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A COMPARISON OF GRAPHICAL TECHNIQUES FOR
ASYMMETRIC DECISION PROBLEMS:

SUPPLEMENT TO MANAGEMENT SCIENCE PAPER

Concha Bielza and Prakash P. Shenoy

ABSTRACT

In this paper, we provide a statement of the Reactor problem, and we describe a
representation and solution of this problem using decision trees, Smith, Holtzman
and Matheson’s asymmetric influence diagrams, Shenoy’s asymmetric valuation
networks, and Covaliu and Oliver’s sequential decision diagrams. We provide de-
tails that could not be included in the published paper in Management Science due to
page limitations.

Key Words: Asymmetric decision problems, decision trees, influence diagrams, valua-
tion networks, sequential decision diagrams

1 INTRODUCTION

The main goal is of this paper is to provide details of the Reactor problem and its representation

and solution using traditional decision trees (DTs), Smith, Holtzman and Matheson’s (SHM)

[1993] influence diagrams (IDs), Shenoy’s [1993b, 1996] valuation networks (VNs), and Covaliu

and Oliver’s [1995] sequential decision diagrams (SDDs). This paper should be read in conjunc-

tion with Bielza and Shenoy’s paper in Management Science where the four graphical techniques

are compared. This paper contains details that could not be included in the published version due to

page limitations.

2 THE REACTOR PROBLEM

In this section, we describe a small asymmetric decision problem called the Reactor problem. This

problem is a modified version of the problem described by Covaliu and Oliver [1995]. In our ver-

sion, Bayesian revision of probabilities is required during the solution process, and the joint utility

function decomposes into three factors only.

An electric utility firm must decide whether to build (D2) a reactor of advanced design (a), a

reactor of conventional design (c), or neither (n). If successful, an advanced reactor is more profit-

able, but is riskier. Based on past experience, a conventional reactor (C) has probability 0.980 of

no failure (cs), and a probability 0.020 of a failure (cf). On the other hand, an advanced reactor (A)

has probability 0.660 of no failure (as), probability 0.244 of a limited accident (al), and probability
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0.096 of a major accident (am). The profits for the case the firm builds a conventional reactor are

$8B if there is no failure, and –$4B if there is a failure. The profits for the case the firm builds an

advanced reactor are $12B if there is no failure, –$6B if there is a limited accident, and −$10B if

there is a major accident. The firm’s utility function is a linear function of the profits.

Before making this decision, the firm can conduct an expensive test of the components of the

advanced reactor. The test results (T) can be classified as bad (b), good (g) or excellent (e). The

cost of this test is $1B. The test results are highly correlated with the success or failure of the ad-

vanced reactor. Figure 2.1 describes a causal probability model for A and T. If the test results are

bad, the Nuclear Regulatory Commission will not permit an advanced reactor. The firm needs to

decide (D1) whether to conduct the test (t), or not (nt).

Figure 2.1. A causal probability model for A and T in the Reactor problem.
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3 DECISION TREES (DTs)

In this section, we will represent and solve the Reactor problem using the decision tree (DT) tech-

nique.

Figures 3.2 and 3.3 show a decision tree representation and solution of this problem. Notice

that even before the decision tree can be completely specified, the conditional probabilities required

by the decision tree representation have to be computed from those specified in the problem as is

done in Figure 3.2: The probability tree on the left is used to compute the joint probability distribu-

tion for A and T; and the probability tree on the right is used to compute the pre-posterior for test

results and the posterior distribution for success and failures of an advanced reactor.
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Figure 3.2. The preprocessing of probabilities in the Reactor problem.

al, 0.244A

as, 0.660

am, 0.096

b, 0.288

g, 0.565

e, 0.147

.070

.138

.036

T

b, 0.313

g, 0.437

e, 0.250

.030

.042

.024

T

g, 0.182

e, 0.818

.120

.540

T

g, 0.300

A

as, 0.900

al, 0.060

am, 0.040

T

b, 0.100

e, 0.600

A

as, 0.400

al, 0.460

am, 0.140

.120

.138

.042

.540

.036

.024

A
al, 0.700

am, 0.300

.070

.030



Bielza and Shenoy 4

Figure 3.3. A decision tree representation and solution of the Reactor problem.
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Figure 3.3 shows the solution of the Reactor problem. The optimal strategy is to do the test;

build a conventional reactor if the test results are bad or good, and build an advanced reactor if the

test results are excellent. The expected profit associated with this strategy is $8.130B.

Although we have shown the decision tree representation using coalescence [Olmsted 1983], it

should be noted that automating coalescence in decision trees is not easy since it involves con-

structing the complete (uncoalesced) tree and then recognizing repeated subtrees.

The preprocessing requires 21 arithmetic operations (8 multiplications (×), 5 additions (+), and

8 divisions (÷)). Solving the decision tree without coalescence requires 42 operations (12 for re-
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ducing four copies of C, 15 for reducing A, 7 for reducing D2, 5 for reducing T, and 3 for reduc-

ing D1). Thus, the decision tree technique requires a total of 63 arithmetic operations.

4 ASYMMETRIC INFLUENCE DIAGRAMS (IDs)

In this section, we will represent and solve the Reactor problem using Smith, Holtzman and

Matheson’s [1993] (henceforth, SHM) asymmetric influence diagram (ID) technique.

4.1 ID Representation

An influence diagram representation of a problem is specified at three levels—graphical, func-

tional, and numerical. At the graphical level, we have a directed acyclic graph, called an influence

diagram, that displays decision variables, chance variables, factorization of the joint probability

distribution into conditionals, factorization of the joint utility function, and information constraints.

Figure 4.1 shows an influence diagram for the Reactor problem at the graphical level.

Figure 4.1. An ID for the Reactor problem.
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CA

υ2 υ1υ3

υ
Σ

We could have drawn only one value node υ as a function of D1, D2, A, and C. Instead, we

have decomposed the single value node υ into three value nodes—υ1, υ2 and υ3. The value node

structure is that of a tree. Node υ is the terminal super value node and the others (the leaves, υ1,

υ2, and υ3) are non-super value nodes representing the three addends of υ. Although we are in-

creasing the number of value nodes, we will get much computational savings as a result.

