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We present a new approach for tlieect (andcorrecy calculation of thermal rate constarkéT)

(“direct” meaning that one avoids having to solve the state-to-state reactive scattering problem, and
“correct” meaning that the method contains no inherent approximatiofise rate constant is
obtained from the long time limit of the flux-position correlation functioB; ((t), whose
calculation is made efficient by taking advantage of the low rank of the flux operator. Specifically,
the trace required to obtai@; 4(t) is evaluated by a Lanczos iteration procedure which calculates
only the nonzero eigenvalues. The propagation in complex tigaet,—i% 8/2, is carried out using

a Chebychev expansion. This method is seen to be both accurate and efficient by application to the
Eckart barrier, the collinear #HH, reaction, and the three-dimensional+H, (J=0)
reaction. ©1995 American Institute of Physics.

I. INTRODUCTION where p, is the density of reactant states per unit engrgy.
) Equation(1.2) is of course not a “direct” expression for the
A long-standing goal of our research group has been thg.pp ince it requires the-matrix elements for transitions
development of ways to calculate rate constants for chemica},m all the energetically open reactant stdes to all such
reactionsdirectly, i.e., without having to solve the complete product stategn,}. The following “direct” expression for

state-to-state reactive scattering problem, yet stlirectly, the CRP was obtainethowever, as a by-product of the flux

i.e., without inherent approximation. That is, we seek to derelation function analysis,

velop rigorous theoretical approaches that are the outgrowth

of ideas from transition state theofyST), which is a very N(E)= % (27h)2 tr[ﬁ&(E— I:|)|35(E—I:|)], (1.4)
useful (though approximajeapproach to determining rate .
constants “directly.” whereF is a flux operatofdefined with respect to a dividing

Our initial efforts*? in this direction focused on the ther- surface which separates reactants from produetsi H is
ma||y averaged rate COﬂStdK'(tT) for bimolecular reactions; the total Hamiltonian of the system. A practical implementa—
a formally exact quantum expression for the rate was detion of Eq.(1.4) was achievetf** by representing the micro-
rived, and this was useful, for example, in showing the nacanonical density operator as
ture of the TST approximation and in suggesting more accu- 1
rgte guantum mechgnlcal versions of TST. Létahls S(E—H)=——Im(E+ie—H)" 1, (1.5
rigorous rate expression was written in terms of reactive flux ™
autocorrelation functionéhat are similar, though not identi-
cal to earlier such expressions obtained by Yamafoemd
a number of groups~*°(including our$ have used this for-
mulation as the basis for practical calculations.

More recently our attention shifted to the “direct” cal-
culation of the cumulative reaction probabiltg@RP, N(E),
which is defined as

wheree is a potential energy operator which enforces outgo-
ing wave boundary conditions. Such absorbi@gnpirical
optical, negative imaginajypotentials have been used by a
number of worker§~2’in a variety of contexts. A very effi-
cient computational procediffebased on this approach has
been developed and applied to several challenging problems,
e.g.,, a full dimensional calculation oN(E) for the
H,+OH—H,O+H reaction?® {We note that another useful
N(E)= > |Sn, (BN, (1.)  implementation of Eq(1.4) has been achievétiby repre-
senting the microcanonical density operator as

NN
and in terms of which the thermal rate constant is given by 6(E—|:|): (a_ 1/2[e_a(ﬁ_E>z]M (1.6
T ' '
1 ©
[ — — BE _ ..
k(T) 27h0OL(T) fo dEe PEN(E), (1.2 for a sufficiently small andV sufficiently large}

