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Abstract

Satellite remotely sensed temperatures are widely used for urban heat island (UHI)

studies. However, the abilities of satellite surface and atmospheric data to assess the

climatology of UHI face many unknowns and challenges. This research addresses

the problems and potentials for satellite remotely sensed UHI climatology by exam-

ining three different issues. The first issue is related to the temporal aggregation of

land surface temperature (LST) and the potential biases that are induced on the sur-

face UHI (SUHI) intensity. Composite LST data usually are preferred to avoid the

missing values due to clouds for long-term UHI monitoring. The impact of temporal

aggregation shows that SUHI intensities are more notably enhanced in the daytime

than nighttime with an increasing trend for larger composite periods. The cause of the

biases is highly related to the amount and distribution of clouds. The second issue is

related to model validation and the appropriate use of LST for comparison to modeled

radiometric temperatures in the urban environment. Sensor view angle, cloud distribu-

tion, and cloud contaminated pixels can confound comparisons between satellite LST

and modeled surface radiometric temperature. Three practical sampling methods to

minimize the confounding factors are proposed and evaluated for validating different

aspects of model performance. The third issue investigated is to assess to what ex-

tent remotely sensed atmospheric profiles collected over the urban environment can

be used to examine the UHI. The remotely sensed air and dew-point temperatures are

compared with the ground observations, showing an ability to capture the temporal

and spatial dynamics of atmospheric UHI at a fine scale. Finally, a new metric for

quantifying the urban heat island is proposed. The urban heat island curve (UHIC),
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is developed to represent UHI intensity by integrating the urban surface heterogene-

ity in a curve. UHIC illustrates the relationship between the air temperature and the

urban fractions, and emphasizes the temperature gradients, consequently decreasing

the impact of the data biases. This research illustrates the potential for satellite data to

monitor and increase our understanding of UHI climatology.
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Chapter 1

Introduction

1.1 The Problems

Urban areas account for 79% of the U.S. population (Population Reference Bureau, 2011), and this

percentage will likely increase in the future. The high density population in the urban environment

exerts complex impacts on urban surroundings. One impact is the urban heat island (UHI) (Gallo

et al., 1993; Sen Roy and Yuan, 2009), showing a higher temperature in the urban environment

compared to its rural surroundings. This phenomenon not only affects human health related to

high temperature (Patz et al., 2005) and air pollution (Mage et al., 1996; Taha, 1997), but it also

starts a vicious cycle consuming energy to cool buildings and resulting in generating more anthro-

pogenic heat. Long-term monitoring of the UHI helps us to understand UHI features and the urban

climatology behind it.

UHI studies are well documented across time and space by using various measuring tech-

niques and temperatures as summarized by Voogt and Oke (2003). Two distinct classes of the UHI

are often defined: the atmospheric UHI is assessed through in-situ and vehicle mounted sensors

measuring air temperatures in the urban canopy layer (UCL) (Oke, 1976) and through the ground-

based, airborne and tower amounted senors for the urban boundary layer (UBL) (Barlow et al.,

2011; Grimmond, 2006; Voogt and Oke, 2003; Roth, 2000); the second class is the surface UHI
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(SUHI) and is based on the use of thermal remotely sensed data (Voogt and Oke, 2003). However,

for atmospheric UHI at the UCL and UBL, the representativeness is questionable due to hetero-

geneous urban surface properties (Stewart, 2011) and comparatively insufficient data sources for a

large scale study (Grimmond, 2006).

The SUHI research community is thriving after the land surface temperature (LST) available

from thermal remote sensing (Voogt and Oke, 2003; Gallo et al., 1995). Satellite remotely sensed

data overcome some problems of in-situ measurements, generally with various sources, global

coverage, long-term archive, and steady repeat frequency. Taking these features into consider-

ation, satellite-based UHI studies have great potential to improve our understanding of the spa-

tial–temporal variability of the physical processes over the urban areas, which influence the long-

term urban climate.

However, simply applying LST introduces errors to quantify UHI intensity due to the nature

of remote sensing techniques, especially for long-term or large-scale investigations. One of the

primary issues is clouds. Infrared remote sensing is not able to detect the surface under clouds,

so all SUHIs are discussed under clear sky conditions. Temporally composited LSTs are usually

the solution for the missing data due to clouds (Schwarz et al., 2011; Gallo and Owen, 1999).

The impact of the inhomogeneous cloud distribution over the urban area on the biased sampling

through the compositing process is usually neglected.

In addition to clouds, other factors also influence the representativeness of surface temperature,

such as sensor view angle. The satellite LST is a directional radiative temperature, representing

the information from a certain view angle (Voogt and Oke, 2003). This unique feature becomes

important when we try to use remotely sensed temperature as truth for model validation. Directly

validating the model performance using satellite observations causes a big uncertainty due to sev-

eral essential incomparable aspects, such as cloud distributions and the thermal anisotropic urban

surface.

The in-situ measurements of air temperature and remote sensing of LST have their incompat-

ible advantages, which result in distinct methodologies to address two concepts of UHI: atmo-
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spheric and surface UHI. The gridded observational air temperature may bridge the gaps between

weaknesses of these types of observations, and may be able to improve the understanding of UHI

impacts on human health more clearly with a comprehensive spatial distribution. Moreover, the

common problem for current UHI studies is the unclear urban/rural divisions, resulting in a variety

of UHI magnitudes that may be not comparable across space and time.

1.2 The Research Questions and Research Objects

The purpose of this dissertation research is to address the common problems related to the use of

thermal remote sensing for long-term monitoring and to develop some practical solutions for these

problems, and to further explore the potentials of remote sensing techniques to break the barriers

of traditional measurements of air temperature and land surface temperature for atmospheric UHI

studies.

Based on the problems address previously, this reserach is attempting to answer the following

questions.

• What is the impact of temporal aggregation of remote sensing data on UHI studies and what

are the main causes of it?

• How can we use MODIS land surface temperature to validate long-term urban model simu-

lations?

• Can the air and dew-point temperatures retrieved from MODIS capture the atmospheric UHI

features, spatially and temporally?

• How can we quantify UHI magnitude using remote sense data?
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1.3 Organization of the Dissertation

Chapter 2,3, 4 are formatted as journal papers: an introduction addresses the problems, research

questions, and objects; the methodology describes the data processing and analysis methods; re-

sults and discussions contain the details of each findings; and the summary of each chapter and

some future research suggestions. At last, Chapter 5 is a brief summary about the conclusions

drawn from this dissertation, the contributions to the UHI climatology literature, and some re-

search directions that are important in the future.
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Chapter 2

The impact of temporal aggregation of land

surface temperature data for surface urban

heat island (SUHI) monitoring

2.1 Introduction

More than 50% of the world population live in urban areas, and that proportion will likely grow in

the future (World Health Organization Centre for Health Development, 2010). One impact of the

urban population is the urban heat island (UHI) (Gallo et al., 1993; Sen Roy and Yuan, 2009). The

urban environment with higher temperature not only affects the inhabitability caused by air pol-

lution (Taha, 1997), and increases human health problems related to high temperature (Kalkstein

and Greene, 1997; Patz et al., 2005), but also starts a vicious circle to encourage consuming energy

to cool buildings, resulting in more anthropogenic heat. As a result, long term monitoring of UHI

becomes necessary and it is essential to understand UHI features and the urban climatology behind

it.

Remote sensing techniques introduce a new viewpoint to understand UHI, using land surface

temperature (LST) to define the surface UHI (SUHI) (Voogt and Oke, 2003). Traditionally, air
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temperature differences between urban and rural areas using pairs of in-situ climatology data define

UHI, and were conducted by many studies (Henry et al., 1989; Gallo and Owen, 1999; Gaffin et al.,

2008; Morris et al., 2001; Shao et al., 2011; Chow et al., 2011). However, the representativeness

is questionable due to heterogeneous urban surface properties and comparatively insufficient data

sources. After the advent of thermal remote sensing, LST data became available, and a variety of

LST related SUHI studies used multiple sensors carried by satellites (Gallo et al., 1993; Streutker,

2003) and aircraft (Lo et al., 1997; BenDor and Saaroni, 1997; Quattrochi et al., 2000). Satellite

remote sensing overcomes some problems of in-situ measurements generally with wider sources,

broader coverage, and steadier periodicity. Taking these features into consideration, using remote

sensing to study SUHI can improve conductive to understand the spatial–temporal variability of

physical processes, which influence the long-term urban climate.

The satellite remote sensing approach, however, has its own limitations. One of the primary

issues affecting data accuracy is that clouds can easily contaminate the data due to the indirect

nature of remote sensing. Hence, the accuracy of LST products is highly contingent upon the

cloud-screening algorithm (Wan, 2008). Even though LST can be accurately derived, it is hard to

avoid missing data due to clouds. Researchers commonly adopt two possible solutions to decrease

the impact of clouds: choosing cloud-free images or constructing temporally composited data

(Holben, 1986; Los et al., 1994; Gallo and Owen, 1999). For example, several SUHI studies only

examined the nighttime thermal images (Matson et al., 1978; Streutker, 2003; Tomlinson et al.,

2012; Zhou et al., 2011; Tiangco et al., 2008), because the solar radiation increases the instability

of boundary layer during the daytime, which is more likely to form clouds. Meanwhile, the cooling

differences due to energy budgets between the urban and surrounding rural areas are maximized

(Voogt and Oke, 2003). As a result, nights are usually under calm and clear conditions. Some

research (Tan et al., 2006; Chen et al., 2006; Kato and Yamaguchi, 2005) was based on case studies

in a short time period by selecting representative cloud-free LST images. However, this way is not

suitable for continuous monitoring or for a large area investigation. On the other hand, temporal

composite products can minimize the number of gaps created by clouds or any other undesirable
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conditions in the long time series (Gallo and Owen, 1999; Pinty et al., 2002). Sometimes, it is

preferred to use a coarser temporal resolution of remote sensing data over a long observational

period, so that the SUHI analyses can be based on high clear-sky-coverage and consistent-repeat-

period data.

SUHI studies, particularly for long-term or global analyses, commonly adopt temporally com-

posited remote sensing. Composite data directly increase the clear sky coverage across urban

and rural regions, which are beneficial to do spatial comparison for SUHI studies. For example,

Gallo and Owen (1999) used monthly and seasonal Advanced Very High Resolution Radiometer

(AVHRR) composites to analyze the SUHI effect, recommending monthly composites for summer

and fall and biweekly composites for winter. Schwarz et al. (2011) used monthly composite LST

generated from Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day LST to explore

indicators for quantifying SUHI of European cities. Unfortunately, these SUHI studies did not

consider the possible errors caused by composite processes.

Normalized Difference Vegetation Index (NDVI) is one of a few biophysical variables that has

been discussed for temporal compositing methods and associated biases. Compositing NDVI from

AVHRR by the Maximum NDVI (MaN) compositing method results in a positive bias (Moody

and Strahler, 1994). Moreover, the magnitude of biases depends on the composite methods. The

composite maximum NDVI of AVHRR suggests significantly higher and generally less variable

values when using MaN method rather than using Maximum Temperature (MaT) (Roy, 1997).

Also, Tan et al. (2006) pointed out that MODIS 8-day composites of NDVI are overestimated by

MaN and minimum blue method due to gridding artifacts. However, the processing methods and

properties of LST are dissimilar with NDVI. The results may be not applicable to LST.

LST properties are a result of surface–atmosphere interactions and energy budget consider-

ations, closely related to surface conditions (such as emissivity, land cover and structure, and

moisture), subsurface properties (such as conductivity and specific heat density), and atmospheric

properties (such as solar radiation, wind speed, and clouds) (Norman et al., 1995; Roy, 1997).

Meanwhile, the characteristics of AVHRR and MODIS sensors are different in many ways, such
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as spectral range and instantaneous field of view. As a result, the bias magnitudes may vary from

different sensors. The product of composite MODIS LST released from NASA utilizes another

aggregation method, simply by averaging the daily MOD11A1 product (Wan, 2007). The main

bias is expected to be introduced by clouds, because the distinct urban climate system exerts in-

fluences on cloud occurrence frequency (Taha, 1997; Romanov, 1999), leading to the urban/rural

data availability difference. However, what is the impact of temporal aggregation on MODIS LST

is still unknown. In this paper, we examine this issue by focusing on Houston, Texas and its rural

surroundings estimating the magnitudes of the influence of temporal aggregation on MODIS LST

products for long term SUHI studies.

2.2 Study area

Houston, Texas is chosen as the study area in the domain ranging from 31.0° N, 97.0° W (north-

west) to 28.5° N, 94.0° W (southeast) (Fig. 2.1). Houston is a coastal city on the Gulf of Mexico

with a population of 2.1 million within about a 1600 km2 urban area (United State Census Bu-

reau, 2010). The climate is classified as humid subtropical, which is characterized by hot, humid

summers and generally mild to cool winters. The land cover types in the study area according

to MODIS land cover data from 2001 to 2009, except sea and land water (21.6%), primary in-

clude cropland/natural vegetation mosaic (28.3% ± 6.8%), woody savannas (13.5% ± 4.6%), crop-

lands (11.7% ± 2.5%), grasslands (9.1% ± 2.6%), mixed forest (7.2% ± 2.8%) and urban and

built-up (3.9% ± 0.03%). Fig. 2.1 illustrates the land cover in 2009 with the super neighborhood

boundary (SNBR, from COHGIS 2010 (http://cohgis.houstontx.gov/cohgis2010/index.

html)). The SNBR portrays the main Houston urban area without extra roads and small pieces of

land outside main urban region, so we use it as the boundary of the Houston urban area instead of

the administrative boundary in the later analyses.
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Figure 2.1: MODIS land cover map (International Geosphere Biosphere Programme (IGBP) clas-
sification) in 2009 with the super neighbourhoods boundary (SNBR) which is assigned as the
Houston urban area in this study.

2.3 Data and Methods

2.3.1 Data and Data Processing

We used the daily (MOD11A1/MYD11A1) and 8-day composite (MOD11A2/MYD11A2) MODIS

LST products from Mar. 5th, 2000 (MOD11A1; Jul. 8th, 2002 for MYD11A1) to Dec. 31st,

2010 at 1 km spatial resolution. MODIS is a 36-band instrument aboard the Terra (EOS AM)

and Aqua (EOS PM) satellites, which covers the earth surface 4 times each day at the daytime

(around 10:30 and 13:30 local time) and nighttime (around 22:30 and 1:30 local time). The

MOD11A1/MYD11A1 products are produced daily using the generalized split-window LST algo-

rithm (Wan and Dozier, 1996). The emissivities in bands 31 and 32 in the products are estimated

by the classification-based emissivity method according to the land cover types (Wan and Dozier,

1996).

All sea pixels were excluded after reprojection and extracted from the subset of the study

area. Considering both the location and the climate in Houston, we also masked the unreasonable

LST values before analyses. According to the low air temperature record from NOAA Online
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Weather Data (www.nws.noaa.gov/climate/xmacis.php?wfo=hgx) and considering the rela-

tionship between surface and air temperature (Jin and Dickinson, 2010; Sun and Mahrt, 1995), we

set the low threshold of 280 K for May to September, and 258 K for other months. There are two

images available for each daytime and nighttime. In order to simplify the comparison, we used the

average of daytime or the average of nighttime values, although each pair was obtained approxi-

mately 3 h apart. This process is done after the separately aggregating Terra and Aqua images. In

addition, only the first 360 days were accounted for statistics, so that 8-day composite LST dataset

can match the daily dataset better in a one year period.

The MODIS land cover type product (MCD12Q1, 500 m, yearly) was introduced to explore

the impact of temporal aggregation in a spatial perspective. We chose International Geosphere

Biosphere Programme (IGBP) classification out of five schemes in MCD12Q1, which includes 17

classes with natural vegetation, developed and mosaicked land, and non-vegetated land classes.

After being projected to the same coordinate system as the LST data, the land-cover maps were

resampled to 1 km using the majority resampling method. Unfortunately, there are only 9 annual

land cover maps available from 2001 to 2009 online, while LST datasets have a wider time series

span (2000–2010), so the 2000 and 2010 LST data were assessed using the nearest year 2001 and

2009, respectively.

2.3.2 Analysis Methods

UHI is defined by the temperature differences between urban and non-urban areas. However, the

differentiation between “urban” and “rural” remains diverse (Schwarz et al., 2011). In this study,

we defined the urban temperature using mean urban LST in SNBR boundary of Houston. Then,

the temperature differences (also called SUHI maps) were calculated from

∆T (i, j) = T̄urban−T (i, j) (2.1)

where T̄urban is the mean of LST in SNBR boundary with the land cover type of urban and
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built-up, and T(i,j) is a pixel in the LST image at the position of (i,j). Generally, the non-urban

areas reflect positive values in SUHI maps, which indicate the LST difference magnitudes between

the Houston urban and the non-urban areas.

Daily and 8-day composite LST values of Houston and non-Houston areas were calculated

and compared to show the seasonal, annual, and interannual dynamics of urban–rural climate.

Then, the impact of temporal aggregation on SUHI was evaluated from two points of views: time

and space. The analyses of the temporal aggregation were aimed to test whether the impact of

aggregation varies with time of year, while the spatial analyses were attempting to ascertain what

the impact of the aggregation has on the spatial variance. The major statistics were calculated

using MODIS daily and 8-day composite data, because 8-day composites are a primary MODIS

LST product, and the clear sky coverage at this scale is generally high enough for common spatial

analyses.

To assess the influence of temporal aggregation, we estimated 2-, 4-, 8-, 16-, and 32-day com-

posite scales of SUHI maps based on daily LST using a moving window algorithm. This resulted

in a composite LST image from each fixed composite period (window size: from 2 to 32 days)

and moves the window forward day by day, then estimated the SUHI from these composited LST

images. The mean SUHI magnitudes in study area at each composite scale were calculated before

estimating the mean SUHI from Terra and Aqua. Then the mean SUHI were compared with daily

mean SUHI in the same period. Moreover, to evaluate the cost and gain, the clear sky coverage

ratio (Rcsc) was calculated based on each composite LST image:

Rcsc =
Ncs

Ntotal−Nsea
(2.2)

where Ncs is the total number of land surface pixels under clear sky conditions, Ntotal is the

total number of pixels in an image, and Nsea is the number of masked sea pixels.

