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A COMPARISON OF GRAPHICAL TECHNIQUESFOR
ASYMMETRIC DECISION PROBLEMS:
SUPPLEMENT TO MANAGEMENT SCIENCE PAPER

Concha Bielza and Prakash P. Shenoy

ABSTRACT

In this paper, we provide a statement of the Reactor problem, and we describe a
representation and solution of this problem using decision trees, Smith, Holtzman
and Matheson’ s asymmetric influence diagrams, Shenoy’ s asymmetric valuation
networks, and Covaliu and Oliver’s sequentia decision diagrams. We provide de-
tails that could not be included in the published paper in Management Science dueto
page limitations.

Key Words: Asymmetric decision problems, decision trees, influence diagrams, valua-
tion networks, sequential decision diagrams

1 INTRODUCTION

Themain goa is of this paper isto provide details of the Reactor problem and its representation
and solution using traditional decision trees (DTs), Smith, Holtzman and Matheson’s (SHM)
[1993] influence diagrams (IDs), Shenoy’ s [1993b, 1996] valuation networks (VNs), and Covaliu
and Oliver’s[1995] sequential decision diagrams (SDDs). This paper should be read in conjunc-
tion with Bielzaand Shenoy’ s paper in Management Science where the four graphical techniques
are compared. This paper contains details that could not be included in the published version due to
page limitations.

2 THE REACTOR PROBLEM

In this section, we describe a small asymmetric decision problem called the Reactor problem. This
problem isamodified version of the problem described by Covaliu and Oliver [1995]. In our ver-
sion, Bayesian revision of probabilitiesis required during the solution process, and the joint utility
function decomposes into three factors only.

An electric utility firm must decide whether to build (D,) areactor of advanced design (a), a
reactor of conventional design (c), or neither (n). If successful, an advanced reactor is more profit-
able, but isriskier. Based on past experience, a conventional reactor (C) has probability 0.980 of
no failure (cs), and a probability 0.020 of afailure (cf). On the other hand, an advanced reactor (A)
has probability 0.660 of no failure (as), probability 0.244 of alimited accident (al), and probability
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0.096 of amajor accident (am). The profits for the case the firm builds a conventional reactor are
$8B if thereisno failure, and —$4B if there isafailure. The profits for the case the firm builds an
advanced reactor are $12B if thereisno failure, —$6B if thereis alimited accident, and -$10B if
thereisamajor accident. The firm’s utility function isalinear function of the profits.

Before making this decision, the firm can conduct an expensive test of the components of the
advanced reactor. Thetest results (T) can be classified as bad (b), good (g) or excellent (). The
cost of thistest is$1B. The test results are highly correlated with the success or failure of the ad-
vanced reactor. Figure 2.1 describes a causal probability model for A and T. If the test results are
bad, the Nuclear Regulatory Commission will not permit an advanced reactor. The firm needs to
decide (D4) whether to conduct the test (t), or not (nt).

Figure 2.1. A causal probability model for A and T in the Reactor problem.
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3 DECISION TREES (DTs)

In this section, we will represent and solve the Reactor problem using the decision tree (DT) tech-
nique.

Figures 3.2 and 3.3 show a decision tree representation and solution of this problem. Notice
that even before the decision tree can be completely specified, the conditional probabilities required
by the decision tree representation have to be computed from those specified in the problem asis
donein Figure 3.2: The probability tree on the left is used to compute the joint probability distribu-
tion for A and T; and the probability tree on the right is used to compute the pre-posterior for test
results and the posterior distribution for success and failures of an advanced reactor.
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Figure 3.2. The preprocessing of probabilities in the Reactor problem.
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Figure 3.3. A decision tree representation and solution of the Reactor problem.
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Figure 3.3 shows the solution of the Reactor problem. The optimal strategy isto do the test;
build a conventional reactor if the test results are bad or good, and build an advanced reactor if the
test results are excellent. The expected profit associated with this strategy is $8.130B.

Although we have shown the decision tree representation using coalescence [Olmsted 1983], it
should be noted that automating coal escence in decision treesis not easy since it involves con-
structing the complete (uncoal esced) tree and then recognizing repeated subtrees.

The preprocessing requires 21 arithmetic operations (8 multiplications (x), 5 additions (+), and
8 divisions (+)). Solving the decision tree without coalescence requires 42 operations (12 for re-
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ducing four copies of C, 15 for reducing A, 7 for reducing D,, 5 for reducing T, and 3 for reduc-
ing D4). Thus, the decision tree technique requires a total of 63 arithmetic operations.

4 ASYMMETRIC INFLUENCE DIAGRAMS (1Ds)

In this section, we will represent and solve the Reactor problem using Smith, Holtzman and
Matheson’ s [1993] (henceforth, SHM) asymmetric influence diagram (1D) technique.

4.1 1D Representation

An influence diagram representation of a problem is specified at three levels—graphical, func-
tional, and numerical. At the graphical level, we have a directed acyclic graph, called an influence
diagram, that displays decision variables, chance variables, factorization of the joint probability
distribution into conditionals, factorization of the joint utility function, and information constraints.
Figure 4.1 shows an influence diagram for the Reactor problem at the graphical level.

Figure 4.1. An ID for the Reactor problem.

We could have drawn only one value nodev as afunction of D4, D,, A, and C. Instead, we
have decomposed the single value node v into three value nodes—uv, v, and v;. The value node
structure isthat of atree. Node v is the terminal super value node and the others (the leaves, v,
v,, and v5) are non-super value nodes representing the three addends of v. Although we arein-
creasing the number of value nodes, we will get much computational savings as a resullt.

At the functional level, we specify the structure of the conditional distribution (or ssimply, con-
ditional) for each node (except super value nodes) in the ID, and at the numerical level, we specify
the numerical details of the probability distributions and the utilities. The key idea of the SHM
technique is a new tree representation for describing the conditionals. These are called distribution
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trees with paths showing the conditioning scenarios that lead to atomic distributions that describe
either probability distributions, set of alternatives, or (expected) utilities, assigned in each condi-
tioning scenario. A conditional for a chance node represents afactor of the joint probability distri-
bution. A conditional for a decision node can be thought of as describing the alternatives available
to the decision-maker in each conditioning scenario. A conditional for a value node represents a
factor of the joint utility function. For the Reactor problem, the conditionals are shown in Figure
4.2.

