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THE PSEUDOSPECTRAL METHOD FOR THIRD-ORDER
DIFFERENTIAL EQUATIONS*
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Abstract. Generalized quadrature rules are derived which assist in the selection of collocation points
for the pseudospectral solution of differential equations. In particular, it is shown that for an nth-order
differential equation in one space dimension with two-point derivative boundary conditions, an ideal choice
of interior collocation points is the set of zeros of a Jacobi polynomial. The pseudospectral solution of a
third-order initial-boundary value problem is considered and accuracy is assessed by examining how well
the discrete eigenproblem approximates the continuous one. Convergence is established for a special choice
of collocation points and numerical results are included to demonstrate the viability of the approach.
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1. Introduction. Pseudospectral methods provide a useful alternative to finite
difference and finite element methods for the approximate solution of differential
equations. Theoretical studies and numerical experience have confirmed that for
problems with smooth solutions pseudospectral methods converge much faster than
finite difference or finite element methods [2]. Furthermore, nonlinearities do not create
any special difficulties. Pseudospectral methods have gained popularity in recent years
and they now feature in a wide range of applications [1].

In the pseudospectral method each dependent variable in the differential problem
is approximated by a polynomial of finite degree. The discrete approximating equations
are then obtained by setting residuals to zero at an appropriate set of collocation points
in the solution domain. The proper choice of collocation points is crucial in terms of
accuracy, stability, and ease of implementation of boundary conditions. A set of
collocation points is typically chosen as the set of nodes in an appropriate Gauss
quadrature formula. For equations of order 1 or 2 it is known that collocation points
are the Gauss-Radau or Gauss-Lobatto nodes, respectively [2]. Interesting work by
Malek and Phillips [7] has recently shown that for fourth-order problems the ideal
choice of interior collocation points is the set of zeros of certain Gegenbauer poly-
nomials, these being nodes for some generalized Gaussian quadrature rules. Generaliz-
ations of Gaussian quadrature rules are discussed, for example, by Golub and Kautsky
[4].

The objective of this paper is to construct generalized Gaussian quadrature rules
which assist in the choice of interior collocation points for the pseudospectral approxi-
mation of model differential equations of any finite order. The rules are then used to
construct pseudospectral methods for third-order boundary value or initial-boundary
value problems. The third-order problem is of mathematical interest since it lacks the
symmetry of the second-order problem [11]. It is of physical interest since it contains
the type of operator which appears in many commonly-occurring partial differential
equations such as the Korteweg-de Vries equation. Pseudospectral methods for a model
third-order problem have been considered by Mulholland [8].
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In § 2 of the paper we consider generalized quadrature rules. A function interpola-
tion approach is used, with function values specified at interior collocation points and
derivative values specified at endpoints. Section 3 deals with a pseudospectral method
for a third-order initial-boundary value problem. Accuracy is examined by considering
how well the discrete system approximates the associated third-order differential
eigenproblem. Section 4 contains numerical results on the pseudospectral solution of
some model third-order boundary value problems and the final section contains
comments.

2. Generalized quadrature rules. Generalized quadrature rules play an important
role in theory and applications of pseudospectral methods. In this section we will
follow the approach of Malek and Phillips [7] to construct a generalized quadrature
rule which helps us to choose the collocation points of the pseudospectral approxima-
tion to third-order differential equations.

Quadrature formulas are often constructed from interpolating polynomials. In
this way we can, in many cases, obtain quadrature formulas that are convenient to use
and that will give sufficiently accurate results. Therefore, at the beginning of this section
we consider a function interpolation problem.

2.1. Interpolation with multiple nodes. We assume that we are given N (maybe
N —1)" distinct nodes ~1=x,<x,<--+<xy_; <Xy =1 in the segment [—1,1] and
that at these nodes we are given the values of the function f(x) and its derivatives as
follows:

S =f(x0), 2=sk=N-1,
(2.1) =), 0sv=l,
fN=fxy), 0=v=r,
where integers I, and r, are given such that
(2.2) L+r,+2=n, L=z-1, r,=z-1,

and n is a natural number.
It is known (see, for example, [6, pp. 45-49]) that the polynomial Py ., ; of degree
N +n—3 interpolating data (2.1) is given by

N-1 1, r,
(2.3) Prins(¥)= L fih(x)+ ¥ f PR (x)+ ) FORY (x),
where
m(x) 1+x)="" (x—1)"!
hi(x) = ' : 2=k=N-1
k(x) w'(xk)(x—xk) (1+xk)'"+l (xk__l)rn+1, N
ln
(2.4) h(1y)(X)=51(x) z a§”’(x+l)i, o=sv=l,,
h%(x) = Sn (x) Zn b (x—1)), 0=v=r,,

! From (2.1) it can be seen that if I, =—1 only N—1 nodes x, <x;<'++<Xxpn_, <Xy =1 are used in
the segment (—1, 1] and if r, = —1 only N —1 nodes —1=x,<x,<- -+ <xn_, are used in [—1, 1). However,
to simplify the presentation we shall henceforth refer to N nodes.
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and
N-1
w(x) = .[[2 (x—x),
m(x) (x—1)"""
Si(x) = - ,
R R Py
Cw(x)  (x+Dh"
(2'5) SN(x)_ﬂ_(xN) (XN+1)I"+1’
i-1 (v) o
aP=2  aP=-7% s (x), v+1=isl, 0sv=l,
v! j=v(l _.])
i-1 (v) o
p=1,  p=-y ——,?—’—,——S(,l,")(xN), v+1=i=r, O0=v=r,
v! j=v(l_.])!