At the functional level, we specify the structure of the conditional distribution (or simply, con-

ditional) for each node (except super value nodes) in the ID, and at the numerical level, we specify

the numerical details of the probability distributions and the utilities. The key idea of the SHM

technique is a new tree representation for describing the conditionals. These are called distribution
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trees with paths showing the conditioning scenarios that lead to atomic distributions that describe

either probability distributions, set of alternatives, or (expected) utilities, assigned in each condi-

tioning scenario. A conditional for a chance node represents a factor of the joint probability distri-

bution. A conditional for a decision node can be thought of as describing the alternatives available

to the decision-maker in each conditioning scenario. A conditional for a value node represents a

factor of the joint utility function. For the Reactor problem, the conditionals are shown in Figure

4.2.

Since node D1 has no conditioning predecessors in the ID, its distribution tree consists of a

single atomic distribution. The distribution trees for A and C have also single atomic distributions.

The distribution tree for D2 has two atomic distributions. The firm will choose among three

alternatives (conventional or advanced reactor or neither) only if it decides to not do the test (D1 =

nt) or if it conducts the test and its result is good or excellent. The conditional for D2 is coalesced,

i.e., the atomic distribution with three alternatives is shared by three distinct scenarios, and is

clipped, i.e., many branches in conditioning scenarios are omitted because the corresponding con-

ditioning scenarios are impossible. For example, if the firm chooses to not do the test, then it is

impossible to observe any test results.

The distribution tree for T shows that if the firm decides to not perform the test (D1 = nt), then

T = nr with probability 1 regardless of the advanced reactor state. Thus, the conditional for T can

be collapsed across A given D1 = nt. Collapsed scenarios are shown by indicating the set of possi-

ble states on a single edge emanating from the node. They allow the representation of conditional

independence between variables that holds only given particular outcomes of some other variables.

Deterministic atomic distributions for chance and decision variables are shown by double-bordered

nodes.

The conditionals for the three utility nodes provide other examples of coalesced, clipped, and

collapsed distributions. They are deterministic nodes because we assign a single utility for each

conditioning scenario. Since utility functions are always deterministic, and we use diamond-shaped

nodes to indicate utility functions, we do not draw these nodes with a double border.

Another feature of distribution trees not illustrated in the Reactor problem is unspecified distri-

butions where certain atomic distributions of a chance node are left unspecified since they are not

required during the solution phase. If only the probabilities are unspecified, then we have a par-

tially unspecified distribution. All of these features—coalesced, clipped, collapsed, and unspecified

distributions—provide a more compact and expressive representation than the usual table in the

symmetric ID literature.
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Figure 4.2. Distribution trees for the conditionals in the ID.
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4.2 ID Solution

The algorithm for solving an asymmetric ID is conceptually the same as that for conventional ID.

However, SHM describe methods for exploiting different features of a distribution tree (such as

clipped scenarios, coalescence, collapsed scenarios, etc.) to simplify the computations.
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We solve an ID by reducing variables in a sequence that respects the information constraints. If

the true state of a chance variable C is not known at the time the decision maker must choose an

alternative from the atomic distribution of decision variable D, then C must be reduced before D,

and vice versa. In the Reactor problem, there are two possible reduction sequences, CAD2TD1 and

ACD2TD1. Both of these reduction sequences require the same computational effort. In the fol-

lowing, we use the first reduction sequence CAD2TD1 as we do when we solve this problem with

the VN and the SDD techniques.

We start by reducing node C. Essentially, we absorb the conditional for C into utility function

υ1 using the expectation operation (following Theorem 5 in Tatman and Shachter [1990]). The ex-

pectation operation is carried out by considering each conditioning scenario separately. The case to

apply will depend on the structure of the utility and probability functions. Since for D2 = n or a the

utility function υ1 shares in these scenarios one deterministic distribution, the conditional expected

utility function υ1 must be that deterministic distribution. Only one scenario is left (D2 = c) and we

compute the expected utility in the usual manner. Figure 4.3 shows the ID and the distribution tree

for υ1 after reducing C.

Figure 4.3. The ID and the distribution tree for υ1 after reducing node C.
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Next, we reduce A. To do so, we first reverse arc (A, T), and then absorb the posterior for A

into utility function υ2. To reverse arc (A, T), we first add arc (D1, A) to the ID so that A and T

have the same set of direct predecessors. Any special structure in the original distribution tree is

preserved in the resulting one, and nothing new is computed. The arc reversal involves numerical

computations (by means of Bayes’ rule) only for the scenarios containing D1 = t. The other ones,

corresponding to collapsed distributions, remain as before. For example, P(T | nt, A) shares one

atomic distribution for all possible states of A. Therefore, the pre-posterior distribution P(T | nt)

must be that shared atomic distribution and the posterior distribution for A must be equal to the
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prior. Figure 4.4 shows the ID, the preposterior distribution for T, and the posterior distribution

for A, after arc (A, T) reversal.

Figure 4.4. The ID, the preposterior for T, and the posterior for A, after reversal of arc (A, T).
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Next we add arcs (D2, A), (T, υ2), and (D1, υ2) to the ID, modify accordingly the distribution

trees for A and υ2, and absorb the conditional for A into the utility function υ2 using the expecta-

tion operation. Figure 4.5 shows the ID and the distribution tree for υ2 after reduction of A.
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Figure 4.5. The ID and the distribution tree for υ2 after reducing node A.
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Next, we need to reduce D2. Since D2 has two value node successors, before we reduce D2,

we introduce a new super-value node ω (as shown in Figure 4.6), and then we merge υ1 and υ2

into ω (as per Theorem 5 in Tatman and Shachter [1990]). Figure 4.7 shows the ID and the distri-

bution tree for ω after combining υ1 and υ2. Special structures in the conditional distributions are

treated as special cases again.
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Figure 4.6. The ID after introducing a new super-value node ω.
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Figure 4.7. The ID and the distribution tree for ω after combining υ1 and υ2.
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D2 is now ready to be reduced. We reduce D2 by maximizing ω over the states of D2 permitted

by the distribution tree for D2. Notice that this distribution tree (shown in Figure 4.2) has asym-

metry in the atomic alternative sets, but this is not exploited either during the reduction of A or

during the processing prior to reduction of D2. Figure 4.8 shows the ID, the distribution tree for

ω, and the optimal decision function for D2, after reduction of D2.

