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ON THE CALCULATION OF MUTUAL INFORMATION*

TYRONE E. DUNCANt

1. Introduction. Calculating the amount of information about one random
function contained in another random function has many applications in com-
munication theory. For continuous time stochastic processes an expression for
the mutual information has been obtained by Gel’land and Yaglom [1], Chiang [2]
and P6rez 3] by generalizing Shannon’s result [4] in a natural way. With a certain
absolute continuity condition the expression for the mutual information of con-
tinuous parameter real-valued processes has the same form as Shannon’s result.
For some Gaussian processes Gel’land and Yaglom [1] express the mutual
information in terms of a mean square estimation error. We generalize their
result to calculating the mutual information between one process and the sum
of the first process and white noise. The expression for the mutual information
is in a form different from that obtained by Gel’land and Yaglom but more
naturally related to a corresponding filtering problem. With the expression for
the mutual information some information rates are calculated.

2. Problem statement. We shall consider two stochastic processes Y and Z
as follows:

(1) d Yt Zt dt + dBt,

where the n-dimensional process Z is independent of the n-dimensional standard
Brownian motion B, [0, 1], Yo =- 0 and

(2) f,f ZTt Zt dP dr<

where the superscript T denotes transpose.
We wish to calculate the amount of information in the process Y about the

process Z.

3. Preliminaries. Generalizations of Shannon’s definition of mutual informa-
tion have been obtained by Gel’land and Yaglom [1], Chiang [2] and P6rez [3].
They obtain the following result as the natural extension of Shannon’s mutual
information.

THEOREM 1. Let and q be two random vectors with joint probability measure

Pen and marginal probability measures P and P, respectively. Assume that

Pen << PP,. Then the mutual information J(, rl) between and r is

(3) S(, r/) f (x, y)log o(x, y)dP(x) dP,(y),
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216 TYRONE E. DUNCAN

where

dP,(x_, y)
(4) o(x, y) dP-) dP,(y)"

From Theorem 1 we see that an appropriate Radon-Nikodym derivative
must be calculated to evaluate the mutual information. So before establishing our
main result we shall prove an absolute continuity result that will be useful there.
While the proof will appear elsewhere in a detection theory context [5] we shall
include it here for completeness.

THEOREM 2. Consider the processes B, Y and Z described in (1) and (2). Then
PYZ << ln#z and #y << #, where #YZ is the joint probability measure for the pro-
cesses Y and Z and #, lay and #z are the measures for the processes B, Y and Z
respectively. The Radon-Nikodym derivatives are

(6)

where

d#yz

dPB dpz expI.f
dllY
d#.-exp[.[

z dt3 - zz as

f 2,2s ds]2d ---E[ZsIY, 0 <= u <= s] with Y given by (1) while in (6) it has the #
probability law.

Proof. We shall initially assume that Z is a bounded uniformly stepwise
process, i.e., there exists a finite subdivision of [0, 1], 0 to < < < t, 1
and a finite constant M such that

(7) Z,(og)=Z,,(o9), ti=< t< ti+l, i=0,1,...,n- 1,

and IZ(og)l < M. Considering each partition interval we can easily establish that
/rz << #nz. The Radon-Nikodym derivative, b, is

1
ZZds(8) bt exp ZT dY }

We shall now show that py << B. By the independence of the processes B
and Z the measure ktnz is the product measure #n#z. Thus, we merely integrate
on the measure Pz. Define

(9)

where Eu
(lO)

Eu flP
denotes integration with respect to the measure tz. Therefore,

d#y/dlAB

Applying the formula for stochastic differentials [6] to qSt we have

(11) ,-- 1 + qSZff dB.

A simple verification shows that

dpZsZsds < c(12) 2 T a.s.D
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CALCULATION OF MUTUAL INFORMATION 217

so that the stochastic integral in (11) can be defined as an LI(dP) limit of finite
sum approximations to the integral. For the finite sums we have

t,Zt,(Bt,+,- Bt,)d#B f [Euzdpt,Z](Bt,+ Bt,)d#s.(13) Euz r

i=1

Since the limit of the integrand on the R.H.S. of (13) is well-defined, we have

(14) euz cszT riBs e,zcsZ[ dB a.s. p.

Therefore,

(15) Pt 1 + e,zdpZ[ dB.

Let Ft In Pt and apply the formula for stochastic differentials [6] (which can
be easily verified to be valid here) to obtain

(16) dF,
EuzdptZTt dBt 1 EuzdptZTt EuzdptZt dt

e.zC, 2 [E.z,]
Consider the expression

(17) EuztZ,/(Euz,
Since drz/dpz the expression (17) is the conditional expectation
E[Z,[,0 u t], i.e., (17) has the proper measurability properties for
E[Zt] Y,, 0 u t] and it calculates the correct probabilities. Thus

2t E[Z,I , 0 5 u t] euz,Z,/(eut(18)

and
1

2T2ds,, exp 2Ts dB -For the case of a process Z satisfying (2) and independent of the process B,
a sequence of bounded uniformly stepwise processes which converge to the process
Z in L2(dt dP) can be obtained. By the Kolmogorov-Doob inequality [7] for the
stochastic integral and the usual L(dt) bound for the ordinary integral we have
that

(19) ") uniformly in a.s.

All that remains to verify is that the absolute continuity has been preserved, in
other words, that ") in La(dpz). A necessary and sufficient condition for
") in L(dpz)is that the sequence {")} be uniformly integrable [8]. Since
the process Z satisfies (2) we have that

(")In (") dflBz <(2O) sup
d

which implies uniform integrability of the sequence {(")} (see [8]). Arguments
similar to those for a bounded uniformly stepwise process Z show that in (10)
is given by (17).
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218 TYRONE E. DUNCAN

4. Main result. Having sufficient preliminaries established we shall now
characterize the mutual information between the processes Y and Z.