For the remainder of this section on interpolation we have the following lemma.
LemMA 2.1. If f(x) has a continuous derivative of order N+n—2 on [—1, 1] then
the remainder of (2.3) is

R[S x]=f(x) = Prnsn—s(x)

(2.6) I
(N+n-2)!

where —1<¢,.<1 for xe[—1,1].

7(x)(x+ 1D (x - 1),

2.2. Quadrature formulas. By using the interpolating polynomial (2.3) we can
construct a quadrature formula as follows:

1 N-1 L T
(2.7) J @ap(X)f(x)dx= ¥ fior+ ¥ of"+ Y 0% fP+ENS],
-1 k=2 v=0 v=0

where the weights are given by

1

W, = 0, g (X) i (x) dx, 2=sk=N-1,
J—1

1

(2.8) 0= w.x)h(x)dx, 0=v=l,
1

1
0¥ = w,,,,B(x)h(I\’})(x) dx, O=sv=r,,
1

J —

and w, g(x) is a weight function, which is defined by
(2.9) Wep(x)=(1-x)*(1+x)?, -2-r,<a, —2-1,<B.

The term Ex[f] denotes the truncation error of the quadrature formula.
We notice that the integral on the left-hand side of (2.7) may not exist for some
function. Thus, we have to restrict our discussion to the function space

(2.10) B, g= {f:f is measurable and J'l 0, 5(x)f(x) dx<+oo}.

Before we discuss the algebraic degree of precision of (2.7), we give a result about
the existence of integral _[1_1 w, (x)f(x) dx, which is useful for our problem.
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LeEmMMA 2.2. Suppose that the function u(x) on [—1,1] satisfies the boundary
conditions

u’(-1)=0, O0=v=l,
(2.11)
u”(+1)=0, O0=v=r,,
wherer,, I, are defined by (2.2), and suppose that u(x) has a continuous derivative of order
rzq (=max (r,+1,1,+1)).
Then (i)

u(x)
(1 _x)r"+l(1 +X)l"+1

(2.12) u(x)=
is well defined
1
(ii) J wa+r,,+1,3+1,,+1(x)|ﬁ(x)‘ dx <+
-1
implies
1
J W p(x)|u(x)| dx < +o0;
-1

(iii) If u'”(x), q=p=r, exist, then i'”, 0=p=r—gq, also exist.

Proof. 1t is not difficult to obtain (i)-(iii) by using the assumptions and the Taylor
expansion formula with Cauchy remainder.

From (2.9) and this lemma it is obvious that any bounded function u(x) on[—1, 1]
belongs to B, g when a > —1 and B > —1. Furthermore, any function u(x) that satisfies
(2.11) and has a bounded u(x) defined by (2.12), belongs to B,z when a>—-2-r,
and B> -2-1,. Thus, P,,, which denotes the space containing all polynomials on
[—1, 1] of degree not greater than m, is contained in B,z when a>—1 and 8> —1,
and all polynomials satisfying (2.11) belong to B,z when & > —2~-r, and B> —2—1,.
Also see Lemma 3.4 and Note 3.2. 0

Now let us consider the algebraic degree of precision and the remainder of
quadrature formula (2.7).

From Lemma 2.1 the following lemma is trivial.

LeEMMA 2.3. The quadrature rule (2.7) is exact for all polynomials p(x)e
PN+n—3 n Ba,B'

Then we have Theorem 2.1.

THEOREM 2.1. Suppose that the interior nodes x,, 2= k= N —1, are chosen to be
the zeros of the Jacobi polynomial P »" "B +'*V(x) of degree N — 2. Then the quadrature
SJormula (2.7) is exact for all

P(x)EP N s B,g.
Proof. Any polynomial p(x)€P,n.,_s B,z can be written as

(2.13) p(x) = (x — 1) (x+ 1) P+ LE+LED (1)

* Qn-3(%)+ Rysn-3(x),
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where Qn_3(x)ePy_; and Rni,3€Pni,3N B, are the quotient and remainder,
respectively, when p(x) is divided by (x—1)"""(x+1)""' P&+ A+ (x), Upon
multiplying (2.13) by w,g(x) and integrating over [—1, 1] we obtain

1

1
j wa,B(x)p(x) dx =J wa+r,,+1,B+ln+l(x)(_1)rn+1
-1

-1

(2.14) c PG LETLID O dx
1

+ J’ wa,ﬁ(x)RN+n—3(x)~
-1

Having noticed that Pt »""#*h*D(x) is orthogonal to Qx_3(x) with respect to weight
Wq s, +1,8+1,+1(x) and applying Lemma 2.3 to the second term of the right-hand side
of (2.14), we have

N-1

Jl] wa,B(x)p(x) dx= Y @Rnwn-3(x)

1

" R
(2.15) +;O Wf—%( 1)

d*Ruin-
+z M%(ﬂ).

Using the assumption about x;, 2= k= N —1, (2.13) implies that

p(xi) = Ry n-3(xi0), 2=k=N-1,
d"Rusn
(2.16) ——”—*—3( 1), 0=v=l,
R n—
dp(+1)—-—m(+1), 0=v=r,.

d v

Combining (2.15) with (2.16), the statement of the theorem follows. 0

THEOREM 2.2. Suppose that the assumption of Theorem 2.1 is satisfied and that
f(x) € B, g has a continuous derivative of order 2N + n —4 on [—1, 1]. Then the truncation
error of (2.7) is given by

(_l)rn+1f(2N+n—4)(n)
2N +n-4)!

