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We present a method for obtaining the thermal rate constant dir@etlywithout first solving the
state-to-state reactive scattering problenom the time integral of the flux-flux autocorrelation
function, C(t). The quantum mechanical trace involved in calculatidg(t) is efficiently
evaluated by taking advantage of the low rank of the Boltzmannized flux operator. The time
propagation is carried out with a Hamiltonian which includes imaginary absorbing potentials in the
reactant and product exit channels. These potentials eliminate reflection from the edge of the finite
basis and ensure th@(t) goes to zero at long times. In addition, the basis can then be contracted
to represent a smaller area around the interaction region. We present results of this method applied
to the O+HCI reaction using thel-shifting and helicity conserving approximations to include
nonzero total angular momentum. The calculated rate constants are compared to experimental and
previous theoretical results. Finally, the effect of deuteratitve O+DCI reaction on the rate
constant is examined. @997 American Institute of Physids$0021-96007)01701-7

I. INTRODUCTION andt.=t—ihB/2, wherep is related to temperature in the

o ) ) o ) i usual way,8=(kgT) "%: Q,(T) is the reactant partition func-
As implied by the title, this article is a continuation of 4, per unit volume.

our quest to find the most powerful general procedure for & most recent work(hereafter referred to as Paytdn
calculating the thermal rate constant of a bimolecular chemig, ;o topic utilized Eq(1.2 and emphasized that, by evaluat-
cal reaction correctly and directly, i.e., one that is in PNN-ing C,(t) at a sufficiently large but finite time one could
ciple exact(given a potential energy surfacand also one  ,yid having to introduce aabsorbing potentiato enforce

that avoids having to solve explicitly the complete state-t0-,,5ing wave boundary conditions. Though this is indeed
state quantum reactive scattering p;%c_;tljllem. Our effofend true, our present feeling is that the price paid for dispensing
those of a number of other workefs,” are based on the it the absorbing potential is too great, i.e., the size of the

formally exact expression for the r_ate cons_tang as the time2 basis(or grid) must be enlarged too much to make this the
integral of the flux-flux autocorrelation functight optimum procedure. This becomes particularly evident when

w dealing with multidimensional systems where the flux exit-

k(T):Qr(T)_lj dt Cy(t), (1.1a ing the interaction region has a broditribution of transla-
0 tional energies: the flux exiting most rapidly will hit the edge

where of the grid (and undergo unphysical reflectiobefore the
- more slowly exiting flux has escaped the interaction region.
Ci(t) =t Fe'ltc/iFe~ Mt/ (1.1b The primary change in strategy from Part |, therefore, is

to utilize absorbing potentials to make thé basis(e.qg., a
discrete variable representattont’) as small as possible—in
essentially the same way they have been used
im Ci (1), (129  beforé®?**—and to put up with the minor nuisance of having
—o to perform test calculations to insure that the results are in-
sensitive to them.

Once an absorbing potential is added to the Hamiltonian,

or, formally equivalently, as the long time limit of the flux-
side correlation functiori14

k(T)=Q«(T) "1l
t

where

—[RalH A a—iHte /i A A
Cis(t)=[he Fe 1. (1.2b Aof—ie (1.3

In Egs.(1.1) and(1.2) H is the Hamiltonian operator of the

molecular systemF is the symmetrized flux operatdde- __(because thelC;(t)—0 ast—os). Eq. (1.1) is still valid,

fined _W'th re;pec} FO Some d|V|d|ng surfac_e through the Ir"however, because only the long time behavior is influenced
teraction regiop h is a step function that is 1 or 0 on the

, o -~ by the absorbing potentials, and tlexact G;:(t)—0 as
reactant or product side of the dividing surface, respectively, ", . and is thus unaffected by them. Section Il describes the
general procedure for evaluatir@(t), where again a key
dElectronic mail: miller@neon.cchem.berkeley.edu feature is to exploit the low rank of an effective flux operator

one can no longer use E@L.2) to obtain the rate constant

142 J. Chem. Phys. 106 (1), 1 January 1997 0021-9606/97/106(1)/142/9/$10.00 © 1997 American Institute of Physics



W. H. Thompson and W. H. Miller: Calculation of thermal rate constants. Il 143

to minimize the number of operations of the time evolution v, F(B)-Vo+ SO,
operator that is required. Of previous work, the methodology (2.3
presented in Section Il is most akin to that of Park and  V2*F(B)-Vv1+SO,