In the present paper we return to the problem of the

whereQ, is the reactant partition function per unit volume direct determination of the thermal rate consta(it), for

and B=1/k,T. {Sometimes, usually for unimolecular reac- three reasons. First, if one wishes to ha(@) itself, and is
tions, one is interested in the microcanonical r&t&), the ~ Nnot primarily interested imN(E), as is typically the case for
average rate for a given total energy, and it is given in term®imolecular reactions, then it is clearly desirable to be able to

of the CRP by compute it for the temperature of interest and not have to
computeN(E) over a range ok in order to carry out the
K(E)=[27%p,(E)] IN(E), (1.3  Boltzmann average in Eq1.2).
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A second reason for refocusing &(@T) is that its calcu- 1
lation (vide infra) is able to avoid introducing the absorbing ~ Keu(T)= onF f dpf dge AH(PO g f(q)]
potentiale discussed above regarding E#.5). Although the '
use of absorbing potentials has made it possible to carry out af(q) p
the N(E) calculations noted above, their use does introduce g mX P.0) (2.2)
numerical convergence parameters into the calculation thath. his the th | f the classical tive fl
one would be quite happy to avoid. TRET) calculation can which IS the thermal average of the classical reactive Tiux

bypass the use of absorbing potentials because it is carrié[ rough a surfacé(q)=0 dividing reactants from products.

out in the time domain and thus involves the time evolution P.q) is the "characteristic function” which takes the value

Sheratr s 1) et e enery Goman . (0 (e (3ot ane 0 o nonveacie agtors
tion of N(E) involves the Green’s functio®*(E). These . > P&y P

two operators are related by @ in the quantum mechanical expression, E21), which
projects onto the reactive part of the Hilbert space.

G*(E)=(E+ie—H)™* (1.79 As noted by Tromp and Millet,the projection operator
" o can be represented in many ways. For the purpose of this
:(ih)—1J dte/(Etie-HUR (1.7  discussion, we consider a one-dimensional barrier problem
0

with the barrier ats=0. The reactants are defined by0

and one sees that the absorbing poteritia needed so that and products bg>0, andp is the momentum conjugate o
thet—oo part of the integrand in Eq1.7b is damped; i.e., it In the original formulation the projection operator was taken
provides a long time cutoff. When carrying out thspace 1O be
qalculanon fo_rk(T), ho_vvever, it is easy to mporporate a_Iong o= lim e Hin(p)eHh 2.3
time cutoff without using absorbing potentials—one simply oo
stops the calculation at finitie : . . _

The third reason that we have returned to the calculatior\{\/h(:“reh is the Heaviside step functioh()=1 for £>0 and

of k(T) is that some of the tricks that have been learned fromh(g):0 otherwise. This operator selects out those compo-

doing theN(E) calculation “directly” can be carried over to nents of the basis which have momentum in the positive

the k(T) calculation and provide a more powerful approach?r:;etctt;ﬁg artct):c;:ﬁ E)AIIéigtc?rcgzvc?rézr{eaggsgogip?ngidsition
than earlier ones. In particular, we evaluate the quantum me- ProJ P P

chanical trace expression fe(T) (vide infra) using an itera- step function,

tive Lanczos procedure analogous to that used by Manthe (= |im e—iﬁt/hh(_g)eiﬁt/fi, (2.4

et al?8 for the N(E) calculation. The low rank of the rel- toe

evant operator greatly reduces the number of operations Qfre equivalent in the long time limit indicated. This latter
the time evolution operator that are required. projection operator selects out those components of the basis

Section |l first summarizes the relevant flux correlation\ynhich were on the reactant side of the barriert-at—c.

expressiqns fok(T)_that we use. Section lll describes the Clearly both of these operators project onto the reactive
computational details of the present method, and then Se%pace.

IV presents results for the one-dimensional Eckart barrier, Using the projection operators in Eq@.3) and (2.4),

the coIIinee}r H-H, reaction, and the thrge—dimensional and the propertyH,$]=0, the exact thermal rate constant

D+H, reaction forJ=0. We compare to previous exact cal- can be expressed as

culations and discuss the accuracy of the present method. .

