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ON THE SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM*

TYRONE DUNCAN? AND PRAVIN VARAIYA:I:

Abstract. The control system considered in this paper is modeled by the stochastic differential
equation

dx(t, to) f(t, x(., o), u(t, to)) dt + dB(t, to),

where B is n-dimensional Brownian motion, and the control u is a nonanticipative functional of
x(., to) taking its values in a fixed set U. Under various conditions on f it is shown that for every
admissible control a solution is defined whose law is absolutely continuous with respect to the Wiener
measure #, and the corresponding set of densities on the space C forms a strongly closed, convex subset
of L I(C, I). Applications of this result to optimal control and two-person, zero-sum differential
games are noted. Finally, an example is given which shows that in the case where only some of the
components of x are observed, the set of attainable densities is not weakly closed in LI(C, t).

1. Introduction and contents. A stochastic control problem is defined by
the specification of the stochastic differential equation which models the system
dynamics, the information available to the controller and the corresponding set
of admissible control laws, and the cost incurred by each control law. Of theoretical
interest is the "existence" problem, which means determining in terms of the above
three defining characteristics a class of control problems for which there exist
control laws achieving minimum cost.. Published results ([1 ], [2], [3], see especially
the excellent survey article [4] of Fleming) differ from one another and are not
usually comparable because either the models are different or the set of admissible
control laws is different.

There are two basic steps involved in obtaining an existence result. The first
step involves determining conditions which guarantee that a solution of the
stochastic differential equation is defined for every admissible control law. The
next step involves the search for a topology under which the set of solutions (or
an equally good substitute) is compact, and the cost function is lower semicontinu-
ous. Thus, for instance, Fleming and Nisio [1] consider stochastic differential
equations of the form

dx(t) f(t, x(. )) u(t)dt + a(t, x(" ), B(. )) dB(t), 0_<_t<co,

where u(t) is any process taking values in the unit cube, and independent of future
increments B(t2)- B(tl), <= tl <= t2, of the Brownian motion B. Various con-
ditions on f a are imposed to guarantee a solution for every admissible control.
It is then shown that the set of laws of all the solutions of the differential equation
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SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM 355

corresponding to the different control laws is compact in the Prohorov metric.
Bene [3] considers stochastic differential equations of the form

(1) dx(t, o) f(t, x( o), u(t, o))dt + dB(t, o), 0 < -< 1,

where f is measurable with respect to its arguments and continuous in u. The
control law is any nonanticipative, measurable functional u(t, o)= /(t,x(., o))
which takes values in a compact set U. He assumes that fsatisfies a linear growth
condition

If(t,x(.,o),u)l 2 <= K(1 + IIx(.,o)l12),
where Ix(., o)ll sup {Ix(t, o)l 10 =< _< 1}.

The existence of a solution to (1) for every control law is guaranteed by a result
of Girsanov [5] (see Corollary 3 below). The resulting law is absolutely continuous
with respect to the Wiener measure p on the space C of all continuous functions
from [0, 1] into R". Bene shows that iff(t, x(., o), U) is convex for every e [0, 1]
and x(., o)e C, then the set of densities corresponding to all the admissible
control laws is a convex and strongly closed (hence weakly compact) subset of
Lx(C,p).

In this paper, we show that the above result holds if the linear growth con-
dition is replaced by the growth condition

(2) If(t, x(., co), u)l f0( x(., )11),

where fo’R R is increasing, and the condition

(3) exp (f(t, B, u), dS(t)) If(t, B, u)] 2 d #(dB)

for every admissible control law. An example is given to show that (2) does not
imply (3). The linear growth condition implies (3) (see Corollary 3). Condition (3)
also follows from (2), if the drift term fin (1) has a delay (see Corollary 4). Finally
we show that in the important case where the control is allowed to depend only
on some components of the state x, the set of densities is not always weakly closed
in LI(C, ).

In 2 we give some preliminary results and definitions, and in 3 we present
the main result on weak compactness of the attainable densities. In 4 we give
conditions which guarantee (3), in 5 we present applications to optimal control
and stochastic differential games, and in the final section we present the negative
example for the problem with partial observations.