Regression analyses for day and night were performed on 8-day averages of daily SUHI versus

the SUHI derived from the 8-day composite data, respectively. Such analyses were also under-

taken for seasonal relationships. To evaluate the 8-day composite data performance, coefficient
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of determination (R2), root mean square error (RMSE), and slope and intercept of the regression

were calculated. Moreover, the differential SUHI maps between 8-day composite images and the

corresponding daily images were calculated and the seasonal statistics were calculated.

In order to explore the spatial variability caused by temporal aggregation, summer compos-

ite SUHI maps during 11 years were generated from daily and 8-day composite LST as well as

their differential maps for day and night, respectively. Land cover is a critical forcing for develop-

ment of the UHI (Jin and Shepherd, 2005), and the relationship between UHI and land cover has

been reported widely in the literature (Voogt and Oke, 2003). We statistically analyzed the mean

SUHI magnitudes of each main land cover type at summer-season and annual periods to assess the

responses of different land cover types to the temporal aggregation.

To quantify the potential influence of cloud contamination on the aggregation product, the

linear aggregations were tested between Rcsc and aggregation biases at the 2-, 4-, 8-, 16- and 32-

day composite scales. The aggregation biases are generated from the differences between the mean

composite SUHI in the study area and the daily mean SUHI in the composite period. Moreover,

the spatially heterogeneous distribution of clouds was also assessed seasonally by calculation of

the available pixel ratio (APR) maps (Spring MAM, Summer JJA, Autumn SON, and Winter DJF).

APR is defined as follows:

APR(i, j) =
∑

N
z=1 n(i, j,z)

N
(2.3)

where n is 1 when the value of the pixel at (i,j) is meaningful (non-NaN), otherwise n equals

0; N is the total number of images in each season. APR maps are directly derived from the daily

dataset, because this originally reflects the cloud contamination frequency. A higher APR value

means less cloud contamination during this season at this pixel.
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2.4 Results

2.4.1 Temporal Aggregation Influence on LST in the Urban and Rural Ar-

eas

We began by focusing on the temporal LST patterns of Houston and the surrounding areas. The

mean daily average LSTs of 11 years are 301.1± 6.5K (daily), 302.7 ± 6.8 K (8-day) in the

Houston urban area, and 297.8 ± 6.5 K (daily), 299.2 ± 6.3 K (8-day) in the non-Houston area

during the daytime. For the nighttime, the mean LSTs are lower than those during the daytime,

which are 289.8 ± 7.2 K (daily), 289.7 ± 7.0 K (8-day) in the Houston urban, and 287.9 ± 7.1

K (daily) and 287.8 ± 6.9 K (8-day) in the non-Houston area. The 8-day composite LST shows

higher temperatures in the daytime and lower temperatures at night, which increases the diurnal

LST by 1.7 K (the Houston urban) and 1.5 K (the non-Houston area), respectively.

The mean daily, seasonal, annual and interannual LST patterns assessed by daily LST in the

Houston urban and the non-Houston urban area are shown in Fig. 2.2. There is a marked sea-

sonal trend of the mean LST. Compared with the mean LST in 45 8-day periods between the two

datasets, the annual trend doesn’t agree well in quantitative features (Paired t-test,p < 0.01) in the

daytime with mean differences (8-day minus daily) about 1.9 K (Fig. 2.2a) and 1.5 K (Fig. 2.2b).

However, these differences are not statistically significant during nighttime (Fig. 2.2c and Fig.

2.2d). Moreover, the composited data are generally less varied due to the aggregation reducing the

LST range. The standard deviation (STD) shows a different diurnal and seasonal pattern for the

urban and non-urban areas. There is a relative higher STD in summer during the daytime in the

Houston urban area, and in contrast, the STD is notably lower in summer during nighttime in both

Houston and non-Houston areas.

The interannual comparison was also conducted from 2000 to 2010 (Fig. 2.2). The statistics

show that the mean 8-day LST is always higher than that of the daily dataset during the daytime,

while the nighttime mean LST is opposite. The t-test indicates that the annual differences between

the two datasets are not significant.
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Figure 2.2: The daily average LSTs of Houston urban and non-Houston urban areas during 11
years. The daily average LSTs are arranged as 8-day period by 45 8-day periods in a year by 11
years. The missing values are in black. The bottom plot shows the mean and standard deviation
(STD) in every 8-day period using daily (red, downward error bar) and 8-day composite data
(green, upward error bar). The right box-plots illustrate the distributions of daily (red) and 8-day
composite data (green) LST in each year.
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2.4.2 Temporal Aggregation Influence on Temporal Dynamics of SUHI

2.4.2.1 Multi-scale Composite SUHI Comparisons

In order to examine the impact of the time scale of temporal aggregation on SUHI as well as on

the clear sky coverage, the 2-, 4-, 8-, 16-, and 32-day temporal composites were calculated by

the moving window algorithm. The 11-year mean of statistics were plotted in Fig. 2.3, showing

the annual trend of daily and multi-scale composite SUHI magnitudes. The interannual variation

of the SUHI (not shown figure) in summer day is relatively larger than other seasons with the

standard deviation of 2.4 K at the daily scale and 2.2 K at the 8-day scale, resulting in slightly

higher variation of biases. However, the variations of the biases at 6 temporal scales are less

than 1.6 K in the summer day. Conversely, the summer nights exhibit smaller variations of SUHI

and the aggregation biases during the 11 years than other seasons, which are also much smaller

than daytime. The seasonal pattern of SUHI in each scale is clear, indicating higher SUHI values

in spring and autumn. With the increasing composite scale, the SUHI values are more notably

enhanced in the daytime than nighttime. We compared the composite SUHI with the daily scale

and found that the summer shows the largest variation (Fig. 2.3(b)) with about 3.5 K at 32-day

composite scale for the day, while the temporal scaling exerts less influence in winter. The impact

is also less at night than during day, showing relatively similar values at night in Fig. 2.3(d).

The advantages of utilizing composite data include the high efficiency for long term monitor-

ing, as well as the great improvement of clear sky coverage which is essential for spatial analyses.

The 11-year-averaged annual clear sky coverages at six scales are shown in Fig. 2.4. Since the com-

positing process decreases the cloud coverage by adding more information, the clear sky coverage

increases as an increase of composite time period, which is greatly affected in a short composite

period, compared with 0.44 for daily LST, 0.61, 0.80 and 0.93 at 2-, 4- and 8-day levels during the

daytime, respectively. Based on daily data, the clear sky coverage differs substantially in summer

for day (0.36) and night (0.54) due to diurnal energy balance patterns in urban environments. Gen-

erally, when the composite scales are greater than the 8-day period, the SUHI maps in a year long
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period can reach a high quality of clear sky coverage for both day and night, and with a seasonal

analysis, a shorter compositing period can result in the similarly high quality.

One of the primary issues associated with temporal scaling of SUHI from remote sensing is

that cloud contamination determines the availability of SUHI maps and the magnitudes of SUHI

related to the mean urban LST. We will discuss this issue in further details in Section 2.4.4.

Figure 2.3: The 11-year mean SUHI of study area at daily and 2-, 4-, 8-, 16- and 32-day temporal
composites for day (a) and night (c) with their SUHI differences for day (b) and night (d). The
SUHI differences are calculated from the difference between composite SUHI and the mean SUHI
using the daily SUHI during the corresponding period. The four vertical lines separate a year into
four seasons.

2.4.2.2 Linear Regression Analysis Between Daily and 8-day Composite SUHI

The trend in the improvement of the clear sky coverage resulting in an increased error of SUHI is

clear. Next, we scrutinized daily and 8-day composite LST product available online to quantify

the errors. A scatter plot of the mean daily SUHI during 8-day period versus the 8-day composite
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Figure 2.4: The 11-year mean clear sky coverage ratio (Rcsc) for each composite scale image at
day (a) and night (b).

SUHI from early 2000 to 2010 for day and night, respectively (Fig. 2.5), examines the influence

of temporal aggregation on SUHI. At first glance, the aggregation process directly results in a

higher SUHI magnitude than that using daily SUHI, especially in the daytime. Similar regression

analyses were also implemented at a seasonal scale, and the results are shown in Table 2.1. The

8-day composite SUHI differed seasonally from the daily SUHI. The stronger R2 in summer during

the daytime explains the variation of 8-day composite SUHI caused by the variation of daily data.

Spring has the largest absolute bias, as high as 2.5 K in the daytime. For the nighttime, the spring

shows the highest R2 and a slope of near 1. Generally, the SUHI estimated from the two datasets

indicates a smaller difference during the nighttime.

Table 2.1: The statistical results from the regression between daily and 8-day composite SUHI
from 2000 to 2010

Season
Daytime Nighttime

Slope Intercept R2 RMSE Slope Intercept R2 RMSE
Spring 0.57† 2.49 0.35 0.80 0.91 0.32 0.68 0.32
Summer 1.14 1.56 0.75 0.67 0.73 0.64 0.51 0.13
Autumn 0.95 0.95 0.51 0.61 0.83 0.49 0.51 0.18
Winter 0.88 0.55 0.51 0.51 0.83 0.24 0.28 0.29
Annual 0.86 1.35 0.56 0.94 0.86 0.35 0.51 0.25
† The t-test results are not significant (p-value> 0.05) at 95% confidence level.

17



−7 −5 −3 −1 1 3 5 7
−7

−5

−3

−1

1

3

5

7

8
−

d
a

y
 c

o
m

p
o

s
it
e

 U
H

I

Daily UHI of 8−day period

(a) Daytime

R
2
 = 0.56

Y = 0.87 ∗ X + 1.29

−6 −4 −2 0 2 4
−6

−4

−2

0

2

4

8
−

d
a

y
 c

o
m

p
o

s
it
e

 U
H

I

Daily UHI of 8−day period

(b) Nighttime

R
2
 = 0.51

Y = 0.86 ∗ X + 0.36

Figure 2.5: Scatter plot showing the average of daily SUHI images in 8-day period against its
corresponding 8-day composite SUHI value across the study area.

2.4.2.3 Statistics of SUHI Dynamics from Daily and 8-day Composite Data

The annual SUHI trends using daily and 8-day composite datasets were calculated and plotted in

Fig. 2.6. Agreeing with the regression result, the 8-day aggregation of LST generally enhances

the SUHI during the daytime, and the effects become greater in the warm seasons rather than the

cold seasons. The influence on the nighttime SUHI is comparatively less notable. The aggregation

increases 1.4 K of pseudo median in the daytime and 0.4 K for the nighttime in Wilcoxon Signed-

Rank test, which are significantly different (p < 0.01). Additional statistics of the seasonal mean

SUHI with its STD are listed in Table 2.2. We observed a strong seasonal pattern of SUHI in the

daytime, illustrating about 1 ∼ 2K K higher mean SUHI in spring and autumn than summer. The

nighttime mean SUHI is quite stable, which differs less than 0.5 K among seasons. The seasonal

mean SUHI differences between 8-day composite and daily datasets varied with a remarkable

diurnal pattern. Generally, the aggregation causes few differences at night, especially in winter;

the effects are greater with seasonal variations in the daytime. The largest mean gap is as high as

1.8 K during 11 years, and occurs in the summer.
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Figure 2.6: The mean 8-day period SUHIs from daily and 8-day composite dataset during 11 years
for day and night. Green line represents the mean 8-day composite SUHI and the light green area
shows the range between the mean value ± 1 STD. The red line depicts the daily mean SUHI
magnitude arranged in 8-day periods and the light red area shows the daily mean value with ±
1 STD. The vertical lines separate a year into four seasons. The corresponding statistics refer to
Table 2.2.
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Table 2.2: The seasonal statistical results of 8-day period mean SUHI and the STD

Seasons
8-day period Day (K) Night (K) Day (K) Night (K)

of year Daily 8-day Daily 8-day 8-day - Daily† 8-day - Daily†

Spring 8-18 3.0±2.3 4.6±1.1 1.3±1.8 1.9±1.1 2.2 0.5
Summer 19-30 1.0±2.6 2.8±2.2 1.3±1.1 1.7±0.5 2.8 0.4
Autumn 31-41 2.0±2.1 3.2±1.2 1.7±1.3 2.1±0.7 1.6 0.2
Winter 1-7,42-45 1.9±2.1 2.8±1.2 1.2±1.9 1.6±1.0 0.8 0.3
† This is the statistics from the differential maps generated from the 8-day composite SUHI minus the corresponding

daily SUHI.

2.4.3 Temporal Aggregation Influence on the Spatial Pattern of SUHI

The primary purpose of comparing the spatial differences is to characterize how much spatial

variation is introduced as a result of temporal aggregation. As shown above, the largest SUHI

differences during the day occur in summer, so we chose this season to assess the spatial variability.

The summer mean SUHI maps during 11 years, as well as their differences for both day and night

are shown in Fig. 2.7. Some negative values in the Houston urban area are due to the definition of

SUHI in Eq. 2.1, where they have higher LST than the mean Houston urban LST. The SUHI shows

a higher magnitude in the daytime composite dataset, and especially in the northeastern corner of

the domain. Linking SUHI with the land cover map shown in Fig. 2.1 turns out to be a similar

pattern. Nighttime SUHI maps and their differential map, which are more homogeneous, indicate

that there is no remarkable spatial variation caused by the temporal composite process at night,

which just consolidates the results in Section 2.4.2.

The major land cover types cluster regionally with relative homogeneity, the northeastern cor-

ner of which is primarily covered by mixed forest and woody savannas. To further assess the

possible reason causing the spatial difference during the day time as well as the magnitude of the

response, we introduced the land cover maps (MCD12Q1) to build a relationship between SUHI

and the main land cover types (Fig. 2.8) for both summer and annual scales.

Since the SUHI accounts for smaller urbanized areas outside of Houston, the urban SUHI has

a value slightly higher than zero due to comparing with the mean Houston LST, which agrees

with the findings that the smaller cities are with a lower SUHI intensity (Oke, 1973). SUHI mag-

nitudes of mixed forest and woody savannas are apparently higher than grassland, cropland and
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(e) 8−day, Nighttime
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(f) 8−day − Daily, Nighttime
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Figure 2.7: Mean summer SUHI for day and night using daily and 8-day composite datasets, and
their SUHI difference maps.
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cropland/natural vegetation mosaic in the daytime, which can be explained by the lower albedo

and the higher evapotranspiration ability of trees enhancing the available net radiation and losing

more energy through latent heat flux. In the summer day, the LST of grass is even higher than the

urban LST, which shows a negative mean SUHI in Fig. 2.8(c).

The distinct diurnal pattern results from the change of energy budgets between day and night,

and this difference also can be found between daily and 8-day composite data. With the exception

of grass, the distributions of 8-day composite SUHI are generally more concentrated than daily,

due to decreasing the variation by averaging daily values. The statistical test results show that the

differences of the two datasets in each land cover types are significant (Welch’s t test, p < 0.01),

with a mean difference of about 1.3 K (annual) and 1.7 K (summer) for the day, and about 0.4 K

(annual) and 0.3 K (summer) at the night. Further details are shown in Table 2.3. These results

imply that the higher SUHI regions are more likely to have a larger gap between two composite

scales in the daytime.

−5

0

5

10

U
H

I M
ag

ni
tu

de
 (

K
)

Mixed F. Woody Svn. Grass Crops Urban Crop/Veg.

(a)

−5

0

5

10

U
H

I M
ag

ni
tu

de
 (

K
)

Daily UHI
8−day UHI

Mixed F. Woody Svn. Grass Crops Urban Crop/Veg.

(b)

−5

0

5

10

U
H

I M
ag

ni
tu

de
 (

K
)

Mixed F. Woody Svn. Grass Crops Urban Crop/Veg.

(c)

−5

0

5

10

U
H

I M
ag

ni
tu

de
 (

K
)

Daily UHI
8−day UHI

Mixed F. Woody Svn. Grass Crops Urban Crop/Veg.

(d)

Figure 2.8: SUHI of daily and 8-day composite data with major land cover types in the study area.
(a) and (b) are the daytime and nighttime SUHI for annual scale. (c) and (d) are daytime and
nighttime SUHI only for the summer period.
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Table 2.3: The mean SUHI based on land cover maps using daily and 8-day data

Land Cover Types
Day (K) Night (K) Day (K) Night (K)

Daily(a|s)† 8-day(a|s) Daily(a|s) 8-day(a|s) Diff.‡(a|s) Diff.(a|s)
Mixed forest 4.3 3.0 6.0 5.6 2.0 1.9 2.4 2.3 1.9 2.9 0.3 0.4
Woody savannas 2.9 1.8 4.6 4.0 1.5 1.5 2.0 1.9 2.0 2.8 0.4 0.4
Grassland 0.4 -1.3 1.6 -0.1 1.9 1.5 2.3 1.8 1.7 2.5 0.3 0.4
Cropland 0.6 0.03 1.9 1.7 1.4 1.4 1.8 1.7 1.8 2.6 0.4 0.4
Urban/Build-up 0.2 -0.1 0.8 0.5 -0.1 0.01 0.1 0.2 1.6 2.4 0.2 0.3
Crop/Veg. mosaic 1.6 0.5 3.0 2.4 1.6 1.5 1.9 1.8 1.9 2.8 0.4 0.4
† a|s represents the mean SUHI of annual (a) and summer period (s), respectively.
‡ Diff. is the mean difference between 8-day composite SUHI and daily SUHI.

2.4.4 Influence of Clouds

The SUHI is composed of the differences between urban and rural LST, and missing either LST

cannot generate a SUHI map. Fig. 2.2 illustrates the influence of clouds showing missing LST with

black pixels, suggesting that this influence becomes larger in urban than rural and in the daytime

than nighttime. Statistically, about 76% (day) and 81% (night) of total daily LST images were

valid (cloud free) for Houston urban area LST to generate SUHI maps. 8-day composite product

shares a higher proportion (above 98%), due to increasing the LST availability through a series of

images. Similar results can be found in Fig. 2.4.

