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Calculation of the Green's function from high- and low-density
series expansions for disordered transport
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We investigate density expansions for the configurationally averaged Green's function for a random walk

on a (site) disordered lattice. Two-point Pade summation techniques are used in conjunction with scaling

arguments to examine behavior near the percolation density. Recent proposals for the structure of the per-
colation cluster are discussed in light of the results.
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The problem of transport of a localized particle in a ran-
dom network has been the subject of many investiga-
tions, ' ' which have been applicable either to very long or
very short times. In this paper, we present a new calcula-
tion which bridges the gap between short and long times, by
using both low- and high-density expansions in a novel
two-point Pade approximant technique. " As an example,
we compute the probability of remaining on the initial site,
Po(r), as a function of time for a two-dimensional triangu-
lar lattice. Using scaling arguments based on the recent
results of Coniglio for the structure of the percolating clus-
ter, we examine both the critical and noncritical parts of
Po(r) near the percolation edge, and finally we address the
question of anomalous diffusion on this cluster. '

The model we consider is a triangular lattice with random-
ly populated sites, on which the transport is governed by a
master equation with transfer matrix 8', whose elements
W&= tv(g&. Here, w is the nonrandom nearest-neighbor

jump rate and g, is a random variable for occupation of site
i: (& = 0 if i is unoccupied, (;= 1 if it is occupied, and

(g, ) = p (the concentration of occupied sites), where the
bracket represents an average over all configurations con-
sistent with p. The probability of occupation of a site at
time t is governed by the averaged Green's function,
G(t) = (exp Wr), or by its Laplace transform, G(u)
= ([ul —W] '). The probability that the particle is at the
initial site is given by Gas(t), which is, of course, a function
of p. We write the low-density expansion of G (u ) as

The first term on the right-hand side of Eq. (2) corresponds
to solving the master equation on a given cluster of n sites;
the second term removes from this all processes involving
fewer than n sites, leaving only processes contributing to p".
All possible locations of the n cluster are summed over in
Eq. (2). To compute Gpp( ),uwe only consider connected
clusters containing the origin and sum over all locations by
taking the trace for each unique cluster. We enumerate the
clusters and perform the matrix inversions on a computer.

In the same spirit, we write the high-density expansion as

G(u) = g d "(1—p)"
n 0

where the d " are found by solving the same master equa-
tion on a lattice with n impurities correcting for lower-order
processses in the same manner as before.

For the system we are considering, we may write
Gg)(u) =S(p)/u+H(p, u), where S(p) =lim, Gpp( ),r
i.e., S(p) is the probability of being on the original site at
t = ~. This is not zero (even in an infinite system) since
there are finite clusters for all p & 1. We expect that in a
finite cluster with N, l sites, the probability of being on the
initial site at t=~ is 1/N„, so that S(p) = (I/N, ~). We
also expect that S(p) will be a continuous function of P.
The function H(p, u) contains the dynamics, and, in con-
trast, we expect it to have nonanalytic behavior at p = p, .

In order to calculate S(p), we resort to a two-point Pade
procedure (TPPA)" using 12 low- and 12 high-density coef-
ficients. The result is shown in Fig. 1. This result is fully
converged, and is the most complete calculation of this
quantity to this time.

In order to use the TPPA for H(p, u) we must justify the
fact that such a procedure will inevitably yield the same
nonanalytic behavior for H(p, u) above and below p, . We
resort to a scaling argument: For very long times (or small
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value should be viewed as provisional.
These results can be understood in terms of the following

picture. For p & p, all the particles are localized in finite
clusters, thus

0 0.5 1.0

FIG. l. S(p), or Goo(t) at r ~, calculated with the use of
tWO-POlnt Pade RPPFOX1maIltS.

where the sum is over Bll modes of all clusters. Here ~k is

the relaxation time of the mode and 8'k the weight of this
mode ln thc suIYl. Near p„ thc longest I'claxatlon tlIIlcs oc-
cur in the largest clusters and, since the process is diffusive,
r,„—g'. To compute W,„, note that it must be the prod-
uct of the probability of being in the largest cluster
[ —(p, —p)~] and the relative weight of r,„within the
largest cluster. The latter is the ratio of the number of slow
modes [which should be proportional to the number of
"cutting sites, " which Coniglio shows to be proportional to

(p, —p) '] to the total number of modes [which should be
proportional to the number of sites which is proportional to
(p, —p) "]. Combining, we find W', „—(p, —p)~ '+1'.

Substituting this into Eq. (10) and expanding for small u,
we find

u) we expect (in two dimensions) that the first few terms
of H(p, u) are given by

H (p, u) —2 (p)+B(p)u, p & p,

H+(p, u) —f(p)ln(u)+g(p)+b(p)u, p) p,

(4)

That is, above p, we expect ordinary diffusive motion at
long times. We expect that f(p) —(p —p, ) v since it

should be approximately proportional to the inverse of the
diffusion constant which goes to zero at p, . However, it is
expected that for intermediate time, such that the particle
has not transported a length equal to the scaling of correla-
tion length ( (i.e., u ) g 8, where 8= 2 for diffusive
motion), H(p, u) —u & and independent of (, both below
nd bo e p, . In order to build this into sc ling form

valid above and below p, we postulate (note that

e —Ip-p, l
')

H (u) —('(1+ up+ ), p & p,

H+(u) —g»" in[1+(u(+')-'], p& p, .

