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We consider the estimation and identification of the components~endogenous and
exogenous! of additive nonlinear ARX time series models+ We employ a local
polynomial fitting scheme coupled with projections+ We establish the weak con-
sistency~with rates! and the asymptotic normality of the projection estimates of
the additive components+ Expressions for the asymptotic bias and variance are
given+

1. INTRODUCTION

Let $Xl ,Yl % l52`
` be jointly stationary discrete-time processes+ Among the non-

linear time series models popular in the econometrics literature is the bivariate
ARX model:

Yl 5 Ig1~Yl2 Sq, + + + ,Yl21! 1 Ig2~Xl2 Sp, + + + ,Xl ! 1 el , (1.1)

Xl 5 Ig3~Xl2 Sp, + + + ,Xl21! 1 «l , (1.2)

where$el % and$«l % are independent series each consisting of zero mean indepen-
dent and identically distributed~i+i+d+! variables with finite variancesse

2 and
s«

2, respectively+ Sufficient conditions for$Xl ,Yl % defined in~1+1! and ~1+2! to
be stationary are given in Lemma 3+1 in Masry and Tjøstheim~1997!+ The vari-
ables$Xl % and$Yl % are called exogenous and endogenous, respectively, and the
estimation of the relationship between$Xl % and$Yl % is of importance in econo-
metric modeling+

Because of the “curse of dimensionality,” reliable estimates of Ig1~{!, Ig2~{!,
and Ig3~{!, using a moderate sample sizen, are difficult to obtain nonparametri-
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cally even for relatively small values ofSp and Sq+ Following Masry and Tjøs-
theim ~1997!, we may consider, therefore, an ARX model with only a few
significant lags+ Let 0 # i1 , {{{ , iq11 and 0# j1 , {{{ , jp be integers with
jp # iq11 and assume

Yl1iq11
5 g1~Yl1i1, + + + ,Yl1iq! 1 g2~Xl1j1, + + + ,Xl1jp! 1 el1iq11

, (1.3)

Xl1jp 5 g3~Xl1j1, + + + ,Xl1jp21
! 1 «l1jp+ (1.4)

Here iq and jp may be large, but p andq can be small+ The values ofi1, + + + , iq11

and j1, + + + , jp are assumed to be known; the procedures for selecting these lags
were discussed in Tjøstheim and Auestad~1994b! in the univariate case+

Estimates of theg-functions given in~1+3! and ~1+4! can be used to obtain
nonparametric forecasts; i+e+, estimate of the regression functionm~{!,

m~x1, + + + , xp; y1, + + + , yq! 5 E$Yiq11
6Xj1 5 x1, + + + ,Xjp 5 xp; Yi1 5 y1, + + + ,Yiq 5 yq%+

(1.5)

The interest in nonlinear ARX time series and regression models has been in-
creasing in econometrics and also in related fields+ Both parametric and non-
parametric modeling have been considered+ We refer to Chen and Tsay~1993!
for nonparametric additive modeling, Friedman~1991! and Lewis and Stevens
~1991! for MARS modeling, and Granger and Teräsvirta~1993! for parametric
modeling+Whereas extensive and rigorous theory has been established~see, e+g+,
Pötscher and Prucha, 1991a, 1991b! in the parametric case, less has been
achieved for the nonparametric methods+ For additive models, rigorous results
are mainly restricted to the case of independent components through the basic
paper of Stone~1985!; additional references, using the projection method, are
given subsequently+

Because the functiong3~{! can be estimated straightforwardly by kernel-type
estimation and was treated by Masry and Tjøstheim~1995!, we put the empha-
sis on the estimation ofg1~{! andg2~{! here+ Our approach to the additive mod-
eling in general and to the additive nonlinear ARX model in particular will be
through local linear fitting coupled with the projection method+ We note that
the regression functionm~{! defined in~1+5! can only identify the sum

m~x1, + + + , xp; y1, + + + , yq! 5 g1~ y1, + + + , yq! 1 g2~x1, + + + , xp!

of the functionsg1~{! and g2~{! in the ARX system+ Define the projection as
follows:

PY~ y1, + + + , yq! 5 E$m~Xj1, + + + ,Xjp; y1, + + + , yq!%

5 g1~ y1, + + + , yq! 1E
R p

g2~x1, + + + , xp! dF~x1, + + + , xp!, (1.6)

whereF~{! is the joint distribution function ofXj1, + + + ,Xjp+ We are able to iden-
tify g1~{! up to an additive constant+ The functiong2~{! can be retrieved like-
wise by projecting on theX-variables+
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Projections were introduced in Auestad and Tjøstheim~1991!, and they were
more systematically explored in Tjøstheim and Auestad~1994a!, in both cases
for a univariate additive model with the purpose of identifying the functional
structure of the components+ The projection idea has been formulated indepen-
dently by Linton and Nielsen~1995! under the name “marginal integration+”
For application of the projection method to additive regression models in an
i+i+d+ setting see Linton and Nielsen~1995!, Linton and Härdle~1996!, Fan,
Härdle, and Mammen~1998!, and Linton~1997!+ Masry and Tjøstheim~1997!
considered the estimation of the additive componentsg1~{! andg2~{! using the
Nadaraya–Watson approach for estimatingm~x1, + + + , xp; y1, + + + , yq! and the pro-
jection method for estimating the componentsg1~{! andg2~{!+ They established
weak consistency and asymptotic normality for the projection estimates under
a precise set of regularity conditions+

The goal of this paper is to extend the work of Masry and Tjøstheim~1997!
by using local linear fitting plus the projection method to estimate the additive
componentsg1~{! andg2~{! of the regression functionm~x1, + + + , xp; y1, + + + , yq!+

Local linear regression estimation, and more generally local polynomial fit-
ting, was introduced originally by Stone~1977! and studied by Cleveland~1979!,
Fan~1992, 1993!, Ruppert and Wand~1994!, Masry~1996a, 1996b!, Masry and
Fan ~1997!, and many others+ See the book of Fan and Gijbels~1996! for ad-
ditional references+ Local polynomial fitting has significant advantages over
Nadaraya–Watson regression estimates+ It reduces the bias~Fan, 1992!, and it
adapts automatically to the boundary of design points~see Fan and Gijbels,
1996!+ Using a minimax argument, Fan~1993! showed that within the class of
linear estimators that includes kernel and spline estimates, the local linear esti-
mators achieve the best possible constant and rates of convergence+

Our formulation is not actually limited to the ARX model~1+3! and~1+4! but
deals with the general additive regression model+ We proceed as follows: Let
$Xl ,Yl % be jointly stationary processes+ For integers 0# i1 , {{{ , iq11 and
0 # j1 , {{{ , jp, define the regression function

m~x1, + + + , xp; y1, + + + , yq!

5 E$f~Yiq11!6Xj1 5 x1, + + + ,Xjp 5 xp; Yi1 5 y1, + + + ,Yiq 5 yq%, (1.7)

wheref~{! is an arbitrary measurable function on the real line and it is assumed
that E6f~Yiq11

!6 , `+ The introduction off~{! allows us to estimate condi-
tional distributions~f~Y! 5 I ~Y # u!! and conditional moments~f~Y! 5 Yr !+
We assume that the regression functionm~x1, + + + , xp; y1, + + + , yq! has the additive
decomposition

m~x1, + + + , xp; y1, + + + , yq! 5 g1~ y1, + + + , yq! 1 g2~x1, + + + , xp!+ (1.8)

Such a decomposition holds, for example, for the ARX model~1+1! and ~1+2!+
Using local linear fitting coupled with the projection method, we establish weak
consistency~with rates! and asymptotic normality for the projection estimates
of g1~{! andg2~{!+ Explicit asymptotic expressions for the bias and variance of
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the projection estimates are given+ The results hold under a set of regularity
conditions on the processes$Xl ,Yl %+ In particular, it is assumed that$Xl ,Yl % are
strongly mixing with appropriate algebraic decay for their mixing coefficient+
The results can be applied, in particular, to the ARX model~1+3! and~1+4!+We
would like to emphasize that, under the usual set of regularity conditions, the
ARX model ~1+3! and ~1+4! is Markovian in nature and thus one can exploit
this property in any direct analysis of the ARX system~1+3! and ~1+4!+ On the
other hand, the general additive nonlinear regression model~1+7! and~1+8!, with
which we are concerned, does not assume any Markovian structure, leading to
a considerably more complex analysis+

The organization of the paper is as follows: In Section 2, we define the pro-
jection estimates+ Preliminary results are given in Section 3+ The weak consis-
tency with rates is presented in Section 4, and the asymptotic normality is
established in Section 5+ Section 6 provides a discussion of the results of the
paper+ The derivations of the propositions and theorems stated in Sections 3, 4,
and 5 are presented in Section 7+ The Appendix contains the proofs of certain
crucial lemmas needed in Section 4+

2. ESTIMATION PROCEDURE

Let

uXl 5 ~Xl1j1, + + + ,Xl1jp!; sYl 5 ~Yl1i1, + + + ,Yl1iq!; uZl 5 ~ uXl , sYl !

and

tx 5 ~x1, + + + , xp!; ry 5 ~ y1, + + + , yq!; sz5 ~ tx, ry!+

Then the regression function~1+7! can be written as

m~ tx, ry! 5 E$f~Yl1iq11
!6 uXl 5 tx, sYl 5 ry%+ (2.1)

We assume throughout the paper that the second order partial derivatives of
m~ ss! exist and are continuous at the pointsz+ We can approximatem~ ss! locally
by a multivariate polynomial at pointsz as follows:

m~ ss! ' b0 1 ~ ss2 sz! nb1, (2.2)

whereb0 5 m~ sz!, nb1
T 5 ]m~ ss!0] ts6 ss5 sz, and nb1

T denotes the transpose ofnb1 ~ nb1

is a column vector!+ Note that nbT 5 ~b0, nb1
T ! depends onsz+ Let K~ tu! be a

kernel function onRd with d 5 p 1 q andh 5 hn be a bandwidth parameter+
Given the observations$Xl ,Yl % l50

n , we consider the multivariate weighted least
squares:

(
l50

n1

$f~Yl1iq11
! 2 b0 2 ~ uZl 2 sz! nb1%2Kh~ uZl 2 sz!, (2.3)
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where n1 5 n 2 1 2 iq11, assumed to be positive, and Kh~ sz! 5 K~ sz0h!0hd+
Minimizing ~2+3! with respect tob0 and nb1, one obtains estimates ofb0 and nb1,
respectively+ The minimization of~2+3! leads to

Znb~ sz! 5 S Zb0~ sz!