The benefit of temporal compositing is significant; however, it may result in a biased of SUHI

quantification using an aggregated dataset. Fig. 2.9 shows the linear relationship between the Rcsc

and the aggregation biases at the 8-day composite scale. Due to the large variation of aggregation

effect in summer, the 2-, 4-, 8-, 16-, and 32-day composite aggregation biases in summer were an-

alyzed for day and night, respectively (Table 2.4). As the length of the composite period increases,

the Rcsc grows quickly resulting in a more concentrated distribution without a significant linear

relationship. Hence, Fig. 2.9 only shows the regression lines with statistically significant level

(p < 0.05). The slope of regression lines is positive, showing an increase in bias with a growing

Rcsc in the daytime. Also, the composite scale matters, which matches the results from Fig. 2.3,

showing a larger slope with a longer composite period. In contrast, the increase in cloud ratio

results in a decrease in error, which is close to zero at the high Rcsc end. Moreover, the composite

scale does not greatly affect the biases from the aggregation process. It is postulated that the large
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cloud coverage decreases LSTs, and although the cloud and cloud-contaminated pixels have been

removed (Wan, 2008), a residual cloud impact possibly exists on the adjacent pixels. For example,

clouds cause the changes of energy and water balances, which affect the surrounding non-cloud

pixels. The increase of Rcsc by aggregation actually does not physically compensate for the cloud

effects, especially for the daytime due to the relatively low clear sky coverage (Fig. 2.4). The diur-

nal distinction of the bias-Rcsc relationships may be caused by the distributions of clouds exerting

spatially variable impacts, leading to the variation of SUHI.
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Figure 2.9: The scatter plot between 8-day composite clear sky coverage ratio (Rcsc) and the ag-
gregation biases at 8-day composite scale (blue points) for 11-year summers. The darker color
indicates higher density at that point. Aggregation biases is calculated from the differences of
composite SUHI and the daily mean SUHI in the corresponding period, refer to Fig. 2.3b,d. The
regression lines are plotted only using statistically significant data.

Table 2.4: The statistics of linear regression analyses between clear sky coverage ratio (Rcsc) and
aggregation biases in 11-year summers

Composite Scale
Day Night

Slope Intercept Slope Intercept
2-Day† -0.35 2.11* -0.94* 1.14*

4-Day> 1.57* 0.79* -0.85* 1.18*

8-Day> 5.28* -2.64* -1.31* 1.69*

16-Day‡ 5.20* -3.0* -0.7 1.11*

32-Day 3.38 -1.43 0.57 -0.18
† Significant relationship of linear regression model for the night(p <

0.05)
‡ Significant relationship of linear regression model for the day(p <

0.05)
> Significant relationship of linear regression model for both day and

night(p < 0.05)
* Significance of the slope or intercept (p < 0.05)
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The enhanced SUHI is highly related to the characteristics of urban climate. The unstable

boundary layer in the afternoon accelerates the generation of clouds above the urban area, which

increases the cloud-contamination possibility at the time of the satellite overpass. The cloud con-

tamination results in an absence of urban LST pixels, and thus it is difficult to calculate daily SUHI

maps. While the composite values comparatively enhance the LST of areas around the city. Fig.

2.10 shows the daytime mean APR maps in the four seasons. A noticeable heterogeneity occurs in

summer APR map (with STD of about 0.10), showing a lower ratio in Houston urban area and a

higher one in northeastern corner. This trend matches the differential SUHI map in summer shown

in Fig. 2.7. On the contrary, the more homogeneous winter APR map, with STD of about 0.04,

explains well the smaller influence of temporal aggregation in winter (Table 2.2). Similarly, there

is not a remarkable spatial bias of APR maps at night in each season (not shown), with the STD

less than 0.05, although the mean APR value in summer is about 0.14 higher than that in winter.

A linear relationship was examined between APR and the SUHI difference map between 8-

day and daily composite images in the summer during 11 years (Fig. 2.11). It turns out to be a

strong positive correlation with R2 of about 0.76, implying higher APR values with higher SUHI

differences due to temporal aggregation. Also, a bias of land cover is exhibited in the APR maps,

suggesting a relatively low APR with larger variance (such as urban and built-up areas, 0.15±0.08

of APR with bias STD of 0.65 K) and high APR with a smaller variance (such as forest, 0.46±0.04

of APR with bias STD of 0.19 K).

2.5 Discussion

The results suggest that the temporal aggregation of MODIS LST products leads to a more in-

tensive SUHI effect with diurnal and seasonal patterns. We showed that the SUHI have a 1.29 K

bias in the daytime and 0.36 K at night using 8-day composite dataset as compared to the daily

dataset during 11 years across the study area. The seasonal variation suggests that it produces the

highest potential difference at summer day due to 8-day scale aggregation, which is about 2.8 K.
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(c) Autumn
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(d) Winter
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Figure 2.10: The available pixel ratio (APR) maps of four seasons for the day, which are generated
according to Eq. 2.3.
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Figure 2.11: Regression analysis between the summer APR (Fig. 2.10b) and the differential SUHI
map in summer (Fig. 2.7c) of six main land cover types.

In addition, the composite also has some impacts on the spatial distribution of the SUHI during the

daytime, which is likely related to the land cover types.

The nighttime SUHI magnitude calculated from daily MODIS LST products is about 2.0 K

during 11 years. Streutker (2003) pointed out that there was about 2 ∼ 3 K SUHI magnitude in

Houston by nighttime AVHRR data between 1985 and 1987, and between 1999 and 2001. The

mean LST surrounding Houston, which was about 290 K, was higher than the result we esti-

mated. These differences may be attributable to the accuracy of AVHRR (±1.5K) (Prata, 1994)

being lower, compared with MODIS (±1K) (Wan and Dozier, 1996). The heterogeneous surface,

unavailable atmospheric conditions for correction, and sensor view angle more or less limit the

quality of LST achieved from satellites (Jin and Dickinson, 2010). The differences are also caused

by the designation of urban, rural, and the whole region of study area we defined. As there are

many indicators used to define the SUHI in the literature, Schwarz et al. (2011) found that dif-

ferent indicators have weak correlations, and emphasized the importance of choosing methods to

quantify SUHI effects. Hence, it is unclear how the choice of indicator will impact the aggregation

results.

The diurnal SUHI shows that the midday SUHI magnitude of Houston is generally larger than
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that in midnight. The seasonal patterns indicated that the highest SUHI magnitude occurs in the

spring, and the lowest magnitude happens at summer in the midday. Nighttime SUHI variation of

four seasons is not notable. Compared with global analyses from Zhang et al. (2010) and European

cities from Schwarz et al. (2011), the Houston summer SUHI is generally about 1 K lower, and

about 3 K lower than the settlements larger than 500 km2 globally, however, it is not necessary

indicating that Houston is not hot during summer. The absolute LST in the study areas is as

high as 305.0 K in summer. It is probably because of the humid coastal climate, dominated biomes

(Imhoff et al., 2010; Zhang et al., 2010), and the city structure which is sprawling (Streutker, 2003).

However, it is hard to exclude the possible influence by this distinct seasonal pattern of SUHI in

Houston, which may lead to decreasing universality of our results to other areas. Consequently,

additional studies of other cities need to be done in the future.

A significant negative relationship between land surface temperature and NDVI is found in

many studies (Dousset and Gourmelon, 2003; Gallo et al., 1993), which is associated with a de-

crease in surface resistance to evapotranspiration, a large portion of energy for latent heat flux, as

well as a reduced Bowen ratio (Mildrexler et al., 2011; Mu et al., 2007). In this study, we used

land cover maps instead of vegetation index for a more specified spatial pattern analysis. However,

if linking the SUHI magnitude with NDVI, the trends will be similar, indicating that forest has the

largest cooling effect (Mildrexler et al., 2011), particular in daytime (Lo et al., 1997). The SUHI

analysis based on land cover types may exhibit some errors due to the coarse temporal resolution

of land cover data, which may not perfectly match the actually situation during the year.

The bias of cloud contamination is a possible reason for increasing the SUHI magnitude using

composited data. According to the research conducted by Romanov (1999) on the urban influence

of the cloud cover, the results show that there is a considerable increase of cloud fraction in spring

and summer while winter’s urban effect is slight in the daytime, which matches our findings: 1)

the seasonal trends (Fig. 2.10), and 2) the differences of SUHI caused by aggregation increase

in spring and summer, and decrease in winter (Table 2.2). As the results shown in Section 2.4.4,

cloud formation is closely associated with land–atmosphere interactions. Urban areas are likely
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to be affected by clouds, due to their surface properties. The boundary layer heights over urban

areas are generally higher than that over rural areas due to a warmer surface, as a consequence,

the low-level convergence over the urban surface contributes to the formation or location of clouds

(Angevine et al., 2003). Also, the urban climate increases the source of cloud condensation nuclei

(Jin et al., 2005; Diem and Brown, 2003). Crops have a lower stomatal resistance,which increases

evaporation and decreases cloud-base, eventually generating more clouds than forest (Betts et al.,

2007).

The LST detected in this study shows some extremely low values in summer, which may be

caused by clouds. We set thresholds for the daily dataset, but the influence will be integrated in

the composite LST product online and decrease the LST value of that pixel over the 8-day period,

which should be considered in applications. Also, cloudy urban environment effectively restrict

the development of pronounced SUHI (Morris et al., 2001). However, remote sensing only works

well under clear sky conditions. As a result, biases from the technique itself may increase the

SUHI magnitude for long time monitoring.

We illustrated the mean effects of Terra and Aqua. However, variation between Terra and Aqua

exists (Schwarz et al., 2011), not only the LST but also the clear sky coverage distribution and

ratio. The overpass times of Terra and Aqua are before and after the highest temperatures in a day.

The statistics shows that the afternoon LST is about 2.6 K higher than the late morning, and before

midnight LST is about 1.0 K higher than 2:30 am LST. The mean Terra and Aqua LST cannot

represent the highest and lowest temperatures of the day and night, which may not correspond

to the largest SUHI. However, the Rcsc values of Terra and Aqua are statistically equal (t-test,

p < 0.05). Due to the fact that the aggregation processing and analysis were conducted for Terra

and Aqua separately, these results indicate the mean effect of temporal aggregation.
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2.6 Conclusions

In order to investigate a long term urban heat island dynamics with maximum decreased influences

of clouds, this paper discussed the impact of using the 2-, 4-, 8-, 16- and 32-day composite LST

instead of daily LST in Houston area to study SUHI. Especially, due to the availability and high

clear sky coverage of 8-day composite LST, MODIS daily LST and 8-day composite LST products

have been statistically compared for SUHI in both spatial and temporal respects.

Three main conclusions can be made from the results of this study. First, the temporal aggrega-

tion impact has seasonality and is also a function of composite scale. The seasonal pattern shows

that the summer daytime SUHI has the largest magnitude and variation, while the nighttime SUHI

magnitudes are much smaller and less variable. The composite scale is particularly important dur-

ing the summer daytime. The higher the aggregation scale is, the higher SUHI biases are generated.

However, the impact from the two factors for nighttime is comparably small. Consequently, we

recommend using shorter composite period in summer daytime. Second, the temporal aggregation

varies spatially, which is related to the land cover types. The mean bias caused by land cover types

were calculated to be about 1.6∼ 2.0K during the daytime, and less than 0.4 K at night. Third, the

potential cause of the errors from temporal aggregation is heterogeneously distributed clouds. The

analysis shows that the land–atmosphere interactions, which result in higher frequency of clouds

over the urban areas, are the primary reason.

However, additional research is required to draw a more common conclusion. As discussed

above, it is preferable to know that the impact on temporal aggregation is independent from SUHI

indicators. Also, it is worthwhile to test the aggregation impact on the cities in various climate

regions. For example, although the impact is outstanding for summer daytime, cities in the dry

regions may be less influenced by clouds. The seasonality and bias magnitude may vary. Also,

the size and structure of city are also factors that impact SUHI, which may have more or less

UHI effects due to the aggregation bias. In addition, other sensors have variable observation time,

spatial and temporal resolution, which need be tested too.

An important message emerging from this study is that the aggressions of 8-day period of daily
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MODIS LST products will increase the spatial coverage of information; however, it will lose some

accuracy, the extent of which differs diurnally and seasonally, particularly for the summer daytime.

For long term or global SUHI studies, it is beneficial to use 8-day composite LST if we can balance

the gains and losses.
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Chapter 3

How can we use MODIS land surface

temperature to validate long-term urban

model simulations?

3.1 Introduction

Approximately half of the world’s population now lives in the metropolitan areas, and urban expan-

sion is expected to continue (World Health Organization Centre for Health Development, 2010).

The combined impacts of global climate change, urban heat islands (UHI), urbanization, and de-

mographic trends place more urban residents at risk to heat-related stressors. More accurate infor-

mation on urban meteorology, high-resolution weather forecasting, and climate change projections

for cities are therefore required (National Research Council, 2012).

Atmospheric models are helpful for understanding the current climate system and projecting

future climate changes. Regional and local scale atmospheric model simulations are especially

valuable for decision making at the municipal level, however they necessitate accurate representa-

tions of specific urban features (e.g. morphology), fine-scale climatic background information, and

ideally are coupled to urban canopy models (UCMs). UCMs have advanced rapidly during recent
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decades (Grimmond et al., 2010) and have been coupled to a variety of atmospheric models (Chen

et al., 2011; Oleson et al., 2008; Kusaka and Kimura, 2004) for use in numerous applications. For

example, Chen et al. (2011) integrated the Weather Research and Forecasting model (WRF) (Ska-

marock and Klemp, 2008) coupled with the UCM of Kusaka et al. (2001) at 1 km spatial resolution

to assess the impacts of urbanization on Houston’s sea breeze circulation and found that the city

enhances stagnant air at nighttime, which can exacerbate pollution. Despite the utility of high-

resolution urban climate modeling, the heterogeneous surface structures in the urban environment,

with multiple sources of energy and water, increase the complexity of models, and consequently

can increase the uncertainty of model accuracy.

Climate simulations over urban regions are usually validated with in-situ measurements (Grim-

mond and Oke, 2002; Masson, 2006). Large collaborative programs that integrate different types of

measurements at multiple temporal and spatial scales are becoming popular in urban climate stud-

ies (Mestayer et al., 2005; Grimmond, 2006). Nevertheless, the expense, location, and duration of

in-situ measurement programs limit their widespread application for long-term model simulations

and validation. Moreover, the heterogeneity of the urban environment cannot be fully represented

by the limited footprint of in-situ measurements, which complicates attempts to analyze the spatial

agreement of observations with model output.

Accurate estimation of radiative temperature is required for any coupled climate modeling

system, because it is an integral component of the surface energy budget, water stress evaluation,

and soil moisture-climate feedback (Bodas-Salcedo et al., 2008; Ghent et al., 2010). Land surface

temperature (LST) products from satellite remote sensing platforms are widely available and are

potential sources for model validation, having comprehensive spatial coverage, comparable scale

with models, and constant periodicity. There are many ways to apply satellite LST data to evaluate

and improve atmospheric model simulations at multiple temporal and spatial scales (Jin et al.,

1997; Sohrabinia et al., 2012; Miao et al., 2009; Leroyer et al., 2011). For example, Jin et al.

(1997) compared skin temperatures simulated with NCAR Community Climate Model (CCM2)

coupled with a biosphere-atmosphere transfer scheme with satellite-derived radiative temperature
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to evaluate model performance globally. LST can also be incorporated into data assimilation,

helping to constrain uncertainty in model simulations. For instance, Ghent et al. (2010) found that

the LST bias of the Joint UK Land Environment Simulator (JULES) was reduced by two-thirds

by applying observed LST by means of data assimilation. The limits of satellite remotely sensed

LST for improving model performance in the long term are unknown, especially in complex urban

environments.

There are several aspects to consider before comparing LST with urban climate model simu-

lations. First, the distribution of clouds across the urban area is heterogeneous and varies season-

ally (Hu and Brunsell, 2013). The cloud-screening algorithms for satellite images usually are not

perfect for detecting all cloudy pixels, so cloud-contaminated pixels exist in some `̀ cloud-free´́

products. The data that are unavailable due to clouds would otherwise contain important informa-

tion for model validation, and the impact of clouds is often larger during daytime than nighttime

(Hu and Brunsell, 2013). Second, the satellite LST is a directional radiative temperature, repre-

senting the information from a certain view angle (Voogt and Oke, 2003). The anisotropy of LST

largely exists due to differences in surface properties, the urban geometric structure, and the rela-

tive geometry between the sun and sensor. Additionally, the view angle relates to the atmospheric

path length corresponding to absorption and reemission of radiation, leading to larger anisotropic

effects for large view angles in the remotely sensed LST. Although view angle effects from the

atmosphere are considered in LST retrieval algorithms (e.g., Wan and Dozier (1996)), the surface

structure induced anisotropy of LST still exists (Voogt and Oke, 1998; Rasmussen et al., 2010;

Vinnikov et al., 2012; Lagouarde et al., 2004). Third, different sensors have different temporal and

spatial resolutions, as well as data acquisition times. Adequately addressing these issues can allow

for satellite LST data to be comparable with model simulations of surface radiative temperature.

However, little research on this topic has been done previously.

This paper addresses the question of how to use satellite remote sensing LST to validate surface

radiative temperature in an urban canopy model. We propose three practical methods, attempting

to decrease the uncertainty of the satellite LST product and to meet a variety of different demands
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of validations depending on the application. The methods are tested using daily LST from the

Moderate Resolution Imaging Spectroradiometer (MODIS) for the decade spanning 2003 to 2012,

compared with simulations of surface radiative temperature from the High-Resolution Land Data

Assimilation System (HRLDAS) (Chen et al., 2007) over Greater Houston, Texas, USA. The de-

tails of MODIS and the HRLDAS simulations are described in Section 3.2, and the three sampling

methods are discussed in Section 3.3. The temperature distributions and spatial analysis of the

MODIS data and simulations for each method are presented in Section 3.4, as well as the jus-

tification of the assumptions made in the sampling methods. The advantages and disadvantages

of the three sampling methods and their scope of applications are discussed in Section 3.5, and

conclusions are drawn in Section 3.6.

