
HGS Schedulers for Digital Audio Workstation like
Applications

By

Karthik Poduval

Submitted to the graduate degree program in Electrical Engineering &
Computer Science and the Graduate Faculty of the University of Kansas in
partial fulfillment of the requirements for the degree of Master of Science

Thesis Committee:

Prasad Kulkarni

James Miller

Victor Frost

Date Defended: 14th July 2014



The Thesis Committee for Karthik Poduval
certifies that this is the approved version of the following thesis:

HGS Schedulers for Digital Audio Workstation like Applications

Prasad Kulkarni

Date Defended: 14th July 2014

ii



Abstract

Digital Audio Workstation (DAW) applications are real-time applications that have spe-
cial timing constraints. Hierarchical Group Scheduling (HGS) is a real-time scheduling
framework that allows developers implement custom schedulers based on any scheduling
algorithm through a process of direct interaction between client threads and their sched-
ulers. Such scheduling could extend well beyond the common priority model that currently
exists and could be a representation of arbitrary application semantics that can be well
understood and acted upon by its associated scheduler. We like to term it “need based
scheduling”. In this thesis we first study some DAW implementations and later create a few
different HGS schedulers aimed at assisting DAW applications meet their needs.
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Chapter 1

Introduction

Digital Audio Workstation (DAW) 1.1 applications that run on a PC are common real-

time applications with potential for operating system support improvements. They are

excellent driving applications for system improvements due to the human ear’s sensitivity

to jitter as the sensitivity of audio is higher than video. This is illustrated by the fact the

video playback synchronizes on audio and skips video as necessary to match the audio.

Definition 1.1 Digital Audio Workstation

A general purpose computer being used for running specialized applications that assist in
recording, mixing, editing and playback of audio. Very often such systems comprise of low
latency sound cards with ability to record from several input channels and play back on
several output channels. Such systems have also be known to run on a fast processor which
has plenty of cache and a large amount of RAM.

DAW of the past were built with specialised and dedicated hardware, essentially an

embedded system. The reason to have gone with this approach was that no single processor

was fast enough to meet their processing requirements and hence the need to use an embedded

system in the from of multiple processors. Scheduling challenges were reduced as each

processor had a specialized task which its own scheduler could meet.

However, recently practitioners desire to use a more general purpose computer to imple-

ment a DAW. There are obvious economic advantages to using general purpose computers.

Increase in hardware performance along with reducing costs making this a more attractive
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approach. Richness of software and libraries and increased availability of audio tools that

make general purpose computers usable as a DAW are part of this trend.

Rewire [8] and JACK Audio Connection Kit(JACK) [14] are examples of software pack-

ages that assist several DAW implementations on a general purpose system. ASIO [1] is

a windows library that provides a lower latency path to audio devices as compared to the

windows direct sound library, and is hence preferred to be used in DAW applications. JACK

provides the patch bay like capability of Rewire and a low latency sound card abstraction like

the ASIO system on windows. Such software allow applications to interconnect their audio

streams in many ways similar to a hardware patch bay. These systems are particularly inter-

esting since they represent flow of audio data rather than processing. VST [11, 24], LV2 [7]

and LADSPA [4] are effect and instrument plugin standards that enable plugin developers

make their product work across different DAW applications.

A key architectural decision in DAW is perhaps the number of threads used to support

audio. Single threaded designs must make one thread do many things. Multi threaded

designs can let each thread do one or a few things. Both approaches need to make sure

that specific processing steps occur when they should. Single threaded designs make timing

control part of the application. Multi threaded designs place timing under the control of the

thread scheduler. Hence for a DAW on a general purpose PC, scheduler is the key to both

designs in different ways.

DAW applications that run on a PC, coexist with other software on a general purpose

system. As discussed, DAW applications often comprise of multiple threads which implement

application semantics with groups of threads rather than single threads. Policy or goal con-

flicts among several threads in a machine represent key problem in DAW application which

can involve scheduling subtleties. Most operating systems have relatively simple priority or

deadline scheduling applied to individual threads.

Such a DAW application faces extreme challenges in always achieving timely execution

of the pipeline or graph and ensuring to keep the sound card buffers filled up and hence
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choose higher order thread priorities to keep up. In spite of that, when the system is well

loaded with several high priority process and interrupts, audio data can occasionally go

missing because of processing delay or scheduling effect commonly seen as a buffer underrun

(playback scenario), when software is unable to fill sound card buffers before the audio period

expires.

Modern approach devised to make the DAW keep up on its promises is by maximizing

resources like having multi-core CPU’s, high amounts of RAM, sound cards with larger

buffers etc. Whenever available, soft real-time capabilities of OS are made use to prefer the

DAW threads over rest of the system. Use of low latency APIs like JACK and AISO is also

a common practice.

In summary, maximizing computing resources, using low latency API and using real-time

capabilities seem to be the most common ways to realize a DAW on a modern system. A

better approach will involve changing the scheduling framework which is however much more

specialized and difficult approach to the problem.

The system improvement considered in this thesis is to investigate how special purpose

DAW requirements can be achieved in a general purpose system by showing how to use

a customizable scheduling framework to meet these needs. This customizable scheduling

framework, also known as Hierarchical Group Scheduling, looks at threads in groups and lets

applications directly specify their semantics and schedule the group of threads accordingly

using arbitrary semantics agreed upon by the applications and scheduler and without the

necessary use of priority. We call this approach “need based scheduling”.

Chapter 2, related work, is where we take a look at some attempts made by other re-

searchers in the domain of digital audio under general purpose operating systems. We would

also study the internals of JACK which has established itself as a standard backend for

realizing DAW on Linux.

In chapter 3, we go through all the various implementations and experiments done with

HGS schedulers.
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In chapter 4, we iterate through the performance evaluation experiments done with the

various implementations and discuss the results.

Finally in chapter 5 we discuss the conclusion and future work.

4



Chapter 2

Related Work

In this thesis work, we build schedulers aimed at helping support DAW applications meet

their needs. Before doing any implementations, let us look at the research work already done

in this area.

2.1 JACK

JACK [17] (Jack Audio Connection Kit) is a very popular open source audio server. Since

its inception in 2002, it has turned out to become the de facto standard for realizing a DAW

in Linux. JACK has also been ported to other Unix operating systems, MAC OS and even

Windows. JACK as a term can collective represent the JACK API for client applications

and the JACK server or daemon.

Key JACK features are

• Provide a low latency sound card abstraction API thus avoiding direct interaction with

the underlying sound driver.

• Powerful API that lets applications perform patch bay like operations by connecting

to another client’s input /output or to the sound interface, load plugin effects etc.

• Manage scheduling of client audio precessing thread.

5



The JACK system architecture is well described in Figure 2.1 [17]. The JACK server or

jackd is a daemonized process which performs the core services of JACK. The jackd hosts the

audio driver and the engine. The purpose of the driver is to provide a layer of abstraction

between the host sound hardware and jackd. On Linux, the default driver is the JACK

ALSA driver which is a userspace library that interacts with the sound card using Linux

ALSA layer.

Figure 2.1. JACK Architecture [17]

There are two types of clients to jackd, internal and external clients. External clients

interface with jackd using the libjack library. Internal clients are plugin libraries which are

hosted within the jackd process. Client applications can use the libjack API to connect to

another client’s audio stream to create an audio connection graph. If we look at a part of

the graph, as shown in Figure 2.1 [17], we see that external client D writes to external client

E’s port which in turn writes to external client F’s port and so on. The client ports are

implemented as shared memory between jackd and external client process space. Of course

internal clients have access to the memory too. Clients create audio ports as a means to

exchange audio data. A client typically creates an input and/or output port. During the
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process callback, the clients would open both the input ports, read incoming frames from

its input port, do the processing of incoming audio frames and write into its output port

(which would be the input port of the next client in the graph if connected). The very

last client would write to the audio driver input port (playback port). The very first client

would read from the audio driver’s output port(capture port). Since the ports are shared

memory, clients have access to other client’s audio port. If multiple clients write into a client

or playback ports’ audio buffer then jackd engine mixes the output before writing it out.

Figure 2.2. JACK Client Space [17]

Figure 2.2 [17] shows what an external client process space might look like. The client

application makes request to the jackd via the request socket (through libjack). Client may

contain other thread like a GUI thread for example. Jackd creates a real-time thread for the

client whenever the client calls the libjack API jack activate. This real-time thread is used

to invoke the process callback function that the client sets prior to a call to jack activate

through the API jack set process callback. After the call to jack activate, this client gets

added to the processing graph and its process callback function gets invoked in the order in

which it is connected in the graph. The process callback function should make no blocking

7



calls as it may affect the completion of graph execution. The entire graph needs to complete

execution before the audio period expires. If it is not able to do so, jackd’s audio driver would

have to go to the next audio cycle without supplying buffer to the audio driver. When such

a thing happens, the jackd engine records an XRUN, which collectively represent underrun

for playback and overrun for recoding scenario. Clients have a facility of subscribing to this

XRUN callback based on which it may decide to throttle its processing. The libjack creates

a non real-time thread within the client process space inside of which XRUN and other

callbacks (non process callbacks) are delivered. The callbacks are delivered through UNIX

datagram socket messages.

