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On the ‘‘direct’’ calculation of thermal rate constants. II. The flux-flux
autocorrelation function with absorbing potentials, with application
to the O 1HCl˜OH1Cl reaction

Ward H. Thompson and William H. Millera)
Department of Chemistry, University of California, Berkeley, California 94720-1460
and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

~Received 20 August 1996; accepted 24 September 1996!

We present a method for obtaining the thermal rate constant directly~i.e., without first solving the
state-to-state reactive scattering problem! from the time integral of the flux-flux autocorrelation
function, Cf f(t). The quantum mechanical trace involved in calculatingCf f(t) is efficiently
evaluated by taking advantage of the low rank of the Boltzmannized flux operator. The time
propagation is carried out with a Hamiltonian which includes imaginary absorbing potentials in the
reactant and product exit channels. These potentials eliminate reflection from the edge of the finite
basis and ensure thatCf f(t) goes to zero at long times. In addition, the basis can then be contracted
to represent a smaller area around the interaction region. We present results of this method applied
to the O1HCl reaction using theJ-shifting and helicity conserving approximations to include
nonzero total angular momentum. The calculated rate constants are compared to experimental and
previous theoretical results. Finally, the effect of deuteration~the O1DCl reaction! on the rate
constant is examined. ©1997 American Institute of Physics.@S0021-9606~97!01701-7#
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I. INTRODUCTION

As implied by the title, this article is a continuation o
our quest to find the most powerful general procedure
calculating the thermal rate constant of a bimolecular che
cal reaction correctly and directly, i.e., one that is in pr
ciple exact~given a potential energy surface! and also one
that avoids having to solve explicitly the complete state-
state quantum reactive scattering problem. Our efforts,1,2 and
those of a number of other workers,3–11 are based on the
formally exact expression for the rate constant as the t
integral of the flux-flux autocorrelation function12,13

k~T!5Qr~T!21E
0

`

dt Cf f~ t !, ~1.1a!

where

Cf f~ t !5tr@ F̂eiĤ tc* /\F̂e2 iĤ tc /\#, ~1.1b!

or, formally equivalently, as the long time limit of the flux
side correlation function13,14

k~T!5Qr~T!21 lim
t→`

Cfs~ t !, ~1.2a!

where

Cfs~ t !5@ ĥeiĤ tc* /\F̂e2 iĤ tc /\#. ~1.2b!

In Eqs.~1.1! and ~1.2! Ĥ is the Hamiltonian operator of th
molecular system,F̂ is the symmetrized flux operator~de-
fined with respect to some dividing surface through the
teraction region!, ĥ is a step function that is 1 or 0 on th
reactant or product side of the dividing surface, respectiv

a!Electronic mail: miller@neon.cchem.berkeley.edu
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and tc5t2 i\b/2, whereb is related to temperature in th
usual way,b5(kBT)

21; Qr(T) is the reactant partition func
tion per unit volume.

Our most recent work2 ~hereafter referred to as Part I! on
this topic utilized Eq.~1.2! and emphasized that, by evalua
ing Cfs(t) at a sufficiently large but finite timet, one could
avoid having to introduce anabsorbing potentialto enforce
outgoing wave boundary conditions. Though this is inde
true, our present feeling is that the price paid for dispens
with the absorbing potential is too great, i.e., the size of
L2 basis~or grid! must be enlarged too much to make this t
optimum procedure. This becomes particularly evident wh
dealing with multidimensional systems where the flux ex
ing the interaction region has a broaddistributionof transla-
tional energies: the flux exiting most rapidly will hit the edg
of the grid ~and undergo unphysical reflection! before the
more slowly exiting flux has escaped the interaction regi

The primary change in strategy from Part I, therefore
to utilize absorbing potentials to make theL2 basis~e.g., a
discrete variable representation15–17! as small as possible—in
essentially the same way they have been u
before18–24—and to put up with the minor nuisance of havin
to perform test calculations to insure that the results are
sensitive to them.

