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On the ‘‘direct’’ calculation of thermal rate constants
Ward H. Thompson and William H. Miller
Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley
Laboratory, Berkeley, California 94720

~Received 23 December 1994; accepted 7 February 1995!

We present a new approach for thedirect ~andcorrect! calculation of thermal rate constantsk(T)
~‘‘direct’’ meaning that one avoids having to solve the state-to-state reactive scattering problem, and
‘‘correct’’ meaning that the method contains no inherent approximations!. The rate constant is
obtained from the long time limit of the flux-position correlation function,Cf ,s(t), whose
calculation is made efficient by taking advantage of the low rank of the flux operator. Specifically,
the trace required to obtainCf ,s(t) is evaluated by a Lanczos iteration procedure which calculates
only the nonzero eigenvalues. The propagation in complex time,tc5t2 i\b/2, is carried out using
a Chebychev expansion. This method is seen to be both accurate and efficient by application to the
Eckart barrier, the collinear H1H2 reaction, and the three-dimensional D1H2 ~J50!
reaction. ©1995 American Institute of Physics.
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I. INTRODUCTION

A long-standing goal of our research group has been t
development of ways to calculate rate constants for chemi
reactionsdirectly, i.e., without having to solve the complete
state-to-state reactive scattering problem, yet stillcorrectly,
i.e., without inherent approximation. That is, we seek to d
velop rigorous theoretical approaches that are the outgrow
of ideas from transition state theory~TST!, which is a very
useful ~though approximate! approach to determining rate
constants ‘‘directly.’’

Our initial efforts1,2 in this direction focused on the ther-
mally averaged rate constantk(T) for bimolecular reactions;
a formally exact quantum expression for the rate was d
rived, and this was useful, for example, in showing the n
ture of the TST approximation and in suggesting more acc
rate quantum mechanical versions of TST. Later,3 this
rigorous rate expression was written in terms of reactive flu
autocorrelation functions~that are similar, though not identi-
cal to earlier such expressions obtained by Yamamoto4!, and
a number of groups3,5–19~including ours! have used this for-
mulation as the basis for practical calculations.

More recently our attention shifted to the ‘‘direct’’ cal-
culation of the cumulative reaction probability~CRP!, N(E),
which is defined as

N~E!5 (
np ,nr

uSnp ,nr~E!u2, ~1.1!

and in terms of which the thermal rate constant is given b

k~T!5
1

2p\Qr~T!
E
0

`

dEe2bEN~E!, ~1.2!

whereQr is the reactant partition function per unit volume
and b51/kbT. $Sometimes, usually for unimolecular reac
tions, one is interested in the microcanonical rate,k(E), the
average rate for a given total energy, and it is given in term
of the CRP by

k~E!5@2p\r r~E!#21N~E!, ~1.3!
J. Chem. Phys. 102 (19), 15 May 1995 0021-9606/95/102(19)/
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whererr is the density of reactant states per unit energ%
Equation~1.1! is of course not a ‘‘direct’’ expression for th
CRP since it requires theS-matrix elements for transitions
from all the energetically open reactant states$nr% to all such
product states$np%. The following ‘‘direct’’ expression for
the CRP was obtained,3 however, as a by-product of the flu
correlation function analysis,

N~E!5 1
2 ~2p\!2 tr@ F̂d~E2Ĥ !F̂d~E2Ĥ !#, ~1.4!

whereF̂ is a flux operator~defined with respect to a dividing
surface which separates reactants from products! and Ĥ is
the total Hamiltonian of the system. A practical implemen
tion of Eq.~1.4! was achieved20,21by representing the micro
canonical density operator as

d~E2Ĥ !52
1

p
Im~E1 i ê2Ĥ !21, ~1.5!

whereê is a potential energy operator which enforces outg
ing wave boundary conditions. Such absorbing~empirical
optical, negative imaginary! potentials have been used by
number of workers22–27 in a variety of contexts. A very effi-
cient computational procedure28 based on this approach ha
been developed and applied to several challenging proble
e.g., a full dimensional calculation ofN(E) for the
H21OH→H2O1H reaction.29 $We note that another usefu
implementation of Eq.~1.4! has been achieved30 by repre-
senting the microcanonical density operator as

d~E2Ĥ !5S aM

p D 1/2@e2a~Ĥ2E!2#M, ~1.6!