2. Preliminaries. In the main, we adopt the notations and definitions of
Beneg [3. Consider the stochastic differential equation

(1’)
dx(t) f(t, x, u(t, x)) dt + dB(t),

x(O) o,
Ot=<l,

where B(t) is a standard n-dimensional Brownian motion process with continuous
sample paths, x(t) is the state of the system and u(t, x) is the control law which
takes values in a compact subset U of Rm. To state the precise conditions which f,
u must satisfy we need the following definition.D
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356 TYRONE DUNCAN AND PRAVIN VARAIYA

DEFINITION 1. (a) Let C be the Banach space of all continuous functions
z’[0, 1] --. R" with norm [[zl[ max {[z(t)110 _<_ <= 1}, where lYl is the Euclidean
norm of y e R".

(b) For each [0, 1] let be the smallest a-field of subsets of C which con-
tains all sets of the form {zlz(z) A}, where z [0, t] and A is a Borel subset of R".

(c) Let =.
We shall define the solution of (1) in such a way that the sample paths of x

are continuous (and have no explosions), so that f is a map from [0, 1] x C x U
R". We impose throughout the following conditions on f
C1. f is measurable with respect to the product a-algebra (R) 5e (R) v,

where (v) is the set of Borel measurable subsets of [0, 1] (U).
C2. For fixed [0, 1), f(t, .,. is measurable with respect to the product

a-algebra (R) v.
C3. For fixed (t, z) [0, 1] C, f(t, z,. is continuous on U.
C4. There exists an increasing functionfo :R R such that f(t, z, u)] fo(llzll)

for all (t, z, u).
C5. f(t, z, U) is closed and convex for every (t, z).
DEFINITION 2. (a) An admissible control (law) is any map u’[0, 1] C U

which is measurable with respect to ’ (R) and for each fixed [0, 1], u(t, is
measurable with respect to . Let q/be the set of all admissible control laws.

(b) For each u q/, the drift corresponding to u is the function g g, "[0, 1]
C R" defined by

g(t, z) f(t, z, u(t, z)).

Let c {gdu }.
(c) For gC and N => 0, let gN’[0, 1] C R" be defined by

g(t, z) if Iz()l N for r __< t,
gN(t, Z)

0 otherwise.

Let ff {glg }.
DEFINITION 3. A function if’[0, 1] x C R" will be said to be causal if it is

(R) 6e measurable, and if for each fixed [0, 1], if(t,.) is measurable with
respect to .

From [6, Lemmas 1, 2] we can obtain the following useful characterization
of . Condition C3 is needed only for Lemma 1. The reader should be warned that
the proof of the "only if" part of Lemma 1 involves a nontrivial synthesis problem
(lemma of Fillipov).

LEMMA 1. A causal function g’[0, 1] x C R" belongs to c if and only if
g(t, z) f(t, z, U) for all (t, z).

It will prove convenient to work with sets larger than
DEFINITION 4. Let (I) be the set of all causal maps q5 "[0, 1] x C R" such

that 14(t, z)l =< f0(Izll) for all (t,z). Let {blb O,[qS(t, z)[ =< N for all (t, z)}.
Throughout the rest of this paper let f be a fixed space and let t, 0 =< =< 1,

be a fixed, increasing family of a-fields of subsets of f. Let ’ ’1. We say that
z(t) or z(t, 09), 0 _< =< 1, is a family of n-dimensional random variables on (fL
if for each t, z(t, is a map from f into R" which is measurable with respect toD
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SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM 357

We shall need to consider various probability measures on . If z(t), 0 __< _< 1,
is a family of n-dimensional random variables on (, ) and we wish to consider
the stochastic process generated by z(t) corresponding to a particular probability
measure P on , we will say that z(t), 0 =< =< 1, is an n-dimensional stochastic
process on (fL st, P). Finally let Po be a distinguished probability measure on, and let x(t, co), 0 =< =< 1, be a fixed n-dimensional, Brownian motion process
on (fLdt,Po) with almost all sample paths x(-,co) C. We assume that the
a-fields st are complete with respect to Po.

DEFINITION 5. Let k’[0, 1] x C R" be a causal function such that

(4) I(t, z)l 2 dt < for all z C.

Then ’(), 0 =< =< 1, is the stochastic process on (fL , Po) with continuous
sample paths, defined by

(5) ’(0) <O(,x),dx()5 - IO(,x)l 2 d.

For convenience, let (qt) 1(). (In (5), the first integral is to be interpreted as
an Ito stochastic integral.)