(6)

For ug8« 1, these forms must agree with Eqs. (4) and
(5); thus A —g'8 —g'+8. For u(8 &) 1, these must both—u 4', independent of (; thus a = 8 b, u/v = Oc, and
b=c=@. We therefore conclude that A(p) and f(p) in

Eqs. (4) and (5) diverge with the same power of ~p
—p, ~

and can be combined in a TPPA.
%C have calculated nine low-density of three high-density

u-dependent coefficients for the two-dimensional triangular
lattice. Fol" intermediate Bnd sInall 0, wc find that thc coef-
ficients take the form

c[[o ( u ) —n„u '+ a„+b„u

dgo(u) —c „'u '+ f„ln(u)+g„
In order to extract the critical behavior, we apply the TPPA
method to 9lnH(p, u)/Bp We find that . various sequences
converge to p, =0.5 and p, =1.38+0.02. From an analysis
of 8/epln[r)/euH(p, u)], w«ind &(p) —Ip —p, l

', with
e = 3.8 +0.2; however, because of numerical difficulties this

—3 (p —p)~ '+" '"+Bu(p —p)&- +1' 4" +

H(p, u) = Xp"

whcrc thc SUITl ls over thc number of sltcs ln thc cluster.
Here we have assumed that for every n there is only one ef-
fective (very long) relaxation time with weight W„'. By
comparing the small-u behavior of Eq. (12) with our TPPA
results, we can find the form of 8'„and 7„ for large n. By
comparing the term independent of u and linear in u in Eq.
{12)with Eq. {4),we find

pr n ( ) —1.38

g py 3 n ( ) —3.8 {131)

By expanding the right-hand side of Eqs. (13a) and (13b),
we find for large n

—1.38—n&+ 0.38
n~n Pc

pr & 2 —3.8 —n&+2.8

Solving for R„and 7.„,wc find at pc

11111 Geo(r) = llm g p 8~e
'

r
—04

~c ~ ~c n

i.e. , @=0.6 in the anomalous diffusion regime mentioned
above. Note that this is consistent with the values of a, b,
and 8 found by comparing Eqs. (6) and (7) with our numer-
ical results. This result is for the average over all cluster
sizes at p, . Had we restricted our attention to only the in-

VA'th the use of previously reported values for the various
exponents, ~ P —1+y —2v ——1.3 and P —1+y —4v——4.0, in good agreement with the values quoted above
( —1.38 and —3.8).

We can use these results in another way which allo~s us
to examine the finite time behavior. Let us assume that the
co~0~ can be approximated by a single term of the form used
in Eq. (10), so that
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finite cluster, used the suggestive form

Bnd demanded that this remained flnltc as fl ~ ~, wc find

{rN t 'T.hts estlrnQte allows that avcragcs over tllc In-

f1111tc clustcl' arid tl1osc over RII thc clusters (I.c., tllc ob-
served behavior) differ as was recently stressed by Gefen,
Aharony, and Alexander. 'o

The last question is whether the exponent of (p —p, ) in

f(p) [see Eq. (5)] can be identified with the conductivity
cxporlcllt. II1 tlm [Rst year, tl11s cxpo11cllt (ln two dimen-
sions) has been calculated to be 1.26, '2 1.28," and conjec-
tured to be 91/72=1.264.' In the present calculation of
Po(t), we find an exponent of 1.38. Even though we ques-
tion whether 8 dlscrcpancy of less than 10k ls slgnlf leant

(especially in light of the most recent scaling work" which

suggests the exponent is T), there arc a number of possible

cxplanatlons for sUch 8 discrcpBAcy. Thc first ls that thc
two-point Pade is inaccurate, i.e., we have too few points or
that the series contains "confluent singularities" which

seem to cause diff lcUltlcs with Padc Bpproxlmants. Thc

second is that the scaling argument suggesting that A (p }
and f(p) [see Eqs. (4) and (S)j have the same diverging
power of ~p

—p, ~
is not valid. This would imply that we are

forcing an erroneous fit which causes the error. Neither of
these arguments can be completely ruled out; ho~ever, the
numerical stability and convergence of our fit suggests that
neither ls correct.

Another possibility is that for the percolating cluster, the
divergence of the inverse of D (or the conductivity) and the
divergence 1A Io alc not thc same. SIAcc both of thcsc arc
quantitics avclagcd ovcl 811 conf lgUratlons, ol' ovcI' 8 1'Bthcr
complex distribution function, there is no guarantee that the
inverse of the average of diffusion constant is the same as
the average of the inverse of the diffusion constant. Thus
the functional dependence Po on (p —p, ) as p p, need
not be exactly the same as that of {D) '. Finally, it has
recently been suggested that I'0 be interpreted in terms of
thc spcctl 81 dimension of thc pcI'colatlng clUstcl.

In conclusion, we have presented a new numerical pro-
cedure, based on two-point Fade approxlmants, which yields
results for both the critical and noncritical dynamics of the
transport of a localized particle on a random network.
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