Znb1~ sz!D5 QSn
21~ sz! stn~ sz!, (2.4)

where

Q 5 diag$1, hn
21, + + + , hn

21%, Sn 5 Sn~ sz! 5Ssn,0~ sz! ssn,1
T ~ sz!

ssn,1~ sz! Sn,2~ sz!D,
and

stn~ sz! 5Stn,0~ sz!

stn,1~ sz!D
with

tn,0~ sz! 5
1

n1 1 1 (
l50

n1

f~Yl1iq11
!Kh~ uZl 2 sz!, (2.5)

stn,1~ sz! 5
1

n1 1 1 (
l50

n1 S uZl 2 sz
h

DT

f~Yl1iq11
!Kh~ uZl 2 sz!, (2.6)

sn,0~ sz! 5
1

n1 1 1 (
l50

n1

Kh~ uZ1 2 sz!, (2.7)

ssn,1~ sz! 5
1

n1 1 1 (
l50

n1 S uZl 2 sz
h

DT

Kh~ uZl 2 sz!, (2.8)

and

Sn,2~ sz! 5
1

n1 1 1 (
l50

n1 S uZl 2 sz
h

DTS uZl 2 sz
h

DKh~ uZl 2 sz!+ (2.9)

Therefore, our local linear estimator ofm~ sz! is

[m~ sz! 5 Zb0~ sz! 5 se1
T Znb~ sz! 5 se1

TQSn
21~ sz! stn~ sz!, (2.10)

where se1 5 ~1,0, + + + ,0!T+
We now employ the projection technique to estimateg1~ ry!, essentially up to

a constant factor~see~1+6!!+ To this end, let D1 be a compact subset ofRp and
D2 be a compact subset ofRq and let D 5 D1 3 D2+ Define the weighting
function w~{,{! to be continuous onRd such thatw~ tx, ry! # 1 and

LOCAL PROJECTION ESTIMATION OF ARX MODELS 469



w~ tx, ry! 5 H1 for ~ tx, ry! [ D0

0 for ~ tx, ry! Ó D,

whereD0 5 D1,0 3 D2,0, and Di,0 is a subset ofDi such that volume~Di ! 2
volume~Di,0! , « for some« . 0 for i 5 1,2+ The purpose of introducing a
weighting scheme here is to make estimates efficient and to screen out extreme
observations~see, e+g+, Tjøstheim and Auestad, 1994a; Masry and Tjøstheim,
1997!+ Define the projection

PY,w~ ry! 5 E$m~ uX0, ry!w~ uX0, ry!%+ (2.11)

We have

PY,w~ ry! 5 g1~ ry!E$w~ uX0, ry!% 1 E$g2~ uX0!w~ uX0, ry!%+

Because

E$w~ uX0, ry!% 5E
D1,0

f uX0
~ tu! d tu 1E

D12D1,0

w~ tu, ry! f uX0
~ tu! d tu,

the first term on the right-hand side approaches one asD1,0 becomes large, and
the second term is small for small«+ Thus, we can identifyg1~ ry! for ry [ D2 up
to a multiplicative and additive constant, and the multiplicative constant will
be close to 1 when the supportD of w~{,{! is taken to be large enough+

We now estimatePY,w~ ry! by

ZPY,w~ ry! 5
1

n2 1 1 (
l50

n2

[m~ uXl , ry!w~ uXl , ry!, (2.12)

wheren2 5 n 2 1 2 jp and [m~ tx, ry! is given by~2+10!+ Similarly, we take the
projection of the functiong2~ tx! as

PX,w~ tx! 5 E$m~ tx, sY0!w~ tx, sY0!% 5 g2~ tx!E$w~ tx, sY0!% 1 E$g1~ sY0!w~ tx, sY0!%,

and we estimatePX,w~ tx! by

ZPX,w~ tx! 5
1

n3 1 1 (
l50

n3

[m~ tx, sYl !w~ tx, sYl !,

wheren3 5 n 2 1 2 iq+ In the sequel we focus our attention onPY,w~{! and
ZPY,w~{!; similar arguments apply toPX,w~{! and ZPX,w~{!+ Henceforth, we drop

the subscriptw from PY,w~{! and ZPY,w~{!+

3. PRELIMINARIES

Our goal in this section is to obtain a centered expression for the estimation
error ZPY~ ry! 2 PY~ ry! and an expression for the bias term+ This requires an ap-
propriate Taylor series expansion and also uniform convergence in probability
of Sn~ tx, ry!+ Details are given in Section 7+ Here we only state the conditions
and the result+
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Let F~ tx! be the distribution function ofuX0 and ZF~ tx! be the corresponding
empirical distribution function ZF~ tx! 5 ~n2 1 1!21 (l50

n2 I ~ uXl # tx!+ We center
the vector stn~ sz! of ~2+4! by

tn,0
* ~ sz! 5

1

n1 1 1 (
l50

n1

dl Kh~ uZl 2 sz! (3.1)

and

stn,1* ~ sz! 5
1

n1 1 1 (
l50

n1 S uZl 2 sz
h

DT

dl Kh~ uZl 2 sz!, (3.2)

where

dl 5 f~Yl1iq11
! 2 m~ uZl !+ (3.3)

The following conditions are needed in the proof of Proposition 1+

Condition 1+

~i! The kernelK~{! is symmetric with*Rd K~ tu! d tu 5 1, is bounded with compact
support~say, K~ tu! 5 0 for 7 tu7 . 1!, and is factorableK~ tu! 5 K1~ tu'!K2~ tu''!,
tu' [ R p, tu'' [ Rq+

~ii ! E$6f~Y0!6%n , ` for somen . 2+
~iii ! The probability densitiesf ~ tu, sv! and f uX0

~ tu! are continuous onD and D1,
respectively+

~iv! The conditional density

f~ uX0, sY0, uXl , sYl !6~Yiq11,Yl1iq11
! # A3 , `

for all l $ 1+
~v! The conditional density

f~ uX0, sY0!6Yiq11
# A4 , `+

~vi! The processes$Xl ,Yl % are strongly mixing with(l51
` l a$a~l !%1220n , ` for

somen . 2 anda . 1 2 20n+

Remark 1+ We remark that uX0 and uXl may overlap whenl # jp 2 j1+ The sit-
uation is similar for sY0 and sYl whenl # iq 2 i1+ In Condition 1~iv! the joint den-
sity is meant to be that of the distinct random variables in the set~ uX0, sY0, uXl , sYl !+

Condition 2+ Let D be the compact support of the weight functionw~ tx, ry!+
Then

inf
~ tx, ry![D

f ~ tx, ry! 5 A2 . 0

andm~ tx, ry! has continuous second-order partial derivatives onD+

Condition 3+ The kernelK1~{! has an integrable Fourier transform+
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PROPOSITION 1+ Under Conditions1–3, and nhn
p1q r ` and nhn

2p r `,
we have

ZPY~ ry! 2 PY~ ry! 2 BIAS~ ry! 5 J1~ ry! 1 op~~nhn
q!2102! 1 op~hn

2! 1 Op~n2102!,

(3.4)

where

J1~ ry! 5E
R p

w~ tx, ry!

f ~ tx, ry!
stn,0* ~ tx, ry! d ZF~ tx!, (3.5)

BIAS~ ry! 5
hn

2

2
E

R p
w~ tu, ry!tr~M 1,1V ~ tu, ry!! dF~ tu!, (3.6)

the moment matrixM is given by

M 5 1
1 s0T

s0 E
Rd
tuT tuK~ tu! d tu2 5S1 s0T

s0 M 1,1
D, (3.7)

and V 5 V ~ sz! 5 ~]2m~ sz!0] szT] sz!d3d is the Hessian matrix of m~ sz!+

It is conjectured that the additional assumption on the bandwidth~nhn
2p r `!

made in Proposition 1 is not necessary but we were not able to dispense with it
~see Remark A in the Appendix!+

We remark that by~3+6! the bias term, represented by BIAS~ ry!, is of order
hn

2 and is proportional to the integrals~with respect to tx! of the second-order
partial derivativesV ~ tx, ry! of the regression functionm~ tx, ry!+ Also note that
the first term on the right-hand side of~3+6! is centered viatn,0

* ~ tx, ry!+

4. WEAK CONSISTENCY AND RATES

In this section we obtain the second-order properties of the termJ1~ ry! on the
right-hand side of~3+4! that lead to establishing the weak consistency ofZPY~ ry!+

We first decomposeJ1~ ry! as the sum of two integrals:

J1~ ry! 5E
R p

w~ tx, ry!

f ~ tx, ry!
tn,0
* ~ tx, ry! dF~ tx! 1E

R p

w~ tx, ry!

f ~ tx, ry!
tn,0
* ~ tx, ry! d$ ZF~ tx! 2 F~ tx!%

[ J1,1~ ry! 1 J1,2~ ry!+ (4.1)

Define

H~ tx, ry! 5
w~ tx, ry!

f ~ tx, ry!
f uX0

~ tx! (4.2)
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and assume that

K~ tu! 5 K1~ tu' !K2~ tu'' !, tu' [ R p, tu'' [ Rq,

so thatKh~ tu! 5 K1, h~ tu'!K2, h~ tu''! with K1, h~ tu'! 5 K1~ tu'0h!0hp andK2, h~ tu''! 5
K2~ tu''0h!0hq+ Then, substitutingtn,0

* ~ sz! into J1,1~ ry!, we obtain

J1,1~ ry! 5
1

n1 1 1 (
l50

n1

dl K2, h~ sYl 2 ry! HE
R p

H~ tx, ry!K1, h~ uXl 2 tx! d txJ +
Let

Hn
*~ tu, ry! 5E

R p
H~ tx, ry!K1, h~ tu 2 tx! d tx+ (4.3)

Then

J1,1~ ry! 5
1

n1 1 1 (
l50

n1

dl H~ uXl , ry!K2, h~ sYl 2 ry!