for a sufficiently small andM sufficiently large.%
In the present paper we return to the problem of

direct determination of the thermal rate constantk(T), for
three reasons. First, if one wishes to havek(T) itself, and is
not primarily interested inN(E), as is typically the case fo
bimolecular reactions, then it is clearly desirable to be able
compute it for the temperature of interest and not have
computeN(E) over a range ofE in order to carry out the
Boltzmann average in Eq.~1.2!.
74097409/9/$6.00 © 1995 American Institute of Physics
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 This
A second reason for refocusing onk(T) is that its calcu-
lation ~vide infra! is able to avoid introducing the absorbin
potentialê discussed above regarding Eq.~1.5!. Although the
use of absorbing potentials has made it possible to carry
theN(E) calculations noted above, their use does introd
numerical convergence parameters into the calculation
one would be quite happy to avoid. Thek(T) calculation can
bypass the use of absorbing potentials because it is ca
out in the time domain and thus involves the time evolut
operator, exp~2iĤ t/\!, whereas the energy domain calcul
tion of N(E) involves the Green’s functionG1(E). These
two operators are related by

G1~E!5~E1 i ê2Ĥ !21 ~1.7a!

5~ i\!21E
0

`

dtei ~E1 i ê2Ĥ !t/\, ~1.7b!

and one sees that the absorbing potentialê is needed so tha
the t→` part of the integrand in Eq.~1.7b! is damped; i.e., it
provides a long time cutoff. When carrying out thet-space
calculation fork(T), however, it is easy to incorporate a lon
time cutoff without using absorbing potentials—one simp
stops the calculation at finitet.

The third reason that we have returned to the calcula
of k(T) is that some of the tricks that have been learned fr
doing theN(E) calculation ‘‘directly’’ can be carried over to
the k(T) calculation and provide a more powerful approa
than earlier ones. In particular, we evaluate the quantum
chanical trace expression fork(T) ~vide infra! using an itera-
tive Lanczos procedure analogous to that used by Man
et al.28 for the N(E) calculation. The low rank of the rel
evant operator greatly reduces the number of operation
the time evolution operator that are required.

Section II first summarizes the relevant flux correlati
expressions fork(T) that we use. Section III describes th
computational details of the present method, and then
IV presents results for the one-dimensional Eckart barr
the collinear H1H2 reaction, and the three-dimension
D1H2 reaction forJ50. We compare to previous exact ca
culations and discuss the accuracy of the present met
Section V concludes.

II. FLUX CORRELATION FUNCTIONS: REVIEW OF
THE RELEVANT FORMULAS

We begin with the expression for the exact thermal r
constant derived previously by one of us1 in terms of a quan-
tum mechanical trace,

k~T!5
1

Qr
tr~e2bĤF̂`̂ !. ~2.1!

HereQr is the reactant partition function,F̂ is the symme-
trized flux operator@in the original formulationk(T) is given
as the real part of the right-hand side of Eq.~2.1! with the
unsymmetrized flux operator#, and`̂ is a projection operato
onto ‘‘reactive space.’’ This expression is very intuitive
that it gives the rate constant as a thermal average of
reactive flux through a surface dividing reactants and pr
ucts. This is analogous to the expression for the exact c
sical rate constant,
J. Chem. Phys., Vol. 10
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kCL~T!5
1

Qrh
F E dpE dqe2bH~p,q!d@ f ~q!#

3
] f ~q!

]q
•

p

m
x~p,q! ~2.2!

which is the thermal average of the classical reactive flu
through a surfacef ~q!50 dividing reactants from products.
x~p,q! is the ‘‘characteristic function’’ which takes the value
1 for reactive trajectories and 0 for nonreactive trajectories
This plays the same role in the classical expression as do
`̂ in the quantum mechanical expression, Eq.~2.1!, which
projects onto the reactive part of the Hilbert space.

As noted by Tromp and Miller,5 the projection operator
can be represented in many ways. For the purpose of th
discussion, we consider a one-dimensional barrier proble
with the barrier ats50. The reactants are defined bys,0
and products bys.0, andp̂ is the momentum conjugate tos.
In the original formulation the projection operator was taken
to be

`̂5 lim
t→`

e2 iĤ t/\h~ p̂!eiĤ t/\, ~2.3!

whereh is the Heaviside step function,h~j!51 for j.0 and
h~j!50 otherwise. This operator selects out those compo
nents of the basis which have momentum in the positiv
direction at t→2`. Miller, Schwartz, and Tromp3 showed
that this projection operator and one based on the positio
step function,

`̂5 lim
t→`

e2 iĤ t/\h~2 ŝ!eiĤ t/\, ~2.4!

are equivalent in the long time limit indicated. This latter
projection operator selects out those components of the ba
which were on the reactant side of the barrier att→2`.
Clearly both of these operators project onto the reactiv
space.