Section V concludes. k(T)= = lim tr[h(ﬁ)e‘Htg’ﬁf:e*‘Htc’ﬁh(f))], (2.59
rt—ow

Il. FLUX CORRELATION FUNCTIONS: REVIEW OF

THE RELEVANT FORMULAS or equivalently as

We begin with the expression for the exact thermal rate  (T)= 1 lim tr[h(_g)eiﬁtﬁlhﬁe*iﬁtc/ﬁh(_g)]1

constant derived previously by one ofiis terms of a quan- rt—os
tum mechanical trace, (2.5b
1 . where we have combined the propagators with the Boltz-
k(T)= a tr(e” A1F Q). (2.2 mann operator to obtain a single propagator in complex time,
r

R t.=t—iBA/2, and also used the property of the step function
Here Q, is the reactant partition functior, is the symme- h(&)*h(&) = h(&) in order to expres&(T) as the trace of
trized flux operatofin the original formulatiork(T) is given  an Hermitian operator. From these expressions we define the
as the real part of the right-hand side of Eg.1) with the  flux-momentum correlation function
unsymmetrized flux operathrandg is a projection operator ST TPr, -
onto “reactive space.” This expression is very intuitive in Crp()=trlh(p)e™ e Fe e h(p)], (2.69
that it gives the rate constant as a thermal average of thand the flux-position correlation function
reactive flux through a surface dividing reactants and prod- B A AR iRt IR N
ucts. This is analogous to the expression for the exact clas- Cfs(t) =trh(—s)e™ et Fe e h(=s)], (2.6b
sical rate constant, so that the thermal rate constant is given by
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1 1 etc., where “SO” implies Schmidt orthogonalization to all
k(T)= 5 lim Cp(t)= = lim Cey(t). (260  preceeding vectors. The matrix G6f(t) in this basiswhich
ree ree is produced “automatically” in the process of constructing
In addition to these correlation functions Miller, the basisis tridiagonal. When the size of the Krylov basis
Schwartz, and Tromipderived a flux-flux autocorrelation (i.e., the number of Lanczos iterationsxceeds the rank of

function the matrix, then no new basis functions are introduced by
A AtIRe bt h further iterations, and the eigenvaluésnd therefore the
Cri(t)=tr(Fe™c™Fe ™), (278 trace of the matrix in the Krylov basis are the exact ones
and a left—right correlation function (i.e., the same as those in the original, perhaps much larger
basis.

Codt) =t h(—3)eMt P h(3)e Hic/ih(—8)],  (2.7b
in terms of which the rate constant can also be expressed,B. Propagation in complex time

1 (= 1 d When applying the operator/matr'ﬁzfs(t) to a vector,
k(T):a Jo C”(”d‘=5t“”; gt Cssb- (279 each operator inC;(t) operates sequentiallyfrom the

' e right). Thus two operations of the time evolution
One expects the flux-position and flux-momentum correlaoperator—by far the most time consuming part of the
tion functions to be most efficient since one only needs tcalculation—exp—iHt /%) and expiHt: /%), are required for
evaluate them at a singlgong) time (see Sec. Il B. The  each operation o€4(t).
flux—flux autocorrelation function must be evaluated at many  |n this paper we have used the Chebychev polynomial
times in order to compute its integral, and the left—right cor-expansion of the propaga?&r

relation function needs to be evaluated at two or more times N AH
in order to obtain the derivative. e Hclh=g M (2_ 5 0 an( 2ﬁ'tc)
n=0
Ill. DETAILS OF CALCULATION H—H
XT, ﬁ , (3.3
A. Evaluating the trace H/2

The flux operator is of low rank; in one dimension, di- whereH is the Hamiltonian matrix in some finite bashs, is
agonalizing it in a finite basis representation yields only twoth€ order of the highest Chebychev polynomial, feare
nonzero eigenvalues, one negative and one positive, corr&eSsel functions, and thE, are the Chebychev polynomials
sponding to flux in the forward and backward Obtained by the recursion relation
directions™**3! The low rank ofF implies a similar low Toe1(X) = 2XTr(X) = T 1(X). (3.4)

rank for the operato€;4(t), . — .
P rs(t) AH is the spectral range of the Hamiltonian aHdis the