NI ; iffer- _ . o
Light a_nd B_royvn and ngh?,though there are key differ etc., where “SO” implies a Schmidt orthogonalization to
ences, primarily in the basis used to evaluate the trace and evious vectors. The matrix d¥(8) in this orthonormal
the use of iterative methods for the Boltzmann operator angzsis '
the time evolution operator. '

Section Il then describes the specifics of the methodol- Fk,k,(ﬁ):vl- F(B)- vy, (2.9
ogy with regard to a nontrivial application, a full three di- ) .
mensional calculation of the rate constant for thelS ge.nerat.ed automatically by this procedure. Each L.anczos
O+HCI—OH-+Cl reaction. Section IV discusses the resultsit€ration, i-e., each new Krylov vector generated via Eq.
of these calculations including té— D isotope effect, over (2-3: requires one action oF(j3) onto a vector, and the

the temperature range=200—700 K. nontrivial aspect of this is the gctio_n of the B_oltzmann op-
eratore”#"’2 onto a vector, which is accomplished by the

1I. EVALUATION OF THE FLUX-FLUX split-operator algorithm described in Section 1l

AUTOCORRELATION FUNCTION Diagonalization of this (relatively small matrix

Fw.x'(B) produces the eigenvectofs,} with the largestin
absolute valueeigenvaluegf,}, so thatF(3) is then repre-
sented as

A crucial element in the efficient calculation of the flux
correlation function of Eq(1.1b) is to exploit the low rank of
some appropriate operatdithe operand of the trace in Eq.
(1.1b is itself of low rank, but it is not possible to exploit
this as was done in Part | f@@(t), because here we need F(B)=2 fo-unl, (2.9
Cs¢(t) for arangeof t while in Part | we neede@;4(t) only "
for one (large value oft.) For this purpose it is useful to and the trace for the flux correlation function in £8.19 is
“unbundle” the Boltzmann andreal)) time evolution opera- readily evaluated to give
tors in Eq.(1.1b and write the correlation function in the

following equivalent form Cff(t)=; foul(t)-Frun(t), (2.6)
Ci(t) =tr[F(B)eHiFe iHUA], (2.1
”A whereu,(t) is the time evolved eigenstate B{3),
where F(B) is the Boltzmannized flux operatdsimilar to s
the one defined by Park and Ligft), Up(t)=e """ up. (.7
ﬁ(ﬁ):efﬁﬂ/zﬁefﬁﬁ/z_ (2.1b This (rea) time evolution is also carried out by the split-

N operator algorithm, which is the method of choice since it
Though the flux operatoF itself is not of low rank for a  produces, at no additional computational effort, the time
multidimensional system, the Boltzmannized flux operator ofevolved state—and thus the flux correlation function via Eq.
Eq. (2.1b is effectively so. To see this, let us suppose for(2.6)—at all intermediate times necessary to perform the in-
illustrative purposes that the reaction coordindte one de-  tegral of C(t).
gree of freedom for motion normal to the dividing surface  Also, since the split-operator algorithm generates the
were separable from all the degrees of freedom for motion ofime evolution sequentially from one time step to the next,
the dividing surfacéthe “activated complex); F(8) would  the time integral ofC(t) can be evaluated simultaneously
then be given by while doing the time evolution, thereby alleviating the need
R R o to store the vectors,(t) as a function ot. Specifically, if
Feed B)=F1pe P =F 5>, |n¥)(n¥e A&, (2  the time evolution is carried out in time increments, then
n* the time integral of the flux correlation function on this grid

whereF is the one dimensionl D) flux operator(of rank ~ Of time values {=1At,1=0.1,...,) gives
2)*25 and H* the Hamiltonian for the activated complex,
with eigenfunctiongn) and eigenvalueg,:. The effective k(T)=Q,(T)_1|ZO wiCyi(t)), (2.8

rank of Fse{B) is thus twice the number of states of the
activated complex that are significantly populated thermallywhere{w,} are the weights for the numerical time integration
at temperaturd@. One expects the rank of the true Boltzman- (e.g., trapezoid rule, or Simpson’s rule, &t&Vith Eq. (2.6)

nized flux operator to be similar. this becomes
The first step of the calculation is therefore to find the
eigenfunctions of the Boltzmannized flux operate(,3) of k(T)=Q,(T)™1X, f,>, wul(t)-F-un(t). (2.9
n =0