The results ofthis section are immediate consequences ofthe work ofGirsanov
[5].

THEOREM 1 (Existence). Let :[0, 1] x C R" be a causal function such that
(4) holds.

(i) Then,

(ii) Suppose

(6)

exp [’(0)]Po(dco) =< 1.

exp [(qt)]Po(dco 1,

and define the probability measure Po on d by

P(A) fa exp [#(,)]Po(dco),

Then the stochastic process B(t) defined on (), a/,, Po) by

B(t, co) x(t, co) d/(z, x(. co))d’c, O<__t<=l,

is a Brownian motion.

(iii) If is bounded, then (6) holds.
Proof Parts (i), (ii) and (iii) are immediate consequences of Lemma 2, Theorem

1, and Lemma 1, respectively, of [5].D
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358 TYRONE DUNCAN AND PRAVIN VARAIYA

Theorem 1 immediately gives us a sufficient condition for the existence of a
solution to (1). For, let u , and let g be the drift corresponding to u. If

exp E(g)]Po(do) 1,

then the stochastic process x(t) on (, , Pg) satisfies the equation

x(t) g(z, x) dr + Brownian motion.

LEMMA 2. Let . Let y(t), 0 <_ <= 1, be a stochastic process on (, , P)
with continuous sample paths, such that the stochastic process B(t) on (, ff, P)
defined by

(7) B(t) y(t)- g/(, y)d, 0 <= <= 1,

is a Brownian motion. Then, the measure v induced by y on (C, 5) is mutually ab-
solutely continuous with respect to the Wiener measure , and

dkt(8)
dv
--(y) exp (O(t, y), dB(t)) - IO(t, y)l 2 dt

0

Proof Since I(’,z)[ =</o(lizl[), it follows from Lemma 7 of [5], that the
measure/ on (C, 5e) defined by

/(S) exp {O,dB) - 1012 dt dv
0

coincides with the Wiener measure. It is easy to see that

exp {0, dB) - IPl 2 dt > O,
0

v-almost everywhere. The result follows.
COROLLARY 1. Let e , and let y(t), 0 <= <= 1, satisfy the hypothesis of

Lemma 2. Then

(9) exp
o

(k(t, z), dz(t)) - Ig,(t,z)l 2 dt lu(dz) 1.

COROLLARY 2. Let , and let y(t), 0 <= <_ 1, satisfy the hypothesis of
Lemma 2. Then the measure v on (C, 5,c,) induced by y is uniquely specified by and
is given by

(10) v(S) exp {g/(t, z), dz(t)) IO(t, z)l 2 dt IJ(dz).

Proof The corollaries follow from (8) and the identity dB dy O(t, y)dt.

3. Main results.
DEFINITION 6. For any subset Z c , let (E) be the subset of Ll(ff2, , Po)

defined by
(Z) {exp (O)lbD
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SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM 359

that

PROPOSITION 1. (ON) is a bounded subset of L2(, , Po).
Proof If q 6 N, then by definition, [b[ _<_ N. By Lemma 1 of [5, it follows

exp 2t(dp)Po(dco) <= exp tN2.

For the rest of this paper let Eo denote expectation with respect to the proba-
bility measure Po. Also if y LI(Q, ’, Po), then Eo(71ct) denotes the conditional
expectation of 7 with respect to t.

The proofs of Lemmas 3 and 4 are simple modifications of the proofs of
Theorems 4 and 3, respectively, of [3]. They are presented here for completeness
and because we shall need to refer to parts of the proofs later.

LEMMA 3. (@) is a closed subset of L2(, ’, Po).
Proof Let b,, n 1, 2, 3, ..., be a sequence from N and let p be such that

(11) lim Eo[ p exp (b,)] 2 0

and

(12) lim exp ((b,)= p a.s. Po.

First of all p > 0 a.s. Po. Because, let A {colP(co) 0}. Then from (12),

(13) lim (4,)(co) oe for co e A.

Also,

fo(,) (dp.(s, x), dx(s)) - b,(s, x)] 2 ds

and 10.l =< N, so that from (13),

lim d/)(s, x), dx(s)) o

But

on A.

Eo (., dx(s)) Eo ]b,(s)] 2 ds <= N2

so that Po(A) 0. By Ito’s representation [7], there is a causal map

,/,-o, 3
with

for z in C, such that

[(t,z)[ 2dt <
0

p=l+j ((t,x),dx(t)) a.s. Po.
0D

ow
nl

oa
de

d 
09

/1
0/

14
 to

 1
29

.2
37

.4
6.