E:fs(t):h(—é)eiﬁtifﬁﬁe—iﬁtc/ﬁh(_g), (3.1 average value of the Hamiltonian. Specifically\if., and

the trace of which is the rate constafur large enough). In Amin are the largest and smallest eigenvaluesipthen

the general multidimensional case we expect the number of AH=Xpya— Nin, (3.539
nonzero eigenvalues @;(t) (i.e., its rank to be approxi-
mately the number of states of the activated complex of TST
that would contribute significantly to the partition function of g A maxt Amin
the activated complex. 2 '
The situation is thus analogous to Manthe and Milfé&r's N .
In cases where the Hamiltonian can be stored in core

treatment of the microcanonical case, where the GRE) memory, we explicitly diagonalize the Hamiltonian to obtain

was expressed as the trqce of a matnx/operator Qf low ranl§\,min and .. When this is not the cases for the D-H,
the number of nonzero eigenvalues being approximately the

number of energetically accessible states of the actlvatefleacnon in Sec. IV G, we esUr_naté\mm and)\maxfr_om a low .
order Lanczos calculation using a sparse Hamiltonian matrix
complex of TST. We thus follow the same strategy as .
= og ) . multiply.
Manthe and Millef® and use a Lanczos iterative procedure to .
- ; The number of Chebychev polynomials needed depends
compute the trace of;4(t), for the number of Lanczos it- Lo . .
: . . on the spectral range and the propagation time. This relation
erations required for convergence will only be a few more : .
occurs because the Bessel functions become exponentially

than the rank of the matrix.
. damped as the order becomes larger than the argument. In
In the Lanczos procedure one starts with some random

vectorv and builds a Krylov basis by multiplyin@:4(t) our case this implies the guideline

(3.5b

successively onte, i.e., AH|tg
Ne>——. (3.6
Vo=V, 2h
V1= Cio(t)-Vg+ SO 3.2 The Chebychev expansion fo_r the propagato_r provides
several advantages. It is an efficient representation and al-
Vo=C;4(t) - v, + SO, lows one to combine the operation of the time evolution
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operator and the Boltzmann operator. Intermediate results i

and restarting are not required. We are primarily interested in ~ Fj j»=7 Tj j/[h(sj) —h(sp) ], (3.10
the case of large multidimensional systems where the Hamil-

tonian matrix cannot be stored directly. The Chebychewhereh(s)) is the step function evaluated at thth DVR
propagation only requires the storage of three complex ved?0int, andT; ;- is the kinetic energy matrix.

tors, and one can make use of a sparse matrix multiplication

routine for applying the Hamiltonian matrix onto a vector. V. RESULTS

In order to demonstrate the utility of the present method
C. The flux operator we have applied it to three test cases, the one-dimensional
Eckart barrier, the two-dimensional collineari, reaction,

The flux through a dividing surface defined byg)=0 is and the three-dimensional-H, reaction forJ=0.

given by

F= 3 {lf(@]Insp+p-neolf(a)]}, 3.7 o |
. ) o As a starting point, we have applied the present method
wheren; is the unit vector normal to the dividing surface and i, the one-dimensional Eckart barrier

p is the momentum operator. However, this flux operator

A. The Eckart barrier

may be equivalently expressed as V(s)=V, secK(s/a), (4.1
i with V;=0.425 eV,a=0.734 a.u., and a mass of 1061 a.u.
F=2 [H.N(f(@)]. (3.8  These parameters model the collineat H, reaction. The

basis is specified bz andQax- Qmax defines the extent of

We note that these two expressions for the flux operator de¢he basis; the DVR grid is truncated f(®]> Qpax-
not have identical numerical properties in lahbasis repre- Below we investigate the efficiency of the flux-position
sentation. We have chosen to use the form in Bf) be-  correlation functions to compute thermal rate constants. For
cause it is more straightforwardly generalized to higher dicompleteness, we have tested the Lanczos scheme for com-
mensions and is easily applied with a sparse matrix multiplyputing rate constants using the flux—flux, left—right, and
routine as mentioned above. flux—momentum correlation functions. The number of non-
zero eigenvalues is roughly the same in all cases. Therefore,
using Cy(t) and C¢((t) is less efficient since they must be
computed at more than one time. We have found the flux—