Eqg. (2.1b), that have the largesin absolute valugeigenval-
ues, and the Lanczos algoritAfris ideal for this purpose.
Starting with an initial random unit vectey, (in a finite basis
set representation the sequence of Krylov unit vectors
{v,} is generated by Un(t ) =e MV y (1), (2.10

Since the split-operator algorithfsee Section 11l D gener-
ates the time evolution by the iterative process
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ur and u, are the reduced masses associated with the coor-
dinatesR andr, respectively.

B. Nonzero total angular momentum

We have included the effects of nonzero total angular
momentum by means of two approximate methods. In the
J-shifting approximatiorf, it is assumed that rotational mo-
tion and internal motion are separable, so that the rotational
energy E;x simply adds to theJ=0 Hamiltonian of Eq.
(3.1, and furthermoreE ; is usually approximated by using
rotation constants corresponding to the transition state geom-
FIG. 1. The Jacobi coordinates of theH®dCl arrangement. etry of the potential energy surface. Following Koizumi
et al,?® the transition state geometry is assumed to be a sym-
metric top and the rotational energy levels are given by

1 1

21, 2l

after u,(t)) is used in Eq(2.9) to obtain its contribution to

the rate and in Eq(2.10 to produceu,(t) at the next time

stept,,;=(1+1)At, it can be discarded. E I3+ 1)A? N
To summarize the overall procedure, absorbing poten- KT 21

tials are used to keep the gridr otherL.” representationas where the moments of inertlg andl 5 are effectively that of

localized about the interaction region as possible. A Lanczogy_ | and of H about the O—Cl axis respectively. The values
calculation is first carried out to obtain all the eigenvectors of g by Koizumi etal. are Ig=4.16<x10° a.u. and

;che B_oltzg"narlmtlzedlflux_ operzlitor ;Nh'Cht hl;ivte tSL{[:'C'eTIyIAz 1.70x10% a.u. The total rate constant can then be ob-
arge_z(m absolute va u)ee!genva ues to contribute to the rate; ;i 0 by a single calculation far=0 as
this is approximately twice the number of states of the acti-

K242, (3.2

vated complex that contribute to the rate. Each of these K(T)=Ki=o(T)Qus(T), (3.3a
eigenvectors is time evolved by the split-operator algorithm J

(which is also used to generate the operagor’™? in QJS(T):JZO (2J+1)K;J e PR, (3.3p
F(B)) and the time integral ofC:(t) evaluated simulta-

whereQ;4T) is the rotational partition function.

The centrifugal sudden, or helicity conserving approxi-
mation (HCA), is a more sophisticated approximation in
which the Coriolis coupling terms in the body-fixed repre-
sentation of the Hamiltonian are neglectéd difference in
our present treatment from the usual helicity conserving ap-
proximation is that we have chosen the diatom vect@the
O-CI vector as the body-fixed quantization axis—because
the projection of total angular momentum onto it is most
IIl. DETAILS OF CALCULATION nearly conserved—rather than the atom-diatom veRt@s
is usually done® This results in the following term,

[J(J+1)—2K?]h?
2,17

neously.

Section Il gives more specifics of the methodology with
regard to the @ HCI reaction. The significant differences
from the earlier work of Light and co-workérsare the use
of the eigenstates d¥(B) as the basis to evaluate the trace
(and the Lanczos method to find therand an iterative
method(split operatoy to carry out the reafand imaginary
time evolution.