10
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



360 TYRONE DUNCAN AND PRAVIN VARAIYA

Let

p(t) Eo(Pl) 1 + ((s, x), dx(s)).

Then, by Jensen’s inequality,
.1

Eolp(t) exp f(’(qS,,)l 2 dt <= ((,,)l 2 dt,EolP exp
0

which converges to zero, so that taking subsequences if necessary we can assume
that

(14) p(t) lim exp "(,) a.s. (R) Po,

where denotes Lebesgue measure on [0, 1]. Next, by Ito’s differentiation rule,

exp (b) 1 + exp (4)<4(t), dx(t)) a.s. Po
so that

Eo lexp C(b,)qS,(t) J(t)l 2 dt Eol exp ((qS,) pl 2

converges to zero, and therefore, taking subsequences if necessary, we can assume
that

t/J(t) lim exp (t(qS,),(t) a.s. l(R) Po.
Since p(t) > 0 a.s. Po, we see using (14) that

(15) O(t)/p(t) lim 05,(0 a.s. (R) Po.

It follows that there is a causal map 05 "[0, 1] C R",

qS(t, x(., 09)) lim qS,(t, x(., 09)) a.s. Po

and

p(t) 1 + p(s)(dp(s,x),dx(s)).

From to’s differential rule we see that

d(log p(t)) 44(t), dx(t)) 1/214(t)l 2 dt,

and hence,

p exp (().

Because of(15) we can assume that 14)1 _<- N, so that the lemma is proved.
LEMMA 4. @(I)N) is a convex set.

Proof Let i I)N, 2i >= 0, 1, 2, with 21 + 22 1. By Ito’s differentiation
rule,

d[exp (’(ki)] exp (’(dpi)(i(t), dx(t)).D
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SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM 361

Define

Then

do(t) ’1 exp t(bl)(q(t), dx(t)) + )2 exp ’(gP2)(qb2(t), dx(t))

(16)

where

/1 exp "(qS,) 22 exp t(/)2)
(t) E/2= /i exp {’(qS,) 4 1(t) + y,,/2= i exp ’(qS,)

b2(t).

Evidently b e u since qS(t, z) is a convex combination of bl(t z) and b2(t z).
By Ito’s differentiation rule from (16) we obtain

(17) d(log p(t)) (dp(t), dx(t)) 1/2]b(t)l 2 dt

and p(0) from (14) so that integrating (17) yields

log p(t) <O(s), dx(s)) Ib(s)l 2 ds.

Hence p(1) exp (b)and the lemma is proved.
We now state our main result and develop the proof through a sequence of

lemmas.
THEOREM 2. (i) (ff) is a convex set.

(ii) Let

fro {gig if, Eo(exp (g)) 1}.
Then, (ffo) is a closed and convex subset ofL1(, aal, Po).

We shall develop the proof through a sequence of lemmas.
LEMMA 5. (ff)is convex.

Proof Let gi(t, z) f(t, z, ui(t, z)) with ui qgi, 1, 2, and let 2i -> 0, with
,1 q- 22 1. By Ito’s differentiation rule,

d(exp ’(g,)) exp t(g,)(g,(t), dx(t)), 1,2.

Define

p(t) 21 exp ’(gl) + 22 exp ’(g2).

Then if we repeat the proof of Lemma 4 we can conclude that (noting p(0) 1)

p(1) 21 exp (gl) + 22 exp (g2) exp (q),

where q(t, z) is a convex combination ofgl(t, z) and gz(t, z). Since gi(t, z) f(t, z, U),
and since this set is convex by condition C5, We see that

c(t, z)f(t, z, U)

and hence b 6 by Lemma 1. The lemma is proved.

p(t) 21 exp ’(bl) +/2 exp t((/)2).

which we can rewrite as

D
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362 TYRONE DUNCAN AND PRAVIN VARAIYA

LZMMA 6. @((9o) is convex.

Proof The set

{plpLX(f,s,Po),p > O, Eop 1}
is convex, and

(o) (f) N N,

so that the result follows from Lemma 5.
Next let g,, n 1, 2, ..., be a sequence from f#o, and let p be in LI(fL se’, Po)

such that

(18) lim exp (g,) p a.s. Po and in Ll(f, sO’, Po).