Since node D4 has no conditioning predecessors in the ID, its distribution tree consists of a
single atomic distribution. The distribution treesfor A and C have also single atomic distributions.

The distribution tree for D, has two atomic distributions. The firm will choose among three
alternatives (conventional or advanced reactor or neither) only if it decidesto not do thetest (D, =
nt) or if it conducts the test and its result is good or excellent. The conditional for D, is coal esced,
i.e., the atomic distribution with three alternatives is shared by three distinct scenarios, and is
clipped, i.e., many branches in conditioning scenarios are omitted because the corresponding con-
ditioning scenarios are impossible. For example, if the firm chooses to not do the test, theniitis
impossible to observe any test results.

The distribution tree for T shows that if the firm decides to not perform the test (D, = nt), then
T = nr with probability 1 regardless of the advanced reactor state. Thus, the conditional for T can
be collapsed across A given D, = nt. Collapsed scenarios are shown by indicating the set of possi-
ble states on a single edge emanating from the node. They allow the representation of conditional
independence between variables that holds only given particular outcomes of some other variables.
Deterministic atomic distributions for chance and decision variables are shown by double-bordered
nodes.

The conditionals for the three utility nodes provide other examples of coalesced, clipped, and
collapsed distributions. They are deterministic nodes because we assign asingle utility for each
conditioning scenario. Since utility functions are aways deterministic, and we use diamond-shaped
nodes to indicate utility functions, we do not draw these nodes with a double border.

Another feature of distribution trees not illustrated in the Reactor problem is unspecified distri-
butions where certain atomic distributions of a chance node are left unspecified since they are not
required during the solution phase. If only the probabilities are unspecified, then we have a par-
tially unspecified distribution. All of these features—coal esced, clipped, collapsed, and unspecified
distributions—provide a more compact and expressive representation than the usual tablein the
symmetric ID literature.
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Figure 4.2. Distribution trees for the conditionals in the ID.
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42 |D Solution

The algorithm for solving an asymmetric ID is conceptually the same as that for conventional 1D.
However, SHM describe methods for exploiting different features of a distribution tree (such as
clipped scenarios, coalescence, collapsed scenarios, etc.) to ssmplify the computations.
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We solve an ID by reducing variablesin a sequence that respects the information constraints. If
the true state of a chance variable C is not known at the time the decision maker must choose an
aternative from the atomic distribution of decision variable D, then C must be reduced before D,
and vice versa. In the Reactor problem, there are two possible reduction sequences, CAD,TD and
ACD,TD;. Both of these reduction sequences require the same computational effort. In the fol-
lowing, we use the first reduction sequence CAD,TD; aswe do when we solve this problem with
the VN and the SDD techniques.

We start by reducing node C. Essentially, we absorb the conditional for C into utility function
v, using the expectation operation (following Theorem 5 in Tatman and Shachter [1990]). The ex-
pectation operation is carried out by considering each conditioning scenario separately. The caseto
apply will depend on the structure of the utility and probability functions. Since for D, =n or athe
utility function v, shares in these scenarios one deterministic distribution, the conditional expected
utility function v, must be that deterministic distribution. Only one scenario isleft (D, = c) and we
compute the expected utility in the usual manner. Figure 4.3 showsthe ID and the distribution tree
for v, after reducing C.

Figure 4.3. The ID and the distribution tree for v, after reducing node C.
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Next, we reduce A. To do so, wefirst reverse arc (A, T), and then absorb the posterior for A
into utility function v,. To reversearc (A, T), wefirst add arc (D4, A) totheID sothat A and T
have the same set of direct predecessors. Any specia structure in the original distribution treeis
preserved in the resulting one, and nothing new is computed. The arc reversal involves numerical
computations (by means of Bayes' rule) only for the scenarios containing D, = t. The other ones,
corresponding to collapsed distributions, remain as before. For example, P(T |nt, A) shares one
atomic distribution for al possible states of A. Therefore, the pre-posterior distribution P(T | nt)
must be that shared atomic distribution and the posterior distribution for A must be equal to the
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prior. Figure 4.4 shows the ID, the preposterior distribution for T, and the posterior distribution
for A, after arc (A, T) reversal.

Figure 4.4. The ID, the preposterior for T, and the posterior for A, after reversal of arc (A, T).
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Next we add arcs (D, A), (T, v,), and (D4, v,) to the ID, modify accordingly the distribution
trees for A and v,, and absorb the conditional for A into the utility function v, using the expecta-
tion operation. Figure 4.5 shows the ID and the distribution tree for v, after reduction of A.
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Figure 4.5. The ID and the distribution tree for v, after reducing node A.
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Next, we need to reduce D,. Since D, has two value node successors, before we reduce D,
we introduce a new super-value node o (as shown in Figure 4.6), and then we merge v, and v,
into w (as per Theorem 5 in Tatman and Shachter [1990]). Figure 4.7 shows the ID and the distri-
bution tree for w after combining v, and v,. Special structures in the conditional distributions are
treated as special cases again.
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Figure 4.6. The ID after introducing a new super-value node w.
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Figure 4.7. The ID and the distribution tree for o after combining v, and v,.
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D, isnow ready to be reduced. We reduce D, by maximizing o over the states of D, permitted
by the distribution tree for D,. Notice that this distribution tree (shown in Figure 4.2) has asym-
metry in the atomic alternative sets, but thisis not exploited either during the reduction of A or
during the processing prior to reduction of D,. Figure 4.8 shows the ID, the distribution tree for
o, and the optimal decision function for D, after reduction of D,.