3.2 HRLDAS and MODIS Data

3.2.1 Study Area

We choose Houston, Texas as the study area, defining the domain from 29.25 N and 96 W (south-

west) to 30.5 N and 94.75 W (northeast). Fig. 3.1 shows the HRLDAS model domain and land use

categories based on the U.S. Geological Survey (USGS) National Land Cover Database (Homer

et al., 2004; Fry et al., 2011). Three urban types are classified in the domain, including light-

intensity urban (LU), heavy-intensity urban (HU), and commercial urban (CU, including industrial

area), covering approximately 20.6%, 5.0%, and 1.9% of total land area, respectively. Other ma-

jority land cover types include cropland and grassland mosaic (27.9%), wooded wetland (23%),

and dryland cropland and pasture (8.9%).

3.2.2 HRLDAS simulations

Here we briefly describe the methodology for simulating radiative temperature, Trad , with HRL-

DAS. For additional details, the reader is referred to a full description of the modeling approach in

35



94.8° W95° W95.2° W95.4° W95.6° W95.8° W96° W

30
.4°

 N
30

.2°
 N

30
° N

29
.8°

 N
29

.6°
 N

29
.4°

 N

Dryland Cropland and Pasture
Cropland/Grassland Mosaic
Shrubland
Deciduous Broadleaf Forest
Evergreen Needleleaf Forest
Water Bodies
Herbaceous Wetland
Wooded Wetland
Barren or Sparsely Vegetated
Light Density Urban
Heavy Density Urban
Commercial Urban

Houston City Limits

Figure 3.1: The land use map used in the HRLDAS model simulation.

Monaghan et al. (2014). HRLDAS is an offline (i.e., uncoupled to an atmospheric model) version

of the Noah Land Surface Model (Noah LSM) (Chen and Dudhia, 2001; Chen et al., 2007). The

Noah LSM simulates the fluxes of energy and water from the land surface as a function of the

underlying land surface and soil properties, while also maintaining stores of water and energy in

four soil layers to a depth of 2 m. In order to better represent the physical processes involved in the

exchange of heat, momentum, and water vapor in the urban environment, the UCM of Kusaka et al.

(2001) is employed within the Noah LSM. The UCM provides a more realistic description of the

urban lower boundary conditions and morphology and therefore more accurate simulations for ur-

ban regions. As mentioned above, the urban land use categories (low-intensity, heavy-intensity and

commercial) for Houston were characterized in the UCM with the 30 meter resolution 2001 USGS

NLCD (Homer et al., 2004). The urban-versus-vegetated (i.e., non-urban) percentage within each

grid cell was specified by the National Urban Database and Access Portal Tool (NUDAPT) (Ching

et al., 2009; Burian and Ching, 2009), a 2-dimensional dataset of influential urban properties. The

use of NUDAPT leads to a more heterogeneous UHI characterization in the HRLDAS simulations.

Half-hourly, 1-km resolution HRLDAS simulations were performed over metropolitan Houston

for 2003-2012, preceded by a 1-year (2002) `̀ spin up´́ period to allow the soil temperature and
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moisture states to equilibrate (Chen et al., 2007). The upper boundary conditions for HRLDAS

were derived from 1/8th degree hourly meteorological data from the North American Land Data

Assimilation Phase 2 (NLDAS-2) (Cosgrove et al., 2003; Xia et al., 2012) forcing dataset. It was

assumed that watering and irrigation was applied to all vegetated surfaces, a process represented

in HRLDAS by setting in the upper soil layer a lower threshold of 30% water by volume.

In order to ensure that the temperature fields being compared were as similar as possible, we

generated a diagnostic radiative temperature (Trad) variable in HRLDAS such that it is similar to

the MODIS LST product. At each time step, the energy balances for the roof, wall, and road

components for each grid cell containing urban areas were simulated by the UCM subroutine

within the Noah LSM. The simulated outward longwave radiation values for the roof, wall and

road were then combined into a bulk urban longwave radiation value for each grid cell, based on

the weighted average of the roof and canyon (wall + road) longwave components. A bulk urban

emissivity value was calculated in the same manner for each grid cell. Concurrently the longwave

radiation was calculated in the LSM for the vegetated portion of each grid cell. Then, the bulk

urban and vegetated longwave radiation and emissivity values were averaged by weighting the

fraction of urban-versus-vegetated area in each grid cell. Finally, these resulting `̀ integrated´́

longwave radiation and emissivity values for each grid cell were used to calculate Trad using the

Stefan-Boltzmann law. The Trad is most representative of nadir for all cases if we do not include

wall proportion.

3.2.3 MODIS Data

The MODIS sensors onboard the Terra and Aqua satellites provide global-coverage of LST four

times per day. The satellite sun-synchronous orbits of MODIS are designed to cross the equator at

10:30 and 22:30 for Terra, and at 13:30 and 1:30 for Aqua (local solar time). The high frequency

of global coverage is at the expense of a large range of view angles spanning from -65° to +65°

from nadir. The retrieved spatial resolution for LST is as high as 1 km, which coincides with

the scale of the HRLDAS output. The 1 km resolution LST data is produced using the split-
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window method described by Wan and Dozier (1996), and filtered with the MODIS Cloud Mask

products (MOD35 L2). The LST MOD11A1 (Terra) and MYD11A1 (Aqua) Version 5 (Wan,

2008) products from 2003-2012 summers (June-July-August, JJA) across the Houston area were

collected and processed for this study.

3.3 Sampling Strategies

To ensure that the samples from MODIS and HRLDAS are comparable, we attempt to minimize

the biases caused by factors other than the model. Three major aspects must be considered and

properly addressed before the MODIS-based model evaluation: satellite overpass time, sensor view

angle, and cloud distributions and cloud contaminated pixels. Among them, the cloud distributions

are the primary issue affecting sampling strategies, and we describe the different sampling methods

to account for this issue in this section.

3.3.1 Satellite Overpass Time

The overpass times provided by MODIS LST product are in local solar time, which is defined as the

MODIS observation time in coordinated universal time (UTC) plus longitude in degrees divided

by 15 (Williamson et al., 2013). MODIS overpass times are converted from local solar time to

local standard time or UTC to enable comparison with model simulations. Each overpass time for

the Houston area is slightly different, but is usually within 2 h. For example, the daytime overpass

data is distributed between 10:00 to 12:10 for Terra and between 12:30 to 14:30 for Aqua over the

10-year summer record. The median local standard times of satellite overpasses for the datasets

are about 11:16 (Terra-day), 13:34 (Aqua-day), 22:34 (Terra-night), and 02:16 (Aqua-night). We

selected the HRLDAS outputs at 11:30, 13:30, 22:30, and 2:30 as the four daily times, therefore

we could conduct the comparison at the nearest half hours to the median MODIS overpass times.

38



3.3.2 View Angle

Thermal angular anisotropy is a widely observed phenomenon and has been reported in soil, grass,

savanna (Pinheiro et al., 2006), forest canopy (Smith et al., 1997), and urban area by modeling

(Soux et al., 2004), surface observations (Zhan et al., 2012), and airborne thermal sensors (Voogt

and Oke, 1998) with temperature biases of several degrees or even larger. The accuracy of LST

related to view angle depends largely on the correction of atmospheric effects, which is a function

of wavelength, local meteorological conditions, time of day, season, and location. Although the

MODIS LST products are corrected for atmospheric effects related to view angles, the anisotropy

bias effect can still be detected due to the generalized parameters used for the atmosphere correc-

tion algorithm, as well as the heterogeneous surface structures of various surface components.

Generally, there are two primary solutions to minimize the impact of different view angles

between the observations and model output: correct the MODIS LST view angles to nadir, or

adjust the HRLDAS Trad to the same view angle of MODIS. The use of the split window atmo-

spheric correction does not adequately remove the effect of view angle from the MODIS data. We

can potentially incorporate additional local observations to conduct a more accurate atmosphere

correction. However, most correction processes are complex and require knowledge of the atmo-

spheric conditions (e.g. an atmospheric sounding) near the time of satellite overpass. This ancillary

information is sometimes unavailable for a specific location and a certain period of time (Vinnikov

et al., 2012). On the other hand, Lagouarde et al. (2004, 2012) demonstrated with airborne mea-

surements that angular impacts on land surface temperature exist over urban areas. Corrections

for this effect require knowledge of the angular anisotropy of urban surfaces, which is even more

complex than that of atmospheric attenuation. The magnitude of biases induced by view angle

effects related to the urban surface structures is unclear at the 1 km scale.

There is also the option to adjust the view angle for simulated Trad based on the morphology

of simulated urban canyon structure due to the availability of each urban component temperature

(Troo f , Twall , Troad) and corresponding emissivity for each grid cell within the model. However, the

difficulty of simulating directional vegetation temperatures prohibits the estimation of the biases in
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mixed urban-rural and rural-only pixels, especially for a heavily vegetated city, like Houston (there

are no pure urban pixels). Therefore, we applied the view-angle correction to the temperature of

only the urban fraction in each grid cell, and tested the results only for the daytime. The mean

adjusted daytime Trad is about 1 K lower than the unadjusted Trad (which is equivalent to the

temperature at the nadir); however, the distributions of adjusted Trad at different view angles are

similar.

Fig. 3.2 illustrates the impact of view angle on MODIS LST. View angle thresholds of 15°,

35°, and 55° were applied, and LST distributions with larger and smaller view angles than the

threshold were analyzed. Generally, the LSTs with smaller view angles tend to be warmer. The

distributions differ with land cover type and time of day for LSTs with larger and smaller view

angles. For example, the daytime mean LST differences between pixels with smaller and larger

view angles about 2.4 K, 2.8 K and 3.4 K for the view angle thresholds of 15°, 35°, and 55° over the

commercial urban area. The nighttime mean LST differences for the three view angle thresholds

are 1.3 K, 1.3 K, and 1.7 K for Terra and about 0.5 K smaller for Aqua. Moreover, we tested the

view angle effect on water bodies. It showed the existence of anisotropy, indicating a large impact

from the atmospheric interaction rather than the surface morphology. Consequently, correcting the

view angle of either MODIS LST or adjusting HRLDAS Trad does not seem practical. In order to

minimize the biases caused by the view angle, we have chosen to only compare HRLDAS Trad at

nadir with MODIS LST that has a small view angle.

However, we should be aware that there are some potential biases comparing the temperature

at nadir and off-nadir. As we mentioned before, the atmospheric attenuation is the major view-

angle-dependent bias for MODIS LST. The LST at off-nadir angles generally will have a lower

bias compared with temperature at nadir due to the longer atmospheric path. From the urban

surface morphology perspective, the LST at off-nadir may further decrease during the daytime due

to viewing less road proportion and more wall proportion in the urban canyon where usually Troad

> Twall > Troo f . There is a higher Twall than Troad and Troo f at night, so LST bias can be offset at a

certain level (please find further details about the urban component temperature in Monaghan et al.
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Figure 3.2: The LST probability density distributions for view angle thresholds of 15° (green),
35° (orange), 55° (blue), respectively. The upper half of the distribution plots are the pixels with
view angles smaller than the given threshold, and the lower shaded half indicates the LST distri-
butions with larger view angles. The short segment line indicates the mean temperature of each
distribution.
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(2014). By excluding LST with large view angles, the bias of the sampled LST at off-nadir angles

can be effectively controlled.

In order to maintain a sufficient sample size, we cannot set the view angle threshold too small.

Fig. 3.3 shows the ratio of sampled pixels to the total available pixels (excluding outliers). The ratio

of sampled-versus-total pixels for a given threshold exhibits a nearly linear relationship, indicating

a relatively uniform distribution of view angles. At a view angle threshold of 35°, more than

40% of pixels are selected for analysis. The total number of available pixels is dependent on the

overpass time due to the variable cloud coverage throughout the diurnal cycle. The Terra daytime

data usually has the fewest clear-sky pixels over the urban area during summer. With consideration

of sample size and view angle impacts on LST, we decide to use 35° as the view angle threshold

in this study.
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Figure 3.3: The ratio of sampled pixels with a view angle smaller than the threshold to the total
number of available pixels for the four times of day corresponding to MODIS over pass times (with
four different colors). The shaded region indicates the range of ratios for the three urban land use
types and the rural classification.
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3.3.3 Cloud Distributions and Cloud Contaminated Pixels

Cloud contaminated pixels – i.e., pixels with cloud influences that are not removed during qual-

ity control – are also an issue found in the LST product (Williamson et al., 2013). In general,

the cloud edges and thin clouds are the major sources of contamination (Platnick et al., 2003).

Thick aerosol content from pollutants over the urban area also contributes to pixel contamination,

which may partially explain why fewer daytime pixels meet the clear-sky criteria over urban areas

compared to adjacent rural areas. It is unclear how advection of pollution plumes affects outlying

suburban and rural areas. When the pixels contaminated by clouds or high aerosol content during

the daytime remain in the analysis, the MODIS temperature is biased low relative to the `̀ true´́

temperature. Most cloud contaminated pixels have been removed in the Version 5 LST product

(Wan, 2008). However, some extremely low temperatures were found in the LST product during

summer daytime, presumably due to cloud contamination.

Cloud contaminated pixels (those that remained in the Version 5 LST product) were removed

first from MODIS LST, by retaining only the data within 1.5 times the interquartile range (Q3-Q1)

at each pixel point and time of day. Using a time series to identify the outliers is better, because the

detection through spatial analysis may bias the temperature variations caused by land cover type,

and may also fail to detect all the contaminated pixels due to the existence of many contaminated

pixels in one scene. Table 3.1 shows the statistics related to the outliers. After masking the outliers,

the lower end temperature during 10 years increases from 248.3 K and 238.6 K to 290.8 K and

291.5K for Terra and Aqua daytime images respectively, and from 276.2 K and 273.8 K to 289.3 K

and 289.9 K threshold for Terra and Aqua night, respectively. The maximum temperature deceases

by about 5 K for daytime, and 11 K for Terra night, 2 K for Aqua night after filtering the outliers.

This process may potentially exclude extreme heat days. However, it is only a small portion (about

1.2% of the total original pixels). Moreover, the extreme days were excluded from MODIS, as

well as the corresponding data in HRLDAS, so it would not impact the sampling methods or the

comparison for the long term.

Clouds frequently form on summer afternoons in Houston (Burian and Shepherd, 2005), coin-
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Table 3.1: The statistics of the outliers for four times of day corresponding to MODIS overpass
times, including the mean and standard deviation (STD) of hot and cold outliers, and the ratio of
outliers to the total number of original data.

Terra Day Aqua Day Terra Night Aqua Night
Hot Cold Hot Cold Hot Cold Hot Cold

Mean (K) 316.2 293.7 318.3 294.5 302.6 289.9 299.8 290.2
STD (K) 3.0 3.6 3.7 5.6 2.6 1.5 0.7 1.8
Ratio 1.16% 0.75% 1.22% 0.92% 0.04% 1.46% 0.12% 3.58%

ciding with MODIS daytime overpasses. Fig. 3.4 shows the distribution of the ratio of clear days

to the total days (there are 920 total days) during 10-year JJA. The cloud distribution is most het-

erogeneous during the summer daytime compared with other seasons, or with nighttime (Hu and

Brunsell, 2013). The deep convection due to the thermal properties of urban surface, urban-rural

advection, thick aerosols, etc. all contribute to the large cloudiness differences between urban and

rural areas.

After masking the outliers and pixels with larger view angles, the LST data from 2003 to 2012

from four times a day were used as the primary samples from MODIS. Clouds are not explicitly

resolved in the HRLDAS forcing data. Instead, clouds are manifested through fluctuations in the

surface downwelling longwave and shortwave radiative forcing fields, which makes it difficult to

define exactly when cloudy conditions are present in the simulations over a given grid point. We

therefore tested the three methodologies described below as a means of minimizing differences

between MODIS and HRLDAS due to clouds.

3.3.4 Sampling methods for MODIS-HRLDAS Comparisons

In the first sampling method – satellite cloud mask (SCM) method, we assume that the cloud

distributions in MODIS and HRLDAS are the same. Therefore, we can apply the masks built from

MODIS for the clouds, outliers, and view angles to HRLDAS. As a result, the total sampled pixels

for 2003-2012 is 16.8%, 11.6%, 24.2% and 20.7% of the total pixels in the domain (except the

inland water and sea) for the Terra day, Aqua day, Terra night, and Aqua night passes, respectively.

The second method, max/min temperature (MMT) method, is to independently select the
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Figure 3.4: The ratio of selected pixels to total days available for four times of day during 2003-
2012 JJA. In-land water and sea pixels are masked, which are the white region in the figure.
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warmest days and coolest nights in the model output and MODIS observations. This method relies

on the fact that clear-sky LSTs are generally higher (lower) than cloudy or cloud-contaminated

pixels during the daytime (nighttime) because of the tendency of clouds to dampen daytime high

and nighttime low temperatures (Dai et al., 1999). First, we applied the common masks from

MODIS (outliers and view angles) to both MODIS and HRLDAS data. It is difficult to determine

whether clouds are concurrently impacting both MODIS and HRLDAS fields at every grid point,

and therefore we sampled the warmest days and coolest nights separately for each dataset, in order

to minimize the possibility of clouds impacting either dataset. Assuming that neither MODIS nor

the HRLDAS simulations perfectly characterize clouds in space and time, this approach necessi-

tates that the comparisons will not be temporally consistent.

There are many missing data in the MODIS fields, especially during daytime when convective

clouds are common (see Fig. 3.4). One of our objectives is to map spatial patterns of the heat

island, which ideally requires a consistent number of days available for each grid point. Despite

the large amount of missing data, we found that for most grid points, there are at least 50 days with

available (`̀ clear-sky´́ ) data for a given daytime pass during 2003-2012 summers. We therefore

sampled the warmest 50 days and the coolest 50 nights from the HRLDAS and MODIS data for

each overpass time, respectively, representing about 5.4% of each set of data. The percentage of

available data was slightly lower than 5.4% for daytime due to some grid cells having less than

50 cloud-free days. There are 2993, 733, and 278 grid cells with LU, HU, and CU, respectively,

and therefore despite using only a small fraction of the overall total days for the comparison,

there remains an adequate sample size for each land use category to draw statistically meaningful

conclusions.