A. Coordinate system and J=0 Hamiltonian

We have chosen to use the Jacobi coordinates of the Hyca= , |K|<min(J,/), (3.4
H+OCI arrangement as shown in Figurerlis the O—CI
bond distanceR the distance from H to the center-of-mass being added to thd=0 Hamiltonian of Eq.(3.1). Within

of O—ClI, andy the angle between and R. These coordi- this approximation) andK are conserved quantum numbers
nates describe the interaction region well, and they provide @nd appear simply as parameters in the Hamiltonian. One
framework for approximate angular momentum decouplingcalculates the rate via E2.9) for eachJ andK, and then
schemegsuch as the helicity conserving approximation orthe total rate constant is given by

the J-shifting approximatioft) since to a good approxima- J

tion one expects the projection of the total angular momen-  K(T)=2 (2J+1) X ky(T). (3.5
tum along the O—Cl axis to be conservégecause the H =0 =
atom is so light compared to O and)Cl The helicity conserving approximation is thus more ex-
TheJ=0 Hamiltonian in this coordinate system is given Pensive to apply than th&-shifting approximation because
by the latter requires only thd=0 calculation(cf. Eq. (3.3))
5 s whereas the former requires a separate calculation—each of
A= R A +( 1 L 1 )22 which is essentially the effort of th=0 calculation—for
2ug IR? 2, ar? 2,uRRz 2,urr7 each value o andK. In practice, though, things are greatly
+\A/(R fy) (3.1 simplified because the dependence&gf onJ andK is very
), .

simple. For example, if thd-shifting approximation were
where /2 is the orbital angular momentum operator associ-2ccurate, then Eq3.3) shows the) andK dependence is
ated with the motion of H about the center of mass of O—Cl.  In k;(T)=constant aJ(J+ 1) — 7K?. (3.6
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It will be seen in Section Il D that E¢(3.6) is not quantita- e—idy#\/—i})m/ﬁ:e—ifym/zﬁe—i(\?—ié)At/ﬁe—ifyAt/zﬁ,_
tively correct, but nevertheless one needs to carry out calcu- (3.10
lations for only a few values of and K and interpolate

between them in order to evaluate the sum in &) Then the final form of the propagator in terms of the indi-

vidual 1D propagators is given by

o I(H—TOAUA __ o—iTRAU2A o= iT AU o —iT AtI2

C. Basis set .. . . .
. . . X efi(Vfie)At/hefiTyAtlzﬁefiTrAt/2hefiTRAt/2ﬁ
We have chosen to use a discrete variable representation '
(DVR) basis™® '’ This has the advantages that the Hamil- (3.11)

tonian is sparse in a multidimensional case a_lljd no integral$pe 1p propagators are applied sequentially using a sparse
over the potential need to be evaluated. Specifically, we havgatrix multiplication scheme. Since only the 1D kinetic en-
used tlr;e radial sinc-function DVR developed by Colbert andy .y matrices and the values of the potential need to be
Miller* for ther andR coordinates and a Gauss-Legendreégigreq the memory requirements are quite low: usually less
DVR for the y coordinate. In the case where the HC approXi-than 10 MB of core memory and never more than 30 MB
mation is used, an associated L.egendrgr_gz}/R is used SiNGgen for the largest basis of about 19 000 DVR grid points.
the projection quantum number is nonzero: The optimum time step is determined by calculating the rate
The basis set is defmed by the. parametdgs, N, constant for successively small&t until the result does not
Veur, NdRmay. The radial sinc-function DVR has evenly change. The Boltzmann operana)‘rﬁ'l”2 is applied using the

spaced points with the grid spacingx determined by the same method but in imaginary timat——i%AB/2 (and

maximum kinetic energy in the problem. The grid constant,Without the ahsorbing potentials

V’:‘/Z\}sgtnzm I?Oerst:; gﬁg]:)irog: dﬁg;’;ssf)er thermal de Broglie For the radial C(.)ordina?es an apalytical form for the frge
particle propagator in the sinc-function DVR can be found in

2ukgT terms of error functions. In addition, in the DVR the poten-
~ Ng| #? (3.7 tial energy propagator is approximated as a diagonal matrix
L with the diagonal elements equal to the exponential of the
For_th_e present appl_lcanons we have folMg=11-13 to be potential evaluated at the specified DVR point. The angular
sufficiently largeN,, is the number of Gauss-Legendre DVR | i i energy propagator in the Gauss-Legendre DVR is ap-

po_int_s usgd for th@.’ coordinate(gsually,_l\lyz 30). A “raw” plied to a vector by transforming to the finite basis represen-
grid is laid down in the Jacobi coordinates of the-8Cl tation of Leaendre polvnomials wherd (and thus
arrangement and truncated by an energy cuttoff: if the poten- g oy Y

tial energy at a DVR point is greater thahy,,, that point is e A2 s diagonal. The diagonal propagator operates
discarded. The grid is also truncated in the asymptotic reac@d then the resulting vector is transformed back to the
tant, O+HCI, valley if the translational Jacobi coordinate is DVR.

greater tharR,,,,. It is similarly truncated in the OHCI
and H+OCI valleys using the translational Jacobi coordi-
nates of those arrangements.