Figure 2.3. JACK Scheduling [17]

There are two implementations of JACK [17,23]. The latter is a reimplemented version of

the original JACK in C++ and is multiprocessor capable. Both versions are API compatible

and mostly architecturally identical. Jackd maintains the client connection graph in a lock

free programming model [23]. The idea behind the lock free programming model is that

the graph data structure is double buffered and at the end of the audio period. Hence

changing a graph takes effect at the end of the audio period. The client connection graph

itself gets created through the calls by various client to the jack connect API. The scheduling

8



of the clients is controlled through the jackd through its engine. Invoking each of the client’s

process callback function is the responsibility of the jackd and it uses UNIX style pipes for

doing so. Lets look at Figure 2.3. As a part of client registration, the libjack library creates

a unix style named pipe using the system call mkfifo. The name of the pipe is a mix of

the client name together with an assigned reference number from jackd. After the client

calls jack activate, the real-time thread which is meant to invoke the client process callback

makes a blocking read or poll call into its named pipe. Now depending on where the client is

connected in the graph, either the audio driver or previous client writes into the named pipe

of the next client. The audio driver is contained inside the jackd process and hence the first

write to the first client in the graph is usually made by the jackd. Once that client’s process

callback wakes up, completes its deed and then exits the libjack code takes over and passes

the call to jackd which then writes into the next client’s named pipe. This process goes

on until all the client process callbacks are invoked in the graph. A simple client example

program can be viewed in [2].

2.2 Alternative Real-time Scheduling Frameworks

JACK schedules the client’s process callback thread and audio driver thread in thread

belonging to rt sched class in Linux under the SCHED FIFO category. The rt sched

class has been made available to the vanilla Linux. PREEMPT RT [20] also contains the

rt sched class and provides thread context to interrupt handlers and also provides priority

inheritance for some user and kernel mutexes.

SCHED DEADLINE [21] is another real-time Earliest Deadline First(EDF) scheduler

that has been implemented as a sched class. The threads can specify a worst case execution

time and a deadline to the scheduler which would then try its best to satisfy the requirements.

Limits can be set on the scheduling bandwidth so that other scheduling classes can also get

some CPU time.

AQuoSA [25] is another Linux based framework that adaptively makes changes to
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scheduling reservation for threads under a scheduler class for achieving a certain level of

QOS specified by the application. There also has been a attempt to include JACK threads

under this framework [19].

The Multimedia Class Scheduler Service (MCSS) [18] of Microsoft Windows provides a

very similar CPU time reservation to the threads it handles.

2.3 HGS

Most of the alternative scheduling frameworks we just reviewed are more or less priority

based. Some of them reserve CPU bandwidth for a scheduler. To achieve real-time, one

needs to set up high order priorities in most of these frameworks. Simply hiking the priority

is not the solution as it is very difficult to determine an ideal priority ceiling especially

without the knowledge of what the other high priority threads are and how they behave.

What happens when there are threads that are even higher in priority threads as compared

to the DAW threads in the system. Our initial assumption that having high priority solves

our problem turns out to be incorrect.

KU User and System Programming group’s Hierarchical Group Scheduling [27] provides

non priority based scheduling framework. Under HGS, we can implement custom schedulers

to which a single or group of client threads may be added. The client threads have means of

setting parameters to the scheduler. These parameters may be used to dynamically tweak

the scheduling algorithm based on application input.

HGS is currently implemented on Linux 2.6.31 over which the PREMPT RT real-time

preemption patches have been applied. One of the many features of the real-time preemption

patch is the addition of sched classes. The old style single scheduler point approach has been

extended to allow multiple sched classes. On the vanilla PREEMPT RT Linux, the present

sched classes are sched rt,sched fair and sched idle.

As the name suggests sched rt is the sched class for all the real-time threads in the

system. The sched fair is the completely fair scheduler which happens to be the default
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scheduler on vanilla Linux 2.6.31. On PREEMPT RT patched Linux, the sched classes are

arranged in the following fashion as shown in Figure 2.4. Based on the arrangement, the

threads added to the sched rt class get first chance to run. Threads are added to this sched

class by calling certain pthread extension API’s. Hard IRQ(ISR threads) are also executed

as a part of this sched class. They are given a particular priority. When all threads in the

sched rt class are out of the scheduler runqueue and not ready to run, then the sched fair

sched class gets invoked. This is where most of the threads of the system reside. When no

thread in the system is ready to run, the sched idle is invoked. Idle sched class has threads

that do some housekeeping and also power management at certain times.

sched_rt -> sched_fair -> sched_idle

Figure 2.4. Sched Class Hierarchy in PREEMPT RT Linux

In the KUSP Linux, in which we have the HGS config selected, we have an additional

sched EC class which is inserted in the hierarchy even before the sched rt sched class thus

getting the first chance to pick threads over the RT sched class as shown in Figure 2.5.

HGS Hierarchy -> sched_EC -> sched_rt -> sched_fair -> sched_idle

Figure 2.5. Sched Class Hierarchy in KUSP Linux

HGS gets invoked from the scheduler entry point in sched.c in the kernel and not really

from the sched EC sched class. This is because HGS has existed prior to the sched class

concept in Linux hence it simply made sense to continue that approach. However the purpose

of the sched EC class is to provide the threads that add themselves to the HGS hierarchy a

chance to execute in a priority shed class. Only if the HGS hierarchy fails to choose a thread

does the sched class stack get invoked. Hence HGS always gets a first pass at scheduling in

the system.
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Program 2.1 SDF structure of function pointers
struct gsched_sdf {

const char *name;

struct module *owner;

struct list_head schedlist_entry;

void (*create_group)(struct gsched_group *);

void (*destroy_group)(struct gsched_group *);

void (*setup_member)(struct gsched_group *, struct gsched_member *);

void (*insert_member)(struct gsched_group *, struct gsched_member *);

void (*remove_member)(struct gsched_group *, struct gsched_member *);

void (*release_member)(struct gsched_group *, struct gsched_member *);

void (*release_group)(struct gsched_group *);

struct gsched_member *(*find_member)(struct gsched_group *group, const char *member_name);

int (*set_member_params)(struct gsched_group *, struct gsched_member *, void *, size_t);

int (*get_member_params)(struct gsched_group *, struct gsched_member *, void *, size_t);

int (*set_group_params)(struct gsched_group *, void *, size_t);

int (*get_group_params)(struct gsched_group *, void *, size_t);

void (*iterator_prepare)(struct gsched_group *, struct rq *rq);

struct gsched_member *(*iterator_next)(struct gsched_group *, struct gsched_member *, struct rq *rq);

void (*iterator_finalize)(struct gsched_group *, struct gsched_member *, struct rq *rq);

int (*is_runnable)(struct gsched_group *, struct gsched_member *);

int (*fork_member)(struct gsched_group *, struct gsched_member *, struct gsched_member *);

void (*move_member)(struct gsched_group*, struct gsched_member*, int, int);

void (*start_member)(struct gsched_group *, struct gsched_member *, struct rq *, int);

void (*stop_member)(struct gsched_group *, struct gsched_member *, struct rq *, int);

void (*futex_lock)(struct gsched_group*, struct gsched_member*, unsigned long, struct rt_mutex*);

void (*pre_schedule)(struct gsched_member*);

void (*post_schedule)(struct gsched_member*);

bool (*need_schedule)(struct gsched_member*);

size_t per_group_datasize;

size_t per_member_datasize;

size_t per_cpu_datasize;

};

One could write a scheduler that would get invoked by the HGS hierarchy by implement-

ing something known as a Scheduling Decision Function(SDF). SDF is a structure containing

a set of function pointers that the HGS framework invokes whenever it wants to pass schedul-

ing control to a custom written scheduler. To create a scheduler under KUSP, one needs to

implement an SDF struct as struct gsched sdf (shown in Program 2.1) and register it with

the HGS framework by calling gsched register scheduler.

An SDF can manage scheduling for a set of client threads. These set of threads are

collectively known as a group in HGS terminology. Each client thread that becomes a part

of the group and whose scheduling is managed by the SDF is known as a member. An

SDF can maintain its own accounting data structures at a group level level and at member

level. On SMP systems an SDF may maintain per CPU data structures. On SMP system

and SDF would have to maintain a client list per CPU.

On the userland side, there is a library known as libhgs which allows client threads to
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perform various operations on the HGS framework. There is an API to create a group, give

it a name and associate it with an SDF. Once a group gets created the create group callback

of the SDF gets invoked. Here the SDF can create its accounting data structures at a group

level. The libhgs library also contains API to add client threads to that group. Once a client

thread adds itself, the insert member and setup member callbacks of the SDF get invoked.

We also have API to set and get either group or member parameters. Every time a scheduling

decision needs to be made the HGS framework makes a call to the iterator next callback

of the SDF. Out here the SDF can look at the group or member parameter variables and

make an appropriate scheduling choice. Upon making a valid choice, it needs to return the

appropriate struct gsched member * pointer of the member the SDF has chosen to schedule.

On passing NULL, the HGS framework then passes the control to the next SDF in the

hierarchy.

Figure 2.6. HGS Hierarchy

Note that a group thats being run by an SDF may either contain set of member threads

or a set of member groups. The default HGS hierarchy is setup as shown in Figure 2.6. A

scheduler named seq sdf, which is a scheduler that contains its members sorted by priority

in a list and picks any runnable members /groups. The seq sdf has been setup as the top

level scheduler which will schedule other groups under it. This logic has been illustrated in

Program 2.2. As shown in the logic in Program 2.2, whenever a client thread that is not

ready to be run (because of being in a wait queue), the iterator next callback is reinvoked

by passing in the pointer to the last run member that was chosen but could be scheduled as

it was not ready to run. In response to this argument, the iterator next needs to now pick

up a different client from its list and return its pointer to the HGS framework.
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Program 2.2 HGS Scheduling Logic
static struct gsched_member *gsched_run_scheduler(

struct gsched_group *group, struct rq *rq)

{

struct gsched_member *next=NULL, *ret=NULL, *proxy;

struct gsched_sdf *sdf = group->sdf;

int cpu = smp_processor_id();

if (sdf->iterator_prepare)

sdf->iterator_prepare(group, rq);

next = sdf->iterator_next(group, NULL, rq);

again:

if (!next) {

goto record;

}

switch (next->type) {

case GSCHED_COMPTYPE_LINUX:

ret = &GSCHED_LINUX_CHOICE;

goto out;

case GSCHED_COMPTYPE_GROUP:

ret = gsched_run_scheduler(next->group.ptr, rq);

if (ret)

goto out;

break;

case GSCHED_COMPTYPE_TASK:

/* check SDF rules -- default to runnable */

if (sdf->is_runnable && !sdf->is_runnable(group, next))

break;

proxy = gsched_schedule_proxy(next, cpu);

if (proxy) {

ret = proxy;

goto record;

}

default:

BUG();

}

next = sdf->iterator_next(group, next, rq);

goto again;

record:

gsched_record(group, next, ret);

out:

if (sdf->iterator_finalize)

sdf->iterator_finalize(group, next, rq);

}
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Chapter 3

Implementation

3.1 Jacklike

Emulation is a technique often used by several researchers for development. Emulation

is preferred when developing on the real environment is either expensive or too difficult and

time consuming.