We have chosen to use a discrete variablemomentum correlation function to have poorer convergence
representatioll > as our finite basis. Specifically in the ex- properties tharC;(t), making it less desirable.
amples shown in Sec. IV we have used the sinc function For simple barrier crossing reactions, such as the present
DVR of Colbert and Mille® in all cases except for the Ja- examples, one expects th@g(t) will reach a constant value
cobi angle in the three-dimensionahibi, reaction. For the (a “plateau”) at times on the order dfg, giving the correct
Jacobi angle we have used a symmetrized Gauss—Legendtgte constant. At longer times, reflection from the edge of the
DVR. The sinc function DVR has evenly spaced points withgrid gives spurious results. Thus, we determine the real
the grid spacingAx determined by the maximum Kinetic propagation timet, by specifying a unitless time factor,
energy in the problem. We have thus used the thermal daccording to the relation
Broglie wavelength and a grid constaMg, to determine

D. The basis set

Ax t=7hp. (4.2)
o [ 2k T 112 The number of Chebychev terms, , depends on the propa-
X="1 (%) (3.9  gation time and can also be specified by a single faejor,
B
AH|t
For the present applications we have folng=10-14 to be N.=7 % 4.3

sufficiently large. The 1D kinetic energy matrix elements in a

sinc function DVR can be expressed in closed fdPnin In order to evaluate the efficiency of the method, we are
addition, in the DVR the potential energy is approximated asnterested in examiningl) the time needed to reach the pla-

a diagonal matrix with the diagonal elements equal to the¢eau value of the correlation functio(®) the grid size nec-
potential evaluated at the specified DVR point. The greatestssary to obtain a reasonably wide plateau per{8gthe
advantage, however, is the fact that the Hamiltonian matribnumber of Chebychev terms needed in the expansion, and
for a multidimensional system is sparse. This allows one tgarticularly important(4) the number of Lanczos iterations
use a sparse matrix multiplication of the Hamiltonian within necessary to converge the rate constant.

the Chebychev algorithm when the size of the matrix is too  Figure 1 shows the rate constant obtained fl©yg(t) as
large to be stored in the core memory of the computer. a function oft for (a) T=200 K, (b) T=300 K, and(c)

In the present formulation we need to evaluate the DVRT=1000 K for different grid sizesH(T;t)=Cs(t)/Q,(T)].
matrix elements of the flux operatdf, The flux operator is Note that the plateau begins around 25 fsTer200 K and
easily evaluated in the form described in Sec. Il C. That isaround 18 fs forT=300 K, while for these temperatures
the matrix elements of the flux operator in the DVR are#8~38 fs and 25 fs, respectively. In contrast, Tor1000 K
given by the plateau occurs at abott10 fs while #8~7. This be-
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distribution of translational energies, at low temperatures
there is a contribution from energies above the barrier even
though the rate is dominated by tunneling. Reflection from
L0e+06 |- the edges of the grid occurs at these higher energies which
cross the barrier at times less than the tunneling time. Thus,
lower temperatures require grids which extend farther away
from the barrier. In Fig. (), for T=200 K with Q,,,=7.0

a.u., a grid of 31 DVR points is necessary. &f,,=8.0 and

000200 | 9.0 a.u. at the same temperature, 35 and 39 DVR points are
required, respectively. AT=1000 K, 39 DVR points are
required forQ,,,=4.0 a.u., 49 points foQ,,,=5.0 a.u., and

o 2 3 4 30 0 0 8 % 59 points forQ,,,=6.0 a.u. We note that the grid sizes nec-
(a) time (&) essary for these calculations compare favorably with those
used by Seideman and Milf@rfor direct calculations of the
cumulative reaction probability.