Using the projection operators in Eqs.~2.3! and ~2.4!,
and the property@Ĥ,`̂#50, the exact thermal rate constant
can be expressed as

k~T!5
1

Qr
lim
t→`

tr@h~ p̂!eiĤ tc* /\F̂e2 iĤ tc /\h~ p̂!#, ~2.5a!

or equivalently as

k~T!5
1

Qr
lim
t→`

tr@h~2 ŝ!eiĤ tc* /\F̂e2 iĤ tc /\h~2 ŝ!#,

~2.5b!

where we have combined the propagators with the Boltz
mann operator to obtain a single propagator in complex tim
tc5t2 ib\/2, and also used the property of the step functio
h(j)* h(j) 5 h(j) in order to expressk(T) as the trace of
an Hermitian operator. From these expressions we define t
flux-momentum correlation function

Cfp~ t !5tr@h~ p̂!eiĤ tc* /\F̂e2 iĤ tc /\h~ p̂!#, ~2.6a!

and the flux-position correlation function

Cfs~ t !5tr@h~2 ŝ!eiĤ tc* /\F̂e2 iĤ tc /\h~2 ŝ!#, ~2.6b!

so that the thermal rate constant is given by
2, No. 19, 15 May 1995
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k~T!5
1

Qr
lim
t→`

Cfp~ t !5
1

Qr
lim
t→`

Cfs~ t !. ~2.6c!

In addition to these correlation functions Miller,
Schwartz, and Tromp3 derived a flux-flux autocorrelation
function

Cf f~ t !5tr~ F̂eiĤ tc* /\F̂e2 iĤ tc /\!, ~2.7a!

and a left–right correlation function

Css~ t !5tr@h~2 ŝ!eiĤ tc* /\h~ ŝ!e2 iĤ tc /\h~2 ŝ!#, ~2.7b!

in terms of which the rate constant can also be expressed

k~T!5
1

Qr
E
0

`

Cf f~ t !dt5
1

Qr
lim
t→`

d

dt
Css~ t !. ~2.7c!

One expects the flux-position and flux-momentum correl
tion functions to be most efficient since one only needs
evaluate them at a single~long! time ~see Sec. III B!. The
flux–flux autocorrelation function must be evaluated at man
times in order to compute its integral, and the left–right co
relation function needs to be evaluated at two or more tim
in order to obtain the derivative.

III. DETAILS OF CALCULATION

A. Evaluating the trace

The flux operator is of low rank; in one dimension, di
agonalizing it in a finite basis representation yields only tw
nonzero eigenvalues, one negative and one positive, co
sponding to flux in the forward and backward
directions.13,14,31 The low rank of F̂ implies a similar low
rank for the operatorĈf s(t),

Ĉf s~ t !5h~2 ŝ!eiĤ tc* /\F̂e2 iĤ tc /\h~2 ŝ!, ~3.1!

the trace of which is the rate constant~for large enought!. In
the general multidimensional case we expect the number
nonzero eigenvalues ofĈf s(t) ~i.e., its rank! to be approxi-
mately the number of states of the activated complex of TS
that would contribute significantly to the partition function o
the activated complex.

The situation is thus analogous to Manthe and Miller’s28

treatment of the microcanonical case, where the CRPN(E)
was expressed as the trace of a matrix/operator of low ra
the number of nonzero eigenvalues being approximately t
number of energetically accessible states of the activa
complex of TST. We thus follow the same strategy a
Manthe and Miller28 and use a Lanczos iterative procedure t
compute the trace ofĈf s(t), for the number of Lanczos it-
erations required for convergence will only be a few mor
than the rank of the matrix.

In the Lanczos procedure one starts with some rando
vector v and builds a Krylov basis by multiplyingĈf s(t)
successively ontov, i.e.,

v05v,

v15Cf s~ t !•v01SO ~3.2!

v25Cf s~ t !•v11SO,
J. Chem. Phys., Vol. 102
s article is copyrighted as indicated in the article. Reuse of AIP content is sub
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etc., where ‘‘SO’’ implies Schmidt orthogonalization to all
preceeding vectors. The matrix ofĈf s(t) in this basis~which
is produced ‘‘automatically’’ in the process of constructing
the basis! is tridiagonal. When the size of the Krylov basis
~i.e., the number of Lanczos iterations! exceeds the rank of
the matrix, then no new basis functions are introduced b
further iterations, and the eigenvalues~and therefore the
trace! of the matrix in the Krylov basis are the exact ones
~i.e., the same as those in the original, perhaps much larg
basis!.