Figure 4.8. The ID, the distribution tree for w, and the optimal decision function for D,, after
reduction of D,.
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Next, we reduce T. Notice that w isthe only value node that has T in its domain (see Figure
4.8). We absorb the conditional for T (shown in Figure 4.4) into the utility function o (shown in
Figure 4.8) using the expectation operation. Figure 4.9 shows the resulting ID and the distribution
tree for w.



A Comparison of Graphical Techniques for Asymmetric Decision Problems: Supplement 13

Figure 4.9. The ID and the distribution tree for w after reducing T.
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Finally, we need to reduce D;. Since D isin the domain of v; and w, first we combine v
(shown in Figure 4.2) and w (shown in Figure 4.9) obtaining v. Figure 4.10 shows the ID and the
distribution tree for v after combining vs and . Next we reduce D, by maximizing v over the
possible states of D4. The optimal decision function for D4 is D4 = t, and the maximum expected
utility associated with the optimal strategy is 8.130.

Figure 4.10. The ID and the distribution tree for v after combining v; and .
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This compl etes the solution of the Reactor ID representation. An optimal strategy can be pieced
together from the optimal decision function for D; and the optimal decision function for D, (shown
in Figure 4.8). The optimal strategy isto do the test (D4 =t); if the test result is either bad (b) or
good (g), build a conventional reactor (D, = c); if the test result is excellent (€), build an advanced
reactor (D, = a). The expected utility of the optimal strategy is $8.130B.

Reducing C requires 3 arithmetic operations (2x, 1+), reducing A requires 39 operations (19x,
12+, 8+), reducing D, requires 19 operations (12+, 7>), reducing T requires 5 operations (3x,
2+), and reducing D requires 3 operations (2+, 1>), for atotal of 69 operations.

5 ASYMMETRIC VALUATION NETWORKS (VNSs)

In this section, we will represent and solve the Reactor problem using Shenoy’s[1993b, 1996]
asymmetric valuation network (VN) technique. The symmetric VN technique is described in [She-
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noy 19934 for the case of a single undecomposed utility function, and in [Shenoy 1992] for the
case of an additive decomposition of thejoint utility function.

51 VN Representation

A vauation network representation is specified at three levels—graphical, dependence, and nu-
merical. The graphical and dependence levelsrefer to qualitative (or symbolic) knowledge,
whereas the numerical level refersto quantitative knowledge.

At the graphical level, we have agraph called a valuation network. Figure 5.1 shows a valua-
tion network for the Reactor problem. A valuation network consists of two types of
nodes—variable and vauation. Variables are further classified as either decision or chance, and
valuations are further classified as either indicator, probability, or utility. Thus, in al there arefive
different types of nodes—decision, chance, indicator, probability, and utility.

Figure 5.1. A valuation network for the Reactor problem.

NN ANV AN

Decision nodes correspond to decision variables and are depicted by rectangles. Chance nodes
correspond to chance variables and are depicted by circles. This part of VNsissimilar to IDs.

Indicator valuations represent qualitative constraints on the joint state spaces of decision and
chance variables and are depicted by double-triangular nodes. The set of variables directly con-
nected to an indicator valuation by undirected edges constitutes the domain of the indicator valua-
tion. In the Reactor problem, there are two indicator valuations labeled 8, and t,. 62'Sdomain is
{D4, T, Do} and it represents the constraints that the test results are available only in the case we
decide to do the test, and that the alternatives at D, depend on the choices at D; and the test results
T.to’sdomainis{T,A} and it represents the constraint that if A = as, then T = b isnot possible.
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Utility valuations represent additive factors of the joint utility function and are depicted by dia-
mond-shaped nodes. The set of variables directly connected to a utility valuation congtitutes the
domain of the utility valuation. In the Reactor problem, there are three additive utility valuations
labeled v1, v, and v, with domains {D,, C}, {D,, A}, and { D4}, respectively.

Probability valuations represent multiplicative factors of the family of joint probability distribu-
tions for the chance variables in the problem, and are depicted by triangular nodes. The set of all
variables directly connected to a probability vauation congtitutes the domain of the probability
valuation. In the Reactor problem, there are three probability valuations labeled t;, o, and ¥, with
domains{A, T}, {A}, and { C}, respectively.

The specification of the vauation network at the graphical level includes directed arcs between
pairs of distinct variables. These directed arcs represent information constraints. Suppose R isa
chance variable and D isadecision variable. An arc (R, D) means that the true state of R isknown
to the decision maker (DM) at the time the DM has to choose an alternative from D’ s state space,
and, conversely, an arc (D, R) means that the true state of R is not known to the DM at the time the
DM hasto choose an dternative from D’ s state space.

Next, we specify avaluation network representation at the dependence level. At thislevel, we
specify the state spaces of al variables and we specify the details of the indicator valuations.

Associated with each variable X is a state space Ox. Asin the cases of IDs and SDDs, we as-
sume that all variables have finite state spaces. Suppose sis a subset of variables. An indicator
valuation for sisafunction v: 0s — {0, 1}. An efficient way of representing an indicator valuation
issimply to describe the elements of the state space that have value 1, i.e., we represent « by Q,
where Q, = {X&0s|1(x) = 1}. Obviously, Q,C 0s. To minimize jargon, we also call Q, an indi-
cator valuation for s. In the Reactor problem, the details of the two indicator valuations are as fol-
lows:

952 ={(nt, nr, n), (nt, nr, c), (nt, nr, @), (t, b, n), (t, b, ¢, (t, g, n), (t, g, ), (t, g, @), (t, e n),
(t,e c), (t, e a)}
Q.,={(as, nr), (as, g). (as, €), (al, nr), (@, b), (al, g), (al, ), (am, nr), (am, b), (am, g),
(am, e)}
Notice that the indicator valuation Qs isidentical to the scenariosin the distribution tree for D, de-
picted in Figure 4.2. The indicator valuation sz rules out the scenario A =as, T = h.