For all the results shown, we have usgd1.3 to deter-
mine the number of Chebychev terms. We have found this to
give accurate results while minimizing the computational ef-
fort. For the results shown for the Eckart barrier in Fig. 1 we
have used a maximum of about 230 Chebychev teffiors
1000 K at the longest timgsThe number of Lanczos itera-
tions needed is 4 for all but the lowest temperatures. This
implies a rank of 2, as an additional 2 iterations are needed to
insure the trace is converged. At lower temperatures, ap-
ter | = - " - = - proximately 10 eigenvalues are needed. This is due to our
(b) time (55) choice of the form of the flux operator. As discussed above,
it is possible to express the flux operator as a dy3an
Merll ' ‘ ‘ ‘ Ci(t) will be of rank 2 at all temperatures. Equati¢®.9)
does not guarantee this low rank, but we have chosen to use
it because it is more easily applied to higher dimensions.

L5e+06

5.0e+05

KT,0 ™)

=5.0e+05
0

4e+07

3e+07 |

K(T,H (s

2e+07

2.5e+11

B. Collinear H +H,

2.0e+11

K(T0 ™)

The collinear H-H, reaction serves as a standard test
problem for reactive scattering methods and presents us with
15exld ] the first step to treating multidimensional systems. An accu-
rate potential energy surface exiStand many exact calcu-

, ‘ ‘ ‘ . , lations are available for comparisoh!**°

© s n lsﬁme(fsf" x5 %% We have used a DVR grid in the normal mode coordi-
nates €, ,q,) of the transition state. In these coordinates, the

FIG. 1. Thermal rate constank§T;t) for the one-dimensional Eckart bar- OPtimum dividing surface is defined hy,=0, whereq, is

rier calculated as a function of time from the flux-position correlation func- the asymmetric stretch arng is the symmetric stretch nor-

tion for (a) T=200 K, (b) T=300 K, and(c) T=1000 K. In(a) results are  mga| mode. The raw grid is truncated according to an energy

shown for grid sizes of,,,,,=7.0 a.u.(solid line), 8.0 a.u(dashed ling and L . . L
9.0 a.ulong dashed ling In (b) grid sizes 0fQ,,,—5.0 a.u(solid ling, 6.0 CUtOff; if the potential energy at a given DVR point is greater

a.u.(dashed ling and 7.0 a.u(long dashed lingare shown. Andc) shows ~ than a specified cutoff energy,,, then that DVR point is
results for grid sizes o®,,=4.0 a.u(solid line), 5.0 a.u(dashed ling and  discarded. The grid is also truncated in the asymptotic reac-

6.0 a.u.(long dashed ling tant and product valleys in the following manner: points are
omitted if the translational Jacobi coordinat®(q;,q,) is
larger than a specified valu®,,.,. The reactant partition

1.0e+11
0

havior has previously been .observeq by Tromp and Mifler function is given by
in the flux—flux autocorrelation function. At higher tempera-
tures, the plateau time depends on the temperature-dependent _ o 1/22 e
dynamics of crossing the barrier, while at lower tempera- QM= 2mwh?B e 4.4
tures, the rate is dominated by tunneling. However, the tun- v
neling time depends strongly on the barrier frequency butvhere u is the reduced mass associated with the relative
only weakly on the temperatufas shown for the harmonic translation of H and Ll The ¢, are the vibrational energy
barrier by Miller, Schwartz, and Tromip levels of H, calculated numerically.