B. Propagation in complex time

When applying the operator/matrixĈf s(t) to a vector,
each operator inĈf s(t) operates sequentially~from the
right!. Thus two operations of the time evolution
operator—by far the most time consuming part of the
calculation—exp~2iĤ tc/\! and exp(iĤtc* /\), are required for
each operation ofĈf s(t).

In this paper we have used the Chebychev polynomia
expansion of the propagator32

e2 iHtc /\>e2 iH̄ tc /\ (
n50

Nc

~22dn,0!i
2nJnS DHtc

2\ D
3TnSH2H̄

DH/2D , ~3.3!

whereH is the Hamiltonian matrix in some finite basis,Nc is
the order of the highest Chebychev polynomial, theJn are
Bessel functions, and theTn are the Chebychev polynomials
obtained by the recursion relation

Tn11~x!52xTn~x!2Tn21~x!. ~3.4!

DH is the spectral range of the Hamiltonian andH̄ is the
average value of the Hamiltonian. Specifically, iflmax and
lmin are the largest and smallest eigenvalues ofH, then

DH5lmax2lmin , ~3.5a!

and

H̄5
lmax1lmin

2
. ~3.5b!

In cases where the Hamiltonian can be stored in cor
memory, we explicitly diagonalize the Hamiltonian to obtain
lmin andlmax. When this is not the case~as for the D1H2
reaction in Sec. IV C!, we estimatelmin andlmax from a low
order Lanczos calculation using a sparse Hamiltonian matri
multiply.

The number of Chebychev polynomials needed depend
on the spectral range and the propagation time. This relatio
occurs because the Bessel functions become exponentia
damped as the ordern becomes larger than the argument. In
our case this implies the guideline

Nc.
DHutcu
2\

. ~3.6!

The Chebychev expansion for the propagator provide
several advantages. It is an efficient representation and a
lows one to combine the operation of the time evolution
, No. 19, 15 May 1995
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 This
operator and the Boltzmann operator. Intermediate res
and restarting are not required. We are primarily intereste
the case of large multidimensional systems where the Ha
tonian matrix cannot be stored directly. The Chebych
propagation only requires the storage of three complex v
tors, and one can make use of a sparse matrix multiplica
routine for applying the Hamiltonian matrix onto a vector

C. The flux operator

The flux through a dividing surface defined byf ~q!50 is
given by

F̂5 1
2 $d@ f ~q!#nf•p̂1p̂•nfd@ f ~q!#%, ~3.7!

wherenf is the unit vector normal to the dividing surface a
p̂ is the momentum operator. However, this flux opera
may be equivalently expressed as

F̂5
i

\
@Ĥ,h~ f ~q!!#. ~3.8!

We note that these two expressions for the flux operator
not have identical numerical properties in anL2 basis repre-
sentation. We have chosen to use the form in Eq.~3.8! be-
cause it is more straightforwardly generalized to higher
mensions and is easily applied with a sparse matrix mult
routine as mentioned above.

D. The basis set

We have chosen to use a discrete varia
representation33–35as our finite basis. Specifically in the ex
amples shown in Sec. IV we have used the sinc funct
DVR of Colbert and Miller35 in all cases except for the Ja
cobi angle in the three-dimensional D1H2 reaction. For the
Jacobi angle we have used a symmetrized Gauss–Lege
DVR. The sinc function DVR has evenly spaced points w
the grid spacingDx determined by the maximum kineti
energy in the problem. We have thus used the therma
Broglie wavelength and a grid constant,NB , to determine
Dx,

Dx5
2p

NB
S 2mkbT

\2 D 21/2

. ~3.9!

For the present applications we have foundNB510–14 to be
sufficiently large. The 1D kinetic energy matrix elements in
sinc function DVR can be expressed in closed form.35 In
addition, in the DVR the potential energy is approximated
a diagonal matrix with the diagonal elements equal to
potential evaluated at the specified DVR point. The grea
advantage, however, is the fact that the Hamiltonian ma
for a multidimensional system is sparse. This allows one
use a sparse matrix multiplication of the Hamiltonian with
the Chebychev algorithm when the size of the matrix is
large to be stored in the core memory of the computer.

