution to (3.1)-(3.3), PN is a projection operator defined by

(3.40) pNf_ PN/-a(X), with n =3

(where PN/-3 is defined by (2.3)), and

IN--2 ]1/2(3.41) Ilgll Y’, tOkg2(Xk)
k=2

Note 3.4. In the norm defined by (3.41),

IIP ’g-gl[ =0 any g(x) on [-1, 1];

therefore,

(3.42) IIPmll_-< 1.

THEOREM 3.3 (Consistency). Let u, p, and IIll be defined as above; then

(3.43) ]][pU__pl_ox303 O0_]u 11 (1)=O
for any positive r.

Proof We can expand u and uN= plu(x) from Note 3.2 as

(3.44) u(x)=(1-x)(1 +x) E aiP+"t+(x)
i=0

and

N-3

(3.45) u N (x) (1 x)(1 + x)2

i=0

where

(3.46)
toa,13(x)u(x)Pa+l’t3+2)(x) dx,ai X -1

to,t(x)u N (x)P+l"t+2)(x) dx.gi
-1
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PSEUDOSPECTRAL METHOD 1645

Then for any positive r,

(3.47) ai O(i-r) as - cfrom Lemma 3.4 and Note 3.2, due to u(x) C.
Using Theorem 2.1 and the orthogonality of Jacobi polynomials, we have

1 N-1

Oli--Z :2y" OakU(Xk, t)P+l"t3+2)(x)

therefore,

1 N--1

ai A-i " OJk E 1 xk )( 1 + Xk )2
k=2 j=2N-4-i

p(a+l,+2)ajPS’+l"+2)(Xk)--i (Xk);

0(1)
(3.48) ICri- ail =< max

Ai 2<-k<-N-1
E a2P+"t3+2)(x)P+"’+2)(x)

j=2N--4--i

=O(N-r)

for any positive r from Theorem 2.4 and (3.47). Then

OX--- X U + pN u u
OX OX

o3
<_ pNu----tl + PNtl--tl

023 023 OX

N--3 d
<= Z (i-ai)-xS[(1-x)(l+x)2Pl’+’13+2)(x)]

i=o

ai--xS [(1- x)(1 + x)2pI+I’C+2)(x)]

<=O(N-r)

for any positive r, from (3.47), (3.48), Theorem 2.4, and the asymptotic properties of
the zeros of Jacobi polynomials and of the Jacobi polynomials themselves.

Thus, we have proved that the solution to (3.5) and (3.6) approximates the solution
1)(1’2) {X).to (3 1)-(3.3) if the interior collocation points are chosen to be the zeros of --N_2

Convergence is likely to hold for a range of (a,/3) values but we have established
stability via Theorem 3.2 only for a =/3 =0. Consistency, on the other hand, may
readily be established for general n with r, and I, satisfying (2.2) and a and/3 satisfying
(2.9).

4. Numerical results. In this section we give some numerical results on the
pseudospectral solution of the model third-order boundary value problem

dau
dx3-f on [-1, 1],

(4.1)
u(+l) 0, u’(-1) =0,
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1646 WEIZHANG HUANG AND DAVID M. SLOAN

where f(x) is chosen such that the exact solution of (4.1) is u(x)=(1-x2)(1 +x) eIx.
Here K is a real parameter that can be freely prescribed. Large negative K gives an
exact solution with a steep gradient near x =-1 and large positive K gives a steep
gradient near x + 1.

Tables 4.1(a)-(d) give the error in the I1"11 and I1"11- norms at increasing values
of N and at a range of parameter sets (ce, fl). Results are given in Tables 4.1(a)-(d)
for K =-10, -1, +5, and +10, respectively. Note that high accuracy and rapid
convergence are achieved as soon as N is large enough to give sufficient resolution.
Machine accuracy is obtained at N- 16 when K =-1 and at N 32 when K 5; at
[K[ 10 the required value of N exceeds 32. Note that the error pattern at K 10
differs insignificantly from that at K =-10. The parameter set (a,/3) (3,-1) does
not perform better on the boundary value problem than the other sets, despite the

TABLE 4.1
(a)

Error in solving (4.1) with exact solution u(x) (1 x2)(1 + x) exp (-lOx).