Figure 4.8. The ID, the distribution tree for ω, and the optimal decision function for D2, after
reduction of D2.
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Next, we reduce T. Notice that ω is the only value node that has T in its domain (see Figure

4.8). We absorb the conditional for T (shown in Figure 4.4) into the utility function ω (shown in

Figure 4.8) using the expectation operation. Figure 4.9 shows the resulting ID and the distribution

tree for ω.
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Figure 4.9. The ID and the distribution tree for ω after reducing T.
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Finally, we need to reduce D1. Since D1 is in the domain of υ3 and ω, first we combine υ3

(shown in Figure 4.2) and ω (shown in Figure 4.9) obtaining υ. Figure 4.10 shows the ID and the

distribution tree for υ after combining υ3 and ω. Next we reduce D1 by maximizing υ over the

possible states of D1. The optimal decision function for D1 is D1 = t, and the maximum expected

utility associated with the optimal strategy is 8.130.

Figure 4.10. The ID and the distribution tree for υ after combining υ3 and ω.
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This completes the solution of the Reactor ID representation. An optimal strategy can be pieced

together from the optimal decision function for D1 and the optimal decision function for D2 (shown

in Figure 4.8). The optimal strategy is to do the test (D1 = t); if the test result is either bad (b) or

good (g), build a conventional reactor (D2 = c); if the test result is excellent (e), build an advanced

reactor (D2 = a). The expected utility of the optimal strategy is $8.130B.

Reducing C requires 3 arithmetic operations (2×, 1+), reducing A requires 39 operations (19×,

12+, 8÷), reducing D2 requires 19 operations (12+, 7>), reducing T requires 5 operations (3×,

2+), and reducing D1 requires 3 operations (2+, 1>), for a total of 69 operations.

5 ASYMMETRIC VALUATION NETWORKS (VNs)

In this section, we will represent and solve the Reactor problem using Shenoy’s [1993b, 1996]

asymmetric valuation network (VN) technique. The symmetric VN technique is described in [She-
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noy 1993a] for the case of a single undecomposed utility function, and in [Shenoy 1992] for the

case of an additive decomposition of the joint utility function.

5.1 VN Representation

A valuation network representation is specified at three levels—graphical, dependence, and nu-

merical. The graphical and dependence levels refer to qualitative (or symbolic) knowledge,

whereas the numerical level refers to quantitative knowledge.

At the graphical level, we have a graph called a valuation network. Figure 5.1 shows a valua-

tion network for the Reactor problem. A valuation network consists of two types of

nodes—variable and valuation. Variables are further classified as either decision or chance, and

valuations are further classified as either indicator, probability, or utility. Thus, in all there are five

different types of nodes—decision, chance, indicator, probability, and utility.

Figure 5.1. A valuation network for the Reactor problem.

D1 T A

α

D2 C

υ3 υ2 υ1

δ2 χτ2τ1

Decision nodes correspond to decision variables and are depicted by rectangles. Chance nodes

correspond to chance variables and are depicted by circles. This part of VNs is similar to IDs.

Indicator valuations represent qualitative constraints on the joint state spaces of decision and

chance variables and are depicted by double-triangular nodes. The set of variables directly con-

nected to an indicator valuation by undirected edges constitutes the domain of the indicator valua-

tion. In the Reactor problem, there are two indicator valuations labeled δ2 and τ2. δ2’s domain is

{D1, T, D2} and it represents the constraints that the test results are available only in the case we

decide to do the test, and that the alternatives at D2 depend on the choices at D1 and the test results

T. τ2’s domain is {T, A} and it represents the constraint that if A = as, then T = b is not possible.
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Utility valuations represent additive factors of the joint utility function and are depicted by dia-

mond-shaped nodes. The set of variables directly connected to a utility valuation constitutes the

domain of the utility valuation. In the Reactor problem, there are three additive utility valuations

labeled υ1, υ2, and υ3, with domains {D2, C}, {D2, A}, and {D1}, respectively.

Probability valuations represent multiplicative factors of the family of joint probability distribu-

tions for the chance variables in the problem, and are depicted by triangular nodes. The set of all

variables directly connected to a probability valuation constitutes the domain of the probability

valuation. In the Reactor problem, there are three probability valuations labeled τ1, α, and χ, with

domains {A, T}, {A}, and {C}, respectively.

The specification of the valuation network at the graphical level includes directed arcs between

pairs of distinct variables. These directed arcs represent information constraints. Suppose R is a

chance variable and D is a decision variable. An arc (R, D) means that the true state of R is known

to the decision maker (DM) at the time the DM has to choose an alternative from D’s state space,

and, conversely, an arc (D, R) means that the true state of R is not known to the DM at the time the

DM has to choose an alternative from D’s state space.

Next, we specify a valuation network representation at the dependence level. At this level, we

specify the state spaces of all variables and we specify the details of the indicator valuations.

Associated with each variable X is a state space 0X. As in the cases of IDs and SDDs, we as-

sume that all variables have finite state spaces. Suppose s is a subset of variables. An indicator

valuation for s is a function ι: 0s → {0, 1}. An efficient way of representing an indicator valuation

is simply to describe the elements of the state space that have value 1, i.e., we represent ι by Ωι

where Ωι = {x ∈ 0s | ι(x) = 1}. Obviously, Ωι ⊆ 0s. To minimize jargon, we also call Ωι an indi-

cator valuation for s. In the Reactor problem, the details of the two indicator valuations are as fol-

lows:

Ωδ2
 = {(nt, nr, n), (nt, nr, c), (nt, nr, a), (t, b, n), (t, b, c), (t, g, n), (t, g, c), (t, g, a), (t, e, n),

(t, e, c), (t, e, a)}

Ωτ2
 = {(as, nr), (as, g), (as, e), (al, nr), (al, b), (al, g), (al, e), (am, nr), (am, b), (am, g),

(am, e)}

Notice that the indicator valuation Ωδ2
 is identical to the scenarios in the distribution tree for D2 de-

picted in Figure 4.2. The indicator valuation Ωτ2
 rules out the scenario A = as, T = b.