1
1

n1 1 1 (
l50

n1

dl $Hn
*~ uXl , ry! 2 H~ uXl , ry!%K2, h~ sYl 2 ry!

[ Gn~ ry! 1 Gn
' ~ ry!+ (4.4)

Hence

J1~ ry! 5 Gn~ ry! 1 Gn
' ~ ry! 1 J1,2~ ry!+ (4.5)

We show that the contribution ofGn
' ~ ry! and J1,2~ ry! is negligible relative to

Gn~ ry!+ The proofs of the following two lemmas are quite involved and are rel-
egated to the Appendix+

LEMMA 1 + Under Conditions1 and 2, and nhn
p1q r `,

Gn
' ~ ry! 5 op~~nhn

q!2102!+

LEMMA 2 + Under Conditions1–3 and nhn
p1q r ` and nhn

2p r `,

J1,2~ ry! 5 op~~nhn
q!2102!

at continuity points of the function a2~ sv, ry! defined in~4+11! ~subsequently! as
a function of sv+

By ~3+4!, ~4+5!, and Lemmas 1 and 2, we have the following proposition+
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PROPOSITION 2+ Under Conditions1–3 and nhn
p1q r ` and nhn

2p r `,

ZPY~ ry! 2 PY~ ry! 2 BIAS~ ry! 5 Gn~ ry! 1 op~hn
2! 1 op~~nhn

q!2102!+ (4.6)

We now proceed to obtain the asymptotic variance ofGn~ ry!+ By ~4+4!,

Gn~ ry! 5
1

n1 1 1 (
l50

n1

pn, l (4.7)

with

pn, l 5 pn, l ~ ry! 5 dl H~ uXl , ry!K2, h~ sYl 2 ry!+ (4.8)

Then,

~n1 1 1!Var~Gn~ ry!! 5 Var~pn,0! 1 2 (
l51

n1 S12
l

n1 1 1DCov~pn,0,pn, l !+ (4.9)

Define

s2~ tu, sv! 5 Var$f~Yiq11
!6 uX0 5 tu, sY0 5 sv%, (4.10)

a2~ sv, ry! 5E
R p

H 2~ tu, ry!s2~ tu, sv! f ~ tu, sv! d tu, (4.11)

and

7K2722 5E
R p

$K~ tu!%2 d tu+ (4.12)

THEOREM 1+ Under Conditions1 and 2 and nhn
q r `, we have

~a!

hn
q Var~pn,0! r 7K2722 a2~ ry, ry!

at continuity points of a2~ sv, ry! as a function of sv+
~b!

hn
q (

l51

n1

6Cov~pn,0,pn, l !6 5 o~1!, as nr `+

~c!

nhn
q Var~Gn~ ry!! r 7K2722 a2~ ry, ry!

at continuity points of a2~ sv, ry! as a function of sv+

The proof of Theorem 1 is given in Section 7+ We now state the weak con-
sistency of the projection estimateZPY~ ry! in the following theorem; its proof is
given in Section 7+
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THEOREM 2+ Under Conditions1–3, and the bandwidth hn satisfying
nhn

p1q r `, nhn
2p r `, nhn

q14 5 O~ log n!, we have

~a!

S nhn
q

log n
D102

~ ZPY~ ry! 2 PY~ ry! 2 BIAS~ ry!! P
&& 0, as nr `+

~b! If, in addition, nhn
q14 5 o~ log n!, then

S nhn
q

log n
D102

~ ZPY~ ry! 2 PY~ ry!! P
&& 0, asn r `+

Remark 2+ Note that the rate of the convergence in Theorem 2 is the ex-
pected one given thatry [ Rq+ The requirement thatnhn

p1q r ` arises from
the nature of the projection method, which utilizes the regression estimate of
m~ tx, ry!+ This condition was also required in Masry and Tjøstheim~1997! where
a Nadaraya–Watson regression estimator was employed+ The requirement that
nhn

2p r ` was already discussed following the statement of Proposition 1+

5. ASYMPTOTIC NORMALITY

In this section, we establish the asymptotic normality of the projection estimate
ZPY~ ry!+ We need the following condition on the mixing coefficienta~l !+

Condition 4+ Let hn r 0 such thatnhn
q r ` asn r `+ Assume that there is

a sequence$vn% of positive integers satisfyingvn r ` andvn 5 o~%nhn
q! such

that ~n0hn
q!102a~vn! r 0+

Before we proceed with the statement of the asymptotic normality result
~Theorem 3, which follows!, we discuss a technical continuity requirement that
is needed in its proof+ It is due to the presence of the arbitrary transformation
f~{!, which requires a truncation argument to be employed+ Specifically, for
any L . 0, let

tL~ y! 5 yI ~6y6# L!, (5.1)

whereL is a fixed truncation point+ Put

mL~ tx, ry! 5 E$tL~f~Yiq11
!!6 uX0 5 tx, sY0 5 ry%, (5.2)

sL
2~ tx, ry! 5 Var@tL~f~Yiq11

!!6 uX0 5 tx, sY0 5 ry# , (5.3)

IsL
2~ tx, ry! 5 Var@f~Yiq11

! I $6f~Yiq11
!6 . L%6 uX0 5 tx, sY0 5 ry# , (5.4)

aL
2~ sv, ry! 5E

R p
H 2~ tu, ry!sL

2~ tu, sv! f ~ tu, sv! d tu, (5.5)
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and

IaL
2~ sv, ry! 5E

R p
H 2~ tu, ry! IsL

2~ tu, sv! f ~ tu, sv! d tu+ (5.6)

As in Theorem 1, where the quadratic-mean convergence holds at the continu-
ity point sv 5 ry of the functiona2~ sv, ry! ~as a result of Bochner’s lemma!, the
quadratic-mean convergence of the corresponding truncated variables requires
that the functionsaL

2~ sv, ry! and IaL
2~ sv, ry! be continuous at the pointsv 5 ry for

everyL . 0+We state this technical continuity requirement as Condition 5 sub-
sequently+ Note that in view of the relationships~5+5! and ~5+6!, a sufficient
condition is that the functionsmL~ tu, sv!, s2~ tu, sv!, and Is2~ tu, sv!, are continuous
onD1~ ry! [ D1 3 $ ry% for everyL . 0 ~see Lemma A in the Appendix for details!+

Condition 5+ For everyL . 0, the functionsaL
2~ sv, ry! and IaL

2~ sv, ry! are contin-
uous at the pointsv 5 ry+

Condition 6+ The bandwidth parameterhn satisfieshn r 0, nhn
p1q r `,

nhn
q14 5 O~1!, nhn

2p r `, asn r `+

THEOREM 3+ Under Conditions1–6, we have, as nr `,

~nhn
q!102~ ZPY~ ry! 2 PY~ ry! 2 BIAS~ ry!! L

&& N~0, 7K2722 a2~ ry, ry!!

at continuity pointssv5 ry of a2~ sv, ry!, where the asymptoticvariance a2~ ry, ry! is
given in ~4+11!+

Remark 3+ We provide a sufficient condition for the mixing coefficienta~l !
to satisfy Conditions 1~vi! and 4+ Suppose thathn 5 An2u~0 , u , 10q, A . 0!,
vn 5 ~nhn

q0 log n!102, anda~l ! 5 O~l 2c! for somec . 0+ Then Condition 1~vi!
is satisfied forc . 2~1 2 10n!0~1 2 20n! and Condition 4 is satisfied ifc .
~1 1 uq!0~1 2 uq!+ Hence both conditions are satisfied if

a~l ! 5 O~l 2c!, c . maxH 11 uq

12 uq
,
2~12 10n!

12 20n J +
Note that this is a trade-off between the ordern of the moment off~Y0! and
the rate of decay of the mixing coefficient; the larger the ordern, the weaker is
the decay rate ofa~l !+

Remark 4+ Theorem 3 shows that the projection estimateZPy~ ry! has the fol-
lowing asymptotic expressions for its bias and variance~of the asymptotic
distribution!

bias~ ZPY~ ry!! '
hn

2

2
E

R p
w~ tu, ry!tr~M 1,1V ~ tu, ry!! f uX0

~ tu! d tu [ hn
2G~ ry!
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and

Var~ ZPY~ ry!! ' ~nhn
q!217K2722 a2~ ry, ry!

with

a2~ ry, ry! 5E
R p

w2~ tu, ry!

f ~ tu, ry!
f uX0

2 ~ tu!s2~ tu, ry! d tu+

The asymptotically optimal bandwidth is then given by

hn 5 Sq7K2722 a2~ ry, ry!

4G2~ ry!
D10~q14!

{
1

n10~q14! ,

so that the corresponding rate of the “mean-square convergence” is
O~n240~q14! !+ Note however that Condition 6 imposes certain constraints on
the bandwidth parameterhn: in particular, the optimal bandwidth satisfies Con-
dition 6 only if p , min~4,~q 1 4!02!+

The issue of selecting the bandwidth in a data-driven fashion for our projec-
tion estimates remains open+We note that for local linear regression estimation
with i+i+d+ data, data-driven bandwidth selection was recently considered by Fan
and Gijbels~1995! and Ruppert, Sheather, and Wand~1995!+ In the context of
this paper, where the underlying processes$Xl ,Yl % are strongly mixing, the prob-
lem is quite complex analytically+

6. DISCUSSION

We have employed local linear fitting along with the projection method to ob-
tain the estimates of the components of additive nonlinear regression models of
the form~1+8!+ The main results of the paper are Theorem 2, which establishes
rates of convergence~in probability! for the projection estimates, and Theo-
rem 3, which establishes the asymptotic normality of the projection estimates+
Asymptotic expressions for the bias and variance~of the asymptotic distribu-
tion! are also given+

The results of the paper can be applied to the ARX model~1+3! and ~1+4!+
We first note that in general the ARX model~1+3! and~1+4! need not be station-
ary without constraints on the growth of the functionsg1~ ry! andg2~ tx! at infin-
ity ~Tjøstheim, 1990!+ Under Assumption 3+3 in Masry and Tjøstheim~1997!
~reproduced in the Appendix as Condition A!, it is shown in Lemma 3+1 of
Masry and Tjøstheim~1997! that the ARX model~1+3! and ~1+4! is stationary
and strongly mixing with geometric decay, a~l ! 5 e2al, a . 0+ It then follows
that the assumptions imposed ona~l ! in Conditions 1~vi! and 4 are automati-
cally satisfied for the ARX system~1+3! and ~1+4! under Condition A+ Assum-
ing that the other technical conditions of this paper are satisfied, the weak
consistency~Theorem 2! and the asymptotic normality~Theorem 3! results for
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the general additive nonlinear regression model~1+7! and~1+8! hold, in partic-
ular, for the ARX model~1+3! and~1+4!+