Initial experience showed that directly implementing schedulers using JACK environment

may prove to be harder to debug due to the complexity of the JACK source and its multi

threaded nature. Another reason being that, it is not possible to integrate Data Streams

(DS) instrumentation framework [15, 16] to JACK as several parts of the JACK source get

compiled into shared libraries and DS currently lacks shared library support. DS being a low

latency instrumentation framework goes hand in hand while developing an HGS Scheduler.

Creating an HGS scheduler is quite a complex task and hence must be done in smaller steps.

Hence to simplify the development process and try out different scheduler implementations

on a controlled environment, we do our initial scheduler prototyping and testing on an

application called jacklike. Not all DAW applications are built upon JACK, especially those

which existed before JACK came into existence. Hence it makes sense to pull out only the

scheduling aspects of a typical DAW in the form of a test application. In other words jacklike

is a linear multi-threaded pipeline processing application. Jacklike is written in a modular
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fashion such that it can serve as a common platform to test multiple HGS scheduler designs.

Once fully tested and evaluated, we choose the candidate SDF for JACK integration.

Jacklike relies on a common set of interfaces defined in synchro.h. It calls these interfaces

function to manage thread synchronization. The idea behind defining a common set of

interfaces is to have multiple concrete implementations underneath and a single top level

application to test them out. Each implementation embraces a different synchronization

technique. Implementations are named as libxxxx. For example, an implementation built

with unix style pipes is called libfifo.c. A makefile variable called IMPL controls which of

the implementation gets compiled into jacklike application. So if SDF based synchronization

were to be used then we define IMPL=libsynchro. Similarly if pipe based synchronization

were being used, then we define IMPL=libfifo.

The most important interfaces defined in synchro.h are the Signal and Wait :-

• Signal : This is used to make another thread ready to run, that thread would already

be waiting for this call so that it can start running

• Wait : A thread that does not want to run until instructed to do so via a Signal call

would make this call

In addition there are a few other interfaces that have been defined which can be thought

of as superset of the requirements of all Synchronization technique libraries.

The following is the list of supported implementations:-

• libfifo : In this implementation, we create threads using POSIX thread API. For

synchronization, we make use of Unix pipes for interprocess synchronization.

• libfifoRT: In this implementation, we create threads using POSIX thread API(pthread)

however we add them to the SCHED FIFO real-time Sched class using the API

pthread setschedparam. For synchronization, we make use of Unix pipes. JACK also

adds its real-time thread to RT Sched class using the same API.
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• libsynchro: This makes use of the newly written Synchro SDF HGS scheduler version

1 for synchronization.

• libsynchroFSM: This makes use of the newly written Synchro SDF HGS scheduler

version 2 that is an improvisation on version 1 and fixes the bugs found in it.

The client 0 thread in jacklike has a special purpose. When the application starts, client 0

is ready to run while all other threads need to be signalled to run. On a basic level the

mechanism is quite simple. Every client has a synchronization object that is represented

through the struct client table t. This object contains some management information like

the name of the client, its reference number and references to any file descriptors that may

be used. Every client is allocated a reference number. The maximum number of clients that

JACK supports is 64. Hence even Jacklike has imposed this upper limit to the number of

permissible clients. Jacklike creates a client table array of 64 clients in the global memory.

As a part of initialization, Jacklike calls an Allocate method. The libfifo implementation

of the allocate method creates the pipe. Later Jacklike creates multiple client threads and

each of them get into a while loop as shown in Program 3.1. All of the client threads except

client-0, which has a special purpose, get into a self blocked state by making a call on the

Wait method. The client-0 which has a special purpose, is the only client that does not

initially get into a wait state. It signals the client with the next reference number and then

makes a blocking wait call on its synchronization object.

The client-0 can be seen as an analogue of the audio driver thread in JACK server process.

It waits synchronously on the audio driver cycle. Once audio data is ready to be transferred,

it signals the first client. The first client then signals the second client. For Jacklike the

client connection graph is liner for example if there are n clients the scheduling graph goes

like:-

client-0->client-1->client-2 ... ->client-n

wait audio period

17



client-0->client-1->client-2 ... ->client-n

....

Program 3.1 Synchronization Code in Client Process Callback Thread
while(...some condition)

{

Wait(Self Refrence Number);

ProcessCallbackFunction();

Signal(Next Refrence Number);

}

3.1.1 Libfifo

Libfifo is the reference implementation that closely emulates the current synchronization

technique of JACK. This serves as the reference implementation against which we compare

the behaviour, and performance of other implementations. This implementation makes use of

UNIX style pipes to synchronize its clients. Every client thread has a named pipe associated

with it. Each client (except client 0) waits on a blocking read call on its named pipe. Client 0

calls Signal which writes into the named pipe of client 1 thus unblocking it from its initial

blocking read call. After doing so client 0 calls a Wait on itself which essentially is a blocking

read call on client 0’s named pipe. Client 1 (that just woke up) does its bit of processing and

then calls Signal on the next client in the pipeline client n and this goes on till all client’s

get signalled to run one at a time. Once all client’s complete, client 0 gets woken up by the

last client. Client then sleeps for the audio period and does the same sequence over again.

3.1.2 LibfifoRT

LibfifoRT is identical to libfifo and uses the same unix style pipes for synchronization.

However in the libfifoRT implementation, the client threads are added to the SCHED FIFO

real-time Sched class. JACK too adds its real time threads to the RT Sched Class.
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3.1.3 Libsynchro

Libsynchro is an implementation that makes direct parameter calls to its scheduler, Syn-

chro SDF i.e. the Signal and Wait translate to SDF set parameter calls. Synchro SDF

version 1 is pretty simple in its design where every member in the SDF group has a member

state variable called runnable. When a member is signalled, the runnable state variable for

that member is set to TRUE. When a member calls wait, the runnable state variable for that

member is set to FALSE. Since each client writes into another client’s member parameter,

an additional group level synchronization parameter was implemented which basically waits

for all the threads to add themselves to the group after which only the group scheduling can

begin. This is a deviation from JACK but is necessary due to the simple semantics of this

particular scheduler.

Client 0 creates the group and associates sdf sync along with it client 0 also makes

group level parameter call to the SDF to set the member count The SDF stores this

number in its group data structure. Each client makes a member parameter call, called

SELF INIT SUSPEND. This call is meant to block all clients until the expected number

of clients join the system. Once the expected number of clients join the group, then all

client except client 0 have their runnable state variable set to false. Having the runnable

state variable to false indicates that the SDF’s iterator hook would not select the thread.

The client 0 however is brought back to the runnable state by making the runnable state

variable true This is because client 0 needs to run so that it can run and signal the next

client in the sequence. There are two threads in the test application. When stress testing

this implementation, a lockup condition was discovered. Let us discuss about this lockup

condition in detail. The sequence of events that led to the lockup is shown in the sequence

diagram 3.1. The sequence diagram is fast forwarded to a point little before the lockup

scenario. By then client 0 has added itself to the group and is being scheduled by an SDF

on CPU 0 client 1 has also added itself to the group and is being scheduled by and SDF

on CPU 1 Both threads have also completed executing the Self init suspend call. We also
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assume that a few cycles of iteration have passed and we start off at a point when client 0

is running. In the next subsection we describe the scenario from the annotated sequence

diagram.

3.1.3.1 Sequence diagram description

Refer to the Sequence diagram in Figure 3.1

Interest Point 1 client 0 is chosen to run on CPU 0 by the SDF on CPU 0. Client 0

makes a Signal library call to the SDF. The call propagates through the HGS framework

which then identifies the group and member by name and identifies the group and member

data structures. This call is then transferred internally to a set member params hook in the

SDF. The hook acquires the group lock modifies the runnable state variable of the member

client 1 making it TRUE and then releases the group lock.

Interest Point 2 At this point the SDF iterator is called on CPU 1. The SDF iterator

acquires the group lock as it does not want any of the group or individual member data to

be modified while its trying to make a decision. It sees that the runnable state variable is set

to TRUE. As client 1 is the only member on its CPU 1 list and since its runnable variable

is set to TRUE, the SDF iterator on CPU picks client 1 to be scheduled.Beyond this point,

client 1 also starts executing on CPU 1.

Interest Point 3 client 1 which is executing on CPU 1 makes a call to Signal client 0. The

call propagates through the HGS framework which then identifies the group and member

by name and identifies the group and member data structures. The call is then transferred

internally to a set member params hook in the SDF. The group and member data structure

references are passed as arguments to the hook. The hook acquires the group lock, modifies

the runnable state variable of the member client 0 making it TRUE and then releases the

group lock.

Interest Point 4 Client 0 which is already running, as it has not yet made a call to the

Wait call is unaffected by its runnable state variable change to TRUE. Though not shown
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Figure 3.1. Sequence Diagram of Scenario in SDF Version 1
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in the sequence diagram, even if CPU 0 was to be interrupted due to a hardware Interrupt

and the SDF iterator would be invoked, it would still be picked by the SDF iterator as the

runnable state variable is TRUE. Client 0 makes the Wait call next. The wait call again like

the Signal call makes an entry into the kernel and to the SDF set member parameter hook

where after acquiring the group lock client 0’s runnable state variable is set to FALSE after

which the group lock is also released.