In the present formulation we need to evaluate the D
matrix elements of the flux operator,F̂. The flux operator is
easily evaluated in the form described in Sec. III C. That
the matrix elements of the flux operator in the DVR a
given by
J. Chem. Phys., Vol. 10
 article is copyrighted as indicated in the article. Reuse of AIP content is su
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Fj , j 85
i

\
T j , j 8@h~sj 8!2h~sj !#, ~3.10!

whereh(sj ) is the step function evaluated at thej th DVR
point, andT j , j 8 is the kinetic energy matrix.

IV. RESULTS

In order to demonstrate the utility of the present metho
we have applied it to three test cases, the one-dimensio
Eckart barrier, the two-dimensional collinear H1H2 reaction,
and the three-dimensional D1H2 reaction forJ50.

A. The Eckart barrier

As a starting point, we have applied the present metho
to the one-dimensional Eckart barrier,

V~s!5V0 sech
2~s/a!, ~4.1!

with V050.425 eV,a50.734 a.u., and a mass of 1061 a.u
These parameters model the collinear H1H2 reaction. The
basis is specified byNB andQmax. Qmax defines the extent of
the basis; the DVR grid is truncated forusu.Qmax.

Below we investigate the efficiency of the flux-position
correlation functions to compute thermal rate constants. F
completeness, we have tested the Lanczos scheme for co
puting rate constants using the flux–flux, left–right, an
flux–momentum correlation functions. The number of non
zero eigenvalues is roughly the same in all cases. Therefo
usingCf f(t) andCss(t) is less efficient since they must be
computed at more than one time. We have found the flux
momentum correlation function to have poorer convergen
properties thanCfs(t), making it less desirable.

For simple barrier crossing reactions, such as the prese
examples, one expects thatCfs(t) will reach a constant value
~a ‘‘plateau’’! at times on the order of\b, giving the correct
rate constant. At longer times, reflection from the edge of th
grid gives spurious results. Thus, we determine the re
propagation time,t, by specifying a unitless time factor,t,
according to the relation

t5t\b. ~4.2!

The number of Chebychev terms,Nc , depends on the propa-
gation time and can also be specified by a single factor,h,

Nc5h
DHutcu
2\

. ~4.3!

In order to evaluate the efficiency of the method, we ar
interested in examining~1! the time needed to reach the pla-
teau value of the correlation function,~2! the grid size nec-
essary to obtain a reasonably wide plateau period,~3! the
number of Chebychev terms needed in the expansion, a
particularly important,~4! the number of Lanczos iterations
necessary to converge the rate constant.

Figure 1 shows the rate constant obtained fromCfs(t) as
a function of t for ~a! T5200 K, ~b! T5300 K, and ~c!
T51000 K for different grid sizes [k(T;t)5Cfs(t)/Qr(T)].
Note that the plateau begins around 25 fs forT5200 K and
around 18 fs forT5300 K, while for these temperatures
\b;38 fs and 25 fs, respectively. In contrast, forT51000 K
the plateau occurs at aboutt510 fs while \b;7. This be-
2, No. 19, 15 May 1995
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 T
havior has previously been observed by Tromp and Miller5,6

in the flux–flux autocorrelation function. At higher temper
tures, the plateau time depends on the temperature-depen
dynamics of crossing the barrier, while at lower tempe
tures, the rate is dominated by tunneling. However, the t
neling time depends strongly on the barrier frequency b
only weakly on the temperature~as shown for the harmonic
barrier by Miller, Schwartz, and Tromp3!.

For all temperatures we see that the plateau region m
be extended by making the grid larger. This is particularly
issue at lower temperatures. Because we have a Boltzm