As was mentioned in the introduction, the key ideas of this paper are similar
to those used in Masry and Tjøstheim~1997!, except that we employ local lin-
ear fitting instead of local constant fitting+ It is of interest to compare the two
procedures for estimating the additive components although it is well known
that the local linear fitting reduces the bias in the standard nonparametric re-
gression context~see Fan and Gijbels, 1996, p+ 16!+ In view of Theorem 3 and
Corollary 4+2 in Masry and Tjøstheim~1997!, it follows immediately that both
procedures have the same asymptotic variance for the additive components+ To
see the gain for the bias using local linear fitting, we first derive the asymptotic
bias for the Nadaraya–Watson estimator under Condition 7~which follows!,
which is stated here as the following lemma; its proof is given in the Appendix+
Note that the “random bias” for the Nadaraya–Watson estimator, given in Cor-
ollary 4+2 of Masry and Tjøstheim~1997!, takes the form

An~ ry! 5E
R p

w~ tx, ry!Cn~ tx, ry! d ZF~ tx!, (6.1)

where

Cn~ sz! 5
E$tn,0~ sz!% 2 m~ sz! f ~ sz! 2 m~ sz!@E$sn,0~ sz!% 2 f ~ sz!#

E$sn,0~ sz!%
+ (6.2)

Condition 7+ f ~ tx, ry! has continuous second-order partial derivatives onD+

LEMMA 3 + Under Condition7, the “ random bias” An~ ry! of ~6+1! has the
following asymptotic expression:

An~ ry! 5 BIAS~ ry! 1 hn
2E

R p

w~ tx, ry! f '~ tx, ry!M 1,1$m'~ tx, ry!%T

f ~ tx, ry!
f ~ tx! d tx 1 op~hn

2!,

(6.3)

whereBIAS~ ry! is given in ~3+6! and f '~ sz! and m'~ sz! are vectors representing
the partial derivatives of f~ sz! and m~ sz!, respectively+

Note that the first term BIAS~ ry! on the right-hand side of~6+3! is the asymp-
totic bias of the local linear estimator in the additive models+ It follows from
Lemma 3 that the Nadaraya–Watson estimator suffers from large bias, particu-
larly in regions where the derivatives of the regression functionm~ sz! or the
underlying density functionf ~ sz! are large as a result of the second term on the
right-hand side of~6+3!+ It can have a large bias even when the true regression
function m~ sz! is linear+ The bias can also be large whenf '~ sz!0f ~ sz! is large+

In this paper we assumed that the bandwidth parameterhn is identical in
all directions, i+e+, Kh~ tu! 5 h2dK~ tu0h!+ It may be desirable to have distinct
smoothing in different directions+ This can be accomplished by replacing the
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kernel Kh~ tu! 5 h2dK~ tu0h! by 6H 621K~H21 tu! whereH is a symmetric posi-
tive definite bandwidth matrix and6H 6 is its determinant as was done in Rob-
inson ~1983! and Ruppert and Wand~1994!+ In particular, H can be diagonal
H 5 diag$h1, + + + , hd%+ The analysis will go through with the obvious modifi-
cations such asn6H 6 r ` replacingnhd r `+

This paper established the weak consistency and asymptotic normality of the
components of additive nonparametric regression models of the form~1+8!+We
have not addressed the issue of establishing almost sure uniform convergence
rates because of space limitations+ However, in view of the results of Masry
~1996b! for local polynomial regression, we expect that under appropriate set
of regularity conditions, we have

sup
ry[D2

6 ZPY~ ry! 2 PY~ ry! 2 BIAS~ ry!6 5 OSS ln n

nhn
qD102D almost surely

and of course supry[D2
6BIAS~ ry!6 5 O~hn

2!+ This issue will be pursued
elsewhere+

As was noted in Remark 4, the problem of selecting the bandwidthhn in
date-driven fashion is quite complex under the general setting of this paper and
remains open+

7. DERIVATIONS

In this section, we present the derivations of Proposition 1 and Theorems 1, 2,
and 3+

We first note that by~2+10!–~2+12!,

ZPY~ ry! 5E
R p

w~ tx, ry! se1
T Znb~ tx, ry! d ZF~ tx!

and

PY~ ry! 5E
R p

w~ tx, ry! se1
T nb~ tx, ry! dF~ tx!,

so that

ZPY~ ry! 2 PY~ ry! 5E
R p

w~ tx, ry! se1
T$ Znb~ tx, ry! 2 nb~ tx, ry!% d ZF~ tx!

1 E
R p

w~ tx, ry!m~ tx, ry! d$ ZF~ tx! 2 F~ tx!%

[ I1 1 I2+

The following lemma shows thatI2 is relatively negligible+
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LEMMA 4 + Let the processes$Xl ,Yl % be strongly mixing with mixing coeffi-
cient a~l ! satisfying(l51

` a~l ! , `+ Then, I2 5 Op~n2102!+

Proof+ See Lemma 6+1 in Masry and Tjøstheim~1997!+ It follows that

ZPY~ ry! 2PY~ ry! 5E
R p

w~ tx, ry! se1
T$ Znb~ tx, ry! 2 nb~ tx, ry!% d ZF~ tx! 1 Op~n2102!+ (7.1)

To establish the convergence properties of the first term on the right-hand side
of ~7+1!, we center the vectorstn~ sz! in ~2+4! as in~3+1! and~3+2!:

tn,0
* ~ sz! 5

1

n1 1 1 (
l50

n1

dl Kh~ uZl 2 sz! (7.2)

and

stn,1* ~ sz! 5
1

n1 1 1 (
l50

n1 S uZl 2 sz
h

DT

dl Kh~ uZl 2 sz!+ (7.3)

Therefore,

tn,0~ sz! 2 tn,0
* ~ sz! 5

1

n1 1 1 (
l50

n1

m~ uZl !Kh~ uZl 2 sz! (7.4)

and

stn,1~ sz! 2 stn,1* ~ sz! 5
1

n1 1 1 (
l50

n1 S uZl 2 sz
h

DT

m~ uZl !Kh~ uZl 2 sz!+ (7.5)

Expandingm~ uZl ! in a Taylor series around7 uZl 2 sz7 # h, becausem~ sz! has
continuous second-order partial derivatives, we have

m~ uZl ! 5 b0 1 ~ uZl 2 sz! nb1 1 2
12~ uZl 2 sz!V ~ sz!~ uZl 2 sz!T 1 op~hn

2!, (7.6)

whereV 5 V ~ sz! 5 ~]2m~ sz!0] szT] sz!d3d+ We rewrite the quadratic term as fol-
lows: BecauseV is symmetric, let vech~V! be the~d02!~d 1 1! column vector
representing the stacked up columns ofV that are on and below the diagonal of
V+ Then taTV ta 5 vechT~2V 2 diag~V!!vech~ ta taT ! for any vector ta+ Substitut-
ing ~7+6! in ~7+2!–~7+5!, we have

tn,0~ sz! 2 tn,0
* ~ sz! 5 b0~ sz!sn,0~ sz! 1 hn ssn,1

T ~ sz!b1~ sz!

1
hn

2

2
tbn,1
T ~ sz!vech~2V 2 diag~V!! 1 op~hn

2!
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and

stn,1~ sz! 2 stn,1* ~ sz! 5 b0~ sz! ssn,1~ sz! 1 hnSn,2~ sz!b1~ sz!

1
hn

2

2
Bn,2~ sz!vech~2V 2 diag~V!! 1 op~hn

2!,

where

tbn,1~ sz! 5
1

n1 1 1 (
l50

n1

vechHS uZl 2 sz
h

DTS uZl 2 sz
h

DJKh~ uZl 2 sz!

and

Bn,2~ sz! 5
1

n1 1 1 (
l50

n1 S uZl 2 sz
h

DT

vechT HS uZl 2 sz
h

DTS uZl 2 sz
h

DJKh~ uZl 2 sz!+

Therefore,

stn~ sz! 2 stn*~ sz! 5 Sn~ sz!Q21 nb~ sz! 1
hn

2

2
Bn~ sz!vech~2V 2 diag~V!! 1 op~hn

2!,

where

Bn~ sz! 5 S tbn,1
T ~ sz!

Bn,2~ sz!D+ (7.7)

By ~2+4!, we have

stn*~ sz! 5 Sn~ sz!Q21~ Znb~ sz! 2 nb~ sz!! 2
hn

2

2
Bn~ sz!vech~2V 2 diag~V!! 1 op~hn

2!,

so that

Znb~ sz! 2 nb~ sz! 5 QSn
21~ sz! stn*~ sz! 1

hn
2

2
QSn

21~ sz!Bn~ sz!vech~2V 2 diag~V!!

1 QSn
21op~hn

2!+ (7.8)

Equation~7+8! is crucial to the analysis because it gives an expression for the
estimation error Znb~ sz! 2 nb~ sz! in terms of a centeredstn*~ sz! and a “bias” term+
Substituting~7+8! into ~7+1!, we obtain

ZPY~ ry! 2 PY~ ry!

5E
R p

w~ tx, ry! se1
TQSn

21~ tx, ry! stn*~ tx, ry! d ZF~ tx!

1
hn

2

2
E

R p
w~ tx, ry! se1

TQSn
21~ tx, ry!Bn~ tx, ry!vech~2V 2 diag~V!! d ZF~ tx!