Interest Point 5 Client 1 too makes the Wait call which causes the runnable state variable

of client 1 to be set to FALSE.

Interest Point 6 At this point the SDF iterator is called on CPU 1. It sees that the runnable

state variable of client 1, the only client on its list is FALSE. Since the only member in its

list is not willing to be scheduled, it passes NULL which causes either Linux or other HGS

schedulers inserted later then the sync scheduler to make choices.

Interest Point 7 At this point the SDF iterator is called on CPU 0. It sees that the runnable

state variable of client 0, the only client on its list is FALSE. Since the only member in its

list is not willing to be scheduled, it passes NULL which causes either Linux or other HGS

schedulers inserted later then the sync scheduler to make choices.

Interest Point 8 and 9 Beyond the dotted line as shown in 9, neither client 0 or client 1

are schedulable as both have their runnable state variables set to FALSE.

The root cause for this race condition is the existence of a single variable, i.e. the runnable

state variables to determine if a client is runnable. The issue may be solved if the Signal and

Wait are made atomic and modified in a single call. This way as per the scenario described,

client 1 does not start running as soon as client 0 signals it. A limitation in the SDF version

1 design limits our ability to make the Signal and Wait atomic Since the calls are made to

affect per member params, two calls need to be made to change the member state variables

of 2 clients. Also this design needed all threads to have joined into the group before nay

of them could be scheduled. We will try to address these limitations in SYnchro SDF V2

section 3.1.4.
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3.1.4 Synchro SDF version 2

Thus we now know that version 1 Synchro SDF with one single member variable is an

inadequate solution. A more workable solution to fix this issue is by representing the signalled

state and runnable state as two separate variables. The conditions, inputs or events that

cause state transitioning are governed by a FSM digram described in section 3.1.4.1.

Lets review some of the problems with Synchro SDF. The Signal and Wait calls were

member set parameter calls into the SDF. This meant that all threads had to join the group

before any threads could make calls that signal other threads. To make this work with

jacklike, a self init suspend call was defined in the synchro.h. The library for SDF version

1, libsynchro had to implement a barrier like synchronization mechanisms. SDF version 2

solves this problem by making the Signal and Wait calls as group set parameter calls A

synchro table (program 3.2) is defined at the group level in the SDF. The synchro table is

an array of 64 structure elements. Each struct element contains two state variables:-

• Signal State Variable

• Run State Variable

Program 3.2 Client Table group level data structure in Synchro SDF V2

struct synchro_object {

int run_state;

int signal_state;

};

struct synchro_object client_table[64];

The Signal and Wait translate to SDF group set parameter calls which modify an entry

in the synchro table. Hence in the library implementation for SDF Version 2, the Signal and

Wait calls are made using the client /member reference number which is how JACK also

references its clients. Let us now describe on how the two state variables and FSM manage

emulate pipe like semantics.
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3.1.4.1 FSM Description

Every client state is held at the group level by the SDF in a table program 3.2. The

synchro object is a C struct defined in the SDF that consists of two variables

• Signal state variable : This variable holds the state of a signal that may be send to

a client, the client would also be waiting for this signal. This variable can assume 2

values:-

– DELIVERED : meaning that the signal has been delivered

– UNDELIVERED : meaning that the signal has not been delivered

• Run state variable : This state variable holds the run state of a client. The run state

has a close relation to the signal state and weather or not a client is run is determined

by a combination of the signal, run state and the calls made by the client that affect

these states. This variable can assume 3 values:-

– BLOCKED : this state means that the client /member is waiting to be signalled in

a BLOCKED state. BLOCKED state here simply means that the SDF’s iterator

hook will not pick this member

– RUNNABLE : this state indicates that the SDF iterator would select the client

/member as a scheduling decision

– TO BE SCHEDULED : this state indicates that the client member has been

signalled to run or in other words be scheduled by the SDF. The reason why this

state is necessary will become evident as we discuss the state transitions

3.1.4.2 FSM State Transitions

We are going to discuss the various inputs or events that cause the state to change for

the two state variables. On a very broad sense, we have only 2 API’s the client makes on

the user side which are:-
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Figure 3.2. FSM of Signal sate variable

• SIGNAL

• WAIT

These two API’s however take different paths based on the value of the Signal State

Variable. Let us discuss the algorithm that modifies the Signal State and Run State Vari-

ables. The program 3.3 explains the Algorithm. Individual variable FSM diagrams have

been shown in Figures 3.2 and 3.3.

3.1.4.3 Sequence diagram description

Let us now explore the exact scenario which led to lockup in Synchro SDF on Synchro

SDF FSM now under Synchro SDF version 2 with the FSM based state variables.Please refer

to sequence diagram in Figure 3.4. Interest point 0 Client 0 is runnable and is chosen by
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Program 3.3 State Transitioning Algorithm
SIGNAL

if singal state == UNDELIVERED:

SIGNAL_SENT

if signal state == DELIVERED:

SIGNAL_SENT_REPEAT

WAIT

if signal state == UNDELIVERED:

WAIT_BLOCK

if signal state == DELIVERED:

WIAT_NON_BLOCK

SIGNAL_SENT

if run_state == BLOCKED:

signal state = DELIVERED

run state = TO_BE_SCHEDULED

else if run_state == RUNNABLE

signal state = DELIVERED

SIGNAL_SENT_REPEAT

nothing

WAIT_BLOCK

run state = BLOCKED

WAIT_NON_BLOCK

signal state = UNDELIVERED

SCHED_ITERATOR

if run state == TO_BE_SCHEDULED:

run state = RUNNABLE

if signal state == DELIVERED:

signal state = UNDELIVERED
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Figure 3.3. FSM of Run state variable

scheduler to run and client 1 is waiting to be signalled. Table 3.1 shows the initial state.

Interest point 1 Client 0 sends signal to client 1. From table 3.1 we see that 3.1 client 1’s

signal state is UNDELIVERED. Based on the Algorithm SIGNAL SENT is selected from

3.3. This checks for Client 1’s run state and sees it to be BLOCKED. It then changes the

signal state to DELIVERED and run state to TO BE SCHEDULED.

Table 3.1. State Transitioning for Scenario

Point client 0.signal state client 0.run state client 1.signal state client 1.run state Description

0 UNDELIVERED RUNNABLE UNDELIVERED BLOCKED Precondition
1 -do- -do- DELIVERED TO BE SCHED Signal client 1

2 -do- -do- UNDELIVERED RUNNABLE scheduler on CPU1

3 DELIVERED RUNNABLE -do- -do- Signal client 0

4 UNDELIVERED -do- -do- -do- Wait client 0

5 -do- -do- -do- BLOCKED Wait client1

Interest point 2 At this point the scheduler for client 1 gets invoked. It is not invoked

by calling set need resched, instead its called merely because of the fact that some interrupt
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Figure 3.4. Sequence Diagram of Scenario in SDF Version 2
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occurred in the system which must have requested for a resched. The SDF iterator hook sees

from the synchro table that the run state is set to TO BE SCHEDULED. Hence it picks up

client 1 to be scheduled and also changes its run state to RUNNABLE. It next checks if the

signal state is set to DELIVERED, then it changes that to UNDELIVERED.

Interest point 3 At this point client 1 is executed on CPU1 and client 1 calls Signal of

client 0. The signal state of client 0 is UNDELIVERED at this state. The SIGNAL SENT

algorithm gets executed and it changes the signal state to DELIVERED. Since client 0 is

already running at this point, its run state is not modified. Leaving the run state unmodified

is important to avoid the SDF iterator from modifying the signal state if it runs somehow

in between.

Interest point 4 At this point the Wait call is made by client 0 on CPU0. Since the

signal state of client 0 is DELIVERED the WAIT NON BLOCK algorithm gets invoked. It

changes the signal state from DELIVERED to UNDELIVERED implying that the signal

has been consumed.

Interest point 5 At this point the Wait call is made by client 1 on CPU1. The signal state of

client 1 is seen to be UNDELIVERED. Hence the WAIT BLOCKED algorithm gets invoked.

It changes the run state of client 1 to BLOCKED.

Interest point 6 Since the Wait call calls set need resched, the scheduler gets invoked on

CPU1. This causes our SDF iterator hook to be called. Since at this time the groups CPU1

list has only client 1 added, and since client 1’s run state is BLOCKED, the iterator does

not pick client 1 and instead returns NULL which passes the control to other Schedulers in

the system. Meanwhile on CPU0, since the client 0 run state is still runnable, no lockup

scenario is seen as one of the client’s is active,

Performance evaluation of all the implementations were done and details can be found

in in chapter 4 section 4.1.
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3.2 JACK Integration

From jacklike implementation and stress testing, we know that libfifo, libfifoRT, libsyn-

chroFSM work with jacklike application. Hence these were considered as candidates for

JACK integration. Libfifo and LibfifoRT are already how JACK implements client synchro-

nization.

Integration of libfifoFSM was tried with JACK. However the semantics of synchronization

assumed by jacklike were not exactly matching with JACK which caused issues after the

integration. JACK kept the server side pipe open which conflicted with the assumption of

the Synchro SDF. Another issue was that the DSUI could not be used with JACK as it did a

bulk of implementations in the form of shared libraries and it was not possible to place DSUI

instrumentation into shared libraries. Without DSUI it was hard to debug the integration

problems and hence the integration was not successful. However since at least one scheduler

of HGS had to be integrated with JACK, SEQ SDF was tried and was successful. We would

be describing more about that in the next section 3.2.1.