FIG. 1. Thermal rate constantsk(T;t) for the one-dimensional Eckart bar
rier calculated as a function of time from the flux-position correlation fun
tion for ~a! T5200 K, ~b! T5300 K, and~c! T51000 K. In ~a! results are
shown for grid sizes ofQmax57.0 a.u.~solid line!, 8.0 a.u.~dashed line!, and
9.0 a.u.~long dashed line!. In ~b! grid sizes ofQmax55.0 a.u.~solid line!, 6.0
a.u.~dashed line!, and 7.0 a.u.~long dashed line! are shown. And~c! shows
results for grid sizes ofQmax54.0 a.u.~solid line!, 5.0 a.u.~dashed line!, and
6.0 a.u.~long dashed line!.
J. Chem. Phys., Vol. 102
his article is copyrighted as indicated in the article. Reuse of AIP content is sub
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distribution of translational energies, at low temperature
there is a contribution from energies above the barrier ev
though the rate is dominated by tunneling. Reflection from
the edges of the grid occurs at these higher energies wh
cross the barrier at times less than the tunneling time. Thu
lower temperatures require grids which extend farther awa
from the barrier. In Fig. 1~a!, for T5200 K with Qmax57.0
a.u., a grid of 31 DVR points is necessary. ForQmax58.0 and
9.0 a.u. at the same temperature, 35 and 39 DVR points a
required, respectively. AtT51000 K, 39 DVR points are
required forQmax54.0 a.u., 49 points forQmax55.0 a.u., and
59 points forQmax56.0 a.u. We note that the grid sizes nec
essary for these calculations compare favorably with tho
used by Seideman and Miller20 for direct calculations of the
cumulative reaction probability.

For all the results shown, we have usedh51.3 to deter-
mine the number of Chebychev terms. We have found this
give accurate results while minimizing the computational e
fort. For the results shown for the Eckart barrier in Fig. 1 w
have used a maximum of about 230 Chebychev terms~for
1000 K at the longest times!. The number of Lanczos itera-
tions needed is 4 for all but the lowest temperatures. Th
implies a rank of 2, as an additional 2 iterations are needed
insure the trace is converged. At lower temperatures, a
proximately 10 eigenvalues are needed. This is due to o
choice of the form of the flux operator. As discussed abov
it is possible to express the flux operator as a dyadic,31 so
Ĉf s(t) will be of rank 2 at all temperatures. Equation~3.8!
does not guarantee this low rank, but we have chosen to u
it because it is more easily applied to higher dimensions.

B. Collinear H 1H2

The collinear H1H2 reaction serves as a standard tes
problem for reactive scattering methods and presents us w
the first step to treating multidimensional systems. An acc
rate potential energy surface exists36 and many exact calcu-
lations are available for comparison.11,14,15

We have used a DVR grid in the normal mode coord
nates (q1 ,q2) of the transition state. In these coordinates, th
optimum dividing surface is defined byq250, whereq2 is
the asymmetric stretch andq1 is the symmetric stretch nor-
mal mode. The raw grid is truncated according to an energ
cutoff; if the potential energy at a given DVR point is greate
than a specified cutoff energy,Vcut, then that DVR point is
discarded. The grid is also truncated in the asymptotic rea
tant and product valleys in the following manner: points ar
omitted if the translational Jacobi coordinate,R(q1 ,q2) is
larger than a specified value,Rmax. The reactant partition
function is given by

Qr~T!5S m

2p\2b D 1/2(
v

e2bev, ~4.4!

where m is the reduced mass associated with the relativ
translation of H and H2. The ev are the vibrational energy
levels of H2 calculated numerically.

Figure 2 shows the time dependence ofCfs(t) for dif-
ferent grid sizes for~a! T5300 K, ~b! T5500 K, and~c!
T51000 K. At 300 K, the convergence is virtually the sam

-
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 This 
as for the Eckart barrier; the plateau begins around 18 fs a
is lengthened by increasing the extent of the grid. ForT5500
K and T51000 K the plateau begins around 15 fs~\b;15
fs! and 13 fs, respectively. This is a slightly longer time a
1000 K than for the Eckart barrier. Again, for the lower tem
peratures, the time is determined by the tunneling time.

The size of the DVR grid for the results shown varie
from 82 points forRmax56.0 at 300 K to 364 forRmax56.0
andT51000 K. Realistically, one needs a grid of around 10
points at 300 K, 150 points for 500 K, and 300 points fo
1000 K to obtain converged results. This is on the order
the size of the basis used by Seideman and Miller20 for cal-

FIG. 2. Thermal rate constantsk(T;t) for the collinear H1H2 reaction
calculated as a function of time from the flux-position correlation functio
for ~a! T5300 K, ~b! T5500 K, and~c! T51000 K. In ~a! for T5300 K
results are shown for grid sizes ofRmax56.0 a.u. ~solid line!, 6.5 a.u.
~dashed line!, and 7.0 a.u.~long dashed line!. In ~b! and ~c! grid sizes of
Rmax55.0 a.u.~solid line!, 5.5 a.u.~dashed line!, and 6.0 a.u.~long dashed
line! are shown.
J. Chem. Phys., Vol. 102
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culating cumulative reaction probabilities. The number o
Chebychev terms needed for the propagation in compl
time was less that 700 for all cases. However, around 3
terms are usually sufficient for convergence.