2 —-1/2

AX

E. Dividing surface and flux operator

We note that there exist multiple expressions for the flux
operator that do not possess identical numerical properties in
D. Time propagation anL? basis representation. We have chose to express the flux

L ) operator as
The Hamiltonian in Eq(3.1) can be written as

H=To+ T, +T,+V, (3.8 'A::flj[':"h(s(qm’ (312

including the total angular momentum centrifugal potentlalbecause it is more straightforwardly generalized to higher

in the termV. Note that the radial kinetic energy operators, gimensions and is easily applied with a sparse matrix multi-
Tr andT,, do not commute with the angular kinetic energy py routine. It is especially more convenient than the differ-
operatorT,, or the potential operatdr. Following Zhang and  ential form when the dividing surface—defined by the equa-
Zhang® we first form a split-operator propagator by dividing tion s(q)—is expressed in terms of coordinates other than
the Hamiltonian into the radial kinetic energy terms and thethose used to represent the Hamiltonian. In the DVR, the
angular kinetic energy plus the potential. Noting thiatand  matrix elements of the flux operator are easily evaluated as
T, commute with each other, this gives

i
e i(A—iOAUA _ o—iTRAU2A o—iT AU2E Fj,j':gTj,j'[h(Sj')—h(Sj)]. (3.13

=e e

)(e*i(%erAV*iAE)At/he*i:rrAt/Zhe’ﬁ—RAt/Zh 3.9 whereh(s;) is the step function evaluated at thgh DVR
' ' point, andT; ;, is the kinetic energy matrix. The dividing

Since'i'7 andV also do not commute, another split-operatorsurface used in this study is defined ky—rc+0.29=0
propagator is formed for the central term: (with all distances in atomic units
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F. Absorbing potential

The absorbing potential is taken to be a function of the 4
translational Jacobi coordinate in each arrangement,
e,=€e.(R,). There are several satisfactory choices for the 3r
functional form of the absorbing potential. However, any
choice must turn on slowly enough not to cause reflection,
yet be strong enough to absorb all outgoing flux. We have
found the quartic potential to work well,

C, () x 10"

e, (R,)=\ [

4
T ROz
5o | - (3.19 0
Rmax T RO,T)
where 7 is the arrangement indeR,, and Ry, , are the -ir

starting and ending points of the absorbing potential in the e e m e o o  wm
T arrangement\ is a strength parameter representing the Time (£s)

maximum value of the absorbmg F_)Otentlal’ genera_”y it I?FIG. 2. The flux-flux autocorrelation function for the+®CI reaction at
taken to be about 1 eV. The beginning of the absorbing strig =300 K. The units of the correlation function a@omic units of timg 2.
is chosen such that the imaginary potential has significant

value only where the interaction potential is small.

kcal/mole?® This is in reasonable agreement with tizini-
tio barrier height of 18.8 kcal/mole used in the KSG surface
We have calculated the thermal rate constants for th@efore scaling. Their besab initio estimate of the barrier
O+HCI reaction on the Koizumi, Schatz, and Gordon height is below 11 kcal/mofé compared to 11.9 kcal/mole
(KSG)?8 potential energy surface which is an analytical fit to obtained by Gordoet al3® Rate constants have not yet been
ab initio calculations®2® but with the barrier height scaled computed on this surface.
down from 18.8 to 8.5 kcal/mole to match the experimental The KSG potential energy surface has a bent transition
rate’” at T=295 K. This reaction provides a rigid test of a state geometry with a®—H—Clangle of 133.4° and a bar-
method for calculating thermal rate constants. The heavyier height of 8.5 kcal/molé® The O+HCI—OH+CI reac-
masses involved demand a large basis and the heavy-lighdion is endothermic. In contrast, thetHDCI asymptotic ar-
heavy nature of the reaction requires that the correlatiomangement is~40 kcal/mole higher in energy than+MCl