3.2.1 SEQ Scheduler

SEQ SDF Scheduler is a HGS built-in scheduler which does a sequential scheduling. The

scheduling algorithm of the sequential scheduler is simple. The SDF holds a per CPU list

of members. As an when member threads get created on a CPU, they also get added to the

corresponding CPU list of the scheduler. The members are sorted by their priority in the

list, i.e., a member with higher priority (lower priority number in SDF) would be closer to

the head of the list.

When the scheduler’s iterator next callback gets invoked on a given CPU, it iterates

through its list and returns a member. If the member is not on any waitqueue, it gets picked

up and scheduled. However if the member is on a waitqueue and is not runnable, then the

iterator next gets invoked again and this time the scheduler picks up the next member in

the list. In situations when none of the members in the list are ready to run, the iterator
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function returns NULL in which case control is passed to the Linux scheduler.

The strategy for JACK integration is that all the real-time threads of JACK would end

up being members of the SEQ Scheduler. JACK allows for priorities between its real-time

threads. The SEQ scheduler also has a priority member variable on the basis of which the

members get inserted to the member list. A lower number means that it has a place closer

to the head of the list and hence would get a chance to be scheduled before the others on

the list. We translate from rt sched class priotiry to SDF priority before setting the priority

of the member in the SDF.

JACK makes use of a compilation system called waf [12] which is python based. Before

starting to build JACK from source, typically a waf configuration script is invoked.

bash$ ./waf configure

This script like the automake system checks for system’s readiness for compilation by

looking for required libraries and header files. Command line options to this script may be

passed in order to configure various compile time options of JACK. For this implementation,

a waf configuration option

bash$ ./waf configure --seq

was added. This option basically added a compile time macro -DSEQ to the source prior to

compilation. In JACK source, a file named JackPosixThread.cpp manages thread creation for

the Linux implementation of JACK. In this source file, a thread is given real-time privileges

by setting rt sched param as shown in program 3.4.

In PREEMPT RT config option based system’s, this causes the thread to get added

to the shed rt sched class. However in our implementation, we want these threads to get

added to the HGS seq sdf scheduler. To accomplish that we make libhgs API calls from

JackPosixThread.cpp to add any real-time JACK thread to the seq sdf scheduler. The logic

for this implementation is illustrated in the following pseudo code in Program 3.5.
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Program 3.4 JACK RT threads
struct sched_param rt_param;

memset(&rt_param,0, sizeof(rt_param));

rt_param.sched_priority = priority;

if ((res = pthread_attr_setschedparam(&attributes, &rt_param))) {

jack_error("Cannot set scheduling priority for \ RT thread res = %d", res);

return -1;

}

Program 3.5 JACK HGS Threads

int JackPosixThread::StartImp(pthread_t* thread, int priority,

int realtime, void*(*start_routine)(void*), void* arg)

{

....

if (realtime) {

#ifndef SEQ

/* pthread pthread_attr_setschedparam with rtparam API */

....

#else

/* libhgs API to add the real-time thread to seq_sdf scheduler */

...

#endif

In order to add threads to an SDF, a group needs to be created and the seq sdf needs to

be associated to that group in prior. This operation is done from the Jackdmp.cpp (in the

server main function). For the purposes of clean integration into JACK code, all HGS specific

implementation was separated out into a new c file named JackHGS.c and corresponding

JackHGS.h. These source files compile into a shared library named hgslib.so. The waf config

files (wscript files) were modified in a way that they would include the hgslib library and also

link necessary libkusp, libccsm and libhgs libraries whenever this implementation is being

build.

The implementation was successful and the real-time threads of JACK were scheduled

by the seq sdf scheduler. The performance implications would be discussed over in the next
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chapter section 4.2. One caveat to this implementation is that the HGS threads had some

issues when they were being moved from one CPU to another. The scenario seemed to

cause scheduler lockup and is a known bug with the HGS framework. Hence to avoid that

situation, the threads that were added to the scheduler has to be assigned to a given CPU

using CPU affinity API so that the load balancer wouldn’t move them around to a different

CPU.

3.2.2 Ringbuffer Scheduler

The ringbuffer scheduler is an interesting concept opening up a new paradigm in schedul-

ing even when it comes to HGS schedulers. Before we proceed to explaining its details its

important to understand what is meant by ringbuffer first. Ringbuffer is basically a circular

buffer of limited size which upon reaching the end, rolls back to the start. For a ringbuffer,

we have exactly one writer and one reader. JACK provides a generic ringbuffer implemen-

tation within libjack library. Audio applications typically use this to marshall data from

non real-time thread to a real-time thread. Typical use of this in an audio applications that

integrate with JACK. JACK client applications use a ringbuffer to so as to not perform

blocking operations in real-time thread.

Lets consider a music player application. A music file typically a wav or mp3 files is

stored in disc. This file needs to be read from disc, decoded and then individual audio

frames need to be fed into the audio driver. JACK provides an excellent abstraction of the

audio driver and lets client implement an easy process callback function which would be

invoked periodically by the JACK server and the callback needs to feed in processed audio

data so that the audio driver. We know from earlier (section 2.1) that JACK does not allow

for the use of any blocking API or locks from within this process callback. That is where

the ringbuffer comes in handy. We write the application as two threads. We call one of the

threads as the disk thread and the other is the process callback function which runs in a

specialized real-time thread that is created by the JACK server and also synchronized to run
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and stop by the server. We perform all the non real-time operations in the disk thread by

making blocking disk API calls, decoding etc. We create a shared ringbuffer between the two

threads. The disk thread keeps filling the ringbuffer with decoded audio data. In the process

callback function, the ringbuffer is read and the data from the ringbuffer is then copied into

the JACK’s sink port. Special care has been taken by he JACK developer community to

make the ringbuffer API lock free as it needs to be used from the process callback function.

Likewise a recorder app would do the exact opposite. It would have the process callback fill

in the ringbuffer and disk thread read from the buffer and store to disk after any encoding

if applicable.

From the above discussion, it is imperative that a well written DAW application would

use a ringbuffer. A quick review of the source code of a popular DAW application named

Ardour [13] tells us that it uses ringbuffer mechanism to send data from blocking non real-

time disk IO threads to real-time process callback threads. Ardour uses JACK in the backend

and hence has the need to perform no blocking operation in the real-time process callback

function, so it uses a ringbuffer to marshal data into the process callback thread without

having to make blocking operations.

3.2.2.1 The need for a Ringbuffer Scheduler

Every real world audio application has interaction with elements like the disk or network

which essentially introduced non determinism or unbounded interaction time with these

sources. From earlier implementations and sections we learn that JACK has taken good

care of the real-time threads and managing its scheduling and synchronizations. We also

learned that JACK also provides a generic lock free ringbuffer API to pass data between

real-time and non real-time threads of an application. From the point of view of an audio

application both the real-time process call back thread and non real-time disk thread are very

important. We know that JACK takes care of the real-time components however leaving the

non-realtime threads to the mercy of the system scheduler. The ringbuffer scheduler steps in
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and manages scheduling of the non real-time components of an application. The ringbuffer

scheduler helps serve the audio application as a whole and helping it meet its performance

goals when used in conjunction with JACK. The generic nature of the ringbuffer scheduler

also makes it useful to other producer consumer application scenarios outside of JACK and

DAW worlds.

3.2.2.2 JACK Ringbuffer

Let us start by understanding the JACK ringbuffer. As we notice from Program 3.6, the

ringbuffer t is a struct holding all the accounting information for the ringbuffer and actual

ringbuffer memory happens to be be a pointer in the struct named buf. We have a write ptr,

read ptr size to know when to rollback. mlocked is used to indicate if the ringbufer memory

had been locked down or not. ringbuffer create and ringbuffer free are used to create and

destroy a ringbuffer. ringbuffer read and ringbuffer write maybe used to read and write from

the ringbuffer. They both return the number of bytes read or written. ringbuffer peak is

another API similar to rinbuffer read except that it does not advance the ringbuffer read

pointer like the ringbuffer read API. There are additional API that return back a read or

write vector. The read /write vector is an 2 element array of the type ringbuffer data t. The

corresponding APIs are ringbuffer get read vector and ringbuffer get write vector. If they

are used, the read /writer have to manage copying to and from the ringbuffer themselves

by using the read /write vector. The logic of the vector is simple, if the second vector

element has non zero length, it means that we have a rollover and we need to continue to

read /write bytes from the start of the ringbuffer. Once copying from /to the ringbuffer is

complete, the read /write pointers may be advanced using the APIs ringbuffer read advance

and ringbuffer write advance. ringbuffer mlock maybe used to lock the ringbuffer memory

down in memory and not allow it to enter swap space.

35



Program 3.6 Ringbuffer Struct
typedef struct

{

char *buf;

volatile size_t write_ptr;

volatile size_t read_ptr;

size_t size;

size_t size_mask;

int mlocked;

}

ringbuffer_t;

typedef struct

{

char *buf;

size_t len;

}

ringbuffer_data_t;

ringbuffer_t *ringbuffer_create(size_t sz);

void ringbuffer_free(ringbuffer_t *rb);

void ringbuffer_get_read_vector(const ringbuffer_t *rb, ringbuffer_data_t *vec);

void ringbuffer_get_write_vector(const ringbuffer_t *rb, ringbuffer_data_t *vec);

size_t ringbuffer_read(ringbuffer_t *rb, char *dest, size_t cnt);

size_t ringbuffer_peek(ringbuffer_t *rb, char *dest, size_t cnt);

void ringbuffer_read_advance(ringbuffer_t *rb, size_t cnt);

size_t ringbuffer_read_space(const ringbuffer_t *rb);

int ringbuffer_mlock(ringbuffer_t *rb);

void ringbuffer_reset(ringbuffer_t *rb);

size_t ringbuffer_write(ringbuffer_t *rb, const char *src, size_t cnt);

void ringbuffer_write_advance(ringbuffer_t *rb, size_t cnt);

size_t ringbuffer_write_space(const ringbuffer_t *rb);

3.2.2.3 Ringbuffer Scheduler Components

For the implementaion, ringbuffer code had to be modified to make additional calls. In

the userland, we modified the ringbuffer.a static librbay to now interact with the HGSMEM

driver and the ringbuffer SDF. The JACK ringbuffer was extracted from the JACK source

tree and compiled in separately as a static archive called ringbuffer.a. This was done to ease

making changes to the ringbuffer code. All modifications were made using the compile time
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macro HGS so that we can test out the original implementation as well.