For each positive integer N, let

g,(t,z) if lz(:)[ =<N for:_< t,
Z)

0 otherwise,

and for N 1, 2, 3, ..., inductively select subsequences g’, k e KN, and
as follows"

For N 1, let g, k e K1, be a subsequence of g,, n 1, 2, 3,..., and let

051 e (1) be such that

exp (41) w. lim exp (g).
kK

(Here and in the remainder w. lim means the weak limit in L-(fL se’, Po).) From
Lemmas 4 and 5, @() is a weakly, sequentially compact subset of L2(, s#’, P)
and g u so that the above selection makes sense.

Suppose g, k e KN, and bNe (I)u are defined. Then let g+
be a sequence of g, k KN, and let bN+ e / be such that

exp (4N+ 1) w. lim exp (g/ 1).
kKN

LEMMA 7. Let C {z]z C, Iz()l <= N for <__ }. Then for >= O,

N+ l(t Z) dpN(t, Z) for 0 <= < 1, z e C.
Proof First of all from

exp (bN) w. lim exp (g),
kKN

it is immedia.te that

Eo(exp (qSU)l) w. lim Eo(exp (g)[).
keKr

Secondly since

Eo((b)) 1,

it follows that a.s. Po,

exp "(q5u) Eo(exp C(4u)l),

Eo((g) 1,

exp ’(gf)= Eo(exp C(g)l),D
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SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM 363

and hence,

(19) exp {,(qu) w. lim exp {t(g).
kKN

Next let

c, {o1o c,, x(., oo)e c}.
By definition, for >= 0,

gff(z, x(., oo)) gff + i(-c, x(., oo))

so that from (19) for >__ 0,

exp (,(qN + i)(o0 exp (t(4N) (O0),

The result now follows if we note that

o fn lexp (dpv+i) exp (qSu)[ZPo(doo) fn lfj exp t(qv+i)(qN+i(t),dx(t))

exp t(bN)(b(t), dx(t)) Po(do)

=fn [f]exp2(4s)’4+i(t’x("o))-4(t’x("o))ldtP(do)
so that since exp (4) > 0 a.s. Po, we must have

I + (t, x(., )) (t, x(., ))1 at Po(a) o,

and the lemma is proved.
Because of Lemma 7 we can define a causal function " [0, 1] C R" such

that

(20) (t,z) u+i(t,z) for 0 1, zll N, i 0,

From the proof of Lemma 8, and from (18) it follows that

p exp () a.s. Po.
Lemma 8 completes the proof of Theorem 2.

LEMMA 8.

Proof Because of (20) and Lemma 1 it is enough to show that

dpN(t, z)ef(t, z, U) for 0 <= =< 1, zll =< N.(21)

Recall that

exp {(q5u) w. lim exp (g).
keK

From the properties of weak L2-convergence it is known that there is a convex
combination ofthe exp (g) which converges to exp (bu) in the L2-norm topology.D
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364 TYRONE DUNCAN AND PRAVIN VARAIYA

More precisely, for each n, there are nonnegative numbers 2],..., 2, with

2’I +’.. + 2, such that

(22) lim Eo

Let

exp {(bN) 2’ exp ’(g)
i=1

(23)

Next

Eolexp ’(4N) exp (r/,)l 2 Eo exp ’(bu)(bu(t), dx(t))

1 2

| exp t(r/,)(r/,(t), dx(t))
d 0

Eo lexp t(qSu)bu(t) exp t(q,)r/,(t)12 dt

converges to zero by (22). Taking subsequences if necessary we see that

(24) exp t(bN)(co)qSu(t, x(., m)) lim exp ’(q,)(m)q,(t, x(., m)) a.s. @ Po,

where denotes Lebesgue measure on [0, 1].
Also a.s. Po,

exp t(4s Eo((4u)[), exp t(q,) Eo((q,)l),

so that from (22),

lim Eoexp (4u) exp (q,)2 dt= O,

and hence taking subsequences if necessary, we have

exp (4u)(m) lim exp (q,)(o) a.s. @ Po.