Table I compares the results obtained from the flux
position correlation function with the results of Romet al.11

and Brown and Light.15 The rate constants given are ob-
tained by averaging the results obtained at several tim
within the plateau period. For all temperatures shown th
averaged value is within 1% of the result for each tim
within the plateau. We note that at higher temperatures it
necessary to use a largerVcut, as more of the potential energy
surface is sampled. As in the case of the Eckart barrier,
lower temperatures we need a larger grid. The agreeme
between the previous results and our present method is
cellent over a wide range of temperatures though our resu
are higher than those of Brown and Light15 above 1000 K.

It is interesting to examine the structure of the eigenva
ues of Ĉf s . Table II shows typical sets of eigenvalues ob
tained at different temperatures. The pattern is similar to th

TABLE I. Thermal rate constants for the collinear H1H2 reaction in units of
cm molecule21 s21.

Temp.~K!

k(T)

Presenta Ref. 11 Ref. 15

300 4.82 4.821 4.82
350 18.2 18.96
400 54.3 54.69
500 254 252.9 252
600 724 726.3
700 1576 1574
800 2853 2848
900 4573 4557
1000 6703 6692 6680
1500 2.29~4!b 2.21~4!
2000 4.76~4! 4.20~4!

aCalculated from Eq.~2.5!.
bThe number in parentheses is the power of 10.

TABLE II. Eigenvalues of theĈf s operator for different temperatures. The
eigenvalues have been divided byQr(T) and are in units of
cm molecule21 s21. Only eigenvalues with absolute value greater than 0.00
are listed.

300 K 500 K 1000 K 1500 K 2000 K

5.925 1 377.572 7 759.253 23 872.925 43 925.841
0.852 8 3.508 359.960 2 203.398 8 866.303
0.409 8 0.026 4 16.542 51.169 1 545.173
0.185 3 0.990 7.421 254.994
0.021 5 0.026 7 0.938 53.182
0.003 5 0.063 19.687

0.489
0.158

20.270
20.002 5 20.051 214.112
20.005 9 20.094 23.431 241.140
20.016 4 20.462 221.274 2139.343
20.087 6 20.017 9 25.206 2108.782 2520.493
20.136 4 20.258 277.623 2763.604 21 233.238
22.184 2 2122.604 21 360.776 22 691.187 25 244.550
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seen by Manthe and Miller28 in the eigenreaction probabili-
ties. Namely, as the temperature is raised more eigenval
contribute to the rate, corresponding to more states of t
activated complex which are now energetically~or ther-
mally! accessible. Also, as the temperature increases, the
genvalues associated with a given state increase, represen
an enhancement of the rate through that state. We hav
different case than Manthe and Miller28 becauseĈf s is not a
positive definite operator. Therefore we have both positiv
and negative eigenvalues. The rate is given by the cance
tion of the negative eigenvalues by the larger positive one
This is consistent with the properties of the flux operato
discussed above and in more detail by Park and Light.13,14

C. Three dimensional D 1H2 for J50

Recently there have been several exact16,37 and
approximate38 calculations of the thermal rate constant fo
the D1H2 reaction. These provide the opportunity for us t
test our method on a full three-dimensional system.

We have calculated the thermal rate constants for t
D1H2 reaction for total angular momentum,J50, on the
LSTH ~Ref. 36! potential energy surface. We have used
DVR basis in the Jacobi coordinates of the reactant arran
ment. We denote the coordinates asR, the distance fromD to
the center-of-mass of H2, r , the H2 bond distance, andg, the
angle betweenR and r . A sinc function DVR is used forR
andr while a Gauss–Legendre DVR is used forg. We have
taken advantage of the inversion symmetry of H2. Thus a
separate calculation is done for the even and odd par
blocks of the Hamiltonian; each calculation requires on
half of the DVR grid points in theg coordinate. The total
rate constant is obtained by adding the even~p50! and odd
parity ~p51! results together with the proper~1:3! nuclear
spin weightings,

k~T!5kp50~T!13kp51~T!. ~4.5!

The same reactant partition function as Mielkeet al.37 is
used,

Qr~T!5S m

2p\2b D 3/2F (
v, j even

~2 j11!e2bev, j

13 (
v, j odd

~2 j11!e2bev, jG , ~4.6!

wherem is the reduced mass associated withR and the$ev, j %
are the energy levels of the isolated H2 diatom ~calculated
numerically!.