Before we can specify the valuation network at the numerical level, it is necessary to introduce

the notion of effective state spaces for subsets of variables. Suppose that each variable is in the

domain of some indicator valuation. (If not, we can create “vacuous” indicator valuations that are

identically one for every state of such variables.) We define combination of indicator valuations as

pointwise Boolean multiplication, and marginalization of an indicator valuation as Boolean addition

over the state space of reduced variables. Then, the effective state space for a subset s of variables,
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denoted by Ωs, is defined as follows: First we combine all indicator valuations that include some

variable from s in their domains, and next we marginalize the combination so that only the vari-

ables in s remain in the marginal. Shenoy [1994] has shown that these definitions of combination

and marginalization satisfy the three axioms that permit local computation [Shenoy and Shafer

1990]. Thus, the computation of the effective state spaces can be done efficiently using local com-

putation. For example, consider the effective state space for subset {T, D2, A}. By definition,

Ω{T, D2, A} = (δ2⊗τ2)↓{T, D2, A}. However, we can compute this more efficiently as follows.

Ω{T, D2, A} = δ2
↓{T, D2}⊗τ2. Notice that the combination operation in (δ2⊗τ2)↓{T, D2, A} is on the

state space of {D1, T, D2, A} whereas the combination operation in δ2
↓{T, D2}⊗τ2 is on the state

space of {T, D2, A}.

Finally, we specify a valuation network at the numerical level. At this level, we specify the de-

tails of the utility and probability valuations. A utility valuation υ for s is a function υ: Ωs → R,

where R is the set of real numbers. The values of υ are utilities. In the Reactor problem, there are

three utility valuations whose details are shown in Table 5.1.

Table 5.1. Utility valuations in the Reactor problem.

Ω{D2, C} υ1 Ω{D2, A} υ2 ΩD1
υ3

n cs 0 n as 0 nt 0
n cf 0 n al 0 t –1

c cs 8 n am 0

c cf –4 c as 0

a cs 0 c al 0
a cf 0 c am 0

a as 12
a al –6
a am –10
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Table 5.2. Probability valuations in the Reactor problem.

ΩC χ ΩA α Ω{A, T} τ1

cs .98 as .660 as nr 1

cf .02 al .244 as g .182

am .096 as e .818

al nr 1

al b .288

al g .565

al e .147

am nr 1

am b .313

am g .437

am e .250

A probability valuation π for s is a function π: Ωs → [0, 1]. The values of π are probabilities. In

the Reactor problem, there are three probability valuations whose details are shown in Table 5.2.

What do these probability valuations mean? χ is the marginal for C, α is the marginal for A, and

δ2
↓{D1, T}⊗τ2⊗τ1 is the conditional for T given A and D1. Thus the conditional for T factors into

three valuations such that τ1 has the numeric information and δ2 and τ2 include the structural in-

formation.

Notice that the utility and probability valuations are described only for effective state spaces

which are computed (using local computation) from the specifications of the indicator valuations.

There is no redundancy in the representation. However, in υ2, unlike the ID representation, the

irrelevance of A in scenarios where D2 = n or c is not represented in the VN representation because

we are unable to. Also, in υ1, the irrelevance of C in scenarios D2 = n or a is not represented. This

completes the valuation network representation of the Reactor problem.

5.2 VN Solution

In this section, first we sketch the fusion algorithm for solving valuation network representations

of decision problems, and then we solve the Reactor problem in complete detail.

The fusion algorithm is essentially the same as in the symmetric case [Shenoy 1992]. The main

difference is in how indicator valuations are handled. Since indicator valuations are identically one

on effective state spaces, there are no numeric computations involved in combining indicator

valuations. Indicator valuations do contribute domain information and cannot be totally ignored. In

the fusion algorithm, we reduce a variable by doing a fusion operation on the set of all valuations

(utility, probability, and indicator) with respect to the variable. All numeric computations are done
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on effective state spaces only. This means that the effective state spaces may need to be computed

prior to doing the fusion operation if the effective state space has not been already computed during

the representation phase.

Fusion with respect to a decision variable D is defined as follows. The utility, probability, and

indicator valuations whose domains do not include D remain unchanged. All utility valuations that

include D in their domain are combined together, and the resulting utility valuation υ is marginal-

ized such that D is eliminated from its domain. A new indicator valuation ζD corresponding to the

decision function for D is created. All probability and indicator valuations that include D in their

domain are combined together and the resulting probability valuation ρ is combined with ζD and

the result is marginalized so that D is eliminated from its domain.

Fusion with respect to a chance variable C is defined as follows. The utility, probability, and

indicator valuations whose domains do not include C remain unchanged. A new probability valua-

tion, say ρ, is created by combining all probability and indicator valuations whose domain include

C and marginalizing C out of the combination. Finally, we combine all probability and indicator

valuations whose domains include C, divide the resulting probability valuation by the new prob-

ability valuation ρ that was created, combine the resulting probability valuation with the utility

valuations whose domains include C, and finally marginalize the resulting utility valuation such

that C is eliminated from its domain. In some special cases—such as if ρ is identically one, or if C

is the only chance variable left—we can avoid creating a new probability valuation and the corre-

sponding division.

The solution of the Reactor problem using the fusion algorithm is as follows.

Fusion with respect to C. First we fuse valuations in {δ2, τ2, υ1, υ2, υ3, χ, α, τ1} with

respect to C. Since χ↓ø is identically one,

FusC{δ2, τ2, υ1, υ2, υ3, χ, α, τ1} = {δ2, τ2, υ2, υ3, (υ1⊗χ)↓D2, α, τ1}.

Let υ4 denote (υ1⊗χ)↓D2. The result of fusion with respect to C is shown graphically in Figure

5.2. The details of the numerical computation involved in the fusion operation are shown in Table

5.3.
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Figure 5.2. Fusion with respect to C: Before and after.
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Table 5.3. Details of fusion with respect to C.

Ω{D2, C} υ1 χ υ1⊗χ (υ1⊗χ)↓D2 = υ4

n cs 0 0.98 0 0

n cf 0 0.02 0

c cs 8 0.98 7.840 7.760

c cf –4 0.02 –0.080

a cs 0 0.98 0 0

a cf 0 0.02 0

Fusion with respect to A. Next, we fuse the valuations in {δ2, τ2, υ2, υ3, υ4, α, τ1} with

respect to A.