EN[f] =
(2.17)

1
. j wa+r,,+1,;3+l,,+1(x)(77(x))2 dx,
-1

where —1<n <1.
Proof. Let P,n.,_s(x) be the polynomial interpolating the data

f(xk)af,(xk)’ 2§k§N—1)
(2.18) f(-1), osv=Il,

F(+1), Osv=r,.
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Then
RuLf; X1=£(x) = Pynin_s(X)

(2.19) =(_1)rn+1f(2N+n—4)(§x)
(2N+n—4)!

where —1< ¢, <1 and P,n4,-s€ B, g. Multiplying (2.19) by w,z(x) and integrating
over [—1, 1], it follows that

[7(x)P(1+x)"" (1 =x)"",

I_ wa,B(x)f(x) dx = J'_ wtx,B(x)P2N+n—5(x) dx
(_l)rn+1
+(2N+n—4)!

: J @ (X)f OV N[ (x) (1 +x) (1= x) " dx.

Then (2.17) follows by applying Theorem 2.1 and the mean-value theorem to the first
term and second term of the right-hand side of the above equation, respectively, and
by using the data (2.18). O

2.3. The weights of the quadrature rule. In the applications of quadrature formula
(2.7) the properties of the weights are often needed. In this section we will give some
results about the weights under the assumption of Theorem 2.1.

First, we have the following.

THEOREM 2.3. w,>0,2=k=N-1.

Proof. For any k,2=k= N -1, define

2
N-1x—x, | Q+x)"" (1-x)-"
2.20 = . .
( ) ﬁc(x) iEIZ X — X; (1+xk)l"+l (1 _xk)rn+l
ik

It is obvious that f (x) € Prn4.,—6 B, s and fi(x) =0, fi (x) # 0. By substituting (2.20)
in (2.7), we obtain that w =j‘141 W, p(x)fr(x) dx>0.
For the representations of the weights, noticing that

(2_21) 7T(x)= P(ﬁfzr"H’BH"H)(x),

YN-2

where yn_» is the leading coefficient of PG 5 #*%*D ysing the properties of Jacobi

polynomials and the Christoffel-Darboux formula (see Szeg6 [9] and Erdélyi [3]), we
can establish

1
) =—

v v!

a(.") = —

! (N+/3+l,,—1),»=y
N-2

i— i—j (v) min{(i—j),r,+1}
(ra+1)! 1[@1) Jg it Z” ey
2" (i —j)! =0 (r,+1-=1D)!
(2.22)
N+B+1,—1
. +a+B+r,+1,+1),
(N o B Ty ln 1)1 j I(N—l+]+l—2)]’

v+1=si=l,, o=v=1l,;
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b(V)=L
Yol
b(,,) (ln+1)! i—1 [ b](v) min {(i~j),l,+1)} Cg_j
v <N+a+r,,~1>j=., 2"“f(i—j)!' ,;0 {I,+1-D!
(2.23) N-2
N+a+r,—1
“(N+ta+B+r,+1,+1),_._
(N « ﬁ In ln 1)! J I(N_1+J+l—2)]’
v+1=si=r,, O=sv=r,,;
and
w_2(°‘+B+'"+l"+l)(2N+a+[3+r,,+l,,)2 I(N+a+r,)I(N+B+1,)
(228) KTON-DAN+a+B+r+1,+1)? (N-2DII(N+a+B+r,+1,+1)
’ 1
. =k< —
(0 —x ) PR PG 2ERENT
0 = I'(N+a+r,)
(1)
(N_z)'(N+ﬁ+l,,—l)
) N-2
2.25 4
(2.25) .tzn:2a+3+,+1r(/3+i+1)(N+l,,—i-2)!a(y) 0= =1
2 (L,—iT(N+a+B+r,+i+1) '’ o
SO = [(N+B+1,)
N (N_z)'(N+a+r,,—l)
i N-2
(2.26) , ot ) .
' Z" (=D)2°*" B (a+i+DI(N+r,—i—1) b 0=v=r,

= T, —i+1DI(N+a+B+1,+i+1)

where () and (m), are defined as [m(m—1) -+ - (m—1+1)]/I'and m(m+1)--- (m+
I—1), respectively.
From (2.22) and (2.23), we get the asymptotic representations of a{”’ and b{" as
follows:
a”=0(N*"""), wv=i=l,, 0=sv=l,

b =0(N*"""), v=isr, 0=v=r,

as N - oo for any fixed «, B, I,, and r,, and therefore, from (2.5), (2.6) it follows that
(2.28) 0V =0(N?)  0=v=l,

(2.29) oW =0(N2*et)y  o=p=r,

as N - oo for any fixed «, B, l,, and r,. In order to construct the asymptotic formula
of w,, we write (2.24) as

(2.30)

(2.27)

B 2B LI (N+a+r1, )I(N+B+1,)
(N=2IT(N+a+B+r,+1,+1)(14x,)n2(1 —x, )" 2 PGt LA ()2

o, 2sk=N-1.

Then, using the asymptotic properties of the first-order derivative (formula (8.8.1) in
Szego [9, p. 234]) and of the zeros [9, p. 236] of the Jacobi polynomial, we have
{0((N—k)23“N‘2<”+”), 2=k=[N/2],

231 =
(2.31) KTV O((N = k)21 N~2ar)y [N/2]=k=N-1.
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It is interesting to notice that at nodes near the right end, w, = O(N 2*"V) =
and that at nodes near the left end, w, = O(N2#**Y)={?. At nodes near x =0,
w, = O(N™"). The asymptotic orders of wy (2=k=N-1) and 0!, »'? are indepen-
dent of n!
THEOREM 2.4. For any o> —r,—2, B> —1,—2, we have

28BS (a1, +2)T(B+ 1, +2)
INa+B+r,+1,+4)
N-1

= R wi (1 _xk)r"ﬂ(l +xk)l"+l
=2

_ 5y O(N~2(3+1n+2)k23+2tn+3)

2=k<[N/2]

+ Z O(N—z(a+rn+2)(N _ k)2a+2r"+3).