1 op~hn
2!E

R p
w~ tx, ry! se1

TQSn
21~ tx, ry! d ZF~ tx! 1 Op~n2102!+ (7.9)
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We now state the quadratic-mean convergence of the~d 1 1! 3 ~d 1 1! stochas-
tic matrix Sn~ sz! and of the~d 1 1! 3 ~d02!~d 1 1! stochastic matrixBn~ sz!+

LEMMA 5 + Under Condition1 and nhn
p1q r `, we have

sup
~ tx, ry![R p1q

6Sn~ tx, ry! 2 ~M f ~ tx, ry!6 5 op~1!

and

sup
~ tx, ry![R p1q

6Bn~ tx, ry! 2 ~Bf ~ tx, ry!6 5 op~1!,

where

M 1 5 1 E
Rd

K~ tu! d tu E
Rd
tuK~ tu! d tu

E
Rd
tuTK~ tu! d tu E

Rd
tuT tuK~ tu! d tu2 5Sm0,0 vm1,0

T

vm1,0 M 1,1
D (7.10)

and

B 5 1 vechTSE
Rd
tuT tuK~ tu! d tuD

E
Rd
tuT vechT~ tuT tu!K~ tu! d tu2 + (7.11)

Proof+ See Proposition 1 and Theorem 1 in Masry~1996b!+

Proof of Proposition 1+ Observe that

Sn
21 5 S21 @I 1 ~S2 Sn!Sn

21# ,

whereS5 M 1 f ~ tx, ry!+ By Lemma 5, S2 Sn
P
&& 0 uniformly in ~ tx, ry! [ Rd+ By

Lemma 5 and Condition 2, Sn
21 P

&& M 1
210f ~ tx, ry! uniformly in ~ tx, ry! [ D pro-

vided M 1
21 exists+ It then follows that

Sn
21~ tx, ry! 5 S21~ tx, ry!~11 op~1!!, (7.12)

whereop~1! is uniform in ~ tx, ry! [ D+ Now substitute~7+12! into ~7+9! to obtain

ZPY~ ry! 2 PY~ ry!

[ E
R p

w~ tx, ry! se1
TQS21~ tx, ry! stn*~ tx, ry! d ZF~ tx!

1
hn

2

2
E

R p
w~ tx, ry! se1

TQS21~ tx, ry!B~ tx, ry! f ~ tx, ry!vech~2V 2 diag~V!! d ZF~ tx!

1 op~hn
2!E

R p
w~ tx, ry! se1

TQS21~ tx, ry! d ZF~ tx! 1 Op~n2102! 1 D~ ry!, (7.13)
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where the error term

D~ ry! 5E
R p

w~ tx, ry! se1
TQ@Sn

21~ tx, ry! 2 S21~ tx, ry!# stn*~ tx, ry! d ZF~ tx!

1
hn

2

2
E

R p
w~ tx, ry! se1

TQ@Sn
21~ tx, ry!Bn~ tx, ry! 2 S21~ tx, ry!B~ tx, ry!# f ~ tx, ry!

3 vech~2V 2 diag~V!! d ZF~ tx!

1 op~hn
2!E

R p
w~ tx, ry! se1

TQ@Sn
21~ tx, ry! 2 S21~ tx, ry!# d ZF~ tx!+ (7.14)

By assumptionM 1 5 M and

se1
TQS21~ tx, ry! 5

se1
TM 21

f ~ tx, ry!
5

se1
T

f ~ tx, ry!
+

Thus,

ZPY~ ry! 2 PY~ ry! 5 J1~ ry! 1 J2~ ry! 1 D~ ry! 1 op~hn
2! 1 Op~n2102!, (7.15)

whereJ1~ ry! is given in~3+5! and

J2~ ry! 5
hn

2

2
E

R p
w~ tx, ry!vechT~M 1,1!vech~2V 2 diag~V!! d ZF~ tx!+ (7.16)

We consider the contribution ofJ2+ We note that vechT~M 1,1!vech~2V 2
diag~V!! 5 tr~M 1,1V ~ tx, ry!!+ ThenJ2 becomes

J2 5
hn

2

2

1

n2 1 1 (
l50

n2

w~ uXl , ry!tr~M 1,1V ~ uXl , ry!!+ (7.17)

Because the summands in~7+17! are bounded random variables, then as in
Lemma 4, we have

J2

hn
2

P
&&

1

2
E

R p
w~ tu, ry!tr~M 1,1V ~ tu, ry!! dF~ tu!+ (7.18)

To complete the proof of the proposition, it suffices to show thatD~ ry! 5
op~hn

2! 1 op~~nhn
q!2102!+ By ~7+12!, it is seen that the third term on the right-

hand side of~7+14! is clearlyop~hn
2!; for the second term, observe that

sup
~ tx, ry![D

6Sn
21~ tx, ry!Bn~ tx, ry! 2 S21~ tx, ry!B~ tx, ry!6 5 op~1!

LOCAL PROJECTION ESTIMATION OF ARX MODELS 483



component-wise and that the integrand is bounded on the compact domain of
integration+ Hence this term is alsoop~hn

2!+ It follows that

D~ ry! 5 op~1!E
R p

w~ tx, ry!6 tn,0* ~ tx, ry!6 d ZF~ tx! 1 op~hn
2!

[ op~1!D1~ ry! 1 op~hn
2!+ (7.19)

Under the assumptions in Proposition 1, it is shown in the Appendix, following
the line of the analysis of the termJ1~ ry! in Section 4, that

D1~ ry! 5 Op~~nhn
q!2102!+ (7.20)

This completes the proof of the proposition+ n

Proof of Theorem 1+ Note thatE~pn, l ! 5 0+ By ~4+8!, conditioning on~ uX0, sY0!,
we have

hn
q Var~pn,0! 5 hn

qE$H 2~ uX0, ry!K2, h
2 ~ sY0 2 ry!s2~ uX0, sY0!%

5E
Rq

1

hn
q K2

2S sv2 ry
hn

Da2~ sv, ry! d sv+

By Bochner’s lemmahn
q Var~pn,0! r 7K2722 a2~ ry, ry! at continuity points of

a2~ sv, ry! as a function of sv provideda2~ sv, ry! [ L1~d sv! which we proceed to
show+ It suffices to show thatE$H 2~ uX0, ry!s2~ uX0, sY0!% , `+ By ~4+2! and Con-
ditions 1~iii ! and 2

sup
tx[R p

H~ tx, ry! # A6 , `, (7.21)

andE$s2~ uX0, sY0!% , ` becauseE$f2~Y0!% , `+ For part~b!, we decompose
the sum into three terms as follows:

(
l51

n1

5 (
l51

m

1 (
l5m11

cn

1 (
l5cn11

n1

[ J7 1 J8 1 J9, (7.22)

wherem 5 max$iq 2 i1, jp 2 j1% andcn r ` such thatcnhn
q r 0 asn r `+

Clearly, there is an overlap of components inJ7 but not inJ8 or J9+ For J7, let Ip
be the number of common elements in~ uX0, uXl ! and Iq be the number of com-
mon elements in~ sY0, sYl !, 1 # l # m+ Then for 1# l # m, we have

Cov~pn,0,pn, l ! 5 E @d0dl H~ uX0, ry!K2, h~ sY0 2 ry!H~ uXl , ry!K2, h~ sYl 2 ry!# +

Note thatH~ tu, ry! 5 0 for tu Ó D1+ Also K2 has compact support+ Because
m~ tu, sv! is continuous, it follows that m~ tu, sv! is bounded over tu [ D1 and
$ sv : 7 sv 2 ry7 # 1%+ Let

A7 5 sup
tu[D1,$ sv:7 sv2 ry7#1%

6m~ tu, sv!6+ (7.23)
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Conditioning on~Yiq11
,Yl1iq11

! and using Condition 1~iv!, we obtain

6J76 # const+ E @$6f~Yiq11
!61 A7%$6f~Yl1iq11

!61 A7%#

3 E
R2d2 Ip2 Iq

H~ tu', tu'', ry!H~ tu'', tu''', ry!K2, h~ sv ', sv '' !

3 K2, h~ sv '', sv ''' ! d tu' d tu'' d tu''' d sv ' d sv '' d sv '''+

Here tu' and tu''' have dimensionsp 2 Ip and tu'' has dimensionsIp; sv ' and sv '''
have dimensionsq 2 Iq and sv '' has dimensionsIq+ Therefore,

6J76 # const+ h2 IqE$6f~Y0!61 A7%2E
R2q2 Iq

K2~ sv ', sv '' !K2~ sv '', sv ''' ! d sv ' d sv '' d sv '''

3 E
R2p2 Ip

H~ tu', tu'', ry!H~ tu'', tu''', ry! d tu' d tu'' d tu'''+

The integral over theK-functions is finite by Condition 1~i! and the integral
overH-functions is finite because of the compact support ofw~ tx, ry! and~7+21!+
Therefore,

J7 5 O~hn
2 Iq !+

Hence,

hn
qJ7 5 O~hn

q2 Iq ! 5 o~1!+ (7.24)

Next, we considerJ8 of ~7+22!+ Here, there are no overlaps betweenuZ0 and uZl +
By conditioning on~Yiq11

,Yl1iq11
! and using Condition 1~iv! and~7+23!,

6Cov~pn,0,pn, l !6

# E @~6f~Yiq11
!61 A7!~6f~Yl1iq11

!61 A7!