Since exp (4u) > 0 a.s. Po, we conclude from (24) that

u(t, x(., m)) lim q,(t, x(., m)) a.s. @ Po,

and hence from (23), and the fact that f(t, z, U) is closed, we see that

4u(t, x(., )) ef(t, x(., m), U) for IIx(’, )11 N, a.s. @ No.

h,(t) 27 exp (g).
i=1

Repeating the proof of Lemma 4, we can conclude that

h,(t) exp ’(r/,) a.s. P0,

where r/,(t, z) is a convex combination of g[(t, z),..., g,(t, z). In particular, from
the convexity off(t, z, U) and the fact that gi (t, z) gi(t, z) f(t, z, U) for z]l =< N,
it follows that for Ilzll =< N,

ri,(t, z)f(t, z, U).
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SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM 365

From Corollary of Lemma 2 and from Theorem 2 we obtain Theorem 3.
THEOREM 3. Supposef satisfies C1-C5 of 2.
(i) For an admissible control u , there exists a solution to (1) with continuous

sample paths (without explosions) if and only if
Eo exp ((g,,) 1.

(ii) The set of densities {exp (gu)lEo exp ((g,)= 1} is a convex set, which is
closed in the norm topology of LI(fL e’, Po).

4. Sufficient conditions for Eo exp (b) 1.
LEMMA 9. Let 4)’[0, 1] x C R" be a causal map such thatf ]b(t, Z)] 2 dt <

for all z in C. Define T4,: C C by

(25) T+(z)(t) z(t) c(z, z)dr..

Suppose thatfor each N > 0 there is M > 0 such that Te(z)l] <= N implies Ilzl] _-< M.
Then,

Eo exp (qS) 1.

Proof The proof is immediate from Lemma 7 of [5].
As a consequence of Lemma 9, we can obtain the following sufficient con-

ditions. The first result is due to Bene [3].
COROLLARY 3. Let q5 :[0, 1] x C R" be a causal map and suppose there is a

constant K such that

Then,

I(t,z)l K(1 + max Iz()l).
z<t

Eo exp (b) 1.

Proof Let T+(z)(t) y(t), and let 7(t) maxo_<_t Iz(01. Then, from (25),

T(t) __< ly(t)l + K(1 + T(r))dr

_-< (llyll / K) + KT(z)dr.

By the Bellman-Gronwall inequality,

Ilzll 7(1) _-< (exp K)7(0) + (exp K)( lYl + K)

=< (exp g)(2llyll + g),

and the result follows from Lemma 9.
The next result is useful if we have a control system with delay.
COROLLARY 4. Let 4)" [0, 1] x C R" be a causal map such thatfor some 6 > 0,

Ib(t, z)l <-fo( max
O<z<t-3D
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366 TYRONE DUNCAN AND PRAVIN VARAIYA

where fo’R R is increasing. Then,

Eo exp (0) 1.

Proof Let y, 7 be defined as in the previous proof. Then,

7(6) _-< y +/o(7(0)),

7(26) =< y + fo(7(6)) =< IlY / To( lY + fo(7(0)))

fx( YII, (0)) say.

By induction,

7(i6) =< f(llY I, (0)),

where f/is increasing in each argument. Evidently if (m 1)6 < =< mr, we see
that

7(1) z =< fm(ll y z(0)l),

and the result follows from Lemma 9.
Remark. McKean [8, p. 66] has shown that if 6 > 0, then all solutions of the

one-dimensional diffusion equation

dx(t) Ixl x/ dt + dB(t), 0 < < ,
explode with probability 1. It follows that condition (6) is a nontrivial restriction.

5. Applications. Consider a control system

dx(t, 09) --f(t, x( 09), u(t, x( 09))) dt -t- dB(t, co),

where the control u takes values in a set U and f obeys the conditions C1-C5 of
2. Let us impose an additional restriction.

C6. For every admissible u /,

Eo exp (gu) 1,

or equivalently (and directly in terms of u) for

(26) p,(z) exp (f(t, z, u(t, z)), dz(t)) - If(t, z, u(t, z))l 2 dt

C6’.

p.(z)p(dz)

Instead we can limit ourself to the subset ,o consisting of those u in //which

satisfy C 6’.
Next let L:C R be a bounded function, measurable with respect to _9. L is

the cost function and assigns to every u e ,o the cost

(27) J(u) fc L(z)p,(z)(dz).
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SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM 367

THEOREM 4. Suppose [o is nonempty. Then, there exists u* 1 such that

J(u*) <= J(u) for all u l

Proof By Theorem 3, the set {pulu o} is a strongly closed, convex subset
of LI(C, #). Hence it is weakly compact. Since .c L(z)p,(z)kt(dz)is linear and
continuous in Pu, the result follows.