For all temperatures we see that the plateau region may Figure 2 shows the time dependenceQ(t) for dif-
be extended by making the grid larger. This is particularly arferent grid sizes forfa) T=300 K, (b) T=500 K, and(c)
issue at lower temperatures. Because we have a Boltzmarh=1000 K. At 300 K, the convergence is virtually the same
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FIG. 2. Thermal rate constantqT;t) for the collinear H-H, reaction

TABLE I. Thermal rate constants for the collinearH, reaction in units of
cm molecule?s™?

k(T)

Temp. (K) Preserit Ref. 11 Ref. 15
300 4.82 4.821 4.82
350 18.2 18.96
400 54.3 54.69
500 254 252.9 252
600 724 726.3
700 1576 1574
800 2853 2848
900 4573 4557

1000 6703 6692 6680
1500 2.294)° 2.21(4)
2000 4.764) 4.204)

&Calculated from Eq(2.5).
®The number in parentheses is the power of 10.

culating cumulative reaction probabilities. The number of
Chebychev terms needed for the propagation in complex
time was less that 700 for all cases. However, around 300
terms are usually sufficient for convergence.

Table | compares the results obtained from the flux-
position correlation function with the results of Rarhall!
and Brown and Light® The rate constants given are ob-
tained by averaging the results obtained at several times
within the plateau period. For all temperatures shown the
averaged value is within 1% of the result for each time
within the plateau. We note that at higher temperatures it is
necessary to use a largég,;, as more of the potential energy
surface is sampled. As in the case of the Eckart barrier, at
lower temperatures we need a larger grid. The agreement
between the previous results and our present method is ex-
cellent over a wide range of temperatures though our results
are higher than those of Brown and Lighabove 1000 K.

It is interesting to examine the structure of the eigenval-
ues of C;;. Table Il shows typical sets of eigenvalues ob-
tained at different temperatures. The pattern is similar to that

calculated as a function of time from the flux-position correlation function TABLE II. Eigenvalues of theC, operator for different temperatures. The

for (a) T=300 K, (b) T=500 K, and(c) T=1000 K. In(a) for T=300 K
results are shown for grid sizes &,,=6.0 a.u.(solid line), 6.5 a.u.

(dashed ling and 7.0 a.u(long dashed ling In (b) and (c) grid sizes of
Rmax=5.0 a.u.(solid line), 5.5 a.u.(dashed ling and 6.0 a.u(long dashed

eigenvalues have been divided b®,(T) and are in units of
cm moleculé?! s™%. Only eigenvalues with absolute value greater than 0.001
are listed.

line) are shown. 300 K 500 K 1000 K 1500 K 2000 K
5.9251 377.572 7 759.253 23872.925  43925.841
0.8528 3.508 359.960 2203.398 8 866.303
as for the Eckart barrler the plateau beglnS around 18 fs and 0.409 8 0.026 4 16.542 51.169 1545.173
is lengthened by increasing the extent of the grid. Fe500 0.1853 0.990 7.421 254.994
K and T=1000 K the plateau begins around 15(fg3~15 0.0215 0.026 7 0.938 53.182
fs) and 13 fs, respectively. This is a slightly longer time at 0-0035 0.063 19.687
1000 K than for the Eckart barrier. Again, for the lower tem- 8'222
peratures, the time is determined by the tunneling time. _0.270
The size of the DVR grid for the results shown varies —0.0025 —0.051 —-14.112
from 82 points forR,,,=6.0 at 300 K to 364 foR,,,,=6.0 —0.0059 —0.094 —3.431 —41.140
andT=1000 K. Realistically, one needs a grid of around 100 88;32 00176 _g-ggz _152-%‘; _;gg-igg
points at 300 K, 150 points for 500 K, and 300 points for _01364 _0258 _77.623 _763604 —1233.238

1000 K to obtain converged results. This is on the order of _5 1842 —122604 -1360.776 —2691.187 -5 244.550

the size of the basis used by Seideman and Milr cal-
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seen by Manthe and Millét in the eigenreaction probabili-
ties. Namely, as the temperature is raised more eigenvalues
contribute to the rate, corresponding to more states of the
activated complex which are now energeticallyr ther-
mally) accessible. Also, as the temperature increases, the ei-
genvalues associated with a given state increase, representing
an enhancement of the rate through that state. We have a
different case than Manthe and MilfibecauseC;, is not a
positive definite operator. Therefore we have both positive
and negative eigenvalues. The rate is given by the cancella-
tion of the negative eigenvalues by the larger positive ones.
This is consistent with the properties of the flux operator

s

k(T;t) (cm“ molecule

1.3e-17

1.2¢-17

L1.0e-17

9.0e-18

8.0e-18

Lle-17

5 10 15 20 25 30 35 40 45 50 55

discussed above and in more detail by Park and Ligtt.