Program 3.7 HGSMEM File Operations

static const struct file_operations hgsmem_fops = {

.owner = THIS_MODULE,

.open = hgsmem_open,

.release = hgsmem_release,

.mmap = hgsmem_mmap,

.unlocked_ioctl = hgsmem_ioctl,

};

Program 3.8 HGSMEM Driver Registration

static struct miscdevice hgsmem_misc = {

.minor = MISC_DYNAMIC_MINOR,

.name = "hgsmem",

.fops = &hgsmem_fops,

};

static int hgsmem_init(void)

{

misc_register(&hgsmem_misc);

...

}

The ringbuffer scheduler, instead of using a traditional set /get member /group param

approach, instead uses a shared memory between userland and kernel. In order to share

memory between user and kernel a shared memory driver called HGSMEM was written.

HGSMEM is a kernel module which registers itself as a misc device in the kernel [6]. Once

registration completes as shown in Program 3.8, a device node named /dev/hgsmem appears.

The device node will give a means for the userland program to interact with the kernel

space. We can also see an fops element in the hgsmem misc struct. These are the various

file operations supported by the /dev/hgsmem device node as shown in Program 3.7. As

shown open, release correspond to when the device node is opened and closed. Since we are

implementing a shared memeory driver, mmap is crucial. A generic ioctl implementation

with the uncloked ioctl callback.
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Figure 3.5. Memory view of Ringbuffer Scheduler with HGSMEM

To understand how the hgsmem plays a role in the ringbuffer, let us take a look at

the Figure 3.5. The entire ringbuffer t struct is now allocated in the kernel memory using

the hgsmem driver. The hgsmem driver has one page(4K) of memory reserved for allo-

cating all the ringbuffer t structs for all the various applications. When the application

calls rigbuffer create, the ringbuffer t struct is now allocated by the function hgsmem alloc.

hgsmem alloc does the following:-

• open the /dev/hgsmem device node.

• memory map the entire page(4K) from hgsmem kernel to user space.

• Make an ioctl call HGSMEM ALLOC to allocate the ringbuffer t.

• Make the ringbuffer t pointer point to the memory mappen base + offset returned by

the HGSMEM ALLOC ioctl call. The IOCTL also retunes a unique handle to the

memory in the kernel.

• store the memory handle back into the ringbuffer t struct.
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• store the memory mapped base into the ringbuffer t struct.

Note that the ringbuffer buffer memory(char* buf in ringbuffer t) is still in the userspace

and is allocted through the malloc call in ringbuffer create API. The HGSMEM ALLOC

ioctl, allocates buffer from the memory pool of 4K size. The ioctl call allocates from this

pool using the genalloc kernel library (a generic allocation library that allows allocations

from a larger memory pool). HGSMEM driver internally accounts for each allocation and

allocates a reference number to each successful allocation. Since the entire 4K page as

memory mapped to user space, application can add an offset and access its ringbuffer t

memory. The HGSMEM ALLOC ioctl call returns the offset that needs to be added to

the base to get to the application’s section of the memory.

Figure 3.6. Operational view of Ringbuffer Scheduler with HGSMEM

Once application has created the ringbuffer, it starts using it by writing into it from

one thread and reading form another through the ringbuffer API. Please refer to the Figure

3.6. If the application wants to make use of the ringbuffer SDF to schedule its non-realtime

threads, it can do so by adding that particular thread to the SDF. An extension API ring-

buffer add producer to sched is provided. This function, adds the thread to the SDF followed
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Program 3.9 hgsmem alloc struct

struct hgsmem_alloc {

void* buffer;

size_t size;

long offset;

int handle;

};

by a call to the hgs set member parameters with the ringbuffer hgsmem alloc handle. When

this call reaches the SDF code, it makes a call to the HGSMEM driver to get access to the

memory with the handle by calling the exported API hgsmem get ref. The HGSMEM driver

looks up its internal list and returns the corresponding hsgmem alloc struct (program 3.9)

corresponding to the allocated memory. With this reference the scheduler can now see the

ringbuffer t memory as its being updated by the application. Since the thread is added into

the SDF, and the SDF manages scheduling of the producer thread, during it iterator next

callback, the SDF looks to see the space between the read and write pointers. As long as

that space is above some threshold, the SDF chooses that thread for scheduling. As soon as

the threshold is met, the iterator precedes to the next thread in its list.

Hence we see that the application only really makes an initial parameter call to the SDF

to let it know the handle. After that the SDF automatically decides when to schedule the

thread. The scheduling parameter passing overhead has been completely avoided.

40



Chapter 4

Evaluation

4.1 Performance evaluation of various implementations of Jacklike

In this section we evaluate the performance of the different synchronization implementa-

tions of the jacklike unit test application. The metric we are evaluating is 4.1.

Definition 4.1 Client Scheduling Latency

client scheduling latency which is defined as the total time between when a client thread is
signalled to run and when it actually starts to run.

We will evaluate the performance for the following jacklike implementations

1. jacklike with UNIX pipe used for synchronization

2. jacklike with UNIX pipe based synchronization but with RT threads

3. jacklike with SDF (Synchro SDF V2) based synchronization

The implementations will be subject to the following test cases

• latency of the implementations when run on an otherwise unloaded system

• latency of the implementations when system is subjected to disk I/O, memory and

CPU load from a kernel build
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• latency of the implementations when system is subjected to load from a real-time

application [10]

This brings us to a total of 3 experiments for 3 implementations giving a total of 9 plots.

4.1.1 Test Environment

• Jacklike unit test app configured to run with 2 clients.

• A total of 100,000 cycles run as a part of the test case.

• To bring the behaviour as close as possible to the real JACK server, client 0 was

configured to sleep for 2000 µ s after every cycle.

• Both the jacklike clients were scheduled on the same CPU, this was done as the SDF

was not implemented in a way that could cause a reschedule on a different CPU after

signalling a client (if on a different CPU). This particular scenario was causing another

lockup.

• The client threads make a call to a CPU bound work functions in each cycle.

• The work function is both CPU bound and writes into several array elements in the

memory.

4.1.2 All Implementations run with noload

All implementations are run for 100,000 iterations on an otherwise unloaded system.

Refer to Figures 4.1, 4.2 and 4.3. The pipes implementation with non RT threads has one

outlier at 21545 µs. We find that the SDF based implementation has the best average latency

of about 16 µs. We do notice 2 outliers in case of the SDF based implementation one at 700

µs and another at 2045 µs. The pipes implementation with RT threads did the best with

respect to worst case latency which is only about 121 µs. However we do notice that the

average, median as well as std deviation for the SDF is better than the pipe implementation
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under RT threads. Overall we see that both pipes RT and SDF did well enough. Although

the outliers in case of SDF seem higher the SDF implementation has better average, median

and std deviations as compared to the PipesRT.

Count 100000
Buckets 80
Max 21545
Min 11
Avg 48.185830
Std Deviation 72.709035
Median 50.000000

Figure 4.1. Pipe based implementation (non RT threads) under No Load

Count 100000
Buckets 80
Max 121
Min 14
Avg 33.085600
Std Deviation 10.255683
Median 30.000000

Figure 4.2. Pipe based implementation (RT threads) under No Load

43



Count 100000
Buckets 80
Max 2045
Min 7
Avg 16.884980
Std Deviation 8.961517
Median 16.000000

Figure 4.3. SDF based implementation under No Load

4.1.3 Kernel Compile Load

Refer to Figures 4.4, 4.5 and 4.6. All implementations are run for 100,000 iterations

with kernel compilation load on the background. In this case we notice that the Pipe

implementation experience a wort case latency of 63378 µs. The PipesRT in this experienced

a worst case latency of 4711 µs. The SDF implementation experienced a worst case latency

of 1391 µs. Here again we see that the SDF implementation has lower average, median and

standard deviation as compared to the other two implementations.

4.1.4 Rt-app Load

Refer to Figures 4.7, 4.8 and 4.9. All implementations are run for 100,000 iterations

with rt-app load. Rt-app is configured to run at RT priority 10 at a period of 10ms and

an execution time of 2 ms which is the approximate load generated by an audio playback

scenario [19]. We see that this time the SDF implementation performed in these tests with a

worst case execution time of just 156 µs. In this case we see that the PipesRT suffered some

very extreme worst case execution time outliers ranging from 7000 to 46000 µs. Overall the

SDF based implementation seemed to perform better then the PipesRT implementation.
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Count 100000
Buckets 80
Max 63378
Min 7
Avg 248.747320
Std Deviation 764.388237
Median 60.000000

Figure 4.4. Pipe based implementation (non RT threads) under kernel com-
pile Load

Count 100000
Buckets 80
Max 4711
Min 13
Avg 65.646360
Std Deviation 98.501352
Median 35.000000

Figure 4.5. Pipe based implementation (RT threads) under kernel compile
Load
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Count 100000
Buckets 80
Max 1391
Min 7
Avg 20.536910
Std Deviation 12.923866
Median 18.000000

Figure 4.6. SDF based implementation under kernel compile Load

Count 100000
Buckets 80
Max 115120
Min 8
Avg 45.662150
Std Deviation 720.108247
Median 31.000000

Figure 4.7. Pipe based implementation (non RT threads) under rt-app Load
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Count 100000
Buckets 80
Max 45590
Min 10
Avg 25.793710
Std Deviation 235.239857
Median 20.000000

Figure 4.8. Pipe based implementation (RT threads) rt-app Load

Count 100000
Buckets 80
Max 156
Min 6
Avg 11.537760
Std Deviation 6.747387
Median 9.000000

Figure 4.9. SDF based implementation under rt-app Load
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4.2 JACK with SEQ SDF integration

In this section we evaluate the performance of SEQ SDF when it is given the task to

schedule JACK’s threads. Section 3.2.1 contains the details of the implementation. We

compare the results to unmodified JACK which places its thread under FIFO scheduler in

rt sched class. We run 3 sets of experiments on both vanilla JACK (unmodified JACK) and

JACK under the influence of SEQ SDF.