The basis set is defined by the parametersNB , Ng , p,
Vcut, andRmax. The grid constant,NB , determines the num-
ber of points per thermal de Broglie wavelength for theR
and r coordinates~See Sec. III D!. Ng is the number of
Gauss–Legendre DVR points used for theg coordinate be-
fore symmetrization andp defines the parity of the calcula-
tion. If the potential energy at a DVR point is greater tha
Vcut that point is discarded. The grid is truncated in the a
ymptotic reactant valley if the translational Jacobi coordina
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is greater thanRmax. It is similarly truncated in the product
valley by the same criterion, however, the Jacobi coordinat
of the product arrangement are used.

Figure 3 illustrates the plateau period for the D1H2 re-
action for~a! T5300 K, ~b! T5500 K, and~c! T51000 K. In
this case atT5300 K the plateau begins at 22 fs and at 20 f
for T5500 K, both are slightly longer times than for the
collinear H1H2 case. At T51000 K, the plateau begins
around 22 fs, significantly longer than for collinear H1H2 or
the Eckart barrier. The grid sizes for both temperature
~Rmax56.0 a.u. for 300 K, andRmax55.0 a.u. for 500 K and
1000 K! are comparable to those needed for calculating th

FIG. 3. Thermal rate constantsk(T;t) for the three dimensional D1H2

reaction calculated as a function of time from the flux-position correlatio
function for ~a! T5300 K, ~b! T5500 K, and~c! T51000 K. In ~a! results
are shown for grid sizes ofRmax56.0 a.u.~solid line!, 6.5 a.u.~dashed line!,
and 7.0 a.u.~long dashed line!. In ~b! and ~c! grid sizes ofRmax55.0 a.u.
~solid line!, 5.5 a.u.~dashed line!, and 6.0 a.u.~long dashed line! are shown.
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 Th
cumulative reaction probability. At the highest temperature
about 20 Lanczos iterations are needed to converge the r
constant. For all temperatures the number of Chebych
terms necessary is less than 1000.

Table III compares the results from the flux-position cor
relation function to the results of Mielkeet al.37 and Park
and Light.16 As for the collinear H1H2 results, the rate con-
stants given in the table are obtained by averaging the resu
obtained at several times within the plateau period. For a
temperatures shown the averaged value is within 2% of th
result for each time within the plateau. The present metho
gives the rate constant in excellent agreement with the resu
of Mielke et al.37 for temperatures above 300 K. At 300 K
the rate is overestimated by the present method by abo
30%.

V. CONCLUDING REMARKS

We have introduced a new method for calculating the
mal rate constants efficiently anddirectly via the flux-
position correlation function. This method takes advantage
the low rank of the flux operator to express the thermal ra
constant as a sum of the eigenvalues of the thermal react
flux operator. The eigenvalues are evaluated using a Lancz
scheme which allows the calculation of only those eigenva
ues which are nonzero and contribute to the rate. The nec
sary propagation in complex time,tc5t2 i\b/2, is accom-
plished in one step by an efficient Chebychev polynomia
expansion. Solving the problem in the time domain avoid
the necessity of empirical absorbing potentials. We hav
tested this new method on three realistic benchmark pro
lems, the one-dimensional Eckart barrier, the two
dimensional collinear H1H2 reaction, and the three-
dimensional D1H2 reaction for total angular momentum
J50. These applications have demonstrated that a sm
number of eigenvalues do contribute to the thermal rate co
stant, and that the present method is indeed efficient a
accurate.

Finally, we note very interesting recent work by
Manthe39 that uses a similar approach to that described her
i.e., a Lanczos procedure to evaluate the trace of the flu
position correlation function to obtain the thermal rate ‘‘di-
rectly.’’ There are, though, significant and interesting differ
ences in the specifics of how this is carried out.

TABLE III. Thermal rate constants for the three-dimensional D1H2 ~J50!
reaction in units of cm3 molecule21 s21.

Temp.~K!

k(T)

Presenta Ref. 37 Ref. 16

300 1.07~217! 8.17~218! 9.2~218!
500 5.15~216! 5.22~216! 5.6~216!
700 2.96~215! 3.00~215! 3.2~215!
900 7.66~215! 7.59~215! 8.1~215!
1100 1.36~214! 1.33~214! 1.4~214!
1300 1.96~214! 1.94~214! 2.1~214!
1500 2.50~214! 2.53~214! 2.7~214!

aCalculated from Eq.~2.5!.
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