C. Three dimensional D +H, for J=0

et and

Recently there have been several

approximaté® calculations of the thermal rate constant for
the D+H, reaction. These provide the opportunity for us to

test our method on a full three-dimensional system.

We have calculated the thermal rate constants for the

D+H, reaction for total angular momenturd=0, on the

LSTH (Ref. 36 potential energy surface. We have used a
DVR basis in the Jacobi coordinates of the reactant arrange-

ment. We denote the coordinatesRghe distance frond to
the center-of-mass of Hr, the H, bond distance, ang, the
angle betweerR andr. A sinc function DVR is used foR
andr while a Gauss—Legendre DVR is used fprWWe have
taken advantage of the inversion symmetry of. Hhus a

separate calculation is done for the even and odd parity
blocks of the Hamiltonian; each calculation requires only

half of the DVR grid points in they coordinate. The total
rate constant is obtained by adding the eyer0) and odd
parity (p=1) results together with the propét:3) nuclear
spin weightings,
K(T)=Kp=o(T)+3kp=1(T). (4.5

The same reactant partition function as Mielkeal®’ is
used,

i 3/2
= i —Bey
QM=|5.475 { ,-Eeven(ZJ +1)e P

+3 > (2j+1)e P
v,j odd

, (4.6

whereu is the reduced mass associated viRtland thele, ;}
are the energy levels of the isolated Hiatom (calculated
numerically.

The basis set is defined by the parametégs N, p,
Veur, andR,,. The grid constantNg , determines the num-
ber of points per thermal de Broglie wavelength for RRe
and r coordinates(See Sec. IllD. N, is the number of
Gauss—Legendre DVR points used for theoordinate be-

(a) Time (fs)

6.0e-16

5.5¢-16 |

5.0e-16

k(T;t) (cm’ molecule™ s™")

4.5¢-16
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(b) Time (fs)

Lle-14
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k(T;t) (cm’ molecule™ s'l)
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5.0e-15 . : : :
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(c) Time (fs)

FIG. 3. Thermal rate constantqT;t) for the three dimensional BH,
reaction calculated as a function of time from the flux-position correlation
function for (a) T=300 K, (b) T=500 K, and(c) T=1000 K. In(a) results
are shown for grid sizes d&®,,,,=6.0 a.u.(solid line), 6.5 a.u.(dashed ling

and 7.0 a.u(long dashed ling In (b) and (c) grid sizes ofR,,=5.0 a.u.
(solid line), 5.5 a.u.(dashed ling and 6.0 a.u(long dashed lingare shown.

is greater thamR .. It is similarly truncated in the product
valley by the same criterion, however, the Jacobi coordinates
of the product arrangement are used.

Figure 3 illustrates the plateau period for the-B, re-
action for(a) T=300 K, (b) T=500 K, and(c) T=1000 K. In
this case al =300 K the plateau begins at 22 fs and at 20 fs
for T=500 K, both are slightly longer times than for the
collinear H+H, case. AtT=1000 K, the plateau begins

fore symmetrization ang@ defines the parity of the calcula- around 22 fs, significantly longer than for collineaf-H, or
tion. If the potential energy at a DVR point is greater thanthe Eckart barrier. The grid sizes for both temperatures
V¢ that point is discarded. The grid is truncated in the as{R,,,=6.0 a.u. for 300 K, andR,,,,=5.0 a.u. for 500 K and
ymptotic reactant valley if the translational Jacobi coordinatel000 K) are comparable to those needed for calculating the
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TABLE Ill. Thermal rate constants for the three-dimensionatt, (J=0) =~ ACKNOWLEDGMENTS
reaction in units of crhmolecule* s™%.
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