Let us note that a cost functional of the type (27) allows for a variable endpoint
problem as follows. Let - be a closed subset of 0, 1] R" which includes the set
1 } R". Let 2 [0, 1] C --. R" be a bounded, causal function, and to each u @,o

assign the cost

J(u) )(t, z) dt p,(z)#(dz),

where t(z)= min {r[z(z) -}. The term in brackets is clearly of the form L(z)
in (27).

If the cost also depends on the control u, then sometimes we can add an extra
coordinate to the state vector and get an equivalent cost depending only on the
state. See [3 for details.

As a second application consider a zero-sum stochastic differential game,
with two players and II, with controls u(t) Ux and u2(t) e U2 respectively, and
dynamics given by

dx(t) f(t, x, ua(t), u2(t)) dt + dB(t).

Suppose that f splits as

f(t,X, Ul,U2)
L(t,x,u)

f2(t,x,u)

Assume thatf satisfies C1-C5 with C5 now restated as:f(t,z, U)andfz(t,z, U2)
are closed and convex for each (t, z). As before, we define the admissible controls
for player i, as all causal maps ui’[0, 1] C Ui, 1, 2. Let o consist of those
admissible controls ui which satisfy

fc Pi,,(z)#(dz) 1,

where

(28) p., exp (fi(t, Z, Ui(t Z)), dzi(t)) - If/(t, Z, b/i(t Z))I 2 dt

Here we have split z to be compatible with f Let L’C R be a
za f

bounded function, measurable with respect to , and to each pair (u t, u)e ,o
x ,o assign to player the payoff

(29) J(Ul’ u2) ;c L(z)P(ul’uz)(z)12(dz)"
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368 TYRONE DUNCAN AND PRAVIN VARAIYA

THEOREM 5. Suppose q[ is nonempty.for i= 1, 2. Then, there exist u
1, 2, such that

J(ul, u) =< J(u, u) =< J(u’, u2) for all ui e li i=1,2.

Proof From the definition (26) of Pul,u2) and the definition (28) we see that

(30)

Next, from Theorem 3, the sets p’.,I u, e} are convex, closed subsets of L’(C,
hence weakly compact. Finally the integral in (30) is concave (in fact linear) and
continuous in p,11 for fixed p,22, and convex (in fact linear) and continuous in
for fixed p Hence from the well-known results on two-person zero-sum games1"

the existence of a saddle point (u, u) follows.

6. Partial observations: A negative example. Again consider the stochastic
differential equation

(1) dx(t) f(t, x, u) dt + dB(t).

The conditions onfare as before, but now suppose that we consider the important
case where the control u can only depend upon the past history of the last m
(m < n) components ofx. More precisely, let Qt be the sub-a-algebra of generated
by all sets of the form

{ZIZ e C, zi("c e A},
where =< t, A is a Borel subset of R and n m + < n. Let %, be the set of
all causal maps u’[0, 1] x C --, U such that u(t,. is measurable with respect to
Qt. Evidently,

First of all it should be clear from the proof of Lemma 4 that the set
{exp(gu)luelgm} may fail to be convex. For, consider the two-dimensional
system

dxa udt + dB, dx2 dB2,

where the control u is allowed to depend only on x2 and must take values in the
set U [- 1, 1]. Now let u and u2 be control laws defined as follows"

Ul(t, X2) O,

o, o=<t<1/2,
u2(t, x2)=

sgn(x2(1/2)), 1/2 t 1.

It is easy to calculate that

’(g.,) 0

so that exp ’(g,1) _= and

O,

sgn (x(1/2))(x(t) x(1/2)) (t 1/2),

o__<t<1/2,

D
ow

nl
oa

de
d 

09
/1

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM 369

From the proof of Lemma 4 we know that the function uz, given by uz(t) =- 0,
0 _<_ _<_ 1/2, and

satisfies

2 exp t(g,2
u2(t 1/2 < < 1Uz(t)

2 exp "(g,2) + (1 2)

exp ’(g,) (1 2) exp ’(g,,) + 2 exp ’(g,2).
Since d exp ’(g,)= exp ’(g,)(g,(t), dx(t)), g, (and hence uz) is uniquely
defined by the previous equation. Since for 0 < 2 < 1, uz depends on xl, the
assertion is proved.