IV. RESULTS AND DISCUSSION

function be calculated for long times. and is therefore not a relevant product channel. Thus we
There have been numerous experimental measurementsfer to OH+Cl as “products” without ambiguity.
of the thermal rate constant for thet®ICl reactions’~*?in There is an excited®A’) electronic state surface which

addition to several theoretical stud@s®4***Brown and is degenerate at linear geometries with ti&”) ground
Smit*® and Persky and Broid& carried out quasiclassical state. The details of this surface are not fully known and it is
trajectory calculations on semi-empirical London-Eyring-not included in the scattering calculations here. However,
Polanyi-Sato(LEPS surfaces. These surfaces all featured afollowing Koizumi et al?8 the rate constants presented here
collinear transition state geometry. Howeval, initio calcu-  have been multiplied by the factor
lations on the system indicate that the transition state is sig- _ _
nificantly bent v?//ith anO—H-Cl angle of about 13523364 Y f(T)=3(5+3e 24 g70M) “.D
The KSG potential energy surface, with a bent transitionto approximately account for collisions that end up on the
state, was originally used by Koizurat al.to calculate total excited state as opposed to the ground state surface.
and state-selected thermal rate constants. These calculations Figure 2 shows thd=0 flux-flux autocorrelation func-
were carried out by integrating coupled channel equations ition for the O+HCI reaction atT=300 K. At very short
hyperspherical coordinates to obtain the state-to-state reatimes the correlation function decays rapidly and goes
tion probabilities that were then used to obtain the rate conthrough zero around 7 fs, corresponding to an initial passage
stants (with a J-shifting approximation Moribayashi and of flux across the dividing surface towards products. This is
Nakamura have also carried out quantum reactive scatterinfigllowed by a negative lobe indicating flux returning across
calculations on the KSG surfagas well as a LEPS surface the dividing surface from products to reactants. It is expected
of Persky and Broidaby integrating coupled channel equa- that a heavy-light-heavy system such as@CI should ex-
tions in hyperspherical coordinatésThey obtained state- hibit significant recrossing of the transition state. In a classi-
selected and cumulative reaction probabilities as well asgal picture the H atom in the region of the transition state is
state-selectedbut not tota) rate constants. In addition they trapped between the massive O and Cl and bounces back and
examined different approximations for including the effectsforth between these two collision partners. This is manifested
of nonzero total angular momentum. in the oscillations in the correlation function—the negative
Recently,ab initio calculations were carried out and a lobe is immediately followed by a positive one representing
potential energy surface obtained by Ramachandrara second passage of flux towards produ@®. course the
Senekowitsch, and Wyatt with a barrier height of 17.8oscillations observed depend on the position of the flux di-
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FIG. 3. The flux-flux autocorrelation function for the+®Cl reaction at
T=700 K.

FIG. 4. The thermal rate constant vs the number of Lanczos iterdiiens
the number of eigenvalues of the Boltzmannized flux operator used to cal-
culate the traceat T=400 K.

viding surface that was not optimized here for minimum re-for T=250 and 400 K. At both temperatures a straight line is
crossingl The correlation function eventually dies to zero gptained. Figure 6 shows the HCA rate constant as a function
around 50 fs. This is twice the time that would be expectedhf K2 for fixed J. Results are shown foF =250 K with
in the case of a direct reactidwhich would be~%A8=25 =24 andT=400 K with J=24 and 48. As shown on a
fs).1? semilog plot,k;«(T) vs K2 is nonlinear but can be reason-
Figure 3 shows thé=0 flux-flux autocorrelation func-  aply well approximated as a straight line. Note that for
tion for the O+HCI reaction atT=700 K. This correlation T=400 K, the slope of the line is independentJof
function is similar to that shown in Fig. 2 fof=300 K. These results can be interpreted in terms of the discus-
There is a rapid initial decay to zero followed by a negativesjon in Section I11B. In principle one needs to calculate
lobe and then a postive lobe. At this temperature the correg, (T) within the HC approximation for all and K that
lation function decays to zero in approximately 35(&.  contribute. However, if the dependence of the ratel @nd
hp=11fs). However, in this case the negative lobe is muchk js smooth, interpolation between the calculated values can
smaller (relative to the initial value of the correlation func- pe ysed to give the total rate constant. In that sense a rough
tion) than for the lower temperature, while the following “interpolation” can be made by assuming Hg(T)
positive lobe is about the same magnitude. However the:_a3(3+1) and Inky(T)=—7K? (i.e., fitting the curves as
smaller oscillations observed at=300 K are not present straight lines. This is equivalent to thd-shifting approxi-
here. While in a variational transition state theory picture themation(for fixed temperatuneas discussed in Section 11l B
optimum dividing surface for minimizing recrossing may ang is tantamount to extracting “effective” moments of in-