In the third method – high clear-sky fraction (HCF) method, we only choose the daytime and

nighttime MODIS overpasses with a high percentage of clear-sky coverage in a scene after exclud-

ing the outliers and pixels with larger view angles. The same times are selected from the HRLDAS

simulations. Approximately 25% of the total pixels in the domain is urban land cover type in this

study. We suggest the clear-sky coverage ratio be set to 90% or more, so that we can guarantee at
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least more than half of urban pixels are available (clear-sky) in the each sampled overpass. This

method helps eliminate problems caused by cloud mismatches, and also maintains the temporal

and spatial consistency between observations and simulations. However, based on our selection

criteria there are limited number of days available, due to the prevalence of clouds. About 28

and 8 cloud-free days, and 132 and 97 cloud-free nights are sampled from Terra-day, Aqua-day,

Terra-night and Aqua-night, respectively for MODIS during the study period.

3.4 Results

3.4.1 Distribution Analyses

The probability density distributions for the three proposed sampling methods were compared

between MODIS observations and HRLDAS simulations at each time of day and each land cover

type (Fig. 3.5). If the conditions are mostly clear-sky, the MODIS and HRLDAS samples selected

by the SCM and HCF methods should be similar spatially and temporally, which is the most

ideal case for comparison. For example, the LST distributions of the SCM and HCF methods are

analogous during the nighttime in most land cover types. However, the high frequency of clouds

during the daytime in Houston, especially over the urban area, dramatically decreases the sample

size under the HCF method. The daytime distribution is narrower in the HCF method compared to

the SCM method due to fewer sampled days. The distributions are less coincident in HU and CU,

which is probably due to the smaller sample size compared with rural and LU. The MMT method

is somewhat different in that it scrutinizes the ability of HRLDAS to simulate the two extreme ends

of the temperature distribution, and therefore the distributions are less smooth with much smaller

LST ranges.

Trad in daytime HRLDAS simulations are overestimated in most cases (Fig. 3.5). An exception

is the relatively good match between the HRLDAS and MODIS distributions for rural and CU

areas in the HCF method for Aqua daytime overpasses, despite small sample sizes. In general, the

nighttime comparisons are in better agreement. For example, the Terra nighttime comparison in the

47



S
C

M
 M

e
th

o
d

290

300

310

320

330

(a) Terra−Day

MODIS HRLDAS

M
M

T
 M

e
th

o
d

290

300

310

320

330

H
C

F
 M

e
th

o
d

290

300

310

320

330

Light Urban Heavy Urban Commercial Rural

S
C

M
 M

e
th

o
d

300

310

320

(b) Aqua−Day

MODIS HRLDAS

M
M

T
 M

e
th

o
d

300

310

320

H
C

F
 M

e
th

o
d

300

310

320

Light Urban Heavy Urban Commercial Rural

S
C

M
 M

e
th

o
d

290

295

300

(c) Terra−Night

MODIS HRLDAS

M
M

T
 M

e
th

o
d

290

295

300

H
C

F
 M

e
th

o
d

290

295

300

Light Urban Heavy Urban Commercial Rural

S
C

M
 M

e
th

o
d

290

295

300

(d) Aqua−Night

MODIS HRLDAS

M
M

T
 M

e
th

o
d

290

295

300

H
C

F
 M

e
th

o
d

290

295

300

Light Urban Heavy Urban Commercial Rural

Figure 3.5: The probability density distribution of MODIS LST (K) and HRLDAS Trad (K) for
the different sampling methods. The black horizontal line indicates the mean temperature. The
satellite cloud mask (SCM) method uses all pixels after quality control; the max/min temperature
(MMT) method uses the 50 warmest days/coolest nights for each grid; and the high clear-sky
fraction (HCF) method uses all days/nights with a spatial clear-sky coverage ratio over 90%.
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MMT method indicates good agreement with differences less than 0.6 K. The largest differences

result from using the MMT method which necessarily compares the coolest nights in both datasets;

HRLDAS is about 1.9 K ∼ 2.7 K cooler for different land cover types. HRLDAS simulates a

fast decrease in temperature from 10:30 pm (Terra night) to 2:30 am (Aqua night), which is not

observed in the MODIS data, suggesting HRLDAS underestimates the urban heat island. HRLDAS

is an offline model and therefore it is not coupled with the atmosphere, which can be a source of

bias. For example, it is possible that a coupled model would mitigate large temperature gradients

between the urban area and atmosphere. Also, the forcing data may have some urban signature but

likely not at the scale we are using the model. Overall, the temperature patterns among different

land cover types are generally comparable. Rural areas are cooler than urban areas, and the `̀ most

rural´́ urban type, LU, is cooler than other urban types for all times and sampling methods in both

datasets.

3.4.2 Spatial Analyses

All the sampled LST and Trad through time were averaged at each pixel, and the resultant spatial

distributions of the averaged LST and Trad maps from the three sampling methods are shown in

Fig. 3.6 (Terra only), indicating different spatial patterns due to the different sampling strategies.

The spatial patterns among the sampling methods are more similar during nighttime than daytime.

The HCF method matches well with the SCM method spatially, with correlations between HRL-

DAS and MODIS of 0.98 and 0.99 for daytime and nighttime, respectively. The MODIS LST

distribution in the MMT method has correlations of 0.90 and 0.88 with SCM and HCF methods

within the urban area, and slightly higher correlations in rural areas for most of the time during

day and night. The nighttime urban boundary is better defined among methods; however, the UHI

is still observed in the mean of warmest 50 pixels during the daytime. The difference maps be-

tween MODIS and HRLDAS show a similar pattern among methods for daytime and nighttime.

The heterogeneous distribution of bias is related to the land cover type. For example, the wetland

temperature was overestimated at the north-east corner of the domain by about 5 K according to
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the SCM and MMT methods, and 3.9 K for the HCF method, while the urban areas were overes-

timated by about 3.6 K, 5.6 K and 2.5 K for three methods for Terra daytime data. The range of

differences during the daytime is similar among the three methods, about 20 K, while the range

during the nighttime is smaller, about 8 K. The overall domain-average temperature differences are

about 4 K and 3 K for Terra and Aqua daytime for the MMT method, which is about 1 K ∼ 2 K

larger than other two methods, suggesting HRLDAS has comparatively lower skill at simulating

extremes. We will discuss potential reasons in the next section.

3.4.3 Justification of Sampling Method Assumptions

For the SCM method, we assumed the cloud distribution in HRLDAS is coincident with MODIS

observations, so that we could apply the MODIS cloud mask to HRLDAS. Fig. 3.7 shows the

probability density distributions for HRLDAS Trad for clear-sky and cloudy pixels defined by the

mask in the MODIS LST product in the SCM method. HRLDAS mean Trad is about 0.4 K (about

1 K for LU and rural areas) warmer in the cloud-free pixels over the cloudy pixels during daytime,

which is expected because clear-days are warmer than cloudy days. The nighttime differences are

smaller, probably due to the lack of interaction of strong external energy sources (e.g. solar radi-

ation) and also the accuracy of cloud maps. Generally speaking, cloud detection is more difficult

during the nighttime (Platnick et al., 2003) due to less information in the optical regions of the

spectrum. In summary, the assumption we made for the SCM method – that cloud distributions

are similar between HRLDAS and MODIS – appears to be true for daytime and inconclusive for

nighttime.

The assumption we made for the MMT method was that the warmest (daytime)/coolest (night-

time) pixels from MODIS and HRLDAS should be temporally consistent at a certain level. In other

words, if the cloud masks of two data sources are comparable, and the model is able to simulate

the temperature variability similar to the MODIS LST observations, the distributions of sampled

pixels that are cloud-free should share many of the same hot days and cool nights in common. The

ratio of the number of temporally consistent days to the total sampled days for each grid is shown
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Figure 3.6: The temporally averaged LST determined from the three sampling methods and the
difference map between MODIS and HRLDAS. (a), (b), and (c) demonstrate sampling methods:
satellite cloud mask (SCM) method, max/min temperature (MMT) method and high clear-sky
fraction (HCF) method, respectively.
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in Fig. 3.8. The temporal agreement in the urban area is very low (a ratio of about 0.1 (Terra) and

0.09 (Aqua)) compared with northeast-corner rural areas (wetland and forest land cover types with

ratios of about 0.23 (Terra) and 0.18 (Aqua)) during the daytime. The spatial distribution of the

ratios is less variable during the night with an average of 0.20 and 0.17 in urban areas for Terra and

Aqua, respectively. The spatial patterns in Fig. 3.8 are closely related to the spatial distribution of

the available-to-total pixels after excluding the outliers and the pixels with large view angles (not

shown here, it is similar to Fig. 3.4.), especially during the daytime with correlation coefficients

of 0.8 (Terra), and 0.7 (Aqua). The correlation drops to 0.2 for Terra night when the cloud-free

ratio is high and with less spatial variability. Consequently, the cloud distributions and frequency

may directly impact this method, i.e., it is so cloudy during most days that insufficient samples are

available over the urban areas. For example, there are less than 20 clear-sky days in some urban

pixels during the 2003-2012 JJA periods. On the other hand, the poor temporal agreement may

also be attributed to model defects, such as the mismatch of clouds due to the forcing data, or sim-
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plified assumptions (we evaluate model performance in the companion paper by Monaghan et al.

(2014). In summary, the MMT method may be better suited for regions where daytime cloudiness

is not as persistent so that a larger distribution of pixels can be drawn from.
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Figure 3.8: The ratio of the temporally consistent days to the total selected 50 days for four times
a day.

The MMT method is designed to sample the two ends of the temperature distribution from

MODIS and the model. For the observations, potentially it enhances the impact of view angle-

induced temperature biases. In order to minimize this effect, prior to employing any of the sam-

pling methods, we masked all of the pixels with view angles larger than 35°. Fig. 3.9 shows the

view angle distributions and the corresponding mean MODIS LST of sampled pixels by the MMT

method. The nighttime mean LST indicates that warmer pixels slightly coincide with larger view

angles, which may be attributed to the warmer radiative temperature of the walls over the roof and
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Figure 3.9: The view angle histogram of sampled MODIS LST by the MMT method for four
times a day (left y-axis, gray bar) with the mean LST to the corresponding view angle ranges (right
y-axis, red line).

roads in the urban area (Kusaka et al., 2001; Voogt and Oke, 2003; Lagouarde et al., 2012). How-

ever, the temperature trend here is not statistically significant. The nighttime temperature ranges

from 294.5 K to 295.5 K, which is less than the associated daytime temperature variation (about

2K). Further, the similar statistics for each urban land cover type and rural area (not shown) show

that LU and rural types share similar LST trends related to view angles with Fig. 3.9, while HU

and CU have larger LST variations due to insufficient pixels for some view angles. In summary,

the strategy of excluding the larger view angles efficiently decreases the view angle impact on LST.

3.5 Discussion

Before sampling data for model validation, we must be clear about several important facts of using

satellite remotely sensed data. First, the overpass time of the satellite is not constant. There is

approximately a two hour range for a given MODIS overpass, so we choose a median time for
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which to make the comparison of MODIS LST to HRLDAS-simulated Trad . Consequently, biases

may be introduced by temporal gaps. The impact will be larger for the daytime than nighttime be-

cause the components of the surface energy balance are generally larger and more variable during

daytime. Also, the periodicity of sun-synchronous satellites is not frequent enough for determining

diurnal variation. As a result, the diurnal temperature range calculated from the MODIS day/night

difference is unlikely to match the traditional definition, defined as the difference between daily

maximum and minimum temperatures. Less `̀ diurnal´́ information is available due to cloud dis-

tributions varying at the pair of overpass times. Second, the thermal angular anisotropy should be

considered because of atmospheric correction, surface geometry, solar zenith and azimuth angles,

surface materials, etc. Correcting MODIS LST or simulated Trad view angle over large areas is

not practical at this stage. Consequently, we only selected the MODIS data within view angles

± 35° from nadir, which we demonstrated was an effective approach for view-angle-dependent

biases in MODIS LST. These facts will be also valid for MODIS LST product Version 6, because

the difference between Version 5 (used in this study) and Version 6 products is very small in all

regions except for hot and warm bare soil zones (Wan, 2014). For other narrow-swath satellite

remote sensors, view angle may be less influential. Additionally, we had the advantage of having

10 years of data, and therefore retained a large sample of MODIS data for comparison, even after

omitting the passes with large view angles. Lastly, clouds can strongly impact the accuracy and

applicability of thermal remote sensing data. The sampling methods we proposed are aimed at

minimizing cloudy pixels in both the MODIS LST data and simulations.

By selecting only cloud free pixels for comparison, there is the likelihood of biasing the com-

parison towards warmer daytime conditions (Hu and Brunsell, 2013). However, the validation of

a clear-sky case could be the most robust test of how the model surface energy balance performs

since it is expected to maximize the differences with variations in surface conditions in the clear-

sky cases. Due to the limitation of remote sensing system, the land surface temperature can not be

directly measured under the partial-cloudy or cloudy conditions. Bisht and Bras (2010) developed

the remote-sensing based estimation of net radiation under all sky conditions. However, the surface
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temperature and other parameters under cloudy conditions are the result of global model analyses

or regressions based on the in-situ measurements. The model validation for long-term simulations

is still challenging under cloudy conditions.

Three sampling methods for validating model simulations versus MODIS LST are proposed

and compared. Table 3.2 summarizes the major advantages and disadvantages of each sampling

strategy. The length of model simulation and the climate of the study area will affect selection of

the optimal method. Generally, if the study area is a cloudy region, such as Houston, we recom-

mend using the SCM method to maximize the sample size of observed data. The HCF method is

also an acceptable choice, but may lack representativeness due to small sample size. If the study

area is predominantly sunny, such as Phoenix, the difference between the SCM and HCF methods

should be modest. The MMT method may be complimentary to the SCM and HCF methods, in

that it can be used to evaluate model performance for extreme cases, and it provides an implicit

test of the agreement of the simulated-versus-observed cloud distributions. The HCF method is a

better choice when simulations are only available for a short period. In summary, each sampling

strategy has its own best applicable situations. If the length of simulation or cloud conditions are

not limiting factors in the study area, it is also a plausible approach to employ all three approaches

for model validation, because each has different strengths.

The thresholds for the processing as well as for the MMT and HCF methods can be adjusted for

the specific application. The choice of view angle threshold requires balance between the sample

size and LST accuracy. If modelers are interested in extreme events, for the outlier exclusion, it

is also reasonable to keep the tail of the temperature distribution on the side that is unaffected by

clouds or keep a larger portion of the tails.

For the MMT method, the number of warmest days/coolest nights depends on the minimum

number of nearly cloud-free days/nights in the study area, so that we can have relatively large

coverage for spatial comparisons. Besides the MMT method, there is another option to select

certain high and low quantiles for days and nights in each pixel. This strategy guarantees spatial

coverage, but sacrifices the equality of sample size in each grid point. We tested 50% of the
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Table 3.2: The advantages and disadvantages of the three proposed sampling methods.

Strategies Advantages Disadvantages
SCM method • The largest possible sample size

• Temporally consistent

• Diurnal temperature comparison

• Long term comparison

• Unequal sample size in each grid
box

• Possible cloud contamination

• Possible cloud mismatch

MMT method • All samples are cloud-free

• Equal sample size from each grid
point

• Sampling extremes

• Temporal inconsistency

• Only apply to long-term data

• Unsuitable for year-to-year vari-
ability, or time series analysis

• Unable to do diurnal temperature
comparison

HCF method • Temporally consistent

• Spatially consistent

• Likely equal sample size from
each grid point

• Suitable for case studies

• Small sample size

• Unsuitable for year-to-year vari-
ability, or time series analysis

• Hard to do diurnal temperature
comparison
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warmest days and coolest nights (not shown), and the LST distributions for each land cover types

are similar to the case for the MMT method presented above.

We recommend setting the spatial coverage ratio threshold for the HCF method to be larger than

the rural coverage ratio in the domain in this study. For example, we set 90% for the Houston area

which is with 25% of urban pixels in the domain, due to the cloud patterns over the metropolitan

areas. As shown in Fig. 3.4, clouds occur more frequently over the urban area. The decrease in

the spatial coverage threshold may result in enlarging the rural sample size only, which does not

benefit the urban temperature comparison.

The SCM method masks all pixels based only on whether clouds exist in the MODIS data.

However, it does not mask pixels based on whether clouds exist in the HRLDAS data, because

cloud fields are not present in the HRLDAS forcing fields (only fluctuations of longwave and

shortwave radiation that may indicate the presence of clouds, though not accurately). Therefore,

it is likely that some proportion of HRLDAS pixels which are designated as "clear-sky" by the

SCM method may actually be influenced by cloudy or partly cloudy conditions. The effect of this

influence is that the HRLDAS simulations that represent "clear-sky" in the SCM method may be

cooler during daytime and wormer during nighttime than they otherwise would if they represented

clear-sky conditions perfectly. It is therefore recommended that if a user does have access to a

cloud mask for their simulations, that they apply it, in addition to the MODIS cloud mask, to both

the simulations and the MODIS data to ensure that all pixels represent clear-sky conditions.

The land cover map used for analyses is based on the 30 meter resolution 2001 USGS NLCD.

Compared with the MODIS annual land cover product (MCD12Q1) from 2003 to 2011, which are

resampled to 1 km resolution, the land cover types and their distributions have some variability.

For instance, the total urban pixels in MODIS are about 300 less than the urban pixels defined from

NLCD. The major disagreement is with the LU class outside the Houston core urban area, perhaps

due in part to having to resample both datasets from their native resolution to the 1 km HRLDAS

domain. For rural land cover types, the biggest gap is the wetland in NLCD (25% of total land

area in the domain), which is classified as grassland in MODIS (9-year average about 8.2%) in
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the north-east corner. Similarly, cropland and natural vegetation mosaics from NLCD are defined

as savanna in MODIS. For the land surface temperature, the major impact of this discrepancy in

classification is with the emissivity defined according to the land cover type for MODIS, while the

related parameters specified for emissivity in the model also differ by land cover type, affecting the

radiative temperature. The land cover dynamics and their disagreements are not directly related

to the sampling methods, but these differences may be an important contribution to the error for

model validation.