FusA{δ2, τ2, υ2, υ3, υ4, α, τ1} = {δ2, υ3, υ4, (υ2⊗(α⊗τ1⊗τ2)/(α⊗τ1⊗τ2)↓T)↓{D2, T},

(α⊗τ1⊗τ2)↓T}.

Let υ5 denote (υ2⊗(α⊗τ1⊗τ2)/(α⊗τ1⊗τ2)↓T)↓{D2, T}, and let τ’ denote (α⊗τ1⊗τ2)↓T. The result

of fusion with respect to A is shown graphically in Figure 5.3. Details of fusion are shown in Ta-

bles 5.4 and 5.5.
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Figure 5.3. Fusion with respect to A: Before and after.
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τ’ = (α⊗τ1⊗τ2)↓T

υ5 = (υ 2⊗(α⊗τ1⊗τ2)/τ’)↓{D2, T}

Table 5.4. Details of fusion with respect to A (continued in Table 5.5).

Ω{T, A} α τ1⊗τ2

= τ

α⊗τ (α⊗τ)↓T = τ’ (α⊗τ)/(α⊗τ)↓T

nr as 0.660 1 0.660 1 0.660

nr al 0.244 1 0.244 0.244

nr am 0.096 1 0.096 0.096

b al 0.244 0.288 0.070 0.100 0.700

b am 0.096 0.313 0.030 0.300

g as 0.660 0.182 0.120 0.300 0.400

g al 0.244 0.565 0.138 0.460

g am 0.096 0.437 0.042 0.140

e as 0.660 0.818 0.540 0.600 0.900

e al 0.244 0.147 0.036 0.060

e am 0.096 0.250 0.024 0.040
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Table 5.5. Details of fusion with respect to A (continued from Table 5.4).

Ω{T, D2, A} υ2 (α⊗τ)/(α⊗τ)↓T υ2⊗(α⊗τ)/(α⊗τ)↓T = υ’ (υ’)↓{T, D2} = υ5

nr n as 0 0.660 0 0

nr n al 0 0.244 0

nr n am 0 0.096 0

nr c as 0 0.660 0 0

nr c al 0 0.244 0

nr c am 0 0.096 0

nr a as 12 0.660 7.920 5.496

nr a al –6 0.244 –1.464

nr a am –10 0.096 –0.960

b n al 0 0.700 0 0

b n am 0 0.300 0

b c al 0 0.700 0 0

b c am 0 0.300 0

g n as 0 0.400 0 0

g n al 0 0.460 0

g n am 0 0.140 0

g c as 0 0.400 0 0

g c al 0 0.460 0

g c am 0 0.140 0

g a as 12 0.400 4.800 0.649

g a al –6 0.460 –2.760

g a am –10 0.140 –1.400

e n as 0 0.900 0 0

e n al 0 0.060 0

e n am 0 0.040 0

e c as 0 0.900 0 0

e c al 0 0.060 0

e c am 0 0.040 0

e a as 12 0.900 10.800 10.043

e a al –6 0.060 –0.360

e a am –10 0.040 –0.400

Notice that all computations are done on effective state spaces, and so we need to compute the

effective state space of {T, D2, A} prior to doing the fusion (since it has not been already com-

puted during the representation stage). Typically, we can do so using the local computational algo-
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rithm of Shenoy and Shafer [1990]. Here, this means the effective state space of {T, D2, A} is

computed as δ2
↓{T, D2}⊗τ2 (as explained in Section 5.1). One consequence of working on effective

state spaces is that we avoid the computation of utilities for impossible scenarios such as T = b, D2

= a, A = as, etc., that are done in IDs (see Figure 4.5—the presence of scenario D1 = t, T = b, D2

= a in the utility function υ2 is the result of averaging over the scenarios D1 = t, T = b, D2 = a, A =

as, D1 = t, T = b, D2 = a, A = al, D1 = t, T = b, D2 = a, A = am).

Fusion with respect to D2. Next we fuse {δ2, υ3, υ4, υ5, τ’} with respect to D2. Since D2

is a decision variable,

FusD2
{δ2, υ3, υ4, υ5, τ’} = {(δ2⊗ζD2

)↓{D1, T} υ3, (υ4⊗υ5)↓T, τ’},

where ζD2
 is the indicator valuation representation of the decision function for D2 (determined

during the computation of (υ4⊗υ5)↓T). Let υ6 denote (υ4⊗υ5)↓T, and δ2’ denote (δ2⊗ζD2
)↓{D1, T}.

The result of fusion with respect to D2 is shown graphically in Figure 5.4. The details of the nu-

merical computation involved in the fusion operation are shown in Table 5.6.

Figure 5.4. Fusion with respect to D2: Before and after.
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Table 5.6. Details of fusion with respect to D2.

Ω{T, D2} υ4 υ5 υ4⊗υ5 (υ4⊗υ5)↓T = υ6
ΨD2

nr n 0 0 0

nr c 7.760 0 7.760 7.760 c

nr a 0 5.496 5.496

b n 0 0 0

b c 7.760 0 7.760 7.760 c

g n 0 0 0

g c 7.760 0 7.760 7.760 c

g a 0 0.649 0.649

e n 0 0 0

e c 7.760 0 7.760

e a 0 10.043 10.043 10.043 a

Details of the symbolic computation of δ2’ are as follows. It follows from Table 5.6 that the

effective state space representation of the decision function for D2 is ΩζD2
 = {(nr, c), (b, c), (g, c),

(e, a)}. δ2 was described earlier in Section 5.1. Therefore, the effective state space representation

of δ2⊗ζD2
 is ΩζD2⊗δ2

 = {(nt, nr, c), (t, b, c), (t, g, c), (t, e, a)}. Finally, the effective state space

representation of δ2’ = (δ2⊗ζD2
)↓{D1, T} is Ωδ2’ = {(nt, nr), (t, b), (t, g), (t, e)}.

Fusion with respect to T. Next we fuse {δ2’, υ3, υ6, τ’} with respect to T. Since T is the

only chance variable,

FusR{δ2’, υ3, υ6, τ’}  = {υ3, (τ’⊗δ2’⊗υ6)↓D1}.