Before we can specify the valuation network at the numerical level, it is necessary to introduce
the notion of effective state spaces for subsets of variables. Suppose that each variableisin the
domain of someindicator valuation. (If not, we can create “vacuous’ indicator valuations that are
identically one for every state of such variables.) We define combination of indicator valuations as
pointwise Boolean multiplication, and marginalization of an indicator valuation as Boolean addition
over the state space of reduced variables. Then, the effective state space for a subset s of variables,
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denoted by Q, is defined as follows: First we combine all indicator valuations that include some
variable from sin their domains, and next we marginalize the combination so that only the vari-
ablesin sremain in the marginal. Shenoy [1994] has shown that these definitions of combination
and marginalization satisfy the three axioms that permit local computation [ Shenoy and Shafer
1990]. Thus, the computation of the effective state spaces can be done efficiently using local com-
putation. For example, consider the effective state space for subset { T, D,, A}. By definition,
QT Dy A} = (62®r2)“T‘ P2 A} However, we can compute this more efficiently as follows.

Q1 Dy, A} = 62“T’ D2}®t2. Notice that the combination operation in (62®r2)“T’ P2 A} ison the
state space of { D4, T, D,, A} whereas the combination operation in 62“T' D2}®12 ison the state
space of {T, Dy, A}.

Finally, we specify avaluation network at the numerical level. At thislevel, we specify the de-
tails of the utility and probability valuations. A utility valuationv for sisafunction v: Qs— R,
where R isthe set of real numbers. The values of v are utilities. In the Reactor problem, there are
three utility valuations whose details are shown in Table 5.1.

Table 5.1. Utility valuations in the Reactor problem.

Qip,q | V1 Qp,ar | V2 Qp, | Vs
n cs 0 n as 0 nt 0
n cf 0 n | 0 t -1
C cs 8 n am 0
c cf | 4 C as 0
a cs| O C | 0
a cf 0 c am 0

a as 12

a | —6

a am| -10
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Table 5.2. Probability valuations in the Reactor problem.

Qc X Qa a Q{A,T} T,
cs .98 as .660 a 1
cf .02 a 244 a g | .182
am | .096 as .818

a n 1

a .288

a g | .565

a e | .147

anm nr 1

am b [ .313

am g | .437

an e | .250

A probability valuation it for sis afunction it: Qs— [0, 1]. The values of &t are probabilities. In
the Reactor problem, there are three probability valuations whose details are shownin Table 5.2.
What do these probability valuations mean?y isthe margina for C, a isthe marginal for A, and
62“D1' T}®r2®r1 isthe conditional for T given A and D4. Thusthe conditional for T factorsinto
three val uations such that t, has the numeric information and 8, and t, include the structurd in-
formation.

Notice that the utility and probability valuations are described only for effective state spaces
which are computed (using local computation) from the specifications of the indicator valuations.
There is no redundancy in the representation. However, inv,, unlike the 1D representation, the
irrelevance of A in scenarioswhere D, = n or cis not represented in the VN representation because
we are unableto. Also, inv4, theirrelevance of C in scenarios D, = n or ais not represented. This
completes the valuation network representation of the Reactor problem.

52 VN Solution

In this section, first we sketch the fusion algorithm for solving valuation network representations
of decision problems, and then we solve the Reactor problem in complete detail.

The fusion algorithm is essentially the same asin the symmetric case [ Shenoy 1992]. The main
differenceisin how indicator valuations are handled. Since indicator valuations are identically one
on effective state spaces, there are no numeric computations involved in combining indicator
valuations. Indicator valuations do contribute domain information and cannot be totally ignored. In
the fusion agorithm, we reduce a variable by doing a fusion operation on the set of al valuations
(utility, probability, and indicator) with respect to the variable. All humeric computations are done
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on effective state spaces only. This means that the effective state spaces may need to be computed
prior to doing the fusion operation if the effective state space has not been aready computed during
the representation phase.

Fusion with respect to adecision variable D is defined as follows. The utility, probability, and
indicator valuations whose domains do not include D remain unchanged. All utility valuations that
include D in their domain are combined together, and the resulting utility valuation v is marginal-
ized such that D is eliminated from its domain. A new indicator valuation Cp corresponding to the
decision function for D is created. All probability and indicator valuations that include D in their
domain are combined together and the resulting probability valuation p is combined with Cp and
the result ismarginalized so that D is eliminated from its domain.

Fusion with respect to a chance variable C is defined as follows. The utility, probability, and
indicator valuations whose domains do not include C remain unchanged. A new probability valua-
tion, say p, is created by combining al probability and indicator valuations whose domain include
C and marginalizing C out of the combination. Finally, we combine al probability and indicator
valuations whose domains include C, divide the resulting probability valuation by the new prob-
ability vauation p that was created, combine the resulting probability vauation with the utility
valuations whose domainsinclude C, and finally marginalize the resulting utility valuation such
that C iseliminated from its domain. In some specia cases—such asif p isidentically one, or if C
isthe only chance variable |left—we can avoid creating anew probability valuation and the corre-
sponding division.

The solution of the Reactor problem using the fusion algorithm is as follows.

Fusion with respect to C. First we fuse valuations in {85, T,, V1, Uy, V3, X, @, T1} With
respect to C. Since X“’ isidentically one,

FUsc{ 82, T, V1, Vg, V3, X, 0, T1} = {82 T2, Vg, V3, (11®%)* 72, @, T4}
Let v, denote (v 1®x)w2. The result of fusion with respect to C is shown graphically in Figure

5.2. The details of the numerical computation involved in the fusion operation are shown in Table
5.3.
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Figure 5.2. Fusion with respect to C: Before and after.
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Table 5.3. Details of fusion with respect to C.

N

Vg =(V 1 ®y)¢D2

Qip, | V1 X v1®x (v,®x) P2 =
n cs 0 0.98 0 0
n cf 0 0.02 0
cC cs 8 0.98 7.840 7.760
c cf 4 0.02 —0.080
a cs 0 0.98 0 0
a cf 0 0.02 0

Fusion with respect to A. Next, we fuse the valuations in {3,, T, vy, V3, Uy, a, T4} With

respect to A.