Only summer season was discussed in this paper, due to the negative impact of extreme summer

heat on human health. Hu and Brunsell (2013) discussed the seasonal cloud distributions during

2000 to 2010 in Greater Houston. The cloud impact is largest during the summer with few cloud-

free days and the most heterogeneous clear-sky ratio distribution. Consequently, if we apply these

three methods to evaluate the other three seasons, the samples will be more representative for the

comparison due to less cloud impact.

We must emphasize that the validation only shows the model performance for radiative tem-

perature. For urban climate modeling applications aimed at characterizing urban extreme heat

events and their impacts on human health, air temperature observations must also be considered.

Radiative temperature and 2 meter air temperature are highly correlated (Prihodko and Goward,

1997) but determined by different surface processes. Radiative temperature is determined by the

radiation budget, which is the part of the energy balance directly affecting the atmospheric temper-

ature from below. Jin et al. (1997) compared the radiative temperature and air temperature at the

global scale, finding that the differences are scale dependent and they are more agreeable at larger

scales (i.e. monthly scale and hemispheric spatial scales). Voogt and Oke (2003) summarized the

relationship between remotely observed radiometric surface temperature and the actual air tem-

perature of the urban-atmosphere interface. The HRLDAS-simulated 2 meter air temperatures are

compared to air temperature observations throughout Houston in our companion paper (Monaghan

et al., 2014), and the results are similar to those presented here for LST, although the model biases

of air temperature are smaller. Therefore, LST-based comparisons may exaggerate the magnitude
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of model temperature biases because they are based on skin temperatures as opposed to air tem-

peratures, which typically exhibit smaller diurnal cycles and are less sensitive to changes in the

surface energy balance.

3.6 Conclusions

Thermal remotely sensed data are good sources of observations for model validation, with compa-

rable spatial scale, temporal consistency, large coverage, and long-term archives. This study has

highlighted several important aspects of satellite LST data that can easily be neglected by model-

ers for model validation, such as cloud distribution and sensor view angle. From a 10-year case

study over Greater Houston during 2003-2012, three sampling strategies were applied to compare

MODIS LST with HRLDAS-simulated Trad , temporally and spatially. The assumptions made by

each of the strategies were discussed. We assessed the strengths and weakness of the three sam-

pling methods and suggested their best applications. The SCM method gives the best statistical

climatological comparison conditioned on the assumed agreement between MODIS clouds and

forcing clouds (the longer the time series, the more appropriate this may be). The MMT method

gives the best comparison between model simulation and MODIS LST at the extremes in a clima-

tological application. The HCF method gives the best absolute temperature comparison because it

is the most consistent, both spatially and between model and observations.

Further research for the view angle correction related to satellite remotely sensed data or model

simulations appears warranted, which may further increase the consistency of data properties for

validation. Also, the magnitude of impact from temporal gaps between observations and simula-

tions could be tested by modeling exactly at satellite overpass time for each image (beyond the

scope of this study). Additional evaluations of the three methods could be performed for other sea-

sons and less cloudy regions. Also, there remains large potential for using other remotely sensed

variables to conduct various model validations, such as soil moisture, radiation, precipitation, veg-

etation indices, evapotranspiration, etc. at multiple scales. Researchers would need to be aware of
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the accuracy and limitations of the remotely sensed products before proceeding when comparing

different variables.
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Chapter 4

A new perspective to assess the urban heat

island through remotely sensed atmospheric

profiles

4.1 Introduction

The urban heat island (UHI) is a phenomenon where the urban area is warmer than its ambient

rural area. The progressive modification of surface covers and structures as well as other human

activities cause the UHI. With a growing trend of urban populations, a threat to human health is

posed due to the increased temperatures (Kalkstein and Greene, 1997; Patz et al., 2005) and air

pollution (Mage et al., 1996; Taha, 1997) in urban environments, which has created wide public

concern, especially under the global climate changes. To solve these problems requires intensive

investigations of the UHI at multiple scales.

UHI studies are well documented across time and space by using various measuring tech-

niques and temperatures as summarized by Voogt and Oke (2003). Two distinct classes of the UHI

are often defined: the atmospheric UHI is assessed through in-situ and vehicle mounted sensors

measuring air temperatures in the urban canopy layer (UCL) (Oke, 1976) and through the ground-
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based, airborne and tower mounted senors for the urban boundary layer (UBL) (Barlow et al., 2011;

Grimmond, 2006; Voogt and Oke, 2003; Roth, 2000); the second class is the surface UHI (SUHI)

and is based on the use of thermal remotely sensed data (Voogt and Oke, 2003). Traditionally,

the atmospheric UHI magnitude is defined/estimated by comparing air temperature in urban and

rural sites (Grimmond, 2006). However, the measurements for atmospheric UHI at urban sites face

some substantial challenges. Oke (2007) addressed the detailed siting and exposure requirements

for the measurements. Stewart (2011) pointed out that about a half of 190 observational UHI stud-

ies have not sufficiently controlled for the essential effects of weather, relief or time to quantify

the UHI intensity. Moreover, the limited footprint of the ground-based measurement is difficult

to capture a comprehensive distribution of temperature over the highly heterogeneous urban areas.

The consistent gridded air temperature data may help to solve the problems for the atmospheric

UHI.

SUHI research is thriving after the land surface temperature (LST) data become available

(Voogt and Oke, 2003; Gallo et al., 1995). Moreover, the global coverage, temporally consis-

tent LSTs from satellite observations provide a way to estimate air temperature distributions, but

the relationship of LST and air temperature remains empirical (Voogt and Oke, 2003). To link the

LST and air temperature, many factors must be considered, such as the surface properties, atmo-

spheric conditions and solar angles (Kim and Han, 2013; Vancutsem et al., 2010). Therefore, it

becomes difficult to get a simple and consistent estimation for a large area. The air temperature

directly retrieved from satellite remote sensing probably has more potential for universal applica-

tions of UHI and human health related research, which avoids the scaling issue and the problems

associated with the different essential physical factors impacting those two types of temperatures,

such as atmospheric conditions and surface properties.

The atmospheric temperature and moisture profiles are important descriptors of the urban envi-

ronment. Kidd et al. (2009) summarized the progress of satellite-based atmospheric observations

and discussed the applications of retrieved atmospheric parameters for improving weather forecast-

ing, extending weather systems monitoring ability, and understanding climate change. Sounding
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sensors are typically designed with the horizontal resolutions from tens to hundreds of kilometers.

For application over the urban area, the coarse spatial resolutions may fail to capture the surface

heterogeneity over the urban area.

The MODIS retrievals of temperature and moisture information at 5 km horizontal resolution

can bridge the gaps in an atmospheric UHI study that requires relatively high spatial and temporal

observations. These global-coverage data are not only used for atmospheric effect corrections of

other MODIS products, such as sea/land surface temperature (SST/LST), but also for capturing

the atmospheric features of column water vapor and ozone (Seemann et al., 2006; Borbas et al.,

2011). However, the applications of MODIS atmospheric profiles are only discussed in a few

studies outside the MODIS product groups, such as the MODIS-based estimation of net radiation

(Bisht et al., 2005; Wang and Liang, 2009; Bisht and Bras, 2010) and potential evapotranspiration

(Kim and Hogue, 2008). These studies directly estimated the surface temperature and moisture

from MODIS product without quantifying the accuracy. The error propagation from the MODIS

product may explain part of the errors in their estimations.

Moreover, the spatial distribution of temperature does not solve UHI quantification problems as

a result of unclear urban-rural division at the current stage (Stewart, 2011). Schwarz et al. (2011)

concluded that different SUHI indicators have weak correlations, and emphasized the critical role

of choosing indicators to quantify SUHI effects. It becomes very difficult to conduct the intercom-

parison among the UHI studies in the literature due to the unstandardized indicators. Consequently,

a better way to quantify UHI magnitude is required with considering the surface heterogeneity and

ambiguous urban/rural divisions.

The purpose of this study is to provide an innovative analysis for using MODIS retrieved near-

surface air temperature to investigate the UHI. This study first assesses the accuracy of the near-

surface air and dew-point temperatures estimated from the MODIS 07 atmosphere profiles over

the urban area and its ambient rural area by using long-term ground observations. Both Terra

and Aqua overpasses are investigated due to the potential applications to address UHI effects for

both day and night. Moreover, according to the strengths of the MODIS air temperature, we
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developed a city-dependent UHI curve as a function of urban fraction, which is able to integrate

the spatially heterogeneous physical properties and long-term variation of temperature to quantify

UHI intensity.

4.2 Study Area and Data

4.2.1 Study Area

Four mega cities in North America are selected for this research: Phoenix, Houston, Chicago and

Toronto. Fig. 4.1 shows the domains and 2012 land cover distributions of the four cities. Accord-

ing to NOAA’s national coastal population report, about 39% of the U.S. population live in coastal

areas in 2010 (NOAA National Ocean Service, 2013), so three cities located near/on the shoreline

were chosen. Chicago and Toronto, with similar geographic location and prevailing weather condi-

tions, are featured as the humid continental climate with warm/hot and humid summers. Although,

the higher latitude and location near the Great Lakes may help decrease the energy consumption for

air conditioning, the population growth and climate change may put these cities under the exposure

of a higher heat vulnerability. Houston is located in the humid subtropical climate zone, known

for hot and very humid summers. Phoenix is under a subtropical desert climate with extremely hot

and clear summers. It is important to include cities with very clear and very cloudy summers to

extend the understanding of the performance of the MODIS data.

4.2.2 Satellite Data

The MODIS atmospheric profile product (MOD07_L2 for Terra and MYD07_L2 for Aqua, here-

after MOD07_L2 for MODIS 07 product) for 5-minute Level-2 Collection-6 was processed from

2003 to 2013 in June-July-August (JJA) for both daytime and nighttime overpasses. The median

local stand time of each satellite overpass for four cities ranges from 10:30 - 11:05 (Terra-Day),

21:15 - 22:15 (Terra-Night), 12:25 - 13:20 (Aqua-Day), 1:35 - 2:10 (Aqua-Night). MOD07_L2
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Figure 4.1: The city domains and the land cover distributions in 2012 of four cities: Phoenix,
Houston, Chicago, and Toronto. The land cover maps are IGBP land cover classification from
MODIS MCD12Q1 product at 500 m.
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product consists of temperature and moisture profiles (20 pressure levels: 05, 10, 20, 30, 50, 70,

100, 150, 200, 250, 300, 400, 500, 620, 700, 780, 850, 920, 950, and 1000 hPa), total-ozone bur-

den, atmospheric water vapor and other atmospheric information in clear skies at 5 km horizontal

resolution.

The MOD07_L2 temperature and moisture sounding data are retrieved from MODIS mul-

tispectral thermal radiation measurements. The MODIS retrieval algorithms (Seemann et al.,

2006) are adjusted from the TIROS (Television Infrared Observation Satellite) Operational Vertical

Sounder (TOVS) algorithms (Reale, 2002) and Geostationary Operational Environmental Satellite

(GOES) Atmospheric Sounder algorithms (Menzel and Purdom, 1996), which are based on a sta-

tistical regression retrieval (Seemann et al., 2003). Further details regarding the retrieval algorithm

and MOD07_L2 Collection 6 quality can be found in the product algorithm theoretical basis doc-

ument (Borbas et al., 2011). In general, MODIS has a limited ability to capture the fine-scale

vertical structure compared to the high spectral resolution sounding sensors (e.g. Atmospheric

Infrared Sounder (AIRS) (Aumann et al., 2003)), but it provides higher horizontal resolution of

temperature and moisture distributions. This is useful to help understand the urban climate by

capturing the urban surface heterogeneity globally for a long-term perspective.

To estimate the near-surface air temperature, the digital elevation model (DEM) from U.S.

Geological Survey (USGS)’s National Elevation Dataset (NED) was used instead of the surface

elevation (SE) layer from the MOD07_L2 product. The SE varies temporally, which is estimated

from the surface pressure. To match the spatial resolution of the MOD07_L2 product, the DEM is

upscaled from the original 30 m to 5 km by averaging. The mean differences between DEM and

SE over the area with less terrain variations (where most of the cities are located) are small, while

the mountainous areas result in larger gaps up to 100-200 m.

The yearly MODIS land cover product (MCD12Q1) at 500 m resolution from 2003 to 2012 was

used for discrimination of urban and rural pixels in UHI analysis. The 2012 land cover information

was used for 2013 due to the unavailability of 2013 land cover data.
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4.2.3 Ground Observations

The Integrated Surface Global Hourly observations from the National Climatic Data Center (NCDC)

(http://www.ncdc.noaa.gov/cdo-web/datasets) were used for validation. Observations were

filtered based on the following criteria: 1) observational data passed all the quality control checks,

2) the observation time was within satellite overpass ± 1 hr, and 3) the observation sites were

within the study domains. After preliminary statistics, the site in Elora RCS, Toronto (USAF ID:

713520) was removed due to the presence of many below-freezing records in summer. Fig. 4.2

illustrates the ground observation locations with a the black empty circle (the sites in the 5 km pixel

not classified as a water pixel), and a black cross (the sites in the 5k̇m pixel with water pixels). A

summary of the ground sites is given in Table S1 in the supplemental document.

4.3 Methodology

The MOD07_L2 is formated in orbital swath. The primary reprocessing requires mosaicing, repro-

jection and subseting, which were done by using HDF-EOS to GeoTIFF Conversion Tool (HEG)

(http://newsroom.gsfc.nasa.gov/sdptoolkit/HEG/HEGHome.html). The layers from MOD07_L2

air temperature, dew-point temperature, and geopotential height profiles (converted to geometric

height), and the DEM from USGS were converted into a consistent extent and resolution for each

city.

4.3.1 Instantaneous Near-surface Air and Dew-point Temperatures

The methodology to estimate the near-surface air and dew-point temperature (T S
a and T S

d ) was to ex-

trapolate the lowest pressure level temperature/moisture information (T L
a and T L

d ) from MOD07_L2

profiles to the surface elevation from the DEM under the hydrostatic atmosphere assumption. Be-

cause the estimation is primarily determined by the mean surface elevation at the 5 km resolution,

it does not explicitly distinguish between urban and rural surface structure. Although we called the

“near-surface” temperature, it is more likely to be at the top of the UCL.
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First, the geopotential height is converted to geometric height based on the gravity of the city lo-

cations. Bisht and Bras (2010) use a constant lapse rate (6.5 K/km) over the Southern Great Plains.

However, considering the urban surface heterogeneity, environment lapse rate (Γe) was assumed

to vary spatially and was calculated for each pixel by using temperature and height information at

the two lowest layers of the profiles:

Γe =−
∂T
∂ z
'−T L1

a −T L2
a

zL1− zL2 (4.1)

where T L1
a and T L2

a are the air temperature at the lowest and the second lowest levels of MODIS

sounding near the surface; and zL1 and zL2 are the geometric heights corresponding to T L1
a and T L2

a .

Assuming that the lapse rate is constant near the surface for each pixel, Γe at the lowest profile

level was applied to the surface level. The near-surface air temperature (T S
a ) can be calculated by:

T S
a = T L1

a −Γe(zS− zL1) (4.2)

where zS is surface elevation from the DEM.

Similarly, Eq. (4.1) and Eq. (4.2) can be applied to estimate the near-surface dew-point tem-

perature (T S
d ) by using dew-point lapse rate (Γw) and the dew-point temperatures at the two lowest

levels (T L1
d and T L2

d ) of MODIS profiles.

The MOD07_L2 product quality is sensitive to the presence of clouds and cloud contamination

detection. The MODIS cloud mask product (MOD35_L2) was used for cloud screening. Moreover,

the profile retrieval requires at least 5 out of 25 pixels (1 km resolution at nadir) in a 5 × 5 field-

of-view area (around 5 km) with a 95% or greater confidence of clear sky (Borbas et al., 2011). In

addition to clouds, other factors may cause unrealistic profiles, e.g. a sharp change in atmospheric

structure. Quality controls were applied to the near-surface air and dew-point temperatures to

exclude the “bad” atmospheric profiles and near-surface temperatures. We removed a few outliers

that the MODIS air temperatures are higher or lower than the historic records ± 5 K. For example,

the high threshold for Phoenix is 328 K (323+5 K), while the low threshold is 277 K (282-5 K).
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The 5 K buffer was set for the possible bias for MOD07_L2 product. Also, the pixels with a dew-

point temperature higher than the air temperature were considered invalid pixels under clear sky

conditions.

4.3.2 Urban Heat Island Curve

Current studies have investigated the relationship between UHI intensity with surface physical

properties and social and economic factors, such as population and city size (Oke, 1973), vege-

tation index (Weng et al., 2004, 2011), wind (Morris et al., 2001; Offerle et al., 2007), building

configuration (Coseo and Larsen, 2014; Monaghan et al., 2014; Alchapar et al., 2014), and imper-

vious surface area (Zhang et al., 2010; Imhoff et al., 2010). Fundamentally, the UHI is a direct

consequence of human-induced land surface modifications (Oke, 1995). Directly linking surface

urban/vegetation area provides the most robust estimation and captures the fundamental features

of UHI, because the thermal/physical properties of human-made and natural surfaces directly alter

the energy budget and flux partitioning.

We come up with a new concept to quantify the UHI, “urban heat island curve (UHIC)”, which

is designed to explore the spatial relationship between the air temperature and the urban fraction.

Urban fraction is an integrated indicator to show the intensiveness of human activities in a sub-

grid scale, usually closely associated with the building density and is a function of factors, such as

urban core, suburban, and industrial urban.

Air temperatures were grouped into different urban fraction categories. The urban fraction

within a 5 km pixel is simply calculated from the ratio of the urban land cover pixels (MCD12Q1)

to the total pixels at 500 m. Land cover in 2012 was used for statistics in 2013 due to unavailable

data. We exclude pixels with water bodies because of the strong thermal properties of water, which

may skew the trend, especially for the coastal areas. The UHIC is the curve connecting either the

median or mean temperature in each urban fraction category.