3 H~ uX0, ry!K2, h~ sY0 2 ry!H~ uXl , ry!K2, h~ sYl 2 ry!#

# const+ E @~6f~Yiq11
!61 A7!~6f~Yl1iq11

!61 A7!#

3 E
R2p12q

H~ tu, ry!K2~ sv!H~ tu', ry!K2~ sv ' ! d tu d sv d tu' d sv '

# const+ E$6f~Y0!61 A7%2 HE
R p

H~ tu, ry! d tuJ2

5 O~1!+

Thus,

J8 5 O~cn 2 m! and hn
qJ8 5 O~~cn 2 m!hn

q! 5 o~1! (7.25)
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as n r ` by the choice ofcn+ Finally, for J9, it follows from Davydov’s in-
equality~see, e+g+, Hall and Heyde, 1980, Corollary A+2! that

6Cov~pn,0,pn, l !6 # 8 @a~ Dl !#1220n$E6pn,06n %20n,

where Dl 5 l 1 min$i1, j1% 2 max$ jp, iq11%+ Now, conditioning onYiq11
, and

using Condition 1~v! and~7+23!, we have

E6pn,06n # A4 E$6f~Y0!61 A7%nE
R p

H n~ tu, ry! d tuE
Rq

K2, h
n ~ sv2 ry! d sv

# const+E
Rq

K2, h
n ~ sv2 ry! d sv

by Condition 1~ii ! and the compact support ofH ~ tu, ry! with respect to tu+
Therefore,

~E6pn,06n !20n #
const+

hn
2q~1210n! +

Thus,

hn
q6J96 #

const+

hn
q~1220n! (

l5cn11

`

@a~l !#1220n #
const+

hn
q~1220n! cn

a (
l5cn11

`

l a @a~l !#1220n

and withcn 5 hn
2q~1220n!0a

hn
qJ9 r 0 asn r ` (7.26)

by Condition 1~vi!+ By ~7+22! and~7+24!–~7+26!, we have

hn
q (

l50

n1

6Cov~pn,0,pn, l !6 5 o~1!,

which proves part~b!+ Part~c! follows from parts~a! and~b!+ n

Proof of Theorem 2+ By Theorem 1,

S nhn
q

log n
D102

Gn~ ry! P
&& 0, asn r `+

Part ~a! follows from ~4+6!+ Part ~b! follows from part ~a! and the fact that
BIAS~ tx, ry! 5 O~hn

2! by ~3+6!+ n

Proof of Theorem 3+ By ~4+6! and Condition 6,

~nhn
q!102~ ZPY~ ry! 2 PY~ ry! 2 BIAS~ ry!! 5 ~nhn

q!102Gn~ ry! 1 op~1!,
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so it suffices to show that

~nhn
q!102Gn~ ry! L

&& N~0, 7K2722 a2~ ry, ry!!+

Let

Dn, l 5 hn
q02pn, l , (7.27)

wherepn, l is defined in~4+8! and

Un 5 (
l50

n21

Dn, l + (7.28)

Then,

~nhn
q!102Gn~ ry! 5 S n

n1 1 1D102 1

#n1 1 1
Un2iq11

+

Hence it suffices to show that

1

!n
Un

L
&& N~0, 7K2722 a2~ ry, ry!!+ (7.29)

By Theorem 1, we have

Var~Dn,0! r 7K2722 a2~ ry, ry!, and (
l51

n21

Cov~Dn,0,Dn, l ! 5 o~1!+ (7.30)

Partition the set$0,1, + + + , n 2 1% into 2kn 1 1 subsets with large blocks of size
u 5 un and small blocks of sizev 5 vn where

k 5 kn 5


n

un 1 vn
+ (7.31)

Define the random variables

hj 5 (
i5j ~u1v!

j ~u1v!1u21

Dn, i , 0 # j # k 2 1, (7.32)

jj 5 (
i5j ~u1v!2u

~ j11!~u1v!21

Dn, i , 0 # j # k 2 1, (7.33)

and

zk 5 (
k5k~u1v!

n21

Dn, i + (7.34)
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Write

Un 5 (
j50

k21

hj 1 (
j50

k21

jj 1 zk 5 Un
'1 Un

''1 Un
''' + (7.35)

We show that, asn r `,

1

n
E~Un

''!2 r 0,
1

n
E~Un

'''!2 r 0, (7.36)

*E @exp~itUn
'!# 2 )

j50

k21

E @exp~ithj !#* r 0, (7.37)

1

n (
j50

k21

E~hj
2! r 7K2722 a2~ ry, ry!, (7.38)

and

1

n (
j50

k21

E$hj
2 I ~6hj 6 . «7K272a~ ry, ry!!n!% r 0 (7.39)

for every« . 0+ Equation~7+36! implies thatUn
'' andUn

''' are asymptotically
negligible in probability; ~7+37! shows that the summands$hj % in Un

' are as-
ymptotically independent; and ~7+38! and ~7+39! are the standard Lindeberg–
Feller conditions for asymptotic normality ofUn

' for the independent setup+
We now prove~7+36!–~7+39!+We first consider the choice of the large block

sizeun+ Condition 4 implies that there exist integersgn r ` such that

gnvn 5 o~%nhn
q! and gn~n0hn

q!102a~vn! r 0+ (7.40)

Now define the large block sizeun by un 5 {~nhn
q!1020gn}+ Using ~7+40! and

simple algebra show that the following properties hold asn r `,

vn0un r 0, un0n r 0, un~nhn
q!2102 r 0, (7.41)

~n0un!a~vn! r 0+ (7.42)

We now establish~7+36!+

E~Un
''!2 5 (

j50

k21

Var~jj ! 1 2 (
0#i,j#k21

Cov~ji ,jj ! [ F1 1 F2+ (7.43)

By stationarity and~7+30!

Var~jj ! 5 vn Var~Dn,0! 1 2vn (
i51

vn21S12
i

vn
DCov~Dn,0,Dn, i !

5 vn$7K2722 a2~ ry, ry! 1 o~1!%+ (7.44)
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Thus,

F1 5 knvn$7K2722 a2~ ry, ry! 1 o~1!% 5 o~n!+ (7.45)

Next consider the termF2 in ~7+43!+ Write rj 5 j ~u 1 v! 1 u; we have

F2 5 (
0#iÞj#k21

(
l150

v21

(
l250

v21

Cov~Dn, ri1l1,Dn, rj1l2!, (7.46)

but becausei Þ j, 6rj 2 ri 1 l1 2 l26 $ u so that

6F26 # 2 (
l150

n2u21

(
l25l11u

n21

6Cov~Dn, l1,Dn, l2!6+

By stationarity, ~7+30!, andun r `,

6F26 # 2n (
l5u

n21

6Cov~Dn,0,Dn, l !65 o~n!+ (7.47)

Hence by~7+43!, ~7+45!, and~7+47!, we have

1

n
E~Un

''!2 5 o~1!+

Using a similar argument, we find together with~7+30! and~7+41!,

1

n
E~Un

'''!2 #
n 2 k~u 1 v!

n
Var~Dn,0! 1 2 (

l51

n21

6Cov~Dn,0,Dn, l !65 o~1!+ (7.48)

To establish~7+37!, we make use of the following lemma due to Volkonskii
and Rozanov~1959!+

LEMMA 6 + Let V1, + + + ,VJ be randomvariables measurable with respect to
the s-algebrasFm1

r1, + + + ,FmJ

rJ , respectively, with 1 # m1 , r1 , m2 , {{{ ,
rJ # n, m j11 2 rj $ v, and 6Vj 6 # 1 for j 5 1, + + + , J+ Then

*EF(
j51

J

VjG2 )
j51

J

E @Vj #* # 16~J 2 1!a~v!+

We note that by~4+8!, ~7+27!, and~7+32! hj is a function of the random vari-
ables$Xj ~u1v!1j1, + + + ,Xj ~u1v!1u1jp21; Yj ~u1v!1i1, + + + ,Yj ~u1v!1u1iq11

21%+ Hence, we
have

*E @exp~itUn
'!# 2 )

j50

k21

E @exp~ithj !#* # 16kna~ Ivn! # const+
n

un

a~vn!

with Ivn 5 vn 1 1 min~i1, j1! 2 max~ jp, iq11! and the right-hand side tends to
zero by~7+42!+
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Next we establish~7+38!+ By stationarity and~7+44!, with un replaced byvn,
we have

Var~hj ! 5 Var~h0! 5 un$7K2722 a2~ ry, ry! 1 o~1!%,

so that

1

n (
j50

k21

E~hj !
2 5

knun

n
$7K2722 a2~ ry, ry! 1 o~1!% r 7K2722 a2~ ry, ry! (7.49)

becausevn0un r 0+
It remains to establish~7+39!+We employ a truncation argument becausef~{!

is not necessarily a bounded function+ Put

Dn, l
L 5 hn

q02@tL~f~Yl1iq11
!! 2 mL~ uZl !# H~ uXl , ry!K2, h~ sYl 2 ry! (7.50)

and

Un
L 5 (

l50

n21

Dn, l
L , EUn

L 5 (
l50

n21

~Dn, l 2 Dn, l
L !+ (7.51)

Using the fact thatH~ tu, ry! is bounded~cf+ ~7+21!! and K2~{! is bounded, we
have

6Dn, l
L 6 #

const+

hn
q02 +

This implies by~7+30! that

n2102 max
1#j#k21

6hj
L 6 #

const+ un

%nhn
q

r 0

by ~7+41!+ Therefore, the set$6hj
L 6 . «7K272aL~ ry, ry!!n% becomes an empty set

when n is sufficiently large and~7+39! holds for hj
L + Consequently, we have

established the following asymptotic normality:

1

!n
Un

L L
&& N~0, 7K2722 aL

2~ ry, ry!! (7.52)

at continuity points sv5 ry of aL
2~ sv, ry!+ To complete the proof, namely, to estab-

lish ~7+39! in the general case, it suffices to show that

1

n
Var~ EUn

L ! r 0 (7.53)
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as firstn r ` and thenL r `+ Observe that

6E exp~itn2102Un! 2 exp~27K2722 aL
2~ ry, ry!t 202!6

# 6E exp~itn2102~Un
L 1 EUn

L!! 2 exp~27K2722 aL
2~ ry, ry!t 202!6

1 6exp~27K2722 aL
2~ ry, ry!t 202! 2 exp~27K2722 a2~ ry, ry!t 202!6

# 6E exp~itn2102Un
L! 2 exp~27K2722 aL

2~ ry, ry!t 202!61 E6exp~itn2102 EUn
L! 2 16

1 6exp~27K2722 aL
2~ ry, ry!t 202! 2 exp~27K2722 a2~ ry, ry!t 202!6+

As n r `, the first term goes to zero by~7+52! for eachL . 0; the second
term converges to zero by~7+53!, as first n r ` and thenL r `; and the
third term also goes to 0 asL r ` by dominated convergence+ Therefore, it
remains to prove~7+53!+ Note that EUn

L has the same structure asUn except that
f~Yl1iq11

! is replaced byf~Yl1iq11
! I $f~Yl1iq11

! . L%+ Hence, as in the proof
of Theorem 1, using Condition 5, we have

1

n
Var~ EUn

L! r 7K2722 IaL
2~ ry, ry!