Once an absorbing potential is added to the Hamiltoni

Ĥ→Ĥ2 i ê, ~1.3!

one can no longer use Eq.~1.2! to obtain the rate constan
~because thenCfs(t)→0 as t→`). Eq. ~1.1! is still valid,
however, because only the long time behavior is influen
by the absorbing potentials, and theexact Cf f(t)→0 as
t→` and is thus unaffected by them. Section II describes
general procedure for evaluatingCf f(t), where again a key
feature is to exploit the low rank of an effective flux operat
7/106(1)/142/9/$10.00 © 1997 American Institute of Physics
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to minimize the number of operations of the time evoluti
operator that is required. Of previous work, the methodolo
presented in Section II is most akin to that of Park a
Light4~b! and Brown and Light,5 though there are key differ
ences, primarily in the basis used to evaluate the trace an
the use of iterative methods for the Boltzmann operator
the time evolution operator.

Section III then describes the specifics of the method
ogy with regard to a nontrivial application, a full three d
mensional calculation of the rate constant for t
O1HCl→OH1Cl reaction. Section IV discusses the resu
of these calculations including theH→D isotope effect, over
the temperature rangeT5200–700 K.

II. EVALUATION OF THE FLUX-FLUX
AUTOCORRELATION FUNCTION

A crucial element in the efficient calculation of the flu
correlation function of Eq.~1.1b! is to exploit the low rank of
some appropriate operator.~The operand of the trace in Eq
~1.1b! is itself of low rank, but it is not possible to explo
this as was done in Part I forCfs(t), because here we nee
Cf f(t) for a rangeof t while in Part I we neededCfs(t) only
for one ~large! value of t.! For this purpose it is useful to
‘‘unbundle’’ the Boltzmann and~real! time evolution opera-
tors in Eq. ~1.1b! and write the correlation function in th
following equivalent form

Cf f~ t !5tr @ F̂~b!eiĤ t/\F̂e2 iĤ t/\#, ~2.1a!

where F̂(b) is the Boltzmannized flux operator~similar to
the one defined by Park and Light4~b!!,

F̂~b!5e2bĤ/2F̂e2bĤ/2. ~2.1b!

Though the flux operatorF̂ itself is not of low rank for a
multidimensional system, the Boltzmannized flux operato
Eq. ~2.1b! is effectively so. To see this, let us suppose
illustrative purposes that the reaction coordinate~the one de-
gree of freedom for motion normal to the dividing surfac!
were separable from all the degrees of freedom for motion
the dividing surface~the ‘‘activated complex’’!; F̂(b) would
then be given by

F̂sep~b!5F̂1De
2bĤ‡

5F̂1D(
n‡

un‡&^n‡u e2bEn‡, ~2.2!

whereF̂1D is the one dimensional~1D! flux operator~of rank
2!4,25 and Ĥ‡ the Hamiltonian for the activated comple
with eigenfunctionsun‡& and eigenvaluesEn‡. The effective
rank of F̂sep(b) is thus twice the number of states of th
activated complex that are significantly populated therma
at temperatureT. One expects the rank of the true Boltzma
nized flux operator to be similar.

The first step of the calculation is therefore to find t
eigenfunctions of the Boltzmannized flux operator,F̂(b) of
Eq. ~2.1b!, that have the largest~in absolute value! eigenval-
ues, and the Lanczos algorithm26 is ideal for this purpose
Starting with an initial random unit vectorv0 ~in a finite basis
set representation!, the sequence of Krylov unit vector
$vn% is generated by
J. Chem. Phys., Vol. 106,
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v1}F~b!•v01SO,
~2.3!

v2}F~b!•v11SO,

etc., where ‘‘SO’’ implies a Schmidt orthogonalization
previous vectors. The matrix ofF(b) in this orthonormal
basis,

Fk,k8~b!5vk
†
•F~b!•vk8, ~2.4!

is generated automatically by this procedure. Each Lanc
iteration, i.e., each new Krylov vector generated via E
~2.3!, requires one action ofF(b) onto a vector, and the
nontrivial aspect of this is the action of the Boltzmann o
eratore2bH/2 onto a vector, which is accomplished by th
split-operator algorithm described in Section III.