In this study, we use the median temperature of each urban fraction category as the curve, and

also adopt the 25% and 75% quantiles to illustrate the temperature variation. Compared to the

70



mean and standard deviation as the statistic indicator, the quantiles can effectively limit the impact

of extreme heat events to the curve for presenting a long-term trend.

4.4 Results

4.4.1 Spatial Patterns of MODIS Near-surface Air and Dew-point Temper-

ature

In order to investigate the ability of MODIS near-surface temperature over the urban area, spatial

averages of the 11-years of air and dew-point temperatures are illustrated in Fig. 4.2 and Fig. 4.3,

respectively. The figures portray the averaged day and night satellite overpasses in the UHI diurnal

cycle over the four metropolitan areas. In general, the MODIS air and dew-point temperatures

suggest a remarkable, fine-scale thermal heterogeneity of near-surface features during both daytime

and nighttime.

The UHI intensities vary spatially and temporally. For Phoenix, the dry environmental back-

ground around the urban area decreases the contrast of UHI boundary and temperature variations

within the city. However, the major urban area did have relatively higher temperatures than the

surroundings and lower than the desert in the southwest corner. Houston shows a strong urban/ru-

ral temperature contrast during the daytime while it becomes less distinct during the nighttime.

Chicago and Toronto demonstrate a very similar diurnal UHI pattern: distinct UHI for both day

and night. The quantification of the UHI through time and space are discussed in Section 4.4.3.1.

The urban effect has less influence on the dew-point temperature before noon (Terra-Day in Fig.

4.3). It is commonly true that the urban surface becomes drier in the afternoon due to the urban

surface properties (e.g. imperviousness, structure, and thermal properties), limiting the ability

to maintain surface moisture and the accumulation of additional energy and anthropogenic heat

emissions in the urban canyons. Moreover, the deeper convection developing in the afternoon

accelerates moisture dissipation. Consequently, cities usually become moisture deficit (see Fig.S1),

evident by high air temperature and low dew-point temperature over the urban area by the time of
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the Aqua-Day overpass. The nighttime dew-point temperatures are much higher than the rural

surroundings in Toronto and Chicago. This results in a lower moisture in the urban area during

Terra and Aqua nighttime passes. There are smaller dew-point temperature gradients between

urban and rural area for Phoenix and Houston due to the prevailing dry/wet climate features. The

relative humidity over these two urban areas are slightly higher than the ambient rural area (Fig.S1).

In order to assess the overall accuracy of MODIS-retrieved near-surface temperature, the ground

observations selected within± 1 hr of each satellite overpass time were directly compared with the

corresponding MODIS air temperatures under clear-sky conditions during the 11 summers. Fig.

4.4 shows the distribution of air temperatures from satellite and surface observations for the four

cities. The results of dew-point temperature are similar and can be found in Fig.S2. The sites

shown in the scatter plots include the locations over the urban and rural area without water in

the 5 km pixel (empty circles in Fig. 4.2). The statistics of the MODIS and ground observation

comparisons over three categories of site locations are presented in Fig. 4.5, including sites in a

5 km pixel with urban area but no water surfaces, sites in a 5 km pixel over the land but no water

surfaces, and all the sites in each study domain (including urban, rural and water surfaces) (all sites

shown in Fig. 4.2). The urban, rural and water surfaces are determined by the MCD12Q1 yearly

land cover data.

Fig. 4.5 indicates that MODIS air and dew-point temperatures are generally underestimated.

For air temperature, Aqua data show a better agreement with the ground observations than Terra,

which is about 1-6 K smaller than Terra for the mean of differences (MD). Nighttime air temper-

atures agree better than the daytime in most cases. Although the RMSE ranges from 3-7 K, most

cases are due to the total bias which can be easily corrected. In contrast to the air temperature,

the daytime dew-point temperature generally indicates a better agreement, showing that daytime

RMSEs is about 0.3 - 2.2 K smaller than nighttime RMSEs.

In general, the results of the cities under very dry or humid climate conditions suggest a poorer

detectability of MODIS retrievals or larger errors, which may result in more challenges to correct

for these effects. For example, the slope of the linear regression between the MODIS and ground
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Figure 4.2: The 11-year JJA mean near-surface air temperature (T S
a ) of four cities with the hourly

ground observation locations. The empty circle indicates the sites in 5 km pixel without water
fraction. The black cross indicates the sites with water fraction in the pixel. The two gray lines in
the Aqua-Day image depict the transect lines for Fig. 4.6, where a solid line is Transect 1 and a
dashed line is Transect 2.
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Figure 4.3: The 11-year JJA mean near-surface dew-point temperature (T S
d ) of the four cities with

hourly ground observation locations.
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observations are significantly different from 1 for the nighttime dew-point temperature in Phoenix.

The detectability of MODIS for moisture is reduced when the dew-point temperature is low (see

Fig.S2), approximately ranging from 260-280 K. In Houston, the temperature variation is small

for each satellite overpass period with a less clustered distribution in relation to the reference line

in the scatter plot. This possibly explains the large variation of linear regression slopes in Fig.

4.5. Although the RMSE and MD are sometimes even smaller than other cities, the degree of

inaccuracy is difficult to reduce after the corrections. Relatively large air temperature differences

exist for Terra, and the dew-point temperature biases occur during the nighttime, so some necessary

corrections regarding the observations may need to be applied.

However, the factors related to the mismatch of spatial scale, surface heterogeneity, as well as

the possible 1 hr observational temporal gap need to be taken into account for the error. Also, the

uncertainty in the measurement height will impact the results of the comparison.

This research is attempting to illustrate the applicability of MODIS atmospheric profile product

for UHI studies, and the temperature gradients are more emphasized than the absolute temperature

magnitude. Consequently, no data correction is provided in this study. The following analysis

of the vertical temperature structures and UHIC will focus on Aqua air temperature, which has

relatively high accuracy.

4.4.2 Vertical Structure of UHI

The 3-dimensional temperature field may help advance our understanding of the impact of urban

surfaces on the lower layers of the atmosphere. Fig. 4.6 illustrates the 11-year JJA mean vertical

air temperature distributions along two orthogonal transects (shown in Fig 4.2 Aqua-Day) for each

city. The daily atmospheric profiles and near-surface air temperatures were interpolated into 50 m

vertical resolution by cubic spine interpolation, and then averaged for the 11 summers. Only Aqua

data are plotted here due to the higher quality of near-surface air temperature, and the Aqua daytime

period is also closest to the maximum temperature during the day.

The vertical temperature structure reflects the dramatic impact of surface heating extending
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Figure 4.4: The density scatter plot of near-surface air temperature from ground observations (the
sites denoted as empty circles in Fig. 4.2) and the MODIS product. The point density from low to
high is expressed as the color ramp from blue to red. RMSE is the Root-Mean-Square Error, and
MD is the Mean of the Differences between MODIS estimations and ground observations in K.
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Figure 4.5: The Root-Mean-Square Error (RMSE), Mean of the Differences (MD), and the slope
of the linear regression between the ground observations and MODIS estimations for three site
categories: sites in a 5 km pixel with urban fraction (no water fraction), sites in a 5 km pixel of
land surface (no water fraction), and sites in the domain. The near-surface air temperature is
shown in the upper-panel plot, and the near-surface dew-point temperature is in the lower row.

into the lower-level atmosphere (Fig. 4.6). The horizontal temperature gradient is interrupted by

the change of hot or cool locations with different land cover composition. One transect of each city

is coincident with the dominant wind directions. According to the land cover distribution along

the transects, the heat distribution in the downwind (sea/lake breezes) directions is evidence of

advection during the daytime.

Phoenix is the only inland city in this study with a relatively flat terrain in the urban area and

mountains around the city in the domain. Transect 1 and Transect 2 (gray dashed line in Fig.

4.2) are coincident with the dominant wind direction at Aqua-Night and Aqua-Day, respectively.

Multiple factors, such as elevation and land cover distributions, including vegetation, urban and

desert, play essential roles impacting UHI features. Although the desert at the southwest corner

of the domain (western proportion of the Transect 2) has a higher temperature, the heat from the

urban area could still be detected due to the relatively lower temperature in the area transitioning

from vegetation and higher elevation (Fig. 4.6 (a) Transect 2). For the other three cities near water

77



bodies, the shapes of the heat dome have a relatively clear boundary associated with the surface

land cover types.

4.4.3 Application of MODIS Air Temperature for UHI Assessment

4.4.3.1 Urban Heat Island Curve

With the spatial distribution of summer air temperature for 11 years, the urban heat island curves

(UHIC) are shown in Fig. 4.7 for the four cities and four satellite-overpass periods. The 25%,

50% and 75% quantiles of air temperature for each group of urban fraction reveal a city-dependent

temperature trend. The median of air temperatures of fully vegetated pixels is added as a reference

line (gray dashed line in Fig. 4.7). The data from the Terra overpass showed a low bias (about 3.3-

6.7 K for daytime and 1.4-6.2 K for nighttime) compared to the ground observations (in Section

4.4.1). With an assumption that the bias is spatially consistent, the shape of the UHIC and the

difference between the UHIC and the fully vegetated temperature line are less impacted by the

total bias of MODIS air temperature.

Compared with pairs of urban-rural temperature differences, the UHIC incorporates the spatial

heterogeneity of the whole city domain in the curve, resulting in a unique pattern for each city.

The air temperature showed a positive slope as a function of urban fraction. The magnitude of

slope varied temporally and spatially. For example, the air temperature differences among the

pixels with 60% and higher urban fraction in Phoenix were small, which is related to the local

climate and vegetation types in the non-urban fraction. However, a positive slope was observed

among the lower urban fraction groups (1% - 45%). In the Greater Houston, the UHIC slope

became very steep during the daytime (about 3.0 for Terra-Day, and 4.6 for Aqua-Day), suggesting

a large impact of the urban surface that contributes to the higher air temperature. Comparably, the

nighttime UHIC of Houston increased steadily and slowly, with the slopes of 0.8 and 0.7 for Terra

and Aqua night, respectively. The UHICs of Chicago have relatively similar steep positive slopes

for both day and night, ranging from 2.1 to 3.2. There is a large variation of Toronto Aqua-Day

UHIC; however, the trend was still positive with a slope of 1.85. Other times of day for Toronto
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Figure 4.6: The mean vertical temperature distributions from Aqua distribution along two orthog-
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revealed a steady increase (with a slope of 3.5) in temperature with increasing urban fraction. The

large variation may be impacted by some scattered urban areas around the lake in the domain,

especially during the times with strong fluxes. These results support the widely accepted fact that

UHI is primarily caused by the urban modification to the surface energy balance (Stewart and Oke,

2012). Moreover, the UHIC reveals more spatial complexity impacting temperature variations in

space and time than other UHI indicators.

The gray dashed line in Fig. 4.7 presents the median temperature of fully-vegetated pixels in

each domain. The dominant vegetation types around the cities are shrublands (Phoenix), croplands

and savannas (Houston), croplands (Chicago), croplands and natural vegetation mosaic (Toronto).

The maximum median temperature differences between urban and pure vegetation are also shown

in Fig. 4.7. A comparison between the air temperature with low urban fractions and the pure-

vegetation temperature showed a slightly different magnitude in most cases, which can be ex-

plained by the influence of the urban fraction as well as the ambient pixels when considering

the clustered pattern of urban surfaces. The majority of urban pixels at the 5 km resolution are

a composite of urban and vegetation. Pixels with water fraction are not considered in the UHIC.

However, pixels with urban fraction in Phoenix may also consist of the barren soil, which increases

the temperature difference from the fully-vegetated pixels.

In general, each city had very similar UHIC shapes for different time periods, which is largely

determined by the land use pattern and dominant vegetation types. For example, the concave part

of the curve, showing a higher urban fraction but lower air temperature, may be a result of one or

multiple inexplicit reasons, such as elevation, building types and heights, surrounding land cover

types (parks versus industrial), the vegetation types or the irrigation management in the non-urban

fraction. Moreover, the variation of UHIC reveals the air temperature partially determined by the

surface properties. The Aqua-Day (early afternoon) reveals the largest variation while nighttime

UHIs have smoother UHIC.

The light-green bars (right y-axis) in Fig. 4.7 indicate the number of pixels in each urban

fraction category. This value accounts for two main factors: the number of pixels with a certain
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Figure 4.7: The UHIC of four cities as a function of urban fraction (at 5% interval) in 5 km pixel
using 2003-2013 JJA data. The solid orange line is the median air temperature of the pixels with
corresponding urban fractions (left y-axis). The shaded orange area indicates the 25% and 75%
quantiles of the air temperature distributions (left y-axis). The light green bar plot (right y-axis)
shows the number of pixels in each group for the statistics for 11 year summers. Max UHI is the
difference between the highest median air temperature on the UHIC and mean vegetation temper-
ature.
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urban fraction in each city and the number of clear days for 11-year JJA. The “U-shape” distribution

of pixel numbers along with the urban fraction increasing may depict the urban density decreasing

from the urban core. However, the higher urban density is more likely to be cloudy due to the

strong convection during the late afternoon (Hu and Brunsell, 2013). The UHIC is based on robust

statistic for the 11-year summers under clear-sky conditions. Some attention needs to be paid to the

categories with relatively small sample sizes, e.g. 75 for Terra-Night and 93 for Aqua-Night with

urban fractions of 51%-55% in Toronto. This may decrease the confidence level of the variation in

the UHIC.

4.4.3.2 Yearly Trends of Urban Heat Island

Taking advantage of consistent long-term observations, we calculated the annual trend of urban/ru-

ral temperature for UHI dynamics (Fig. 4.8). In this section, we chose one indicator to exploit the

monthly 11-year UHI by using the temperature difference between urban (more than 60% urban

fraction) and fully vegetated pixels. Daily records require that more than 30% of the urban pixels

are available in clear sky. The monthly statistics required more than 3 days of records (e.g. 2004

August in Houston are removed). From this indicator perspective, the UHI intensity is more char-

acterized by the locations and prevailing climate conditions in general, which agrees well with the

UHIC analysis (Fig. 4.7).

The urban and vegetation temperatures are significantly correlated, being determined by the

larger scale climate. However, the magnitudes of urban/vegetation temperature differences vary

slightly and are inconsistent, which may be the result from the vegetation conditions controlled

by precipitation, agriculture management, etc. This paper focuses on the MODIS air temperature

ability to capture the UHI, and more research is needed.

The near-noon/midnight ground observations were used for the temporal dynamics analysis

instead of the Aqua overpass times, so more records were available for the sites in each domain,

which can give a better depiction of temporal temperature variations. Although the times vary

within a two hour timespan, we chose to compare the trends rather than the absolute differences,
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which would decrease the influence of time. The annual trends from the ground observations lo-

cated far from the water bodies (the light solid line with a star sign in Fig. 4.8) are fairly comparable

with MODIS air temperature in most cases. However, some trends are opposite during certain pe-

riods, e.g. 2008-2010 JJ for Toronto, 2009 June for Phoenix. It is important to point out that there

are several reasons for a discrepancy between the ground and satellite observations, including: the

ground sites are unevenly distributed in space, mostly located in the low density urban and rural

areas of the domain; the measuring length for each site differs within the 11-year period; and the

sky-conditions are not taken into account for the comparison. Possibly, those factors contribute

errors to a certain extent. The factors related to time, space, scale, and sky conditions between

the ground observations and MODIS estimations hamper the direct comparison for the long-term

trends validations. The MODIS product has a more consistent quality in time and space, which at

least, is still able to provide valuable information for research on gradients, such as the UHI.

4.5 Discussion

As is widely known, MODIS is not designed for sounding purposes. However, the information

provided at high spatial resolution can “improve upon a priori definitions of atmospheric state

by providing better delineation of horizontal gradients (King et al., 2003)”. MODIS-derived air

and dew-point temperatures in this study show an ability to capture the heat distributions in three

dimensions. The availability of the near-surface air temperature solves the problems of limited

numbers and footprints of ground-based observations in the urban area for atmospheric UHI re-

search. The accuracy from comparing with ground observations shows a fairly good result in most

cases.

The near-surface air temperatures derived from the profiles are more likely to be the top of the

UCL temperature. Oke (1976) discussed two different concepts regarding UCL and UBL UHIs.

UCL describes the climate features impacted by the urban roughness elements at a microscale,

while the urban boundary layer is dominated by urban area and its lower boundary at a local or
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Figure 4.8: The monthly 11-year UHI dynamics for four cities during Aqua overpass periods.
The red lines are daytime temperatures while the blue lines indicate the nighttime temperatures.
The dark solid line with filled circles and the shaded area represent the mean ± one standard
deviation of MODIS air temperatures for the pixels with more than 60% urban fraction and no
water fraction. The dark dashed line with empty circles is the mean pure-vegetation temperature.
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mesoscale. The signal sensed from the urban surface includes roof, wall, and ground depending

on the view angles. Further, the retrieval of the near-surface temperature is determined by the

mean elevation within a 5 km pixel. The height representing the MODIS air temperature at 5 km

resolution may diminish the influence of building/canopy height variations and enhance the terrain

impact at this scale. Fortunately, most cities are located in flat terrain, so the estimated height

is more likely to be in the top or above of UCL in general. In more mountainous regions, in

addition to the land-cover forcing, the terrain impacts may introduce more complicating factors

that influence the temperature.

The MOD07_L2 is derived from the integrated information of cloud-free instantaneous field-

of-views (IFOVs) at 1 km within 5×5 km area. Therefore, sunny areas may lead to more reliable

estimations. Urban areas tend to be more cloudy in general (Rabin and Martin, 1996). Fig.S3

shows the number of clear sky pixels for satellite overpass during the study period, suggesting

more cloudy summers in the Houston area compared to the other three cities. One reason for

more clouds over the urban areas is that the deep convection happens in the afternoon enhancing

the chance of clouds (Angevine et al., 2003). Also, anthropogenic emissions provide additional

sources of cloud condensation nuclei. The frequent presence of clouds over the Greater Houston

area, potentially decreases the number of cloud-free IFOVs at the 5 km scale. This may explain the

relatively low correlation coefficients and large variations of slopes of linear regressions between

the MODIS estimations and ground observations. Similarly, the sky conditions of the ground

observations may not represent the clear-sky pixels of MODIS. More precise experiments may be

needed to further evaluate the MOD07_L2-based air temperature accuracy over very cloudy cities.