• no load: under an otherwise idle system running background tasks and our test appli-

cation.

• kernel compile load: our test application but with the kernel compilation load running

in the background.

• rt- app load: rt-app configured to run in parallel with out test app.

Figure 4.10. Connect shown through qjackctl

For the purposes of evaluation a new jack client application named pipeline client was

implemented. This application created 10 jack clients connected together in a pipeline.
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Client 0 would produce a sinusoidal sound pattern on a single (mono) channel. The rest of

the clients in the pipeline would simply copy the sound data from their input ports to their

output ports. The ports of all 10 clients are then connected by the application to form the

pipeline. The last client in the pipeline would be connected to the system audio port for an

audible sound on the speaker. Figure 4.10 is a snapshot while pipeline client is operational

form the tool called qjackctl [9] which is GUI tool that can show the client connection graph

for a running JACK system. For result collection, JACK’s profiling framework [22] was used

which has one metric named client scheduling latency (which we defined earlier in definition

4.1). The application is designed to run for 600 seconds.

4.2.1 No Load

We first ran our test application under no load with both vanilla JACK and JACK with

SEQ SDF integration. Let us take a look at the results.

Figure 4.11. pipeline client under no load connected to vanilla JACK
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Figure 4.12. pipeline client under no load connected to SEQ SDF JACK

From Figure 4.11 and Figure 4.12 we observe that vanilla JACK outperformed the SEQ

SDF threads. The possible reasons for this is the HGS Proxy Management [26] where HGS

tries to look for a thread proxy whenever its not ready to run. Proxy management is similar

to priority inheritance but applied more generally since HGS does not enforce a notion of

priority to its member threads. The examination for a schedulable proxy by HGS causes the

additional scheduling overhead we see. Unfortunately HGS couldn’t be configured run with

proxy management disabled.

4.2.2 Kernel Compile Load

The next test that was run was the same application but now with a 8 thread kernel

compilation load in parallel which is both CPU, memory and disk intensive. From Figure

4.13 and Figure 4.14 we see that vanilla JACK outperformed the SEQ SDF JACK. Again

this can be attributed as the effect of HGS Proxy Management.
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Figure 4.13. pipeline client under kernel compile load connected to vanilla
JACK

4.2.3 Rt-app Load

In the last test we ran a real-time load simulator rt-app [10] in parallel with our test

app in both configurations. In this case, we see that SEQ SDF Figure 4.16 did better than

vanilla JACK as in Figure 4.15. This is because the SEQ SDF gets a chance to run before

the rt sched class in the hierarchy although we have a real-time test load. We find that the

performance of the SEQ SDF was almost the same in the 3 load experiments. Although

the SDF implementation had higher scheduling latencies, it was more consistent latency

irrespective of the system load. This latency however could not be identified audibly during

any of the test runs. If we are willing to accept the scheduling latency, this SDF integration

into JACK would be a good solution considering the consistency it showed in the various

load scenarios.

51



Figure 4.14. pipeline client under kernel compile load connected to SEQ SDF
JACK

Figure 4.15. pipeline client under rt-app load connected to vanilla JACK
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Figure 4.16. pipeline client under rt-app load connected to SEQ SDF JACK
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4.3 Ringbuffer SDF

In this section we evaluate the performance of a JACK client application named jackplay

[3] when assisted with the ringbuffer SDF. Jackplay is an application which can playback any

wav file (supplied through a command line) using JACK’s audio driver by connecting to the

system output default audio driver output ports. Jackplay reads the input wav file, decodes

it with some assistance from another open source lib named libsndfile [5]. The application

creates a thread named disk thread which it uses to read the wav file through the disk. Being

a JACK client, it registers a process callback thread which then gets involved periodically

by the JACK daemon.

Hence in essence we have one real-time process callback thread which makes no blocking

operations and another non real-time disk thread which makes blocking disk IO calls. We

place the non real-time disk thread under the control of the ringbuffer SDF. The SDF makes

scheduling decisions for this thread by evaluating the distance between the ringbuffer write

and read pointers.

The jackplay application was instrumented using DSUI instrumentation points [15, 16].

The instrumentation points were placed at the entry and exit of execution periods of both

disk thread and process callback thread. The tests were run using a 2 min long wav music

file.

Experiments were run in the following categories

• Disk thread under default scheduler (CFS sched other)

• Disk thread under Ringbuffer SDF

Under each of the above configuration we subject the test to different system load con-

ditions as shown below

• No Load: Run on an otherwise non loaded system running just this app and normal

background operations.
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• Kernel Compile: We run a kernel compile load with a -j8 option.

• rt-app-audio: We run the rt-test app configuring it to VOIP application like load with

a period of 10ms and execution time of 1.7ms.

• rt-app-video: We run the rt-test app configuring it to video player application like load

with a period of 40ms and execution time of 5ms.

Let us analyse the results.

4.3.1 No load

When no SDF to control we notice that the worst case execution periods go to as high

as 700ms Figure 4.17 whereas under SDF the worst case is .2ms Figure 4.22. We also

notice that the SDF has manged to keep a very low average execution periods as well. Due

to the nature of the instrumentation points placed, there could have been non voluntary

preemptions which might show up as larger execution periods. Such large execution periods

and involuntary preemption, particularly has been greatly reduced by the SDF for the disk

thread. The non execution interval periods seem to be similar in both cases Figure 4.18 and

Figure 4.23. For the process callback thread, since it is periodic in nature and controller

entirely by JACK, we find that execution periods remain mostly similar Figure 4.19 and

Figure 4.24. It is interesting to find an outlier the non execution periods of the process

callback thread Figure 4.20 as compared to Figure 4.24. However the average values stay

almost the same. The pie charts show the execution ratio bet ween the disk thread and

process callback thread. We notice that in no SDF scenario Figure 4.21 the disk thread

has a higher ratio which indicates that it was preempted too often. In the SDF controlled

scenario, we find that the process callback is running for more time Figure 4.26.
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Max 6802436
Min 8
Avg 2488
Median 12
Std Deviation 123623

Figure 4.17. Ringbuffer no SDF under noload Disk Thread Execution His-
togram

Max 25068
Min 19858
Avg 23199
Median 23202
Std Deviation 67

Figure 4.18. Ringbuffer no SDF under noload Disk Thread Interval His-
togram

4.3.2 Kernel Compile Load

Kernel compile is both a disk IO and CPU intensive load. In this test we let a 8 thread

kernel compile run in parallel with our test application. With no SDF we see a worst case

execution time of 3sec figure 4.27, with the SDF its 23 ms Figure 4.32. We also notice a 2
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Max 116
Min 56
Avg 71
Median 71
Std Deviation 6

Figure 4.19. Ringbuffer no SDF under noload Process Callback Thread Ex-
ecution Histogram

Max 6802326
Min 23066
Avg 24503
Median 23145
std 96006

Figure 4.20. Ringbuffer no SDF under noload Process Callback Thread In-
terval Histogram

sec interval Figure 4.28 a 5 sec interval Figure 4.33. Since the disk-thread is non periodic,

the interval may have no meaning here. The process callback thread saw some worst case

latencies of 640 ms Figure 4.29. However most buckets are only slightly higher to the ones

from no load scenario. The process callback numbers look similar to the SDF scenario Figure

4.34. We see a worst case interval of 121ms Figure 4.30 which is not so in the SF case Figure
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Figure 4.21. Ringbuffer no SDF under noload Disk Thread vs Process Call-
back Thread Execution Pie chart

Max 254
Min 6
Avg 11
Median 8
Std Deviation 12

Figure 4.22. Ringbuffer SDF under no load Disk Thread Execution His-
togram

4.35. Comparing the execution time pie charts Figure 4.31 and Figure 4.36 we see the SDF

managed to reduce the preemption for the disk thread hence bringing its execution time

down.
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Max 23277
Min 19772
Avg 23203
Median 23206
Std Deviation 53

Figure 4.23. Ringbuffer SDF under no load Disk Thread Interval Histogram

Max 120
Min 57
Avg 71
Median 71
Std Deviation 6

Figure 4.24. Ringbuffer SDF under no load Process Callback Thread Exe-
cution Histogram

4.3.3 Real-time Audio Application Like Load

In this experiment, we use rt-app [10] to simulate a real-time audio application like load.