Diagonalization of this ~relatively small! matrix
Fk,k8(b) produces the eigenvectors$un% with the largest~in
absolute value! eigenvalues$ f n%, so thatF(b) is then repre-
sented as

F~b!5(
n

f n•unun
† , ~2.5!

and the trace for the flux correlation function in Eq.~2.1a! is
readily evaluated to give

Cf f~ t !5(
n

f nun
†~ t !•F•un~ t !, ~2.6!

whereun(t) is the time evolved eigenstate ofF(b),

un~ t !5e2 iHt/\
•un . ~2.7!

This ~real! time evolution is also carried out by the spli
operator algorithm, which is the method of choice since
produces, at no additional computational effort, the tim
evolved state—and thus the flux correlation function via E
~2.6!—at all intermediate times necessary to perform the
tegral ofCf f(t).

Also, since the split-operator algorithm generates
time evolution sequentially from one time step to the ne
the time integral ofCf f(t) can be evaluated simultaneous
while doing the time evolution, thereby alleviating the ne
to store the vectorsun(t) as a function oft. Specifically, if
the time evolution is carried out in time incrementsDt, then
the time integral of the flux correlation function on this gr
of time values (t l5 lDt,l50,1, . . . ,) gives

k~T!5Qr~T!21(
l50

wlCf f~ t l !, ~2.8!

where$wl% are the weights for the numerical time integratio
~e.g., trapezoid rule, or Simpson’s rule, etc.!. With Eq. ~2.6!
this becomes

k~T!5Qr~T!21(
n

f n(
l50

wlun
†~ t l !•F•un~ t l !. ~2.9!

Since the split-operator algorithm~see Section IIID! gener-
ates the time evolution by the iterative process

un~ t l11!5e2 iHDt/\
•un~ t l !, ~2.10!
No. 1, 1 January 1997
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 This a
after un(t l) is used in Eq.~2.9! to obtain its contribution to
the rate and in Eq.~2.10! to produceun(t) at the next time
stept l115( l11)Dt, it can be discarded.

To summarize the overall procedure, absorbing pot
tials are used to keep the grid~or otherL2 representation! as
localized about the interaction region as possible. A Lanc
calculation is first carried out to obtain all the eigenvectors
the Boltzmannized flux operator which have sufficien
large~in absolute value! eigenvalues to contribute to the rat
this is approximately twice the number of states of the a
vated complex that contribute to the rate. Each of th
eigenvectors is time evolved by the split-operator algorit

~which is also used to generate the operatore2bĤ/2 in
F̂(b)) and the time integral ofCf f(t) evaluated simulta-
neously.

Section III gives more specifics of the methodology w
regard to the O1HCl reaction. The significant difference
from the earlier work of Light and co-workers4,5 are the use
of the eigenstates ofF̂(b) as the basis to evaluate the tra
~and the Lanczos method to find them! and an iterative
method~split operator! to carry out the real~and imaginary!
time evolution.

III. DETAILS OF CALCULATION

A. Coordinate system and J50 Hamiltonian

We have chosen to use the Jacobi coordinates of
H1OCl arrangement as shown in Figure 1:r is the O–Cl
bond distance,R the distance from H to the center-of-ma
of O–Cl, andg the angle betweenr andR. These coordi-
nates describe the interaction region well, and they provid
framework for approximate angular momentum decoupl
schemes~such as the helicity conserving approximation
the J-shifting approximation27! since to a good approxima
tion one expects the projection of the total angular mom
tum along the O–Cl axis to be conserved~because the H
atom is so light compared to O and Cl!.

TheJ50 Hamiltonian in this coordinate system is give
by

Ĥ52
\2

2mR

]2

]R2 2
\2

2m r

]2

]r 2
1S 1

2mRR
2 1

1

2m r r
2D l̂ 2

1V̂~R,r ,g!, ~3.1!

where l̂ 2 is the orbital angular momentum operator asso
ated with the motion of H about the center of mass of O–

FIG. 1. The Jacobi coordinates of the H1OCl arrangement.
J. Chem. Phys., Vol. 106,
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mR andm r are the reduced masses associated with the c
dinatesR and r , respectively.