as n r `, where IaL
2~ sv, ry! is given in ~5+6!+ It is clear that IsL

2~ tu, sv! of ~5+4!
tends to zero asL r ` for each~ tu, sv!+ Thus,

IL~ tu, ry! 5 H 2~ tu, ry! IsL
2~ tu, ry! f ~ tu, ry! r 0

asL r `+ Now

IL~ tu, ry! # H 2~ tu, ry!E @f2~Yiq11
!6 uX0 5 tu, sY0 5 ry# f ~ tu, ry!,

and by~7+21!,

IL~ tu, ry! # A6
2 E @f2~Yiq11

!6 uX0 5 tu, sY0 5 ry# f ~ tu, ry!

and the right-hand side is integrable with respect totu and the integral is equal
to

A6
2 E @f2~Yiq11

!6 sY0 5 ry# fY0
~ ry!,

which is finite a+e+~ ry!+ Hence, by dominated convergence, IaL
2~ ry, ry! r 0 as

L r `+ n
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APPENDIX

In this section, we first present the proofs of Lemmas 1, 2, and 3 and~7+20!+ Also, we
state a set of sufficient conditions for the nonlinear ARX model~1+3! and ~1+4! to be
stationary+ Finally, we provide a sufficient condition for Condition 5+

Proof of Lemma 1. Let

Dn, l
' 5 Dn, l

' ~ ry! 5 hn
q02dl $Hn

*~ uXl , ry! 2 H~ uXl , ry!%K2,h~ sYl 2 ry!; (A.1)

thenE~Dn, l
' ! 5 0 and

hn
q02Gn

' ~ ry! 5
1

n1 1 1 (
l50

n1

Dn, l
' +

so that

~n11 1!hn
q Var~Gn

' ~ ry!! 5 Var~Dn,0
' ! 1 2 (

l51

n1 S12
l

n1 1 1DCov~Dn,0
' ,Dn, l

' !+ (A.2)

By ~A+2!, ~4+3!, and Jensen’s inequality,

Var~Dn,0
' ! 5 hn

qE @d0
2$Hn

*~ uX0, ry! 2 H~ uX0, ry!%2K2,h
2 ~ sY0 2 ry!#

# hn
qE

R p
E @d0

2$H~ uX0 2 hn tu', ry! 2 H~ uX0, ry!%2K2,h
2 ~ sY0 2 ry!# 3 K1~ tu' ! d tu'+

Note thatH~ tu, ry! 5 0 for tu Ó D1 andK1~{! andK2~{! have compact support+ Because
m~ tu, sv! is continuous, it follows that m~ tu, sv! is bounded overD1

* 3 D2
* with D1

* 5
$ tu : tu 2 tu' [ D1; 7 tu' 7 # 1% ø D1 andD2

* 5 $ sv : 7 sv 2 ry7 # 1%+ Let

A10 5 sup
tu[D1

*

sv[D2
*

6m~ tu, sv!6+ (A.3)
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Conditioning onYiq11
and using Condition 1~v! and~A+3!, we obtain

Var~Dn,0
' ! # A4hn

qE$6f~Y0!61 A10%2E
R2p1q

$H~ tu 2 hn tu', ry! 2 H~ tu, ry!%2K2,h
2 ~ ry 2 sv!

3 K1~ tu' ! d tu d tu' d sv

# const+E
R2p

$H~ tu 2 hn tu', ry! 2 H~ tu, ry!%2K1~ tu' ! d tu d tu'

5 const+E
7 tu' 7#1

E
D1
*
K1~ tu' !$H~ tu 2 hn tu', ry! 2 H~ tu, ry!%2 d tu d tu'+

By Condition 1~iii !, H~ tu, ry! is continuous in tu [ D1 for any fixed ry+ Then, by ~7+21!
and dominated convergence, we have

Var~Dn,0
' ! 5 o~1!+ (A.4)

We decompose the sum on the right-hand side of~A+2! into three terms

(
l51

n1

5 (
l51

m

1 (
l5m11

cn

1 (
l5cn11

n1

[ I1
'1 I2

'1 I3
' , (A.5)

wherem 5 max$iq 2 i1, jp 2 j1% andcn r ` such thatcnhn
q r 0 asn r `+ Clearly,

there is an overlap of components inI1
' but not in I2

' and I3
' + For I1

' , by the Cauchy-
Schwartz inequality and~A+4!, we have

6Cov~Dn,0
' ,Dn, l

' !6 # Var~Dn,0
' ! 5 o~1!,

so that

I1
' 5 o~1!+ (A.6)

For I2
' ,

6Cov~Dn,0
' ,Dn, l

' !6

# hn
qE

R2p
E @$6f~Yiq11

!61 6m~ uZ0!6%$6f~Yl1iq11
!61 6m~ uZl !6%

3 $H~ uX0 2 tu', ry! 1 H~ uX0, ry!%$H~ uXl 2 tu'', ry! 1 H~ uXl , ry!%

3 K2,h~ sY0 2 ry!K2,h~ sYl 2 ry!#

3 K1,h~ tu' !K1,h~ tu'' ! d tu' d tu''+

Conditioning on~Yiq11
,Yl1iq11

! and using Condition 1~iv! and~A+3!, we obtain

6Cov~Dn,0
' ,Dn, l

' !6 # A3hn
qE$6f~Y0!61 A10%2E

R4p12q
$H~ tu3 2 tu1, ry! 1 H~ tu3, ry!%

3 $H~ tu4 2 tu2, ry! 1 H~ tu4, ry!%K2,h~ sv1 2 ry!K2,h~ sv2 2 ry!K1,h~ tu1!K1,h~ tu2!

3 d tu1 d tu2 d tu3 d tu4 d sv1 d sv2 # const+ hn
q+ (A.7)
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Therefore,

I2
' 5 O~cnhn

q! r 0 (A.8)

by the choice ofcn+ For I3
' , we use Davydov’s inequality to obtain

6Cov~Dn,0
' ,Dn, l

' !6 # 8@a~ Dl !#1220n~E6Dn,0
' 6n !20n,

where Dl 5 l 1 min$i1, j1% 2 max$ jp, iq11%+ By the Cr inequality,

E6Dn,0
' 6n

# 2n21hn
nq02E @$6f~Yiq11

!61 6m~ uZ0!6%nK2,h
n ~ sY0 2 ry!$~Hn

*~ uX0, ry!!n 1 H n~ uX0, ry!%# +

By Jensen’s inequality,

$Hn
*~ uX0, ry!%n # E

R p
H n~ uX0 2 hn tu', ry!K1~ tu' ! d tu'+

Then,

E6Dn,0
' 6n # 2n21hn

nq02E
R p

E @$6f~Yiq11
!61 6m~ uZ0!6%nK2,h

n ~ sY0 2 ry!

3 $H n~ uX0 2 hn tu', ry! 1 H n~ uX0, ry!%#K1~ tu' ! d tu'+

Using the same bounding as in~A+7!, we have

E6Dn,0
' 6n 5 O~hn

q~12n02!!+

Now we follow the same bounding in the proof of~7+26! to obtain

6 I3
' 6 # const+ hn

2q~1220n! cn
2a (

l5cn

`

l a @a~l !#1220n,

and withcn 5 hn
2q~1220n!0a

I3
' 5 o~1!+ (A.9)

By ~A+5!, ~A+6!, ~A+8!, and~A+9!,

(
l51

n1

6Cov~Dn,0
' ,Dn, l

' !6 5 o~1!,

which, in conjunction with~A+2! and~A+4!, implies that

nhn
q Var~Gn

' ~ ry!! 5 o~1!+

This completes the proof of the lemma+ n

Proof of Lemma 2. Substituting

K1~ tu! 5E
R p

ei tl{ tu EK1~ tl! d tl
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into tn,0
* ~ tx, ry! of ~2+1!, we obtain

tn,0
* ~ tx, ry! 5E

R p
I11~ ry, tl!

1

hn
p ei tl{ tx0hn EK1~ tl! d tl, (A.10)

where

I11~ ry, tl! 5
1

n1 1 1 (
l50

n1

dl e
2i tl{ uXl 0hnK2,h~ sYl 2 ry!+

Substituting~A+10! into J1,2~ ry! of ~4+1!, we have

J1,2~ ry! 5E
R p

I11~ ry, tl! I12~ ry, tl! EK1~ tl! d tl, (A.11)

where

I12~ ry, tl! 5E
R p

w~ tu, ry!

f ~ tu, ry!

1

hn
p ei tl{ tu0hn d$ ZF~ tu! 2 F~ tu!%+

Writing e2i uXl{ tl0hn 5 cos~ uXl{ tl0hn! 2 i sin~ uXl{ tl0hn!, the real and imaginary parts can be
treated separately+ The expressionI11~ ry, tl! can be analyzed step by step in the manner
of the proof of part~c! of Theorem 1 to obtain

sup
tl[R p

E$6 I11
2 ~ ry, tl!6% 5 O~~nhn

q!21!+ (A.12)

By ~6+61! in Masry and Tjøstheim~1997!,

sup
tl[R p

E$6 I12
2 ~ ry, tl!6% 5 O~~nhn

2p!21!+ (A.13)

By the Cauchy–Schwartz inequality, ~A+11!–~A+13!, and Condition 3,

E6J1,2~ ry!6 # sup
tl[R p

@E$6 I11
2 ~ ry, tl!6%E$6 I12

2 ~ ry, tl!6%#102E
R p
6 EK1~ tl!6 d tl

5 O~~n2hn
2p1q!2102! 5 o~~nhn

q!2102!+ (A.14)

This completes the proof of the lemma+ n

Remark A. It is seen that under the conditionnhn
2p r `, we have thatJ1,2 can be

neglected compared toGn+ WhereasOp~~nhn
q!2102! is the best rate attainable forGn, it

is not at all clear that the rateOp~~n2hn
2p1q!2102! obtained in~A+14! is the best rate

attainable andJ1,2+ Intuitively, if we look at the expressions forGn andJ1,2 in ~4+4! and
~4+1!, it seems obvious thatJ1,2 should always be of lower order thanGn and that its rate
should beOp~~n2hn

p1q!2102!, and we conjecture that this rate is attainable+

Proof of Lemma 3. First, we compute the expectationsE$sn,0~ sz!% andE$tn,0~ sz!%+ To
this end, expandingf ~ ss! in a Taylor series around7 ss2 sz7 # h, by Condition 7, we have

f ~ ss! 5 f ~ sz! 1 ~ ss2 sz! f '~ sz! 1 2
12~ ss2 sz! f ''~ sz!~ ss2 sz!T 1 o~hn