[N/2]=k=N-1
Furthermore, if « > —1, B> —1, then
22BN (a+1)I(B+1) N7t .

2.33 = + O(N—™in 2(a+1),2(8+1))y
(2.33) T(a+B8+2) Z, ot Ol )

Proof. The results are easy to prove by substituting (1—x)""'(1+x)*" or 1 in
(2.7) and using (2.28), (2.29), (2.31), and the asymptotic properties of the zeros of the
Jacobi polynomial. 0

(2.32)

2.4. Some remarks. In previous sections we have shown that for given data (2.1)
the interior nodes should be chosen to be the zeros of the Jacobi polynomial
PG5t B LD (x) in order to obtain a quadrature rule with the highest algebraic degree
of precision. This conclusion seems to suggest that an optimal choice for the interior
collocation points is the set of zeros of P{3 5" #*4*)(x) when the pseudospectral
method is applied to solve numerically nth-order differential equations in one
dimension subject to the boundary conditions

u”(-1)=0, 0=v=l,

2.34
(2.34) u?(+1)=0, O=v=r,.

Adopting this choice, Table 2.1 lists several examples for some known typical cases.
From the discussion in the previous subsections we know that the difference
between twice the degree of interpolating polynomial (2.3) and the precision degree

TABLE 2.1
Examples of collocation points corresponding to zeros of the Jacobi polynomial P{G31-1E+h+D(x),
(a+r,+1>-1, B+, +1>-1.)

Interior points
are zeros of

n ", I, P§;2, Examples Name of collocation points
1 —1* 0 (e, B+1) a=-%, B=-3 Gauss-Radau-Chebyshev
a=0,B8=-1 Gauss-Radau-Legendre

2 0 0 (a+1,8+1) a=-3,B=—3 Gauss-Lobatto-Chebyshev
a=-1,B=-1  Gauss-Lobatto-Legendre
a=-%,B=-}1 Gauss-Lobatto-Chebyshev (extrema)

3 0 1 (a+1,8+2) This paper

4 1 1 (a+2,B+2) a=B=1 See [7]

* For this case, there is no boundary condition on the right end.
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of quadrature rule (2.7) is n—1. Therefore the difference exceeds unity when n>2,
and it follows that the generalized quadrature rule (2.7) is more accurate than a standard
Gauss quadrature rule for n> 2.

3. Pseudospectral method for a third-order initial-boundary value model problem.
Consider the pseudospectral method for the following model problem

3.1) U =Ue, in(—1,1)x(0, T]
with initial condition

(3.2) u(x, 0) = uy(x)

and boundary conditions

1,t)=0,
(3.3) u(+1, 1)

u”(=1,1)=0, O0=v=1.
Given N —2 interior collocation points x,, 2= k= N —1, the projection operation
P" can be chosen as
N-1

(3.4) uN=PNu=Y uh(x),
k=2

where u, = u(x,) and the h,(x)s are defined in (2.4) and (2.5) with n=3,1,=1, r, =0.
Then the collocation equations are

3, N

au™ u
(3.5) —at—(xk, t):—ng(xk, t), 2=k=N-1
with initial condition
(3.6) uN(xk, 0)=u0(xk), 1=k=N.

If the N —2 interior collocation points are chosen as the zeros of Jacobi polynomial
PG 1P*? as suggested in § 2, the ks can be rewritten as

P ()
(e =x) (L3 (1= x0) PR ()

(3.7) h(x)=(1-x)(1+x)?

2=k=N-1.

Throughout this section we assume that the interior collocation points are the
zeros of P(73#"?(x) and that a and B assume values in (—2,0) and (=3, 0),
respectively. In the following section we shall deal specifically with the problem
described by (3.1)-(3.3). We begin by giving some indication of the accuracy that
might be achieved by the approximation described by (3.4)-(3.7).

3.1. The resolution of the eigenfunctions by polynomial interpolation. The analysis
of resolution of the eigenfunctions by polynomial interpolation can often give a natural
explanation of how well the discrete scheme (3.5) approximates to the continuous
problem (3.1)-(3.3). Our analysis follows the approach of Weideman and Trefethen
[11]. The starting point is the well-known Hermite formula (such as Krylov [6, p. 48])
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for the error in polynomial interpolation (2.3):
RyLSf; x]1=f(x) = Pnin-3(x)

(3-8) — AN+n——2(x) J f(z) dz
2w 1 ANsn—2(2)(z—x) 7

where

69) Ananoa(2) = (z=1)" (24 1)4" NH (z- %)

=(z=1)"z+ D) PRI TP (2)  yn L,
and yn_» is the leading coefficient of P¢ 5" #*h*D(x), [ is any simple closed curve
in the complex plane that encloses [—1, 1] in its interior. Taking absolute values yields

1
max |(x—l)r"+l(x+l)l"+IP(,STZY"H’BH"H)(X)‘
2WYN-—2 —1=x=1

, /)
Jl |AN+n—2(Z)‘ ) |(z—-x)| |dZ|.