B. Nonzero total angular momentum

We have included the effects of nonzero total angu
momentum by means of two approximate methods. In
J-shifting approximation,27 it is assumed that rotational mo
tion and internal motion are separable, so that the rotatio
energyEJK simply adds to theJ50 Hamiltonian of Eq.
~3.1!, and furthermore,EJK is usually approximated by usin
rotation constants corresponding to the transition state ge
etry of the potential energy surface. Following Koizum
et al.,28 the transition state geometry is assumed to be a s
metric top and the rotational energy levels are given by

EJK5
J~J11!\2

2I B
1S 1

2I A
2

1

2I B
DK2\2, ~3.2!

where the moments of inertiaI B andI A are effectively that of
O–Cl and of H about the O–Cl axis, respectively. The valu
used by Koizumi et al. are I B54.163105 a.u. and
I A51.703103 a.u. The total rate constant can then be o
tained by a single calculation forJ50 as

k~T!5kJ50~T!QJS~T!, ~3.3a!

QJS~T!5 (
J50

~2J11! (
K52J

J

e2bEJK, ~3.3b!

whereQJS(T) is the rotational partition function.
The centrifugal sudden, or helicity conserving appro

mation ~HCA!, is a more sophisticated approximation
which the Coriolis coupling terms in the body-fixed repr
sentation of the Hamiltonian are neglected.29 A difference in
our present treatment from the usual helicity conserving
proximation is that we have chosen the diatom vectorr ~the
O–Cl vector! as the body-fixed quantization axis—becau
the projection of total angular momentum onto it is mo
nearly conserved—rather than the atom-diatom vectorR as
is usually done.30 This results in the following term,

ĤHCA5
@J~J11!22K2#\2

2m r r
2 , uKu<min~J,l !, ~3.4!

being added to theJ50 Hamiltonian of Eq.~3.1!. Within
this approximationJ andK are conserved quantum numbe
and appear simply as parameters in the Hamiltonian. O
calculates the rate via Eq.~2.9! for eachJ andK, and then
the total rate constant is given by

k~T!5 (
J50

~2J11! (
K52J

J

kJK~T!. ~3.5!

The helicity conserving approximation is thus more e
pensive to apply than theJ-shifting approximation becaus
the latter requires only theJ50 calculation~cf. Eq. ~3.3!!
whereas the former requires a separate calculation—eac
which is essentially the effort of theJ50 calculation—for
each value ofJ andK. In practice, though, things are great
simplified because the dependence ofkJK on J andK is very
simple. For example, if theJ-shifting approximation were
accurate, then Eq.~3.3! shows theJ andK dependence is

ln kJK~T!5constant2aJ~J11!2hK2. ~3.6!
No. 1, 1 January 1997
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It will be seen in Section IIID that Eq.~3.6! is not quantita-
tively correct, but nevertheless one needs to carry out ca
lations for only a few values ofJ and K and interpolate
between them in order to evaluate the sum in Eq.~3.5!.

C. Basis set

We have chosen to use a discrete variable represent
~DVR! basis.15–17 This has the advantages that the Ham
tonian is sparse in a multidimensional case and no integ
over the potential need to be evaluated. Specifically, we h
used the radial sinc-function DVR developed by Colbert a
Miller17 for the r andR coordinates and a Gauss-Legend
DVR for theg coordinate. In the case where the HC appro
mation is used, an associated Legendre DVR is used s
the projection quantum number is nonzero.31–34

The basis set is defined by the parametersNB , Ng ,
Vcut , andRmax. The radial sinc-function DVR has evenl
spaced points with the grid spacingDx determined by the
maximum kinetic energy in the problem. The grid consta
NB , determines the number of points per thermal de Brog
wavelength for theR and r coordinates:

Dx5
2p

NB
S 2mkBT

\2 D 21/2

. ~3.7!