Fusa{d,, To, V5, V3, V4, O, T1} = {0, V3, Uy, (U2®(a®1:1®r2)/(0c®11®12)“)HDZ‘ R

(0®1,®1,)" T}

Let vs denote (v,®(a®T,@t,)/ (a®T,®t,) ' )HP2 T and et denote (a®t;®1,)' . The result
of fusion with respect to A is shown graphically in Figure 5.3. Details of fusion are shown in Ta-

bles 5.4 and 5.5.
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Figure 5.3. Fusion with respect to A: Before and after.

A T1 A A é)é A T = (a®T®T)IT

D, T D> D; T>—> D>

>

V5 = (L L®(A®T|®T,)/T’ ) I{D2, T}

Table 5.4. Details of fusion with respect to A (continued in Table 5.5).

Q1 A o i T®T% i a®t | (a®0)' =7 | (a@0)/(0®1)'"
=T
nr as | 0.660 1 0.660 1 0.660
nrd | 0.244 1 0.244 0.244
nr am | 0.096 1 0.096 0.096
b 4d | 0244 : 0.288 i 0.070 0.100 0.700
b am | 0.096 : 0.313 { 0.030 0.300
g as | 0.660: 0.182 : 0.120 0.300 0.400
g 4d |0244 : 0565 : 0.138 0.460
g am | 0.096 : 0.437 : 0.042 0.140
e as | 0.660 : 0.818 i 0.540 0.600 0.900
e d [0244 i 0.147 i 0.036 0.060
e am| 0.09 : 0.250 : 0.024 0.040
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Table 5.5. Details of fusion with respect to A (continued from Table 5.4).

Q1 pya | V2 | (@@0)/(0@0)' T | u,@e@t)/(a@t) T =v | (0)HT P =,
m n a| O 0.660 0 0
m n d 0 0.244 0

m n am| O 0.096 0

m c¢c a| O 0.660 0 0
nm ¢ d 0 0.244 0

m ¢ an| O 0.096 0

m a a| 12 0.660 7.920 5.496
m a d | -6 0.244 -1.464

nr a am| -10 0.096 —0.960

b n d 0 0.700 0 0

b n an| O 0.300 0

b ¢ d 0 0.700 0 0

b ¢ an| O 0.300 0

g n a| O 0.400 0 0
g n 4d 0 0.460 0

g n an| O 0.140 0

g c¢c as| O 0.400 0 0

g c 4d 0 0.460 0

g ¢ an| O 0.140 0

g a as| 12 0.400 4.800 0.649
g a 4d| -6 0.460 —2.760

g a am|-10 0.140 —1.400

e n a| O 0.900 0 0

e n d 0 0.060 0

e n an| O 0.040 0

e ¢ a| O 0.900 0 0

e ¢ d 0 0.060 0

e ¢ an| O 0.040 0

e a as| 12 0.900 10.800 10.043
e a d | -6 0.060 —0.360

e a am|-10 0.040 —0.400

Notice that all computations are done on effective state spaces, and so we need to compute the
effective state space of { T, D,, A} prior to doing the fusion (since it has not been aready com-
puted during the representation stage). Typically, we can do so using the local computational algo-
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rithm of Shenoy and Shafer [1990]. Here, this means the effective state space of { T, D,, A} is
computed as 62“T’ D2}®12 (asexplained in Section 5.1). One consequence of working on effective
state spaces is that we avoid the computation of utilities for impossible scenariossuchas T = b, D,
=a, A = as, etc., that are done in I Ds (see Figure 4.5—the presence of scenarioD,=t, T =b, D,
= aintheutility function v, isthe result of averaging over the scenariosD;=t, T=b,D,=a, A =
as,D;=t,T=b,D,=a,A=al,D;=t,T=b,D,=a, A =am).

Fusion with respect to D,. Next we fuse {9,, vs, vy, Vs, T'} With respect to D,. Since D,
isadecision variable,

Fusp, {92, V3, V4, V5, T'} = {(52®CDZ)HD1’ g, 0@, T},

where ?;DZ is the indicator valuation representation of the decision function for D, (determined
during the computation of (v4®v5)”). L et vg denote (v4®u5)”, and §,’ denote (62®CD2)HD1‘ .
The result of fusion with respect to D, is shown graphically in Figure 5.4. The details of the nu-
merical computation involved in the fusion operation are shown in Table 5.6.

Figure 5.4. Fusion with respect to D,: Before and after.
8’ = (8,®CDy) D1, T}

A\ N\

;

v = (Va@Us)IT
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Table 5.6. Details of fusion with respect to D..
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Q. py| Va4 Us V4Qu5 (v ®us)' T = vg ¥p
nron 0 0 0
nr c| 7.760 0 7.760 7.760 C
nrooa 0 5.496 5.496
b n 0 0 0
b c¢| 7.760 0 7.760 7.760 c
g n 0 0 0
g c| 7.760 0 7.760 7.760 c
g a 0 0.649 0.649
e n 0 0 0
e c| 7.760 0 7.760
e a 0 10.043 10.043 10.043 a

Details of the symbolic computation of 8, are asfollows. It follows from Table 5.6 that the
effective state space representation of the decision function for D, is QCDz ={(nr, ¢), (b, ¢), (g, €),
(e, @)}. 8, was described earlier in Section 5.1. Therefore, the effective state space representation
of 62®CD2 is QCD2®52 ={(nt, nr, c), (t, b, ), (t, g, ), (t, e a)}. Finally, the effective state space
representation of o, = (62®?;D2)HD1‘ Tis Q) = {(nt, nr), (t, b), (t, 9), (t, €)}.

Fusion with respect to T. Next we fuse {0,', v3, V4, T'} With respect to T. Since T is the
only chance variable,

FUs{d;, 03,05, T} ={ v3, (@, ®v)!P1} .
Let v, denote (T' ®9,’ ®v6)¢ P1. The result of fusion with respect to T is shown graphically in Fig-
ure 5.5. The details of the numerical computation involved in the fusion operation are shownin
Table 5.7.