By noticing that the limiting distribution w(x) of the zeros of the Jacobi polynomial
as N >0 is

IRNLS; X1 =
(3.10)

b == j (1= di

and following the procedure in [11], we find from (3.10),

1
IRNLS; x]|= O(v max, [(x=1)""(x+ 1) PG A (x))
N-1-1=x=

(3.11)
- "™ max If(Z)I),

zel
where [ is taken as a contour
(3.12) I={z:In (2/|z+VZ*=1])=c},

which encloses [—1, 1] in its interior.
From [9, pp. 63, 167] we have

(3 13) max |(x_l)r”+1(x+1)In+1P(}:in-2rn+1,ﬁ+l"+l)(x)|
. —1=x=1
— O(Nmax (—1/2,a~(rn+1),B~(ln+1)})

and

YN-27F 2_(N_2)<

=0(2VN"?)
as N - 00. Then we have from (3.11)-(3.14)

2N+a+/3+r,,+l,,—2>

(3.14) N-2

(3.15) IRLf; x| = o(¢<N> (NN If(z)l),

zel

where ¢(N) is a certain polynomial in N.
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Now let us estimate |Ry[ f; x]| for our problem (3.1)-(3.3).
It is known [8] that the corresponding eigenproblem of (3.1) and (3.3)
d3

e =Au in(-1,1),

(3.16)
u(+1)=0,

u”(-1)=0, O0=v=1

has the negative eigenvalues A} (k=1,2, - - ), which satisfy the equation

(3.17) e*M =2sin <\/§)\k+§>.
This equation has asymptotic solution
1\ o
3.18 AM~—|k+=)—=
and the corresponding eigenfunction is given by
(3.19) Ae*+Be */?co \/*)\kx+ Ce /25 ﬁ;kx
2 b

where A, B, and C are constants such that the eigenfunction satisfies the boundary
conditions in (3.16).
Then from (3.15) and (3.19) we obtain that

(0200 R(e"sx1=0( 4N exp [ - -y, o HOTSEZDTL,

A A
ofesn {575

= O<¢(N) exp{ N(xo+\/_)’o)[

and

(3.21)
‘Yk In (xo+on )]})

2 Xo+v3y,

where x,> 1 and y,> 0 are the intersection points of the contour (3.12) with the positive
half real axis and the positive half imaginary axis, respectively, and the relation between
Xo and y, is given by

Xo+Vx5—1=y,+Vyi+1.
In (3.20) and (3.21) we have used the symbol

22) "= N\"NV/)

Noticing that the function 1/x,In (x,++vx3—1) attains its maximum (=0.662743) at
Xo~1.81003 and the function In (xo+vx3—1)/(xo++3y,) attains its maximum
(=~0.280327) at x,~1.45188, then we have from (3.20) and (3.21) that Ry[e*<; x]>0
and Ry[exp[—(Ax/2) +i(v3Ax/2)]; x]>0 as N > if v, <0.560654. Thus we have
proved the following theorem.
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THEOREM 3.1. A sufficient condition for convergence in the sense of
max |fi(x)—Pn(x)]>0 as N>

—1=x=1

is
k 3
2 —=10.30910 ~—
(3.23) N 3 S ( 10),

where fi.(x) is the kth eigenfunction given by (3.19) of eigenproblem (3.16) and Px(x)
is its interpolation polynomial defined by (2.3).

A related condition was obtained in [8] for Chebyshev collocation using a different
approach.

3.2. Differentiation matrices and numerical observations. In this section we con-
tinue to observe the pseudospectral approximation to eigenvalues of (3.16).

By using (3.4) and (3.5) and noticing that h;(x) can be rewritten as
1+x
1+x;
where [(x) is the Lagrange interpolating polynomial

(3.24) hi(x) = L(x), 2=sj=N-1,

N —_

(3.25) I(x) = ] ~—2,
k=1 X; — Xi
kxj

it is not difficult to obtain third-order differentiation matrices as follows:

(3-26) D(Igl) = (dSg))k=2,~~~,N~1,j=2,--~,N—~1
with
1
(3.27) g = [(1+x)q8)+3q2)], kj=2,---,N-1,
1+x; i ’
where
.
291 2 1 .
3qy; [( )2_ - ], J # ka
q(3)~ - A | (xx "xj) (% _xj)2 ik (X “Xi)z
U -tan s ey =k
\ ki ]2 Z G —x.) L Ge—x) J=K
.
1
2‘1k‘[‘1kk _—], J#k,
6w qf=y - "9
) 1
2 .
- N2 = k’
L(qkk) ;L:k (e —x)° J
.
L.’ ] # k’
a;(x; — x;)
9kj = 1
i=k

b
Li=k X — X

and

N
a = H (% — x;).
ik
In (3.28) the sum is over i from 1 to N.
Let the eigenvalues of D% be ordered as

(3.29) Re (Tl) = Re (7'2) =---=Re (TN—Z)*
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The numerically computed Re (7,;) is shown in Fig. 3.1 as a function of parameters o
and B at N =32. Recall that in this section we assume that the interior collocation
points are the zeros of P%*}#"?(x), and that « and B assume values in (=2, ©) and
(=3, ), respectively. Observe that when B8 =0 (excluding 8 =0) the scheme (3.5) is
unstable since Re (7;) > 0. Figure 3.2 shows the function N*(N, a, 8) which is defined
as

k*
N2 if 7 is real, 7. <0
(3.30) N*(N, a, B) = and E’T}%ﬂmm, 1=k=k*,
0, otherwise.