For the present applications we have foundNB511–13 to be
sufficiently large.Ng is the number of Gauss-Legendre DV
points used for theg coordinate~usually,Ng.30). A ‘‘raw’’
grid is laid down in the Jacobi coordinates of the H1OCl
arrangement and truncated by an energy cuttoff: if the po
tial energy at a DVR point is greater thanVcut, that point is
discarded. The grid is also truncated in the asymptotic re
tant, O1HCl, valley if the translational Jacobi coordinate
greater thanRmax. It is similarly truncated in the OH1Cl
and H1OCl valleys using the translational Jacobi coor
nates of those arrangements.

D. Time propagation

The Hamiltonian in Eq.~3.1! can be written as

Ĥ5T̂R1T̂r1T̂g1V̂, ~3.8!

including the total angular momentum centrifugal poten
in the termV̂. Note that the radial kinetic energy operato
T̂R andT̂r , do not commute with the angular kinetic ener
operatorT̂g or the potential operatorV̂. Following Zhang and
Zhang35 we first form a split-operator propagator by dividin
the Hamiltonian into the radial kinetic energy terms and
angular kinetic energy plus the potential. Noting thatT̂R and
T̂r commute with each other, this gives

e2 i ~Ĥ2 i ê !Dt/\.e2 i T̂RDt/2\e2 i T̂rDt/2\

3e2 i ~ T̂g1V̂2 i ê!Dt/\e2 i T̂rDt/2\e2 i T̂RDt/2\. ~3.9!

SinceT̂g andV̂ also do not commute, another split-opera
propagator is formed for the central term:
J. Chem. Phys., Vol. 106,
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e2 i ~ T̂g1V̂2 i ê!Dt/\.e2 i T̂gDt/2\e2 i ~V̂2 i ê !Dt/\e2 i T̂gDt/2\.
~3.10!

Then the final form of the propagator in terms of the ind
vidual 1D propagators is given by

e2 i ~Ĥ2 i ê !Dt/\.e2 i T̂RDt/2\e2 i T̂rDt/2\e2 i T̂gDt/2\

3e2 i ~V̂2 i ê !Dt/\e2 i T̂gDt/2\e2 i T̂rDt/2\e2 i T̂RDt/2\.

~3.11!

The 1D propagators are applied sequentially using a sp
matrix multiplication scheme. Since only the 1D kinetic e
ergy matrices and the values of the potential need to
stored, the memory requirements are quite low: usually l
than 10 MB of core memory and never more than 30 M
even for the largest basis of about 19 000 DVR grid poin
The optimum time step is determined by calculating the r
constant for successively smallerDt until the result does no

change. The Boltzmann operatore2bĤ/2 is applied using the
same method but in imaginary time,Dt→2 i\Db/2 ~and
without the absorbing potentials!.

For the radial coordinates an analytical form for the fr
particle propagator in the sinc-function DVR can be found
terms of error functions. In addition, in the DVR the pote
tial energy propagator is approximated as a diagonal ma
with the diagonal elements equal to the exponential of
potential evaluated at the specified DVR point. The angu
kinetic energy propagator in the Gauss-Legendre DVR is
plied to a vector by transforming to the finite basis repres
tation of Legendre polynomials whereT̂g ~and thus

e2 i T̂gDt/2\) is diagonal. The diagonal propagator opera
and then the resulting vector is transformed back to
DVR.