Bielza and Shenoy 24

Figure 5.5. Fusion with respect to T: Before and after

@ @ v7 = (T'®d,’ ®ug) D1

Table 5.7. Details of fusion with respect to T.

Q{Dll T} 62, ®T’ Vg 62’®T1®U6 (62' ®T1®U6)\|,Dl = v,

nt nr 1 7.760 7.760 7.760
t b | 0100 i 7.760 0.776 9.130
t g | 0300 : 7.760 2.328
t e | 0.600 : 10.043 6.026

Fusion with respect to D;. Next, we fuse {v3, v7} with respect to D4. Since D is a decision
variable,

Fusp, {vs, v7} = { @)}
Let vg denote (v3®v7)w. The result of fusion with respect to D is shown in Figure 5.6. The de-
tails of the numerical computation involved in the fusion operation are shown in Table 5.8.

Figure 5.6. Fusion with respect to D,: Before and after

D;

vg = (L®L7)LP
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Table 5.8. Details of fusion with respect to D;.

Qp, | v7 vz vi®V3 i (LU, ‘Ye) | Pp, ()

nt [ 7760 0 ; 7.760
t 9.130: -1: 8.130 8.130 t

This completes the fusion agorithm. An optimal strategy can be pieced together from the deci-
sion functions lIJDl (in Table 5.8) and \PDZ (in Table 5.6). An optimal strategy isto do the test (t);
if the test resultsare b or g, then build a conventional reactor (c), and if the test result is excellent,
then build an advanced reactor (a). The expected utility of the optimal strategy is $8.130B
(= (0,@v5)"(#)).

Fusion with respect to C requires 9 operations (6x, 3+), fusion with respect to A requires 80
operations (42x, 27+, 11+), fusion with respect to D, requires 18 operations (11+, 7>), fusion
with respect to T requires 6 operations (4x, 2+), and fusion with respect to D4 requires 3 opera-
tions (2+, 1>) for atotal of 116 operations.

6 SEQUENTIAL DECISION DIAGRAMS (SDDs)

In this section, we will represent and solve the Reactor problem using Covaliu and Oliver’ s [1995]
sequential decision diagram (SDD) technique. The SDD technique is described either for a problem
in which the utility function is undecomposed, or for a problem in which the utility function de-
composes into additive factors (or multiplicative) such that each factor has only one variablein its
domain. Since our version of the Reactor problem is not in either of these two categories, first we
combine the three utility factors and then we use the undecomposed version of the SDD technique
to represent and solve the Reactor problem.

6.1 SDD Representation

In this technique, adecision problem is modeled at two levels, graphical and numerical. At the
graphical level, we model a decision problem using two directed graphs—an ID to describe the
probability model, and a new diagram, called a sequential decision diagram (SDD), which captures
the asymmetric and the information constraints of the problem. Figure 6.1 showsan ID and a SDD
for the Reactor problem. At the numerical level, we specify the conditionals for each node in the
ID, and data built from both diagrams are organized in aformulation table, similar to the one used
by Kirkwood [1993], in such away that the recursive algorithm used in the solution process can
easily access the data contained in it. Table 6.1 shows the formulation table for the Reactor prob-
lem.



Bielza and Shenoy 26

Figure 6.1. Theinitial ID and the SDD for the Reactor problem.

D, T A
D,
v
n
D, nt » D, aT=b A
C
t
T C

A SDD isadirected acyclic graph, with the same set of nodes asin the ID. However, its paths
show all possible scenarios in a compact way, asif it were aclustered decision tree. A SDD issaid
to be proper if (i) there is only one source node (a node with no arrows pointing to it), (ii) thereis
only one sink node (a node with no arrows emanating from it) and it is the value node, and (iii)
there isadirected path that contains al decision nodes.

In the SDD for the Reactor problem, the arc (D4, T) with the label t tellsusthat if we perform
thetest (D, = t) then we will observeitsresult (T = b, g or €). Arc (D,, D,) with label nt tells us
that we will not observe T when D4 = nt. Arcs (D,, v), (D,, C) and (D,, A) show that A isrele-
vant only if D, = a, and C isrelevant only if D, = c. The label over thearc (D,, A) also indicates
dependence on realized states at predecessor nodes, i.e., the alternative D, = aisavailableonly if T
= b. The six directed paths from D4 to v in the SDD are a compact representation of the twenty-one
possible scenariosin the decision tree representation (Figure 3.3).

Notice that the partial order implied by the arrowsin an 1D may be different from the partial
order implied by the arrows in acorresponding SDD. Let <p and <, denote the partial ordersin
SDD and ID respectively. If Cisachance node, D isadecision node, and C <; D implies C <p D,
then we say the ID and SDD are compatible [Covaliu and Oliver 1995]. In Figure 6.1, e.g., we
have A <, D, (sincethereis adirected path from A to D, inthe ID), and D, <p A (sSincethereisan
arrow from D, to A in the SDD). Therefore the two diagrams are incompatible. The next step in
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completing the SDD representation isto transform the ID so that it is compatible with the SDD. In

the Reactor problem, we must reversethe arc (A, T) inthe ID to make the ID compatible with the
SDD. Thetransformed ID is shown in Figure 6.2.

Figure 6.2. The transformed ID and the conditionals for T and A.

D1

D1

Next, we organize datain the formulation table, which contains the complete information the

@nr

b, .100

e, .600

A

as, .660
al, .244

i

am, .096

al, .700

)

A

¢

am, .300

as, .400

g ,

am, .140

i

as, .900

€ )

i

am, .040

solution algorithm will require. Table 6.1 is the formulation table for the Reactor problem.
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Table 6.1. A formulation table for the Reactor problem.