In the No SDF case, we find the worst case execution times for the disk thread is 7 sec

with 2 other outliers at 5.5 sec and 3sec Figure 4.37, However with he SDF the worst

case execution time was contained at mere 0.3 ms as shown in Figure 4.42. We also notice
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Max 23218
Min 23076
Avg 23144
Median 23145
Std Deviation 15

Figure 4.25. Ringbuffer SDF under no load Process Callback Thread Interval
Histogram

Figure 4.26. Ringbuffer SDF under noload Disk Thread vs Process Callback
Thread Execution Pie chart

that the minimum values were similar however the averages are widely different. This is an

indication that under the SDF control the disk thread was not preempted very often. The

worst case interval periods for the no SDF case Figure 4.38 was about 7 sec. For the SDF

case, it was 4sec Figure 4.43. The process callback thread execution and interval were more

or less similar in both cases as shown in Figure 4.39, Figure 4.44, Figure 4.40 and Figure
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Max 2902053
Min 10
Avg 1245
Median 16
Std Deviation 58051

Figure 4.27. Ringbuffer no SDF under load Disk Thread Execution His-
togram

Max 2066857
Min 3807
Avg 23591
Median 23193
Std Deviation 29086

Figure 4.28. Ringbuffer no SDF under load Disk Thread Intervel Histogram
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Max 640
Min 65
Avg 81
Median 79
Std Deviation 13

Figure 4.29. Ringbuffer no SDF under load Process Callback Thread Exe-
cution Histogram

Max 121667
Min 21543
Avg 23153
Median 23135
Std Deviation 1397

Figure 4.30. Ringbuffer no SDF under load Process Callback Thread Interval
Histogram
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Figure 4.31. Ringbuffer no SDF under kernel compile load Disk Thread vs
Process Callback Thread Execution Pie chart

Max 23780
Min 8
Avg 56
Median 12
Std Deviation 500

Figure 4.32. Ringbuffer SDF under kernel compile load Disk Thread Execu-
tion Histogram
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Max 5455908
Min 17022
Avg 24269
Median 23200
Std Deviation 77187

Figure 4.33. Ringbuffer SDF under kernel compile load Disk Thread Interval
Histogram

Max 550
Min 63
Avg 81
Median 79
Std Deviation 9

Figure 4.34. Ringbuffer SDF under kernel compile load Process Callback
Thread Execution Histogram
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Max 24191
Min 22154
Avg 23134
Median 23135
Std Deviation 66

Figure 4.35. Ringbuffer SDF under kernel compile load Process Callback
Thread Interval Histogram

Figure 4.36. Ringbuffer SDF under kernel compile load Disk Thread vs Pro-
cess Callback Thread Execution Pie chart
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4.45. This is because the JACK took care of the scheduling of the process callback thread

and did so pretty well. A last look at the execution ratios in the pie charts Figure 4.51 and

Figure 4.56 indicates that the SDF kept the disk callback thread from getting preempted

too often.

Max 6802463
Min 7
Avg 5827
Median 17
Std Deviation 188690

Figure 4.37. Ringbuffer no SDF under real-time audio application like load
Disk Thread Execution Histogram

Max 6802378
Min 20074
Avg 27187
Median 23197
Std Deviation 145163

Figure 4.38. Ringbuffer no SDF under real-time audio application like load
Disk Thread Interval Histogram
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Max 110
Min 57
Avg 74
Median 74
Std Deviation 12

Figure 4.39. Ringbuffer no SDF under real-time audio application like load
Process Callback Thread Execution Histogram

Max 6802329
Min 23062
Avg 31187
Median 23140
Std Deviation 220406

Figure 4.40. Ringbuffer no SDF under real-time audio application like load
Process Callback Thread Interval Histogram

4.3.4 Real-time Video Application Like Load

Finally with the real-time video application like load we find that the disk thread execu-

tion periods have been greatly reduced in the SDF Figure 4.52 as compared to the no SDF

case. The disk thread intervals are not a strong measure of anything but are available to
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Figure 4.41. Ringbuffer no SDF under real-time audio application like Disk
Thread vs Process Callback Thread Execution Pie chart

Max 228
Min 5
Avg 10
Median 7
Std Deviation 10

Figure 4.42. Ringbuffer SDF under real-time audio application like load Disk
Thread Execution Histogram
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Max 38555
Min 7843
Avg 23203
Median 23203
Std Deviation 316

Figure 4.43. Ringbuffer SDF under real-time audio application like load Disk
Thread Interval Histogram

Max 127
Min 55
Avg 69
Median 69
Std Deviation 9

Figure 4.44. Ringbuffer SDF under real-time audio application like load Pro-
cess Callback Thread Execution Histogram
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Max 38484
Min 7800
Avg 23146
Median 23146
Std Deviation 309

Figure 4.45. Ringbuffer SDF under real-time audio application like load Pro-
cess Callback Thread Interval Histogram

Figure 4.46. Ringbuffer SDF under real-time audio compile load Disk Thread
vs Process Callback Thread Execution Pie chart
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review in Figure 4.48 and Figure 4.53. The process callback thread execution and intervals

mostly performed similar whether under load or not, as can be seen in Figure 4.49, Figure

4.50, Figure 4.54 and Figure 4.55. Finally a look at the execution ratio pie charts reveals that

our SDF controlled frequent preemption of the disk thread and helped it achieve maintain

its target of assisting the process callback thread.

Max 6802450
Min 10
Avg 4142
Median 18
Std Deviation 167295

Figure 4.47. Ringbuffer no SDF under real-time video application like load
Disk Thread Execution Histogram
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Max 3714567
Min 19767
Avg 24357
Median 23193
Std Deviation 58298

Figure 4.48. Ringbuffer no SDF under real-time video application like load
Disk Thread Interval Histogram

Max 118
Min 54
Avg 72
Median 70
Std Deviation 9

Figure 4.49. Ringbuffer no SDF under real-time video application like load
Process Callback Thread Execution Histogram
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Max 6802329
Min 23048
Avg 28384
Median 23141
Std Deviation 176168

Figure 4.50. Ringbuffer no SDF under real-time video application like load
Process Callback Thread Interval Histogram

Figure 4.51. Ringbuffer no SDF under real-time video application like Disk
Thread vs Process Callback Thread Execution Pie chart
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Max 202
Min 5
Avg 12
Median 10
Std Deviation 11

Figure 4.52. Ringbuffer SDF under real-time video application like load Disk
Thread Execution Histogram

Max 1207224
Min 19977
Avg 23445
Median 23200
Std Deviation 16822

Figure 4.53. Ringbuffer SDF under real-time video application like load Disk
Thread Interval Histogram
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Max 111
Min 55
Avg 71
Median 70
Std Deviation 9

Figure 4.54. Ringbuffer SDF under real-time video application like load Pro-
cess Callback Thread Execution Histogram

Max 23295
Min 22986
Avg 23144
Median 23142
Std Deviation 34

Figure 4.55. Ringbuffer SDF under real-time video application like load Pro-
cess Callback Thread Interval Histogram
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Figure 4.56. Ringbuffer SDF under real-time video compile load Disk Thread
vs Process Callback Thread Execution Pie chart
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Chapter 5

Conclusions and Future Work

In this thesis several HGS schedulers were implemented and integrated with DAW style

applications and their performance were evaluated.

The very first attempts were to build a scheduler that could receive direct parameter calls

from its clients threads. The client threads were a part of a simple pipeline based scheduling

multithreaded application called jacklike, whose core scheduling concept was derived from

JACK. The clients by making parameter calls altered a FSM in the scheduler which the

scheduler tracked to make scheduling decisions for its member clients. We learned that it

was possible to build an SDF based on a state machine and realize a very simple linear

pipeline DAW application.

The next scheduler was a classic HGS SEQ SDF. With a patched JACK source, we added

the real-time threads of JACK under the direct control of this SDF. We saw some benefits

of using this approach whenever the test client applications were subject to real-time loads

that were higher priority than what the JACK server uses for its real-time threads. Other

researchers also attempted similar approaches [19]. However, due to the overhead of proxy

management, the rt sched class out performed the threads of the SEQ SDF when under no

load and kernel compile load scenario. However when under real-time application load, the

SDF showed lower client scheduling latencies. In fact the SDF was very consistent with the
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latency irrespective of the load.

On taking a step back to look at the bigger picture, we thought of extending SDF based

support to client application threads that JACK doesn’t take care of as JACK already

manages this very well. We studied the JACK ringbuffer API and saw an opportunity

to make an SDF for the other ringbuffer producer non-realtime disk thread which JACK

doesn’t schedule. To build this SDF, a new shared memory based scheduling parameter

lookup scheme had to be invented. This was accomplished with the help of a HGSMEM

shared memory driver implementation which allowed sharing of memory between userspace

HGS client application and the underlying SDF which controls its scheduling. This SDF is

a new concept in the HGS world of schedulers and introduces a novel method of automating

scheduling parameter tracking by the SDF through shared memory. This implementation

proved that together with JACK and HGS ringbuffer scheduler, a client application can be

made resilient against high priority CPU time share stealer threads. It also serves as an

example of non priority based scheduling where scheduling is done to meet a condition with

the need to set any priorities.

One improvement that could be done overall is to have the HGS schedulers inserted in

a hierarchy with the first HGS scheduler that manages real-time and the second ringbuffer

SDF scheduler. This will have been a useful experiment to see hierarchical scheduling in

action. HGS has never been tested in this regard and there might be some missing API to

insert SDF’s based on a priority.

We had also seen from section 4.2 that Proxy Management [26] was causing extra schedul-

ing latency when multiple threads of the SEQ SDF were put on to a wait queue. If HGS

could have been run without Proxy Management, we would have hoped to get lower schedul-

ing latencies out of the SEQ SDF scheduler when multiple of its members are not ready to

run.

HGS as a framework is build for process space scheduling and has all the necessary

hooks provided to implement a system with arbitrary schematics of scheduling that could
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be non priority based through the use of powerful HGS API. We noticed from many of our

experiments and in load testing that a lot of real world applications are disk IO bound.

Hence if HGS had hooks into IO scheduling, that could have benefited all the SDF threads

which are blocked on disk IO completion. Linux has IO schedulers available and an HGS

scheduler hooks for IO would be useful if we want to compete for IO scheduling with the rest

of the system threads and apply a scheduling policy to unblock two or more SDF threads

that are blocked on disk IO calls. Ringbuffer SDF, since its client’s are IO sensitive, in

particular would have gained greatly from such an IO scheduling framework.
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