Let υ7 denote (τ’⊗δ2’⊗υ6)↓D1. The result of fusion with respect to T is shown graphically in Fig-

ure 5.5. The details of the numerical computation involved in the fusion operation are shown in

Table 5.7.



Bielza and Shenoy 24

Figure 5.5. Fusion with respect to T: Before and after
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Table 5.7. Details of fusion with respect to T.

Ω{D1, T} δ2’⊗τ’ υ6 δ2’⊗τ’⊗υ6 (δ2’⊗τ’⊗υ6)↓D1 = υ7

nt nr 1 7.760 7.760 7.760

t b 0.100 7.760 0.776 9.130

t g 0.300 7.760 2.328

t e 0.600 10.043 6.026

Fusion with respect to D1. Next, we fuse {υ3, υ7} with respect to D1. Since D1 is a decision

variable,

FusD1
{υ3, υ7} = {(υ3⊗υ7)↓ø}.

Let υ8 denote (υ3⊗υ7)↓ø. The result of fusion with respect to D1 is shown in Figure 5.6. The de-

tails of the numerical computation involved in the fusion operation are shown in Table 5.8.

Figure 5.6. Fusion with respect to D1: Before and after
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Table 5.8. Details of fusion with respect to D1.

ΩD1
υ7 υ3 υ7⊗υ3 (υ7⊗υ3)↓ø(♦) ΨD1

(♦)

nt 7.760 0 7.760

t 9.130 –1 8.130 8.130 t

This completes the fusion algorithm. An optimal strategy can be pieced together from the deci-

sion functions ΨD1
 (in Table 5.8) and ΨD2

 (in Table 5.6). An optimal strategy is to do the test (t);

if the test results are b or g, then build a conventional reactor (c), and if the test result is excellent,

then build an advanced reactor (a). The expected utility of the optimal strategy is $8.130B

(= (υ7⊗υ3)↓ø(♦)).

Fusion with respect to C requires 9 operations (6×, 3+), fusion with respect to A requires 80

operations (42×, 27+, 11÷), fusion with respect to D2 requires 18 operations (11+, 7>), fusion

with respect to T requires 6 operations (4×, 2+), and fusion with respect to D1 requires 3 opera-

tions (2+, 1>) for a total of 116 operations.

6 SEQUENTIAL DECISION DIAGRAMS (SDDs)

In this section, we will represent and solve the Reactor problem using Covaliu and Oliver’s [1995]

sequential decision diagram (SDD) technique. The SDD technique is described either for a problem

in which the utility function is undecomposed, or for a problem in which the utility function de-

composes into additive factors (or multiplicative) such that each factor has only one variable in its

domain. Since our version of the Reactor problem is not in either of these two categories, first we

combine the three utility factors and then we use the undecomposed version of the SDD technique

to represent and solve the Reactor problem.

6.1 SDD Representation

In this technique, a decision problem is modeled at two levels, graphical and numerical. At the

graphical level, we model a decision problem using two directed graphs—an ID to describe the

probability model, and a new diagram, called a sequential decision diagram (SDD), which captures

the asymmetric and the information constraints of the problem. Figure 6.1 shows an ID and a SDD

for the Reactor problem. At the numerical level, we specify the conditionals for each node in the

ID, and data built from both diagrams are organized in a formulation table, similar to the one used

by Kirkwood [1993], in such a way that the recursive algorithm used in the solution process can

easily access the data contained in it. Table 6.1 shows the formulation table for the Reactor prob-

lem.
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Figure 6.1. The initial ID and the SDD for the Reactor problem.
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A SDD is a directed acyclic graph, with the same set of nodes as in the ID. However, its paths

show all possible scenarios in a compact way, as if it were a clustered decision tree. A SDD is said

to be proper if (i) there is only one source node (a node with no arrows pointing to it), (ii) there is

only one sink node (a node with no arrows emanating from it) and it is the value node, and (iii)

there is a directed path that contains all decision nodes.

In the SDD for the Reactor problem, the arc (D1, T) with the label t tells us that if we perform

the test (D1 = t) then we will observe its result (T = b, g or e). Arc (D1, D2) with label nt tells us

that we will not observe T when D1 = nt. Arcs (D2, υ), (D2, C) and (D2, A) show that A is rele-

vant only if D2 = a, and C is relevant only if D2 = c. The label over the arc (D2, A) also indicates

dependence on realized states at predecessor nodes, i.e., the alternative D2 = a is available only if T

≠ b. The six directed paths from D1 to υ in the SDD are a compact representation of the twenty-one

possible scenarios in the decision tree representation (Figure 3.3).

Notice that the partial order implied by the arrows in an ID may be different from the partial

order implied by the arrows in a corresponding SDD. Let <D and <I denote the partial orders in

SDD and ID respectively. If C is a chance node, D is a decision node, and C <I D implies C <D D,

then we say the ID and SDD are compatible [Covaliu and Oliver 1995]. In Figure 6.1, e.g., we

have A <I D2 (since there is a directed path from A to D2 in the ID), and D2 <D A (since there is an

arrow from D2 to A in the SDD). Therefore the two diagrams are incompatible. The next step in
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completing the SDD representation is to transform the ID so that it is compatible with the SDD. In

the Reactor problem, we must reverse the arc (A, T) in the ID to make the ID compatible with the

SDD. The transformed ID is shown in Figure 6.2.

Figure 6.2. The transformed ID and the conditionals for T and A.
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Next, we organize data in the formulation table, which contains the complete information the

solution algorithm will require. Table 6.1 is the formulation table for the Reactor problem.
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Table 6.1. A formulation table for the Reactor problem.