The value of N* gives the proportion of discrete eigenvalues which closely approximate
the corresponding eigenvalues of the continuous problem. Note, again, that the approxi-

O == NNWWI
aououo

ggOOOOOO

FIG. 3.2. N*(N, a, B) as a function of « and B at N =32. N*(N, a, B) is defined by (3.30).
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mation process fails if 8> 0. Figure 3.3 shows how well the discrete eigenvalue, 7,
approximates the corresponding continuous eigenvalue, A}, for 1=k=N—2 and
N =32. The continuous line and the circles show log,,|A;| and log,, | 74|, respectively,
as functions of k. The plots are shown for a selection of parameter sets (¢, 8) in Figs.
3.3(a)-(f). Note, in particular, Figs. 3.3(a)-(c) where the interior collocation points
are, respectively, the zeros of P*" /272 (x) (Lobatto-Chebyshev), P”(x) (Lobatto-
Legendre), and P"/*"?(x) (Lobatto-Chebyshev extrema). In these three cases the

log,gleigenvaluel

N=32
35
T (a,B)= (‘5’ ‘§> (Lobatto-Chebyshev) °

o

. . k
5 10 15 20 25 30
(a)
log;gleigenvaluel
8T .
N=32
T (ot,B)=(-1,-2) (Lobatto-Legendre) o

+ + + + + +— k
5 10 15 20 25 30
(®)

F1G. 3.3. Comparison of eigenvalues of the continuous problem (3.16) (located on solid line) with those
of the discrete problem (located on circles). log,q |7;,| and log, |A3| are shown as functions of k.
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log,gleigenvaluel

4 °

. -k
5 10 15 20 25 30
©
logloleigenvalud
‘-.
5.-
44
34
N=32
24
(0,3)=(0,0)
N
| } 4 4 } +— k

5 10 15 20 25 30

(d)

Fi1G. 3.3. Continued.

values of N* defined by (3.30) are 0.36667, 0.40000, and 0.36667, respectively, and
the corresponding values of k* are 11, 12, and 11. The Legendre approximation of
the eigenvalues is superior to the two Chebyshev approximations. The best approxima-
tion displayed in Fig. 3.3 is that shown in (f) where (o, 8) = (3, —1) gives N* =0.43333
and k*=13. It is of interest to note that recent work by Trefethen [10] suggests that
since DY is not normal accuracy should be assessed by considering pseudo-eigenvalues
rather than exact eigenvalues. This point deserves further examination.
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log;oleigenvaluel
7T °
°

6+

+ y + + + —t k
5 10 15 20 25 30
(®
log;gleigenvaluel
4
6+
N=32 o ©
sl (@,B)=3,-1)
o o - 6 0 0 O o o

o
34+
2-.-
14+

. . , . . . k

5 10 15 20 25 30

)
F1G. 3.3. Continued.
3.3. Convergence. In order to prove convergence we need the following result.
LeEMMA 3.1. Let u satisfy u(£1) =0, u'(—1) =0 and have a continuous second-order
derivative; then

1
(3.31) J uu,,, dx =0.
-1

Proof. This is trivially established using integration by parts.
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Using this result it is not difficult to prove the stability of the collocation method
with @ =0, 8 =0 for (3.1)-(3.3).

THEOREM 3.2 (Stability). Let u™ be the pseudospectral approximation (3.4) with
a=0,8=0 to (3.1)-(3.3). Then

N-1

(3.32) T [ x, P =2+ O(N )] max [un()f’

Proof. Multiplying the kth equation of (3.5) by u™(x,, t) and w, and summing
over k from 2 to N —1, we have

1 dNt 2 Su
(3'33) ~ Z wk[u (Xk, t)] Z wiu (xk’ t) 3 (xk, t)

2 dt i k=2
Noticing that the degree of polynomial u™ (3°u”™ /3x>) is less than 2N —2 and that this
polynomial satisfies the boundary conditions (3.3), we have from Theorem 2.1 (here
n=23)

1 d — 1 3 N
634 37 % e, t)]2=j wup (U™ (6 1) T (5, 0) di
k=2 -1
From Lemma 3.1, we get from a =0, 8 =0 that
d N1
. Z Wk[u (xks t)] =0
therefore,
N-1 ) N-1
(3.35) Z o[u (x, P = Z o[ uo(x) 1.

Then (3.32) follows from (2.33) in Theorem 2.4. a

The next step for showing convergence is to show consistency. In order to do this,
we first give some results concerning the expansion of functions in Jacobi polynomials.

LemMA 3.2. The Jacobi polynomial Pk""”(x)(a >—1 B > —1) satisfies

-‘%{(1 —x) 1 x) P P,ﬁ“ﬁ)} = —m PP (1=-x) " (1+x)7,

where
wi=k(k+d+B+1).
For the proof we refer the reader to [9, pp. 60-61].

LEMMA 3.3. For 4> —1, B> —1, we suppose that u'”(x), 0=p=r, where r is a
nonnegative integer, satisfies

1
J wz5(x)|[u'P (%) dx < +oo.
-1
Then the coefficients &, of the expansion of u(x) in Jacobi polynomials

u(x)= Y @PP(x)
k=0



Downloaded 09/15/14 to 129.237.46.100. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

PSEUDOSPECTRAL METHOD 1643

have the asymptotic property
G = O (K202l g k- 00,

Proof. Having noticed that the coefficient ¢, in the expansion may be expressed
in the form

- 1! i 6
=" J w&,[;(x)u(x)P,E“’ﬁ)(x) dx,
K J-1

where
1
A= J ws 5(0)[ PP (x)] dx,
-1

we can easily establish the required result by using Lemma 3.2 and integrating by
parts. 0
LeMmMA 3.4. Suppose that u(x) satisfies boundary conditions

u”(-1)=0, O=v=l,

u(+1)=0, O=v=r,
and has a continuous derivative of order r (Zq=max (r,+1, 1,+1)). Furthermore, we
suppose that