THEOREM 3. Consider the processes Y and Z given in (1) and (2). The mutual
information, J(Y, Z), contained in { Y, 0 <= u 5 1} about {Z, 0 <= u <__ 1 } is given
by the following expression"

(21) J(Y,Z) -E [Zu- 2.]T[Z.- 2.] du,

where . E[Zu[ Y, 0 s <= u].
Proof. To calculate the mutual information between Yand Z using Theorem 1

we must show that larz << lar#z and compute the Radon-Nikodym derivative. Let

(22) O= dtlrz
dprdlaz"

By Theorem 2, #rz <<//z, and by using the entropy property (20) with # and

#r reversed we have that # << #r. Using the chain rule for Radon-Nikodym
derivatives we have that #rz << prlUz and b-. The mutual information is

(23)

and

(24)

J(Y, Z) f (I) log d#r dpz

log (Zs- 2)r dY-- (Z- 2)r(z- 2)ds.

Substituting dYt Zt dt + dBt and using the fact that the stochastic integral is a
martingale from (2) we have

(25) ifJ(r, z) e (z 2)(z 2)ds.

Remark 1. Gel’fand and Yaglom [1] obtain an expression for the mutual
information of Gaussian processes and for some Gaussian processes express the
mutual information in terms of a filtering error. While their filtering error ex-
pression is in a different form from (21) the equivalence of the results can be
obtained from some results on Fredholm integral equations. The mean square
error expression (21) for mutual information for Gaussian processes in white
noise is known [9, p. 585]. Some recent work on mutual information for Gaussian
processes has been done by Baker [10].

Remark 2. With additional assumptions on the structure of the process Z
the assumption of independence of the processes B and Z can be removed and the
mutual information can be expressed in a form similar to (21).

5. An application to information rate. When the process Z is a Gauss-Markov
process some information rates can be obtained. These results extend and simplify
some results of Gel’fand and Yaglom [1] and indicate rates of convergence for
some of their approximations. The methods used here require only time-domain
techniques which indicate more clearly the necessary properties for the existence
of the information rates.
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CALCULATION OF MUTUAL INFORMATION 219

To clarify terms we give the definition that we shall use for information rate
(Gel’fand and Yaglom [1 ], Pinsker 11]).

DEFINITION. The rate of generation of information about a process r/ by a
process is

(26) i(,q) lim
1

Too-J(u, ]u; 0 1,1 T),

where J(, t/; 0 _< u <_ T) is the mutual information between the processes
and r/on the interval [0, T] and i is defined only when the limit exists.

We shall obtain a result for the existence of an information rate in terms of
some system theory results. The methods used to obtain the existence of the
mutual information will give some useful bounds on finite-time approximations
to information rate.

We shall calculate the rate of generation of information about a Gaussian
process X by another Gaussian process Y described by the following stochastic
differential equations"

(27) dX a(t)X dt + b(t) dt,
(28) dY cX, dt + dB,,

where the processes B and / are independent n- and m-dimensional standard
Brownian motions respectively, the matrices a and b with suitable dimensions
have nonrandom elements which are continuous functions of t, the matrix c with
suitable dimensions has elements which are constants, the interval of solution is
the positive half-line [0, ) and the initial conditions are Xo a, a zero mean
Gaussian random vector independent of the processes B and/ and Yo - 0.

We shall also consider the case where the coefficients of the stochastic
differential equation (27) are not functions of time. In this case, we shall use the
same symbols for the coefficients deleting the variable t, i.e.,

(29) dX aX dt + b dt,
(30) dY cX, dt + dB,,

where the appropriate assumptions for (27) and (28) are still in effect.
If the process Y is a process of observations from which the minimum mean

square error estimate of process X is sought then we have a well-known filtering
problem. By Theorem 3 the mutual information for (27) and (28) (or (29) and (30))
is obtained from the integral of the trace of the optimal error covariance matrix
for estimating the process X from the process Y. Information rates for (27) and
(28) and (29) and (30) will be obtained by showing that the error covariance matrix
for the associated filtering problem converges to a steady state solution.

Assuming that the system (27) and (28) is uniformly completely controllable
and uniformly completely observable, Kalman and Bucy [12] and Kalman [13]
have shown that for an arbitrary covariance for a X0 the error covariance
for the filtering problem (27) and (28) is bounded and converges uniformly and
exponentially to a unique matrix.

By assuming complete controllability and complete observability for the
system (29) and (30) the error covariance converges uniformly to a constant
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220 TYRONE E. DUNCAN

matrix [12], [13] which is the unique positive definite equilibrium state of the
Riccati equation

(31) dP/dt aP + PaT + pcTep + bbT.
This constant matrix is the error covariance for the Wiener-Kolmogorov solution
to the filtering problem (29) and (30) given the infinite past { Y,, -oo < u < t}.

Applying the above results to the calculation of mutual information for (27)
and (28) and (29) and (30), we can easily obtain the following result.

PROPOSITION. Suppose that the system (27) and (28) is uniformly completely
controllable and uniformly completely observable. Then the rate of generation of
information about the process X by the process Y exists and is one-half the trace

of cPcT, where P is the steady-state error eovariance for the filtering problem for
(27) and (28).

COROLLARY. Suppose that the system (29) and (30) is completely controllable
and completely observable. Then the rate of generation of information about the
process X by the process Y exists and is one-half the trace of cPcr, where P is the
error covariance matrixfor the Wiener-Kolmogorov solution to the filtering problem
(29) and (30).

Remark 3. Mutual information and information rate can be calculated when
the processes B and/ are correlated, and with appropriate absolute continuity
conditions calculations can be made when the process B is replaced by a "smooth"
process.
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