Node
Name

Node
Type

Standard Histories
(Minimal in bold)

State
Space

Probability
Distribution

Next-Node
Function

D1 decision ø nt t D2 T
T chance D1

t b g e .1 .3 .6 D2 D2 D2
D2 decision D1 T

nt - n c a υ C A
t b n c υ C
t g n c a υ C A
t e n c a υ C A

A chance D1 T D2
nt - a as al am .660 .244 .096 υ υ υ
t g a .400 .460 .140
t e a .900 .060 .040

C chance D1 T D2
nt - c cs cf .98 .02 υ υ
t b c
t g c
t e c

υ value D1 T D2 A C
nt - n - - 0
nt - c - c s 8
nt - c - c f –4
nt - a as - 12
nt - a al - –6
nt - a am - –10
t b n - - –1
t b c - c s 7
t b c - c f –5
t g n - - –1
t g c - c s 7
t g c - c f –5
t g a as - 11
t g a al - –7
t g a am - –11
t e n - - –1
t e c - c s 7
t e c - c f –5
t e a as - 11
t e a al - –7
t e a am - –11
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The formulation table has a row for each node in the SDD. If X <D Y, then the row for X pre-

cedes the row for Y. Each row includes node name, node type, standard histories and minimal

histories, state space, conditional distribution (for chance nodes only), and next-node function. It

should be noted that the formulation table is part of the representation of the decision problem.

The term history refers to how one gets to a node through the directed paths in the SDD. It can

be represented as a 2-row matrix, the first row listing a node sequence of all nodes that precede it

in the partial order, and the second row listing the corresponding realized states. The next-node

function (in the last column) denotes the node that is realized after a node for each of its states and

for each minimal history. There are different kinds of histories. Minimal histories are always suffi-

cient for defining node state spaces, probability distributions (for chance nodes), and next node

functions. For a decision node, the minimal histories will include those variables that affect its state

space, and its next-node function. For example, for D2, variable T is the only one under these con-

ditions. So, at node D2 we have the minimal histories:
T

-






 , 

T

b






 , 

T

g






 , and 

T

e






 ,

where - denotes the absence of T in a path to D2, i.e., when D1 = nt. For a chance node, the mini-

mal histories will include the nodes that suffice for defining its next-node function, and its condi-

tional probability distribution. For example, for C, the set of minimal histories is the empty set.

For a value node, the minimal histories will include the nodes that suffice to define the values of

the corresponding utility function and they are the direct predecessors of υ in the ID.

As we will see, minimal histories are not always sufficient to solve a decision problem. We

need a new kind of history called relevant history. The node sets of relevant histories contain the

node sets of minimal histories and are contained in the node sets of full histories. Also relevant

histories can be computed from minimal and full histories. Therefore, we do not show relevant

histories in the formulation, just full and minimal histories.

6.2 SDD Solution

Let wN(HN) = E(u | HN) denote the maximum expected utility at node N of the SDD given history

HN if optimal decisions are made at N (if N is a decision node) and from there onwards. Let 1(HN)

denote the set of nodes in HN. The solution technique is based on the same backwards recursive

relations used in decision trees, but here we use a new kind of history called relevant history. We

cannot use only minimal histories because, when calculating wN(HN), we may reference the next

nodes nN and their histories HnN
, and wN(HN) is not well defined if there exists at least one nN

such that 1(HnN
) – {N} ⊄ 1(HN). We obtain the node sets in the relevant histories by enlarging the

node sets in minimal histories by those SDD predecessors that appear in the node sets of relevant

histories of any of the direct successors nodes. Covaliu and Oliver [1995] give a recursive defini-
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tion of this term. The solution algorithm then follows a backward recursive method. The solution

of the Reactor problem is as follows.

wυ is the utility function associated with node υ in the formulation table, e.g.,

wυ(
D D C

-

A

-
1 2

nt n






 ) = 0, etc.

First, we reduce node C. The relevant history for node C includes nodes D1 and D2 (since C’s

minimal history node set is ø, C’s successor is node υ, υ’s minimal history node set is {D1, D2,

C, A}, and the set of predecessors of C is {D1, T, D2}).

wC(
D D1 2

nt c






 ) = wυ(

D D C1 2

nt c cs






 ) (.98) + wυ(

D D C1 2

nt c cf






 ) (.02)

= wυ(
D D C A

-
1 2

nt c cs






 ) (.98) + wυ(

D D C A

-
1 2

nt c cf






 ) (.02)

= (8)(.98) + (–4)(.02)

= 7.760.

In the computation of wC(
D D1 2

nt c






 ) above, notice that, e.g., strictly speaking

wυ(
D D C1 2

nt c cs






 ) is not defined. However, the history 

D D C1 2

nt c cs






  differs from the history

D D C A

-
1 2

nt c cs






  only in the variable A that has state -, i.e., 

D D C A

-
1 2

nt c cs






  is simply a

standardized version of 
D D C1 2

nt c cs






 . Therefore, wυ(

D D C1 2

nt c cs






 ) =

wυ(
D D C A

-
1 2

nt c cs






 ), and the RHS of this equality is well defined.

Similarly,

wC(
D D1 2

t c






 ) = 6.76.

Next, we reduce node A. The relevant histories for node A include D1, T, and D2 (since A’s

minimal history node set is {T}, A’s successor is node υ, υ’s relevant history node set is {D1, D2,

C, A}, and the set of predecessors of A is {D1, T, D2}).

wA(
D T

-

D1 2

nt a






 ) = wυ(

D T

-

D A1 2

nt a as






 ) (.660) + wυ(

D T

-

D A1 2

nt a al






 ) (.244) +

wυ(
D T

-

D A1 2

nt a am






 ) (.096)



A Comparison of Graphical Techniques for Asymmetric Decision Problems: Supplement 31

= wυ(
D D C

-

A1 2

nt a as






 ) (.660) + wυ(

D D C

-

A1 2

nt a al






 ) (.244) +

wυ(
D D C

-

A1 2

nt a am






 ) (.096)

= (12)(.660) + (–6)(.244) + (–10)(.096)

= 5.496.
Similarly,

wA(
D T D1 2

t g a






 ) = –0.351; and

wA(
D T D1 2

t e a






 ) = 9.043.

Next we reduce node D2. Its relevant histories include variables D1, and T.

wD2
(

D T

-
1

nt






 ) = MAX{wυ(

D T

-

D1 2

nt n






 ),

wC(
D T

-

D1 2

nt c






 ),wA(

D T

-

D1 2

nt a






 )}

= MAX{0, 7.760, 5.496}

= 7.760 [c].
Optimal alternatives are indicated in square brackets adjacent to the maximum utility value. Simi-

larly,

wD2
(

D T1

t b






 ) = 6.760 [c];

wD2
(

D T1

t g






 ) = 6.760 [c]; and

wD2
(

D T1

t e






 ) = 9.043 [a].