change with temperature, we have used the same dividingrtia. (We refer to rate constants obtained by this procedure
surface at all temperatures.

Figure 4 shows theJ:shifted rate constant versus the
number of Lanczos iterations far=400 K. Recall that each
Lanczos iteration corresponds to an eigenvdhkred eigen-
vectop of the Boltzmannized flux operator that is included in 10
the calculation of the rate. At this temperature the rate con- 107 da
verges with around 20 iterations implying that there are 9 or N
10 thermally accessible states of the activated complex con- = 1™ >~

~17

10

-18

tributing to the reaction rate. With the heavy masses of the
oxygen and chlorine it is expected there will be more states
accesible at a given temperature than for a reaction like
H+H, where all the atoms are “light.” The number of ei-
genvalues that it is necessary to include changes very slightly
with temperature; at the highest temperatuile=(00 K)
about 24 Lanczos iterations are required. Note that the rate
constant is within 2% of the final result after 14 iterations
and within 1% after 18 iterations.

Results from helicity conserving calculations are pre-
sented in Figs. 5 and 6. The HCA rate constantd<ferO are
plotted as a function of(J+1) on a semilog plot in Fig. 5
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FIG. 5. The partial rate constakiy (within the helicity conserving approxi-
mation vs J(J+ 1) for K=0. Results foiT =400 K (solid line with circle$
and T= 250 K (dashed line with squargare shown.
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FIG. 6. The partial rate constakjy (within the helicity conserving approxi-
mation) vs K? for J fixed. Results are shown foF=400 K with J=24
(solid line with circles and J=48 (dot-dashed line with trianglg¢sand

T=250 K with J=24 (dashed line with squargs

as HCA “adjusted.) Doing

this we obtain at

lg=4.73x 10° a.u. and ,=1.96x 10° a.u. atT=400 K and
lg=4.96x10° a.u. andl,=1.86x10> a.u. atT=250 K. _ _
This indicates that the moments of inertia do not dependVith experiment. The lack of agreement between our results
strongly on temperature. In addition, these values are in reg2nd Koizumiet al's is harder to understand. At present we

sonable agreement with those obtained by Koizetna
from the transition state geometry. The change in the valu

|28

of the rate constant is 20% &t=250 K and 8% afl =400

K. (See Table | and Fig. ¥.
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FIG. 7. Arrhenius plot of calculated and experimental thermal rate con-
stants. The presedtshifted calculations are shown as a solid line and the
results of Koizumiet al.as a dashed line. The asterisks are the present HCA
“adjusted” rate constant¢see the text The experimental results of Brown
and Smith(Ref. 37 are shown as filled circles and that of Mahaneidal.
(Ref. 41 as open square$The results of Koizumiet al. were measured
from their Fig. 2 and hence may be considered approxiate.

have no explanation for this. We note that the rate constants

galculated by Moribayashi and Nakamtfrdor the initial

HCI rotational state§=0,1,2,—though not directly compa-
rable to the present results since they are not fully Boltzmann

Figure 7 presents an Arrhenius plot of the calculated rat@veraged over all initial states—are also larger than the rates

constant as compared to the results of Koizwehal. and i
experimen®”*! The present results are larger than both the2nd Nakamura also suggest that highestates [>2) may

experimental and previous theoretical rates at all temperacontribute even more significantly to the rate and, if so, then

tures. Unfortunately, since the thermal rate constant is #heir fully Boltzmann averaged rate constant would be even
highly averaged quantity, it is not possible to extract a parlarger.