1
(3.36) J’ w«x+r,,+1,;3+t,,+1(35)|’z(p)(x)l2 dx <+00, Osp=r—q,
-1

where 1(x) is the function defined in Lemma 2.2. Then the coefficients a, in the expansion
of u(x) in Jacobi polynomials

(3.37) u(x) = (1 _x)rn+1(1 +x)1"“ Z akpgca+rn+l,ﬂ+ln+1)(x)
k=0

have the following asymptotic property:
a, = O(K 2A0+1=9/2hy g k- 00,
Proof. From Lemma 2.2, it is known that #(x) is well defined and iP(x),
0=p =r—q,exists. Then Lemma 3.3 is applied to éi(x) with& =a+r,+1,8=8+1,+1

and the conclusion is obtained.
Note 3.1. In the expansion (3.37), the coefficient a, may be expressed as

1
(3.38) = J Wa 5 (X)u(x) P HETI(x) dx/ Ay,
-1
where
1
Ay =J wa+r,,+1,B+l,,+1(x)[cha+r"+1’3+l”+l)(x)]2 dx.
-1

Note 3.2. The condition (3.36) is not very strong because we can express u(x) as
(- 01)"‘
I
(1—6,)"
r !

n-

A +x)" 1y D(—1+4 6,(x+1)), xe[-1,0],
u(x)=
(=1+x)" (414 0,(x — 1)), xe[0, 1],
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by using Taylor expansion with Cauchy remainder. Here 0<#6,, 6,<1 are constants
that depend on u(x). Therefore, we can express #(x) as

(1=6,)" u™"V(=1+0,(x+1))

i={ ot reho
(1=6,) u"*"V(+1+0,(x — 1)) xe[0.1]
1! (1+x)* ’ P

Then, if u(x)e C™ and u(x) satisfies the boundary conditions, (3.36) can be satisfied.
Note 3.3. For the values of I, and r, used in this section, we have

(3.39) a, = O(k™20=1/2) a5 k- o0,

Now we are ready to show consistency for &« > —2, 8 > —3. In view of the discussion
in [5, p. 48] the truncation error is given by

N EX
[PN — PN ——3] u

2

ax ax

where ue C” is the solution to (3.1)-(3.3), Py is a projection operator defined by
(3.40) PNf= Py, . s(x), with n=3
(where Pn.,_; is defined by (2.3)), and

N-2 1/2
(3.41) lel=] 'Y e

Note 3.4. In the norm defined by (3.41),
|PYg—gll=0 for any g(x) on [-1,1];

therefore,
(3.42) IPN|=1.
TueoOREM 3.3 (Consistency). Let u, p~, and ||| be defined as above; then
El & < 1 )
. pNLpNv_ 2 -
(3.43) [ ax’ P ax3]u o N’

for any positive r.
Proof. We can expand u and u” = PVu(x) from Note 3.2 as

(3.44) u(x)=1-x)1+x)> ¥ P (x)
i=0
and
-3
(3.45) uN(x)=(1-x)(1+x)* ¥ aP{""#(x),
where
1
o=t [ wpCoucope o0 ax,
(3.46) ' '1‘
a; =Ai J o p(x)u™ (x) PR (x) dx.
iJ—1
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Then for any positive 7,
(3.47) a;=0(i"") asi—»>
from Lemma 3.4 and Note 3.2, due to u(x)e C™.
Using Theorem 2.1 and the orthogonality of Jacobi polynomials, we have
1 N-1
a;=—— Y wu(x, )PP (x)
A; k=2

N-1 e}

1
=ai+X Y o Y (I-x)(1+x)°
i k=2 j=2N-4-i

. ajP§a+1,B+2)(xk)P$a+1,ﬂ+2)(xk);

therefore,
(1) - a a
(3.48) i =, éTz<ll?sN—1 j=2NZ—4—i ajP; H’Bﬂ)(xk)Pg H,BH)(xk)
=0(N™")

for any positive r from Theorem 2.4 and (3.47). Then

8 3’
|[””5¢3P”‘a—x§]“

EX EX
= ” [PN—3 PN —P”—3]u
ax ax

+ HPNiu_i
3

u |

ax ax>
EN EX EX EX
§||PN||' ”ﬁPNu—Eu +'PN§u—£§u

=S (0= a) L1 =) (14 %2 P )] \
i—0 dx
+‘ § a,-—~d33 [(1=x)(1+x)*P{* A" (x)] I
i=N-=2 dx
=O0O(N™)

for any positive r, from (3.47), (3.48), Theorem 2.4, and the asymptotic properties of
the zeros of Jacobi polynomials and of the Jacobi polynomials themselves.

Thus, we have proved that the solution to (3.5) and (3.6) approximates the solution
to (3.1)-(3.3) if the interior collocation points are chosen to be the zeros of PU2%(x).
Convergence is likely to hold for a range of («, B8) values but we have established
stability via Theorem 3.2 only for @ =8 =0. Consistency, on the other hand, may
readily be established for general n with r, and I, satisfying (2.2) and « and B satisfying

(2.9).

4. Numerical results. In this section we give some numerical results on the
pseudospectral solution of the model third-order boundary value problem
d’u
'&;‘3‘=f on[-1,1],

(4.1)
u(x1)=0, u'(—1) =0,
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where f(x) is chosen such that the exact solution of (4.1) is u(x) = (1—x?)(1+x) e*~
Here K is a real parameter that can be freely prescribed. Large negative K gives an
exact solution with a steep gradient near x =—1 and large positive K gives a steep
gradient near x = +1.