Next, we reduce T. The relevant histories for T include D1.

wT(
D1

t






 ) = wD2

(
D T1

t b






 )(.1) + wD2

(
D T1

t g






 )(.3) + wD2

(
D T1

t e






 )(.6)

= (6.760)(.1) + (6.760)(.3) + (9.043)(.6)

= 8.130.

Finally, we reduce D1, whose set of relevant histories is empty.

wD1 = MAX {wD2
(

D1

nt






 ),wT(

D1

t






 )}
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= MAX {wD2
(

D T

-
1

nt






 ),wT(

D1

t






 )}

= MAX{7.760, 8.130}

= 8.130 [t].

This completes the solution of the Reactor problem using the SDD technique. Regarding the

number of operations, aggregating the utility factors into the joint utility function requires 24 op-

erations, reversing arc (A, T) requires 21 operations, reducing C requires 6 operations, reducing A

requires 15 operations, reducing D2 requires 7 operations, reducing T requires 5 operations, and

reducing D1 requires 1 operation, for a total of 79 operations.

7 SUMMARY OF STRENGTHS, WEAKNESSES AND OPEN ISSUES

In this section, we summarize the strengths, weaknesses, and open issues of each technique. For

details, see the Management Science paper.

7.1 Decision Trees

Strengths

• Easy to understand and solve

• Encoding of asymmetry without introducing dummy states for variables

 Weaknesses

• Global representation of asymmetry

• Exponential growth of representation

• Automation of coalescence is difficult

• Decision tree graph encodes a complete ordering of variables even though information con-

straints impose a partial ordering

 Open Issues

• Avoiding preprocessing using information sets

• Making preprocessing more efficient by using Bayesian networks

 7.2 Asymmetric Influence Diagrams

 Strengths

• Compact, intuitive, encode conditional independence relations

• Encoding of asymmetry by distribution trees which are easy to understand and specify

• Collapsed scenarios, clipped scenarios, sharing of scenarios, and unspecified distributions

features of distribution trees can represent many different kinds of asymmetries
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• Distribution trees can mix different types of atomic distributions

• Can detect and eliminate barren nodes

 Weaknesses

• Only suitable for problems in which we have a Bayesian network model for the uncertainties

• Encoding of asymmetry by introducing dummy states for variables

 Open Issues

• Distinguishing between pure informational and conditioning arcs for decision variables

• Repetition of asymmetry information in distribution trees

• Non-availability of all asymmetry information during the node-reduction process

7.3 Valuation Networks

Strengths

• Compact, encode conditional independence relations

• Can represent all probability models without any preprocessing

• Encoding of information constraints more flexible than IDs

• Encoding of asymmetry using indicator valuations which are easy to understand and specify

• Domains of probability functions are typically smaller than conditionals in IDs

• Avoidance of unnecessary divisions in the solution process

• Existence of conditions for when a representation is well defined

 Weaknesses

• Modeling of conditionals is not as intuitive as in IDs

• Specification of VN representation must be done sequentially in stages—first graphical, next

dependence, and finally numerical

• Graphical representation has more nodes than IDs

• Encoding of asymmetry by introducing dummy states for variables

 Open Issues

• Not all asymmetry can be represented

• Unable to use sharing of scenarios and collapsed scenarios features of IDs

 7.4 Sequential Decision Diagrams

 Strengths

• Compact representation, as intuitive as DTs

• Encoding of asymmetry without introducing dummy states for variables

• Can exploit coalescence by using minimal and relevant histories

• Can detect and eliminate barren nodes

 Weaknesses
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• Unable to represent probability models consistently

• May require preprocessing in constructing formulation tables

• Formulation table encodes a complete ordering of variables even though information con-

straints impose a partial ordering

 Open Issues

• Next node function is too restrictive

• Need for an efficient method to compute minimal and relevant histories without enumerating all

histories

• Redundancy in the representation of IDs, SDDs, and formulation tables

• Unable to represent arbitrary factorization of the utility function

 8 CONCLUSIONS

 The main goal of this work is to compare four distinct techniques proposed for representing and

solving asymmetric decision problems—traditional decision trees, SHM influence diagrams, She-

noy’s valuation networks, and Covaliu and Oliver’s sequential decision diagrams. For each tech-

nique, we have identified the main strengths, intrinsic weaknesses, and some open issues that per-

haps can be resolved with further research.

 One conclusion is that no single technique stands out as always superior in all respects to the

others. Each technique has some unmatched strengths. Another conclusion is that considerable

work remains to be done to resolve the open issues of each technique. One possibility here is to

borrow the strengths of a technique to resolve the issues of another. Also, there is need for auto-

mating each technique by building computer implementations, and there is very little literature on

this topic.

 At the end of Sections 3-6, we provide a summary of the total number of arithmetic operations

required to solve the Reactor problem. Since we solve only one problem, it is incorrect to conclude

that the technique with the lowest total is the most efficient. It would be more interesting to study

how this number grows in general as a function of the dimension of the problem. But this depends

on the structure of the problem. We conjecture that we can concoct examples where each technique

would have the least number of total arithmetic operations. Also, it is obvious that the efficiency of

each technique cannot be measured by only counting the number of arithmetic operations. There

are other features to take into account. For example, in the formulation phase:

• defining the variables and their state spaces to reflect asymmetry;

• (possible) preprocessing for representing the probabilities in DTs and SDDs;

• specification of distribution trees in IDs;
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• computation of the effective state spaces prior to the specification of probability valuations in

VNs;

• computation of minimal histories node sets, minimal histories, relevant history node sets, and

relevant histories in SDDs;

 and in the solution phase:

• number of table look ups necessary to remove each node and the number of configurations

used for reduction of a node;

• computation of effective state spaces in the solution stage for VNs; and

• the cardinality of the largest state space used during the solution phase.

The actual computational efficiency will depend very much on the details of the computer imple-

mentation of the different techniques.

In trying to represent asymmetries, one introduces some additional costs, and in some cases,

the costs may exceed the actual benefits. For example, one can easily make up a large “asymmet-

ric” problem in which very few scenarios are eliminated. And in this case, the cost of representing

and processing the asymmetries may well exceed the benefits. This is the case for IDs, VNs, and

SDDs.
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