The diurnal UHI patterns illustrated in Fig. 4.2 and Fig. 4.7 for some cities are slightly dif-

ferent from the features of atmospheric UHI and surface UHI. The atmospheric UHI effects are

usually found under calm and clear nighttimes (Voogt and Oke, 2003), which is related to the dif-

ferent heating/cooling rates over urban and rural surfaces (Oke, 1982). The SUHIs usually exhibit

stronger and larger spatial variability during the daytime (Roth et al., 1989; Hung et al., 2006; Hu

and Brunsell, 2013). Fig. 4.9 gives a broad idea of the diurnal cycle of atmospheric UHI for each
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city based on the ground observations over the land area. However, we should realize that the

ground measurements at the “urban” and “rural” sites only illustrate one possible UHI intensity,

which may be representative for one point on the UHIC. Houston shows an underestimated atmo-

spheric UHI from nighttime MODIS, which may be explained by some limited ability of MODIS

for detecting in humid environments as well as by increasing uncertainty with the presence of large

amounts of clouds. For most cases, daytime UHI are slightly enhanced compared to nighttime for

the atmospheric UHI. One of the reasons is the regression statistics algorithm is based on the sig-

nals detected from a narrow solid angle of view from the sensor at different zenith view angles

ranging from - 65° to + 65°. The observed surface components impact the representativeness of

the near-surface temperatures. Also, the near-surface temperature from MODIS represents a higher

height rather than screen level.
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Figure 4.9: The mean diurnal cycles of each site (black lines) over the urban/rural areas shown as
empty circles in Fig. 4.2. The gray shaded area indicates the temperature differences among these
sites. Four satellite overpass periods are shaded in four colors.

The MODIS atmosphere product could not avoid some issues which are limited by the nature

of remote sensing techniques. For example, the sensor view angle impacts the land surface tem-

perature in the MODIS products (Hu et al., 2014) even when the retrieval algorithm considers the

view angle influences. Moreover, thermal anisotropy widely exists in the urban surface. These

issues have not been addressed in this study, but need to be considered for studies where higher

accuracy is required.

When concerning human health and living environments in the urban area, the air tempera-
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tures are potentially better sources compared with the LST. The research for SUHI spatiotempo-

ral dynamics and the techniques for spatial/temporal scaling can also apply to air temperature.

Furthermore, the overpass time of Aqua-Day is closest to the time of the maximum air tempera-

ture. With the availability of both air and dew-point temperatures, MODIS can be an invaluable

source to conduct heat stress studies. However, time-based corrections of MODIS estimated near-

surface temperatures may need to be applied using the diurnal temperature patten from other high

temporal-frequency data, such as in-situ observations. Moreover, the time variation should be

considered based on the day to day corrections.

Compared to the common UHI indicators in the literature (Schwarz et al., 2011), the UHIC has

many advantages. 1) UHIC integrates the urban surface heterogeneity, which also avoids the biases

caused by urban/rural divisions. 2) UHIC can capture the urban surface features; consequently,

each city has a unique UHIC. 3) UHIC can be constructed for different temporal scales, such as

annual, seasonal, and diurnal scales. 4) UHIC is universal and easy to use for comparisons across

time and space. 5) UHIC is less influenced by the bias of the data source, due to the reliance on

the gradients rather than absolute values of temperatures.

There are some caveats for the applications of UHIC. The urban fractions integrate many in-

explicit factors. For example, the urban fraction is highly correlated to the major urban land use

types. The different local climate zones (Stewart and Oke, 2012) with similar urban fraction but a

quite large variety of building configuration and terrain roughness may diverge from the tempera-

ture distributions. For such situations, UHIC only shows the integrated results. A particular region

is likely to contain only a few local climate zones, because the urban features usually are highly

correlated due to the close geolocations, similar climate, shared cultural and economic settings.

The UHIC should be interpreted city by city among different regions. The non-urban fraction,

such as a water bodies, dense vegetation and barren soil, also plays a critical role in the air temper-

ature over the urban area. Other possible solutions include using impervious surface area or other

parameters that could distinguish urban features heavily impacting the temperature instead of the

urban fraction.
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The urban fraction is a relative concept according to the source resolution to distinguish the

urban surfaces and target scale to calculate the fraction. In this study, we employed the urban

pixels at 500 m for UHIC, which is defined by the dominant built areas larger than 50% in the

500 m pixel and the contiguous patches of urban environment larger than 1 km2 (Schneider et al.,

2009). The urban build-up area within each pixel varies widely around the world and is influenced

by many social and climatic factors (Friedl et al., 2010). The higher resolution of land cover data

will naturally decrease the non-urban fraction mixed in the upscaled pixel level. The proper ratio

of resolutions for the upscaling and statistics should be determined by the quantifying interval of

the urban fraction, such as 5% in this study, and the accuracy requirement.

UHIC under clear-sky conditions can be applied to different temporal scales but is sensitive to

the time of day (Fig. 4.7). In order to guarantee sufficient sample size, monthly or seasonal UHICs

are preferred for relatively longer observations for the cloudy areas. Finally, the UHIC is not a

single-value UHI indicator, but it helps easily estimate different indicators if necessary.

4.6 Conclusions

By estimating the near-surface air and dew-point temperatures from the MODIS atmospheric pro-

files product (MOD07_L2), this is the first study that exploits the ability of MODIS to capture the

temporal dynamics, and spatial structures (horizontal and vertical) of atmospheric UHI for four

mega cities in North America during 2003-2013 summers. In addition, this study develops an UHI

curve to represent UHI intensity by integrating the urban surface heterogeneity in a curve, showing

the relationship between the air temperature and the urban fractions.

MODIS atmospheric profile data are a invaluable source to capture the urban thermal distribu-

tions in horizontal (5 km), vertical (20 pressure levels) and temporal (4 times a day) dimensions.

The MODIS near-surface temperature represents an integrated result in a 5 km grid, including ur-

ban morphology, surface material heterogeneity, terrain, solar angle, and sensor view angle. The

comparison between the MODIS near-surface temperature and the ground observations suggests
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an accuracy of 3-7 K RMSE for different cities and times of day. In general, very dry and moist

climate conditions increase the variability of the MODIS temperature accuracy. Although the mag-

nitude seems relatively high, it can be reduced by correcting for the total biases.

The MODIS air temperature provides a less expensive way to conduct UHI research, which

is able to capture the fine-scale gradients over the complex urban areas due to the high spatial

resolution. UHIC provides a new way to quantify the UHI city by city, which emphasize the

temperature gradients for different urban fractions, consequently decreasing the impact of the data

biases.

This study evaluates the performance of MODIS air and dew-point temperatures during sum-

mer months. Further evaluations will be worthwhile for other seasons, as well as for other cities

in different regions under various climatic conditions. Moreover, this study presents the original

MODIS temperature and its application for UHIC under basic quality controls and does not dis-

cuss any correction method in detail or use corrected results. Simple linear regression between the

MODIS data and observations, possibly, is the easiest way to correct the primary bias. Systematic

research may be required to limit the bias and to control the uncertainty for other applications that

depend on the absolute magnitude of air and dew-point temperatures.
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Chapter 5

Conclusions

5.1 Summary of Findings

Remote sensing techniques have become popular to assess the urban heat island. However, the

remotely sensed temperature for UHI faces several unique problems and challenges, which need

to distinguish from the traditional in-situ/traverse measurements and urban climate model simula-

tions.

This dissertation research has addressed several important issues about using remote sensing

to conduct urban heat islands studies. The nature of thermal remote sensing techniques prevents

detecting the signals under clouds. Using the temporally composited data is a common solution

to avoid the missing data. Chapter 2 of this dissertation addresses the question about the impact

of temporal aggregation of remote sensing data on UHI studies and the main causes of the bias.

Chapter 2 investigates a long-term urban heat island dynamics using daily, 2-, 4-, 8-, 16- and

32-day composite LST over the Houston area. Several conclusions are drawn from the statistical

comparison:

1. The temporal aggregation impact has seasonality and is also a function of composite scale.

The seasonal pattern shows that the summer daytime SUHI has the largest magnitude and

variation, while the nighttime SUHI magnitudes are much smaller and less variable. The

90



composite scale is particularly important during the summer daytime. The higher the ag-

gregation scale is, the higher SUHI biases are generated. However, the impact from the

aggregation scales and seasonality for nighttime is comparably small.

2. The temporal aggregation errors vary spatially, which is related to the land cover types.

3. The primary reason for the errors from temporal aggregation is heterogeneously distributed

clouds, showing a higher frequency of clouds over the urban areas and leading to a bias of

LST towards warmer daytime conditions.

The second part of this research was based on the fact that several important aspects of satellite

LST data can easily be neglected by modelers for model validation, such as cloud distribution and

sensor view angle. The motivating question for Chapter 3 was “How can we use MODIS land

surface temperature to validate long-term urban model simulations?” This research consisted of a

10-year case study over Houston during 2003-2012 and three sampling strategies to minimize the

confounding factors of clouds are proposed and applied to compare MODIS LST with HRLDAS-

simulated Trad , temporally and spatially. The assumptions made by each of the strategies were

discussed. We assessed the strengths and weakness of the three sampling methods and suggested

their best applications:

1. The satellite cloud mask (SCM) method: prior to comparison, the cloud mask for each

MODIS scene is applied to its concurrent HRLDAS simulation. The SCM method gives the

best statistical climatological comparison conditioned on the assumed agreement between

MODIS clouds and forcing clouds.

2. The max/min temperature (MMT) method: the 50 warmest days and coolest nights for each

dataset are selected and compared to avoid cloud impacts, which is best for comparison at

the extremes.

3. The high clear-sky fraction (HCF) method: only those MODIS scenes that have a high per-

centage of clear-sky pixels are sampled and compared, which gives the best absolute tem-
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perature comparison due to the spatial and temporal consistency between simulations and

observations

The third part of the research (Chapter 4) extended the applications of MODIS products to

capture the atmospheric UHI instead of the SUHI. To understand the ability and accuracy of the

MODIS atmospheric profile-based near-surface temperature and to solve the current problem of

describing UHI from spatial coverages, four mega cities in North America during 2003-2013 sum-

mers were evaluated using ground observations. In addition, this study developed an UHI curve

to represent UHI intensity by integrating the urban surface heterogeneity in a curve, showing the

relationship between the air temperature and the urban fractions. The conclusions drawn from this

part were:

1. The comparison between the MODIS near-surface temperature and the ground observations

suggests an accuracy of 3-7 K RMSE for different cities and times of day. In general, very dry

and moist climate conditions increase the variability of the MODIS temperature accuracy.

2. The MODIS air temperature provides a less expensive way to conduct UHI research, which

is able to capture the fine-scale gradients over the complex urban areas due to the high spatial

resolution.

3. UHIC is a new way to quantify the UHI city by city, which emphasize the temperature

gradients for different urban fractions, consequently decreasing the impact of the data biases.

Different kinds of UHI indicators can be easily obtained from UHIC if necessary, such as

the inter-urban, and urban-vegetation UHI intensity.

5.2 Summary of Contributions

UHI and extreme heat events in cities are regarded as one of the leading causes of weather-related

human mortality in the United States and in many countries worldwide. Understanding and further

prediction of UHI intensity and its related weather phenomena are direct needs for policy and
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decision-making. By addressing the questions, this study extended the understanding of the spatial

and temporal distributions of UHI in a long-term period under different weather conditions through

remote sensing data. The research not only showed the temporal dynamics and spatial patterns of

UHI in the last ten years, but it also explored the potential for remote sensing data to detect UHI

effects. By comparing the performances of high-resolution models for long-term or short term

periods through remote sensing data, it is possible to evaluate the accuracy of simulations and to

put up suggestions to improve predictions for future heat events.

This dissertation contributes the literatures of urban heat island and urban climatology studies

in several aspects:

• A comprehensive evaluation for the impact of clouds on composite LST data. This study

provides an overall bias of UHI for using composite data over cloudy area.

• Three practical sampling methods to validate long-term urban climate simulations by using

satellite data. These sampling methods considered the different features of modeling and

bird’s-eye view satellite observations, which will be best application for various validation

purposes.

• A new way to quantify UHI from remotely sensed temperature data. UHIC integrates the

impact of urban fraction on the air temperature in the curve, showing the unique features of

urban surface heterogeneity.

• An introduction of new satellite data source for atmospheric UHI studies. MODIS temper-

ature and moisture profiles provide invaluable long-term information for the UHI and heat

stress estimations with a high spatial resolution.

To sum up, the dissertation research addressed different aspects of remotely sensed UHI re-

search, including the problems required to be aware of, the approaches that are practical to be

used, and potential datasets needed more attentions. This study expects to help widen and broaden

applications of remote sensing to understand the UHI climatology, and to improve the accuracy of

UHI quantification from a new perspective.
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5.3 Recommendations for Future Work

The view angle problems

Voogt and Oke (1997) came up with a concept of complete urban surface temperature and

discussed the anisotropy of urban surface. Then, there were several research groups discussing

the directional anisotropic thermal properties over the urban area. For example, Lagouarde et al.

(2010, 2012) addressed the urban thermal anisotropy features for daytime and nighttime through

the airborne cameras. Voogt (2008) tested the sensor view model over the light-industrial and

downtown area in Vancouver, concluding that the total anisotropy is significantly impacted by

the surface structure and microscale temperature variability. However, the research was based on

higher resolution data, which decreases the urban heterogeneity at the pixel level. For coarser

resolution data from satellite to detect the temperature over large cities, the situations became

more complex. Chapter 3 of this dissertation found the major view angle impacts from MODIS

LST product come from the inadequate atmosphere corrections instead of urban surfaces. To better

quantify the UHI magnitude, the view angle effects from the atmosphere and urban surfaces should

be separated first. Further corrections for the atmosphere effects due to different view path lengths

are required, and then the anisotropic surface properties should be considered.

Temperatures estimated from MODIS atmospheric profile product

In general, the root-mean-square-error (RMSE) of MODIS profiles is about 1 K higher than

AIRS profiles through the Atmospheric Radiation Measurement (ARM) Program Cloud and Ra-

diation Test Bed (CART) (Seemann et al., 2006). The evaluations in Brazil (de Souza et al., 2007)

and the Korean Peninsula (Kim et al., 2004) showed better results. Seemann et al. (2003) concluded

that MODIS profiles agree well with the radiosonde under fairly monotonic smooth temperature

and moisture distributions. Other assessments of MODIS data were conducted for the total precip-

itable water or total column ozone that is yielded from the temperature/moisture profiles (Seemann

et al., 2003; King et al., 2003; Borbas et al., 2011). Although the absolute error or bias exists in the

dataset, the accuracy under different regions and climate states should be addressed considering

the great potential for applications. In addition to the bias from the product retrieval algorithm,
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other atmospheric conditions also contribute to the accuracy of the atmospheric profiles. The re-

sults shows a relatively unstable estimations under very dry and moist conditions, which require

more comprehensive evaluations. If the corrections is based on ground observations, the site con-

dition (height, environment setting, etc.), observation time, and atmospheric conditions should be

considered.

Applications of MODIS air and dew-point temperatures

The relatively high resolution temperature data derived from satellite observations will be use-

ful after the necessary error corrections. First, urban heat stress needs both temperature and mois-

ture information. The MODIS profiles provide the information to estimate heat stress index with a

relative high spatial/temporal dynamics over global urban areas. This valuable information benefits

the heat-related health studies, and the research of impacts from the urbanization, global changes

and extreme events. Second, to understand urban climatology, temperature and moisture informa-

tion is the key to estimate the energy budget. Third, for the urban climate modeling, the data may

provide valuable information for model validations, due to the comparable scale, global coverage,

and independence from modeling, consistency with other surface parameters derived from satellite

observations.

UHIC and its applications

The UHICs of cities in different climate zones during each season can extend our understanding

of the UHI pattens at a global scale. The impact of urbanization on the UHI dynamics are also

interesting to be compared through UHIC. Besides the urban fractions, other parameters that could

distinguish urban features that significantly influence urban temperatures can be useful for UHIC,

such as impervious surface area and population density. How different are UHICs and what is the

most important information revealed from these UHICs should be address with and an extension

of this research.
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Appendix A

Supplemental Document for Chapter 4

Table S1 shows a list of sites that are used for the comparisons with MODIS near-surface tem-

perature. The details of site information can be found on the NOAA national climatic data center

(NCDC) website (http://www.ncdc.noaa.gov/data-access/land-based-station-data/

station-metadata/surface-station-listings).

Fig. S1 illustrates the 11-year mean relative humidity for four cities. The daytime relative

humidity over the urban areas is significantly lower than rural areas. The urban/rural differences

decease during nighttime, however, the value in urban area still show a slight lower than that in

rural areas.

Fig. S2 illustrates the comparison of MODIS dew-point temperatures and the ground obser-

vations for the sites over the land surface. As mentioned Section 4.4.1, the ability of MODIS to

estimated Phoenix at the low range of dew-point temperature is limited. Under very humid climate

area, e.g. Houston, the comparison suggests a relative scattered distribution around the reference

line. The accuracy level and patterns in Chicago and Toronto are relatively consistent.

The clear sky days during 2003-2013 summers are shown in Fig. S3. Urban areas are tend to

be more cloudy. Houston is in most cloudy area among four cities, especially during the daytime.
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Figure S1: The 11-year JJA mean near-surface relative humidity (%) of four cities
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Figure S2: The density scatter plot of near-surface dew temperature from the ground observation
(the sites denoted as empty circles shown in Fig. 4.3) and the MODIS product. Higher density
shows in red and lower density is in Blue. RMSE is the Root-Mean-Square Error, and MD is the
Mean of the Differences between MODIS estimations and ground observations in K.
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Figure S3: The number of pixels available during 2003-2013 JJA (total 1012 days) for four cities
at Aqua overpasses.
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