2!,
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wheref ''~ sz! is the Hessian matrix off ~ sz!, o~hn
2! is uniform in 7 ss 2 sz7 # hn, and sz [

D1~ ry!+ Then, we have, uniformly in sz [ D1~ ry!,

E$sn,0~ sz!% 5 f ~ sz! 1
hn

2

2
tr $M 1,1 f ''~ sz!% 1 o~hn

2! (A.15)

and

E$tn,0~ sz!% 5 c~ sz! 1
hn

2

2
tr $M 1,1c ''~ sz!% 1 o~hn

2!, (A.16)

wherec~ sz! 5 m~ sz! f ~ sz! andc ''~ sz! is the Hessian matrix ofc~ sz!+ Substituting~A+15!
and~A+16! into ~6+2! gives, uniformly in sz [ D1~ ry!,

E$tn,0~ sz!% 2 m~ sz! f ~ sz! 2 m~ sz!@E$sn,0~ sz!% 2 f ~ sz!# 5
hn

2

2
f ~ sz!C~ sz! 1 o~hn

2!

and

Cn~ sz! 5
hn

2

2
C~ sz! 1 o~hn

2!, (A.17)

where

C~ sz! 5 tr $M 1,1V ~ sz!% 1
2

f ~ sz!
f '~ sz!M 1,1$m'~ sz!%T+

Then, substituting~A+17! into ~6+1!, we obtain

An~ ry! 5
hn

2

2
E

D1

w~ tx, ry!C~ tx, ry! d ZF~ tx! 1 op~hn
2!+ (A.18)

Becausew~ sz!C~ sz! is bounded inD1~ ry!, we have as in Lemma 4

E
D1

w~ tx, ry!C~ tx, ry! d ZF~ tx! 5E
D1

w~ tx, ry!C~ tx, ry! f ~ tx! d tx 1 op~1!, (A.19)

which, in conjunction with~A+18!, implies that

An~ ry! 5
hn

2

2
E

R p
w~ tx, ry!C~ tx, ry! f ~ tx! d tx 1 op~hn

2!

5 BIAS~ ry! 1 hn
2E

R p

w~ tx, ry! f '~ tx, ry!M 1,1$m'~ tx, ry!%T

f ~ tx, ry!
f ~ tx! d tx 1 op~hn

2!+ (A.20)

This concludes the proof of the lemma+ n
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Proof of (7.20). We only present the outline of the basic steps for the proof of~7+20!
because the proof is similar to that of the termJ1~ ry! in Section 4+ We rewriteD1~ ry! as

D1~ ry! 5E
R p

w~ tx, ry!cn~ tx, ry!tn,0
* ~ tx, ry! d ZF~ tx!, (A.21)

wherecn~ tx, ry! 5 sgn~tn,0
* ~ tx, ry!! so that6cn~ tx, ry!6 5 1+ Similar to ~4+1!, we decompose

D1~ ry! into two parts as follows:

D1~ ry! [ D11~ ry! 1 D12~ ry!,

where

D11~ ry! 5E
R p

w~ tx, ry!cn~ tx, ry!tn,0
* ~ tx, ry! dF~ tx!

and

D12~ ry! 5E
R p

w~ tx, ry!cn~ tx, ry!tn,0
* ~ tx, ry! d @ ZF~ tx! 2 F~ tx!# +

Then, substitutingtn,0
* ~ sz! into D11~ ry!, we obtain

D11~ ry! 5
1

n1 1 1 (
l50

n1

dl K2,h~ sYl 2 ry! EHn
*~ uXl , ry!,

wheredl is defined in~3+3!, and with EHn~ tx, ry! 5 w~ tx, ry!cn~ tx, ry!,

EHn
*~ tu, ry! 5E

R p
EHn~ tx, ry!K1,h~ tu 2 tx! d tx+

Then,

sup
~ tx, ry![D

6 EHn~ tx, ry!6 # 1 and sup
~ tx, ry![D

6 EHn
*~ tx, ry!6# 1+ (A.22)

Similar to ~4+4!,

D11~ ry! 5
1

n1 1 1 (
l50

n1

dl K2,h~ sYl 2 ry! EHn~ uXl , ry!

1
1

n1 1 1 (
l50

n1

dl K2,h~ sYl 2 ry!$ EHn
*~ uXl , ry! 2 EHn~ uXl , ry!%

[ D11
' ~ ry! 1 D11

'' ~ ry!+

Proceeding as in the proof of Theorem 1 by bounding the second moment ofD11
' ~ ry! and

using~A+22!, we find

D11
' ~ ry! 5 Op~~nhn

q!2102!+
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Now using the facts that EHn~ tu, ry! 5 0 if tu Ó D1 and K1~{! and K2~{! have compact
support and following the same steps as in the proof of Lemma 1, we obtain

D11
'' ~ ry! 5 Op~~nhq!2102!+

Therefore, we have

D11~ ry! 5 Op~~nhq!2102!+

Finally, for D12~ ry!, we follow the same arguments used in the proof of Lemma 2+ As
in ~A+11!,

D12~ ry! 5E
R p

I11~ ry, tl! I12
* ~ ry, tl! EK1~ tl! d tl,

where

I12
* ~ ry, tl! 5E

R p
EHn~ tu, ry!

1

hn
p ei tl{ tu0hn d$ ZF~ tu! 2 F~ tu!%+

By ~6+61! in Masry and Tjøstheim~1997!,

sup
tl[R p

E$6 I12
* ~ ry, tl!62% 5 O~~nhn

2p!21!,

which, in conjunction with~A+12! and the Cauchy–Schwartz inequality, implies that

E6D12~ ry!6 # sup
tl[R p

@E$6 I11
2 ~ ry, tl!6%E$6 I12

* ~ ry, tl!62%#102E
R p
6 EK1~ tl! d tl

5 O~~n2hn
2p1q!2102! 5 o~~nhn

q!2102!+

The proof is complete+ n

Condition A. The nonlinear ARX model~1+3! and~1+4! satisfies the following+

~i! The functionsg1~{!, g2~{!, and g3~{! are nonperiodic and bounded on compact
sets, andg2~ tx! 5 O~7 tx7g1 ! as7 tx7 r ` for some realg1+

~ii ! The i+i+d+ random variables$et % ad $«t % have probability density functions that
are positive onR1 and such thatE~6«t 6max~1,g11g2! ! , ` for someg2 . 0+

~iii ! There exist column vectorsta [ Rq and sc [ R p21 ~each of which may be the
zero vector!such that

g1~ ry! 5 ry ta 1 0~7 ry7! and g3~ tx! 5 tx sc 1 o~7 tx7!

as7 ry7 and7 tx7 r `+ Moreover, let air1i111
' 5 ar , r 5 1, + + + ,q, andaj

'5 0 other-
wise, and similarlycjr2j111

' 5 cr , r 5 1, + + + , p 2 1, andcj
'5 0 otherwise+ Then the

~iq11 2 i1! square matrixA defined by 0 if ta 5 s0, and by
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A 5 1
0 0 J 0 a1

'

1 0 J 0 a2
'

0 1 J 0 a3
'

I I L I I

0 0 J 1 aiq112i1
'

2
otherwise, and the~ jp 2 j1!-dimensional square matrixC defined by

C 5 1
0 0 J 0 c1

'

1 0 J 0 c2
'

0 1 J 0 c3
'

I I L I I

0 0 J 1 cjp2j1
'

2
satisfyr~A! , 1 andr~C! , 1, wherer denotes the spectral radius+

Next, we provide a sufficient condition for Condition 5, stated as the following lemma,
and its justification is also included+

LEMMA A + For any fixed point L. 0, assume that the functionss2~ tu, sv!, sL
2~ tu, sv!,

and mL~ tu, sv! are continuous on D1~ ry! and suppose Condition1~iii ! holds+ Then a2~ sv, ry!,
aL

2~ sv, ry!, and IaL
2~ sv, ry!, as functions of sv, are continuous at the pointsv 5 ry+

Proof. Becauses2~ tu, sv! is continuous onD1~ ry!, then it is continuous onD1 3 N~ ry!,
whereN~ ry! is a neighborhood ofry+ Therefore, s2~ tu, sv! is bounded onD1 3 N~ ry!+ Let

B1 5 sup
tu[D1, sv[N~ ry!

s2~ tu, sv!+ (A.23)

For any small td, Condition 1~iii ! and~A+23! imply that

sup
tu[D1

$s2~ tu, ry 1 td! f ~ tu, ry 1 td!% 5 B2 , `+

By the boundedness ofH~ tu, ry! and dominated convergence we obtain

a2~ ry 1 td, ry! 5E
D1

H 2~ tu, ry!s2~ tu, ry 1 td! f ~ tu, ry 1 nh! d tu r a2~ ry, ry! (A.24)

as 7 td7 r 0, which implies thata2~ sv, ry!, as a function of sv, is continuous at the point
sv 5 ry+ Analogously, it can be shown thataL

2~ sv, ry! is continuous at the pointsv 5 ry be-
causesL

2~ tu, sv! is continuous onD1~ ry!+ Some algebraic computations yield

IsL
2~ tx, ry! 5 s2~ tx, ry! 2 sL

2~ tx, ry! 1 2mL~ tx, ry!~m~ tx, ry! 2 mL~ tx, ry!!,

which implies that

IaL
2~ sv, ry! 5 a2~ sv, ry! 2 aL

2~ sv, ry! 1 2I *~ sv, ry!, (A.25)
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where

I *~ sv, ry! 5E
R p

H 2~ tu, ry!mL~ tu, sv!$m~ tu, sv! 2 mL~ tu, sv!% f ~ tu, sv! d tu+ (A.26)

Next, we wish to show thatIa2~ sv, ry! is continuous at the pointsv 5 ry+ By ~A+25! it suf-
fices to show thatI *~ sv, ry! is continuous atsv 5 ry+ Equation~A+26! is equal to

I *~ sv, ry! 5E
D1

H 2~ tu, ry!mL~ tu, sv!$m~ tu, sv! 2 mL~ tu, sv!% f ~ tu, sv! d tu+

Becausem~ tu, sv! andmL~ tu, sv! are continuous onD1~ ry!, the result follows in the manner
of the proof of~A+24!+ n
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