Node Node Standard Histories State Probability Next-Node
Name Type (Minima in bold) Space Didtribution Function
D, decison ; @ n t D, T
T chance ; Dy

t b g e .l 3 .6:D, D, D,
D, decison; D, T

nt - n c a v C A

t b n ¢ v C

t g n c a v C A

t e n c a v C A
A chance ; D, T D,

nt - a as d am:i.660 .244 .096i v vV v

t g a 400 .460 .140

t e a .900 .060 .040
C chance ; D, T D,

nt - ¢ cs cf .98 .02 v v

t b ¢

t g ¢c

t e ¢
v vduve :D, T D, A C

nt - n - - 0

nt - ¢ - s 8

nt - ¢ - cf —4

nt - a as - 12

nt - a al - —6

nt - a am - -10

t b n - - -1

t b ¢ - cs 7

t b ¢ - cf -5

t g n - - -1

t g ¢ - ¢cs 7

t g ¢ - cf -5

t g a as - 11

t g a a - -7

t g a am - -11

t e n - - -1

t e ¢ - <cs 7

t e ¢ - cf -5

t e a as - 11

t e a al - —7

t e a am - -11
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The formulation table has arow for each nodein the SDD. If X <p Y, then the row for X pre-
cedes the row for Y. Each row includes node name, node type, standard histories and minimal
histories, state space, conditional distribution (for chance nodes only), and next-node function. It
should be noted that the formulation table is part of the representation of the decision problem.

The term history refers to how one gets to a node through the directed paths in the SDD. It can
be represented as a 2-row matrix, the first row listing a node sequence of all nodes that precede it
in the partial order, and the second row listing the corresponding realized states. The next-node
function (in the last column) denotes the node that is realized after anode for each of its states and
for each minimal history. There are different kinds of histories. Minimal histories are always suffi-
cient for defining node state spaces, probability distributions (for chance nodes), and next node
functions. For adecision node, the minimal histories will include those variables that affect its state
space, and its next-node function. For example, for D,, variable T isthe only one under these con-
ditions. So, at node D, we have the minimal histories:

[ (o] (g = (o)

where - denotes the absence of T in apath to D,, i.e., when D, = nt. For a chance node, the mini-
mal histories will include the nodes that suffice for defining its next-node function, and its condi-
tional probability distribution. For example, for C, the set of minimal historiesis the empty set.
For avalue node, the minimal histories will include the nodes that suffice to define the values of
the corresponding utility function and they are the direct predecessors of v inthe ID.

Aswe will see, minimal histories are not always sufficient to solve adecision problem. We
need anew kind of history called relevant history. The node sets of relevant histories contain the
node sets of minimal histories and are contained in the node sets of full histories. Also relevant
histories can be computed from minimal and full histories. Therefore, we do not show relevant
histories in the formulation, just full and minimal histories.

6.2 SDD Solution

Let wy(Hy) = E(u | Hy) denote the maximum expected utility a node N of the SDD given history
Hy if optimal decisionsaremade at N (if N isadecision node) and from there onwards. Let 1(Hy)
denote the set of nodesin Hy. The solution technique is based on the same backwards recursive
relations used in decision trees, but here we use anew kind of history called relevant history. We
cannot use only minimal histories because, when calculating wy(Hy), we may reference the next
nodes ny and their histories H,, , and wy(Hy) is not well defined if there exists at least one ny
such that 1(HnN) —{N} ¢ 1(Hy). We obtain the node setsin the relevant histories by enlarging the
node setsin minimal histories by those SDD predecessors that appear in the node sets of relevant
histories of any of the direct successors nodes. Covaliu and Oliver [1995] give arecursive defini-
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tion of thisterm. The solution agorithm then follows a backward recursive method. The solution
of the Reactor problem is asfollows.
w,, isthe utility function associated with node v in the formulation table, e.g.,

WU((Dl D, C A)): 0, etc.

nt n - -
First, we reduce node C. The relevant history for node C includes nodes D; and D, (sinceC’s
minimal history node set is g, C's successor is node v, v’sminimal history node setis{ D, D,

C, A}, and the set of predecessorsof Cis{D4, T, D,}).

D, D D, D, C D, D, C
wel Pl O Pl o
= w2 s 2 Mon

(8)(.98) + (—4)(.02)
7.760.

D, D
In the computation of WC(( ntl CZ) ) above, notice that, e.g., strictly speaking

D, D, C\.. , , D, D, C\ . ,
WU(( ))IS not defined. However, the history ( ) differs from the history
nt cs nt cs
D, b, C A _ _ _ D, D, C A\ .
( ) only in the variable A that has state -, i.e., ( ) issmply a
nt c - nt ¢ c¢s -
. . D, D, C D, b, C
standardized version of ( ) . Therefore, wv(( )) =
nt ¢ cs nt ¢ cs

D, D, C A

nooc )), and the RHS of this equality iswell defined.

Similarly,
Dl D2
c

WC(( ‘ )) = 6.76.

Next, we reduce node A. The relevant histories for node A include D4, T, and D, (since A’s
minimal history node setis{T}, A’s successor isnode v, v’srelevant history node setis{D,, D,
C, A}, and the set of predecessorsof A is{D4, T, D,}).

(% T 2= (% T % s v

D, T D, A ) (.096)
U(nt - a am) '

T D,

:) ) (.244) +
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D, D, C A D, D, C A
=w( e S s T (2
D, D, C Ay o
(nt a am))(' )
= (12)(.660) + (—6)(.244) + (=10)(.096)
= 5.496.
Similarly,
wA((D1 T DZ)): —0.351; and
t g a
D, T D,\. _
WA((t . a))_ 9.043.

Next we reduce node D.. Itsrelevant historiesinclude variables D4, and T.
D, T D, T D,
wol( = maxpw(( ),

nt n
D, T D, D, T D,
W W
O P o
= MAX{0, 7.760, 5.496}
= 7.760 [c].

Optimal alternatives are indicated in square brackets adjacent to the maximum utility value. Simi-
larly,

. T

Wp, ( )= 6.760 [c];

O

)= 6.760[c]; and

)

woi
D, T

WDZ((tl e)): 9.043[a].