Next, from Theorem 3 we see that the set {exp (g,)lu e q/m} is weakly compact
in LI(, , P0) if and only if it is weakly closed. We give a simple example to show
that in general we do not have weak closure.

Consider the two-dimensional system x (xl,x2), with u e R depending
only on x2,

where

dx(t) f(t, x)u + dBa(t), dx2(t) dB2(t),

O, t<__1/2,

f(t,x)= 2, > 1/2,
1, t>1/2,

x,(1/2) > o,
x,(k) =< o.

The control set is U [- 1, 1]. We shall define a sequence of control laws u,(t,
such that

u.(t, x2)=
f0,
( y,(x2(1/2)), > 1/2,

where the functions y, are defined later. It follows that

f fjf2(t x )uZ,(t)dt, (g..) f(t, x,)u,(t)dXl(t -where

0)n lt2 2p

2 ifxa(1/2)>O,
x(1)- x(1/2), fl

1 if x(1/2)__< 0.

Therefore,

(31) exp , exp (czfly.)exp (_1/4f12 /.2).
We shall select . such that [?,.1 1, so that (31) simplifies to

(32) exp {. exp (eft /.)exp (-1/4f12).
We define ,. as follows"D
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370 TYRONE DUNCAN AND PRAVIN VARAIYA

Let "R --. R be a measurable function such that under Po, (X2(})) is uniformly
distributed over [0, 1]. For each integer n >= 0, define r/,’[0, 1] {- 1, 1} by

.()

2m 2m + 1
if-z-=< <
2n 2n

2m + 1 2m + 2
-1 if__< <2n 2n

m=0,1,...,n- 1,

m=0,1,...,n- 1.

Finally, let

n(X2(21--))-- Y/n((X2(}))).

LEMMA 10. exp (, converges to 1/2 [exp (aft) + exp (--aft)] exp (--1/4f12) in the weak
topology of LI(, z, Po).

Proof. Let A, Aa, A be Borel subsets of R and let Ia denote the indicator
function of a set A. Let

I-I. Ia,(a(O))Ia(fl(O))Ia((O))(exp .)(o)Po(dto).

Now under P0 the random variables a, fl, are independent, so that

(33) 1-I, 1,4(a)IA(fl)Ia( exp (aflrl,()) exp

P(d )P(dfl)P(da

where P, P, P are the marginal distributions of a, fl, respectively. From the
way r/, is defined and the fact that is uniformly distributed on [0, 1] it follows that
for fixed a,/3,

lim exp (aflrl,()) exp
1 2

[exp (aft) + exp (-aft)] exp _f12 P(d)

uniformly for e (-m, m). It follows that exp (aflr/,({))exp (_1/4f12) converges to
1/2[exp (aft) + exp (-aft)] exp (_1/4f12) weakly in LI(R, Pc). Since the integrands in
(33) are uniformly integrable, it follows that

lim H, fR Ia’(a)Ia(fl)Ia()1/2[exp(afl) + exp (-aft)]

exp (-1/4fl2)p(d)P(dfl)P(da).

From this it follows easily that exp (aflr/,())exp (_f12) converges to 1/2[exp (aft)
+ exp (-aft)] exp (_1/4f12) weakly in L(R3, P (R) P (R) Pc) and the lemma is
proved.D
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SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM 371

Next, by direct calculation we can show that the two-dimensional drift ,,
where ’(t) (00), 0 -< =< 1/2, and

,(t) exp 2(Xl(t)- x(1/2))+ 1/2 =< -< 1,

0

satisfies

(34) exp (,) 1/2[exp (aft) + exp (--afl)] exp (--1/4fi2).
If we define p(t) Eo(exp (’)1), then

dp(t) p(t)(,(t), dx(t)), 0 <= <= 1,

so that (34) characterizes , uniquely. Hence any control law a such that
exp (g,) exp (,) must satisfy g, so that must depend on x. Therefore the
set of densities exp (g,) with u depending only on x2 is not weakly closed in

Incidentally this example also shows that to guarantee weak closure, the
convexity condition C5 is necessary, for even though u,(t)e {- 1, 1, 0} for all t, it
is not the case for a(t).
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