ticular feature of the potential energy surface to hold ac-

of Koizumi et al. (though smaller than oursMoribayashi

We note that in Fig. 7 the present results shown indicate

countable for the discrepancy. With regard to experiment, ifhat the slope of IW(T) vs 17T increases with increasing tem-
the barrier height were raised onk0.8-1.0 kcal/mole— : g '
recall that theab initio value of the barrier was scaled from Zumietal.as well asin the experimental results shown he_re.
18.8 to 8.5 kcal/mole in the KSG potential energy surface—IN fact the activation energy reported by Brown and Smith
then our calculated rates would be in much better agreemeQVer the temperature range 293-440 K is 5.9 keal/mble,

TABLE |. Total thermal rate constants within thleshifting and helicity
conserving approximations compared for the three-dimensioraiCl re-

action in units of cimolecule* s

k(T)
TemperaturgK) J-shifting HCA “adjusted™®

200 9.§-19°

250 1.q—16) 1.2(—16)
300 5.8—16)

350 2.0-15

400 7.1-15 7.7(—15)
500 3.1-19

600 1.q-13

700 2.8-13

aSee Section IV.
®The number in parentheses is the power of 10.

perature. This is also observed in the rates obtained by Koi-

while a value of 7.3 kcal/mole is obtained by a least squares
fit of the data of Mahamud, Kim, and Fontfhover the
range 353-1486 K. Indeed, the results of Mahanatidl.
show a non-Arrhenius increase in the activation energy as
the temperature is raised. Our results give an activation en-
ergy of 5.7 kcal/mole over the range of 200—700 K as com-
pared to about 5.0 kcal/mole from the results of Koizumi
et al. over 285—-667 K. Thus the theoretically calculated ac-
tivation energies are lower than those obtained by experi-
ment though the correct non-Arrhenius behavior is repro-
duced.

We have also performed calculations for the thermal rate
constant of the @DCI reaction. These are compared to the
results for the @-HCI reaction in Fig. 8. The deuterated rate
constants were obtained by using the same basis set at a
given temperature as was needed for the HIC| reaction.
The most interesting result here is the tunneling enhance-
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' . ' oscillations in the flux correlation function. It is found that
about 20—24 Lanczos iterations are needed for the Boltzman-
nized flux operator to obtain the full rate constant, implying
that, in this temperature range, between 9 and 12 states of the
activated complex contribute significantly to the rate. The
calculated rate constants display a non-Arrhenius tempera-
ture dependence in agreement with experiment. However,
the present rate constants are larger than experimental results
and previous theoretical calculations.

We have included the effects of nonzero total angular
momentum using thd-shifting and helicity conserving ap-
proximations. These two approximations give results in rea-
sonable agreemeffvithin 10%—20% with each other. It is
] 2 3 4 s expected that the HC approximation will be in good agree-

10007T (17K) ment with exact calculations since the projection quantum

FIG. 8. Calculated thermal rate constarkgT) vs 10007 for the O+HCI number along the O—Cl axis should be well conserved.

(solid line) and O+ DCI (dashed ling reactions. Rate constants were also calculated for theCI re-
action. In the deuterated reaction, the rates obey the Arrhen-
ius relationship over the entire temperature range calculated

ment of the rate when H is substituted for D. While the (T=200-500 K. Comparing these results to those for the

thermal rate constants for the reaction with DCI follow anO-+HCI reaction illustrates the effect of the tunneling en-

Arrhenius form(i.e., Ink(T) vs 1T is a straight line with the hancement of the rate constant at low temperatures. The re-

slope equal to the activation enejgwith HCI the activation ~ action involving H shows a non-Arrhenius increase in the

energy becomes smaller as the temperature is lowered. Thigte below about 350 K that is not present in the deuterated
change in the activation energy at lower temperatures can z8se.

attributed to the tunneling of the H atom. In the deuterated

case the tunneling rate is reduced due to the heavier magg KNOWLEDGMENTS

and the rate therefore remains Arrhenius at low temperature. ) ) )
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