Next, wereduce T. The relevant histories for T include D;.

w2 = wog (T PV e oy s

t

(6.760)(.1) + (6.760)(.3) + (9.043)(.6)
8.130.
Finally, we reduce D,, whose set of relevant historiesis empty.

wo,= MAX (wo,( (e "))
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D, T D,
MAX{WDZ((nt _)),WT(( . ))}
MAX{7.760, 8.130}

8.130 [t].

This completes the solution of the Reactor problem using the SDD technique. Regarding the
number of operations, aggregating the utility factorsinto the joint utility function requires 24 op-
erations, reversing arc (A, T) requires 21 operations, reducing C requires 6 operations, reducing A
requires 15 operations, reducing D, requires 7 operations, reducing T requires 5 operations, and
reducing D, requires 1 operation, for atotal of 79 operations.

7 SUMMARY OF STRENGTHS, WEAKNESSES AND OPEN |ISSUES

In this section, we summarize the strengths, weaknesses, and open issues of each technique. For
details, see the Management Science paper.

7.1 Decison Trees

Srengths

* Easy to understand and solve

* Encoding of asymmetry without introducing dummy states for variables

Weaknesses

* Global representation of asymmetry

* Exponential growth of representation

* Automation of coalescenceisdifficult

* Decision tree graph encodes a complete ordering of variables even though information con-
straints impose a partial ordering

Open Issues

* Avoiding preprocessing using information sets

* Making preprocessing more efficient by using Bayesian networks

7.2 Asymmetric Influence Diagrams

Srengths

* Compact, intuitive, encode conditional independence relations

* Encoding of asymmetry by distribution trees which are easy to understand and specify

* Collapsed scenarios, clipped scenarios, sharing of scenarios, and unspecified distributions
features of distribution trees can represent many different kinds of asymmetries
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* Distribution trees can mix different types of atomic distributions

* Can detect and eliminate barren nodes

Weaknesses

e Only suitable for problems in which we have a Bayesian network model for the uncertainties
* Encoding of asymmetry by introducing dummy states for variables

Open Issues

* Distinguishing between pure informational and conditioning arcs for decision variables

* Repetition of asymmetry information in distribution trees

* Non-availability of all asymmetry information during the node-reduction process

7.3 Valuation Networks

Srengths

* Compact, encode conditiona independence relations

* Canrepresent al probability models without any preprocessing

* Encoding of information constraints more flexible than IDs

* Encoding of asymmetry using indicator valuations which are easy to understand and specify

* Domains of probability functions are typically smaller than conditionalsin IDs

* Avoidance of unnecessary divisionsin the solution process

* Existence of conditions for when arepresentation is well defined

Weaknesses

* Modéding of conditionalsisnot asintuitiveasin IDs

*  Specification of VN representation must be done sequentially in stages—first graphical, next
dependence, and finally numerical

* Graphical representation has more nodes than 1Ds

* Encoding of asymmetry by introducing dummy states for variables

Open Issues

* Not al asymmetry can be represented

* Unableto use sharing of scenarios and collapsed scenarios features of 1Ds

7.4  Sequential Decision Diagrams

Srengths

*  Compact representation, asintuitiveasDTs

* Encoding of asymmetry without introducing dummy states for variables
* Can exploit coalescence by using minimal and relevant histories

* Can detect and eliminate barren nodes

Weaknesses

33
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* Unableto represent probability models consistently

* May require preprocessing in constructing formulation tables

* Formulation table encodes a complete ordering of variables even though information con-
straints impose apartial ordering

Open Issues

* Next node function istoo restrictive

* Need for an efficient method to compute minimal and relevant histories without enumerating al
histories

* Redundancy in the representation of 1Ds, SDDs, and formulation tables

* Unableto represent arbitrary factorization of the utility function

8 CONCLUSIONS

The main goal of thiswork isto compare four distinct techniques proposed for representing and
solving asymmetric decision problems—traditional decision trees, SHM influence diagrams, She-
noy’ s valuation networks, and Covaliu and Oliver’'s sequentia decision diagrams. For each tech-
nique, we have identified the main strengths, intrinsic weaknesses, and some open issues that per-
haps can be resolved with further research.

One conclusion is that no single technique stands out as always superior in all respectsto the
others. Each technique has some unmatched strengths. Another conclusion isthat considerable
work remains to be done to resolve the open issues of each technique. One possibility hereisto
borrow the strengths of a technique to resolve the issues of another. Also, there is need for auto-
mating each technique by building computer implementations, and there is very little literature on
thistopic.

At the end of Sections 3-6, we provide a summary of the total number of arithmetic operations
required to solve the Reactor problem. Since we solve only one problem, it isincorrect to conclude
that the technique with the lowest total isthe most efficient. It would be more interesting to study
how this number grows in general as a function of the dimension of the problem. But this depends
on the structure of the problem. We conjecture that we can concoct examples where each technique
would have the least number of total arithmetic operations. Also, it is obviousthat the efficiency of
each technique cannot be measured by only counting the number of arithmetic operations. There
are other featuresto take into account. For example, in the formulation phase:

* defining the variables and their state spaces to reflect asymmetry;
* (possible) preprocessing for representing the probabilitiesin DTs and SDDs;
* gpecification of distribution treesin IDs;
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* computation of the effective state spaces prior to the specification of probability valuationsin

VNs;

e computation of minimal histories node sets, minimal histories, relevant history node sets, and
relevant historiesin SDDs;

and in the solution phase:

* number of table look ups necessary to remove each node and the number of configurations
used for reduction of a node;

* computation of effective state spaces in the solution stage for VNs; and

* thecardinality of the largest state space used during the solution phase.

The actual computational efficiency will depend very much on the details of the computer imple-

mentation of the different techniques.

In trying to represent asymmetries, one introduces some additional costs, and in some cases,
the costs may exceed the actual benefits. For example, one can easily make up alarge “asymmet-
ric’ problem in which very few scenarios are eliminated. And in this case, the cost of representing
and processing the asymmetries may well exceed the benefits. Thisisthe casefor IDs, VNs, and
SDDs.
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