Tables 4.1(a)-(d) give the error in the ||| and |||, norms at increasing values
of N and at a range of parameter sets (@, 8). Results are given in Tables 4.1(a)-(d)
for K=-10, —1, +5, and +10, respectively. Note that high accuracy and rapid
convergence are achieved as soon as N is large enough to give sufficient resolution.
Machine accuracy is obtained at N =16 when K = —1 and at N =32 when K =5; at
|K|=10 the required value of N exceeds 32. Note that the error pattern at K =10
differs insignificantly from that at K =—10. The parameter set (a, 8)=(3, —1) does
not perform better on the boundary value problem than the other sets, despite the

TABLE 4.1
(a)
Error in solving (4.1) with exact solution u(x) = (1—x?)(1+ x) exp (—10x).
a=-3 B=-3 a=-1 B=-2 a=-} B=-3  a=0 B=0 a=3 B=-1
N el lell, lelle lell2 lello lell lells lell2 llello lell2

4 504(3) 524(3) 490(2) 5.63(2) 626(2) 670(2) S76(2) 7.42(2) 233(3) 2.49(3)
8 1.15(3) 1.74(3) 143(3) 231(3) 540(2) 8.60(2) 2.68(3) 463(3) 375(2) 5.48(2)
16 0.644 112 0.298 0.661 0.399 0.714 7.15 17.4 4.87 9.17

32 1.46 (~11) 4.14(=11) 1.31(=11) 3.35(=11) 8.60(—12) 2.22(—11) 5.40(—10) 1.86(~9) 5.22(—10) 1.41(-9)

(b)
Error in solving (4.1) with exact solution u(x) = (1—x2)(1+x) exp (—x).
a=-3 B=-} a=-1 B=-2 a=-3} p=-3 a=0 B=0 a=3 B=-1
N Jelo lell2 llello lell lello el llello llell> lellw lella
4 0.999 1.00 0.505 0.505 0.165 0.215 0.640 0.790 9.02(-2) 9.82(-2)

8 1.65(—4) 1.77(—-4) 5.68(=5) 829(=5) 4.56(=5) 592(=5) 2.58(—4) 430(-4) 1.72(—4) 2.22(-4)
16 3.73(—15) 5.85(—15) 1.86(—15) 3.03(—15) 9.85(—16) 1.99 (=15) 2.17(—14) 5.24 (—14) 2.20 (—14) 4.45(—14)

(c)
Error in solving (4.1) with exact solution u(x)=(1—x?)(1+x) exp (5x).
a=-3 B=-3 a=-1 B=-2  a=-3 B=-3 a=0 B=0 a=3 B=-1
N el llell, flelleo flell; llefle fell, flello flell el lell,

4 269(2) 270(2) 3.57(1) 3.61(1) 1.80(1) 1.81(1) 1.13(1) 143(1) 1.84(1) 1.85(1)
8 7.03 1L11(1) 433 572 2.04 3.10 8.91 143(1) 948 1.18(1)
16 2.73(=5) 5.64(=5) 1.65(=5) 3.66(=5) 139(=5) 2.61(=5) 2.13(—4) 5.10(—4) 2.13(-4) 3.99(—4)
32 6.99(—14) 1.87(—13) 1.02(—13) 3.11(—13) 1.34(—13) 3.89 (—13) 4.76 (—14) 1.43 (—=13) 7.99 (—14) 2.47 (—13)

(d)
Error in solving (4.1) with exact solution u(x)=(1-x%)(1+x) exp (10x).
a=—% ,B=—% a=-1 B==2 a=—-% B=—% a=0 B=0 a=3 B=-1
N Jello el flelleo flell2 lelleo llell, lelleo el lelleo llell.

4 746(3) 748(3) 127(4) 127(4) 793(3) 798(3) 5.15(3) 527(3) 130(2) 1.30(2)
8 775(3)  9.05(3) 291(3) 349(3) 140(3) 1.83(3) 336(3) 527(3) 435(3) 538(3)
16 1.87 3.77 1.06 2.36 0.769 1.59 L11(1)  265(1) 116(1)  2.14(1)
32 2.65(—11) 7.92(~11) 2.13(=11) 570 (~11) 1.74(~11) 4.43(—-11) 7.11(~10) 2.44(=9) 7.36(—10) 1.97 (-9)
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marginally better performance in approximating the eigenvalues of the differential
operator. As stated at the end of § 3.2, it is possible that accuracy assessment based
on exact eigenvalues might be misleading [10].

5. Comments. We have considered pseudospectral methods for global polynomial
approximation of functions and of solutions to differential equations. Generalized
quadrature rules have been presented which identify interior collocation points for the
pseudospectral solution of certain model differential equations. In these equations the
nth derivative of the unknown function is specified in the interior of an interval on
the real line and n derivative conditions are specified at the endpoints of the interval.
The familiar Gauss-Radau and Gauss-Lobatto nodes for n =1 and n =2, respectively,
are special cases of the general presentation.

The case n =3 is examined in more detail. It is shown, inter alia, that convergent
pseudospectral methods can be constructed for a model third-order evolutionary
equation, and the viability of the suggested choice of collocation points is supported
by numerical results for a boundary value problem. It is hoped that the presentation
will be useful to those who might be involved in the pseudospectral solution of more
general third-order problems in one space dimension. Finally, it is hoped that the
results will prove useful for the solution of partial differential equations in more than
one space dimension.
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