=- /3=- =-1 /3=-2 =-1/2 /3=- =0 /3=0 =3 =-1

4 5.04 (3) 5.24 (3) 4.90 (2) 5.63 (2) 6.26 (2) 6.70 (2) 5.76 (2) 7.42 (2) 2.33 (3) 2.49 (3)
1.15 (3) 1.74 (3) 1.43 (3) 2.31 (3) 5.40 (2) 8.60 (2) 2.68 (3) 4.63 (3) 3.75 (2) 5.48 (2)

16 0.644 1.12 0.298 0.661 0.399 0.714 7.15 17.4 4.87 9.17
32 1.46(-11) 4.14(-11) 1.31(-11) 3.35(-11) 8.60(-12) 2.22(-11) 5.40(-10) 1.86(-9) 5.22(-10) 1.41(-9)

(b)
Error in solving (4.1) with exact solution u(x) (1 x2)(1 + x) exp (-x).

__1

__
ce=- /3=-- a=-I /3=-2 /3 0 /3 0 /3

4 0.999 1.00 0.505 0.505 0.165 0.215 0.640 0.790 9.02 (-2) 9.82 (-2)
1.65 (-4) 1.77 (-4) 5.68 (-5) 8.29 (-5) 4.56 (-5) 5.92 (-5) 2.58 (-4) 4.30 (-4) 1.72 (-4) 2.22 (-4)

16 3.73 (-15) 5.85 (-15) 1.86 (-15) 3.03 (-15) 9.85 (-16) 1.99 (-15) 2.17 (-14) 5.24 (-14) 2.20 (-14) 4.45 (-14)

(c)
Error in solving (4.1) with exact solution u(x)= (1-x2)(1 + x) exp (5x).

a=- /3 =--- c=-I /3=-2 o=-1/2 /3 =__3 a=0 /3=0 a=3 /3=-1

4 2.69(2) 2.70(2) 3.57(1) 3.61(1) 1.80(1) 1.81(1) 1.13(1) 1.43(1) 1.84(1) 1.85(1)
7.03 1.11 (1) 4.33 5.72 2.04 3.10 8.91 1.43 (1) 9.48 1.18 (1)

16 2.73 (-5) 5.64 (-5) 1.65 (-5) 3.66 (-5) 1.39 (-5) 2.61 (-5) 2.13 (-4) 5.10 (-4) 2.13 (-4) 3.99 (-4)
32 6.99 (-14) 1.87 (-13) 1.02 (-13) 3.11 (-13) 1.34 (-13) 3.89 (-13) 4.76 (-14) 1.43 (-13) 7.99 (-14) 2.47 (-13)

(d)
Error in solving (4.1) with exact solution u(x) (1 x2)(1 + x) exp (10x).

a:-- /3=- a=-I /3=-2 a:-1/2 /3 --: a=0 /3:0 a=3 /3=-1
N Ilell Ilel12 Ilell Ilel12 Ilell Ilell2 Ilell Ilel12 Ilell Ilell2

4 7.46 (3) 7.48 (3) 1.27 (4) 1.27 (4) 7.93 (3) 7.98 (3) 5.15 (3) 5.27 (3) 1.30 (2) 1.30 (2)
8 7.75 (3) 9.05 (3) 2.91 (3) 3.49 (3) 1.40 (3) 1.83 (3) 3.36 (3) 5.27 (3) 4.35 (3) 5.38 (3)
16 1.87 3.77 1.06 2.36 0.769 1.59 1.11 (1) 2.65(1) 1.16(1) 2.14(1)
32 2.65(-11) 7.92(-11) 2.13(-11) 5.70(-11) 1.74(-11) 4.43(-11) 7.11(-10) 2.44(-9) 7.36(-10) 1.97(-9)
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marginally better performance in approximating the eigenvalues of the differential
operator. As stated at the end of 3.2, it is possible that accuracy assessment based
on exact eigenvalues might be misleading [10].

5. Comments. We have considered pseudospectral methods for global polynomial
approximation of functions and of solutions to differential equations. Generalized
quadrature rules have been presented which identify interior collocation points for the
pseudospectral solution of certain model differential equations. In these equations the
nth derivative of the unknown function is specified in the interior of an interval on
the real line and n derivative conditions are specified at the endpoints of the interval.
The familiar Gauss-Radau and Gauss-Lobatto nodes for n 1 and n 2, respectively,
are special cases of the general presentation.

The case n--3 is examined in more detail. It is shown, inter alia, that convergent
pseudospectral methods can be constructed for a model third-order evolutionary
equation, and the viability of the suggested choice of collocation points is supported
by numerical results for a boundary value problem. It is hoped that the presentation
will be useful to those who might be involved in the pseudospectral solution of more
general third-order problems in one space dimension. Finally, it is hoped that the
results will prove useful for the solution of partial differential equations in more than
one space dimension.
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