E. Dividing surface and flux operator

We note that there exist multiple expressions for the fl
operator that do not possess identical numerical propertie
anL2 basis representation. We have chose to express the
operator as

F̂5
i

\
@Ĥ,h~s~q!!#, ~3.12!

because it is more straightforwardly generalized to hig
dimensions and is easily applied with a sparse matrix mu
ply routine. It is especially more convenient than the diffe
ential form when the dividing surface—defined by the equ
tion s(q)—is expressed in terms of coordinates other th
those used to represent the Hamiltonian. In the DVR,
matrix elements of the flux operator are easily evaluated

Fj , j 85
i

\
T j , j 8@h~sj 8!2h~sj !#, ~3.13!

whereh(sj ) is the step function evaluated at thej th DVR
point, andT j , j 8 is the kinetic energy matrix. The dividing
surface used in this study is defined byrOH2rHCl10.2950
~with all distances in atomic units!.
No. 1, 1 January 1997
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

 25 Sep 2014 18:36:31



th
en
th
ny
on
v

th
th
is
tr
a

th
on
to
d
ta
a
av
ig
tio

e

l
g-

si

io

ti
s
ea
on

ri
e
a-
-
a
y
ct

a
ra
.8

ce

en

tion
-

we

h

t is
er,
re

he

es
age
is
ss
ted

si-
is
and
ted
ve
ing

di-

146 W. H. Thompson and W. H. Miller: Calculation of thermal rate constants. II

 This a
F. Absorbing potential

The absorbing potential is taken to be a function of
translational Jacobi coordinate in each arrangem
et5et(Rt). There are several satisfactory choices for
functional form of the absorbing potential. However, a
choice must turn on slowly enough not to cause reflecti
yet be strong enough to absorb all outgoing flux. We ha
found the quartic potential to work well,

et~Rt!5lS Rt2R0,t

Rmax,t2R0,t
D 4, ~3.14!

where t is the arrangement index.R0,t andRmax,t are the
starting and ending points of the absorbing potential in
t arrangement.l is a strength parameter representing
maximum value of the absorbing potential, generally it
taken to be about 1 eV. The beginning of the absorbing s
is chosen such that the imaginary potential has signific
value only where the interaction potential is small.

IV. RESULTS AND DISCUSSION

We have calculated the thermal rate constants for
O1HCl reaction on the Koizumi, Schatz, and Gord
~KSG!28 potential energy surface which is an analytical fit
ab initio calculations,28,36 but with the barrier height scale
down from 18.8 to 8.5 kcal/mole to match the experimen
rate37 at T5295 K. This reaction provides a rigid test of
method for calculating thermal rate constants. The he
masses involved demand a large basis and the heavy-l
heavy nature of the reaction requires that the correla
function be calculated for long times.

There have been numerous experimental measurem
of the thermal rate constant for the O1HCl reaction,37–42 in
addition to several theoretical studies.28,38,43,44Brown and
Smith38 and Persky and Broida43 carried out quasiclassica
trajectory calculations on semi-empirical London-Eyrin
Polanyi-Sato~LEPS! surfaces. These surfaces all featured
collinear transition state geometry. However,ab initio calcu-
lations on the system indicate that the transition state is
nificantly bent with anO–H–Cl angle of about 135°.28,36,45

The KSG potential energy surface, with a bent transit
state, was originally used by Koizumiet al. to calculate total
and state-selected thermal rate constants. These calcula
were carried out by integrating coupled channel equation
hyperspherical coordinates to obtain the state-to-state r
tion probabilities that were then used to obtain the rate c
stants ~with a J-shifting approximation!. Moribayashi and
Nakamura have also carried out quantum reactive scatte
calculations on the KSG surface~as well as a LEPS surfac
of Persky and Broida! by integrating coupled channel equ
tions in hyperspherical coordinates.44 They obtained state
selected and cumulative reaction probabilities as well
state-selected~but not total! rate constants. In addition the
examined different approximations for including the effe
of nonzero total angular momentum.

Recently,ab initio calculations were carried out and
potential energy surface obtained by Ramachand
Senekowitsch, and Wyatt with a barrier height of 17
J. Chem. Phys., Vol. 106,
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kcal/mole.45 This is in reasonable agreement with theab ini-
tio barrier height of 18.8 kcal/mole used in the KSG surfa
before scaling. Their bestab initio estimate of the barrier
height is below 11 kcal/mole46 compared to 11.9 kcal/mole
obtained by Gordonet al.36 Rate constants have not yet be
computed on this surface.

The KSG potential energy surface has a bent transi
state geometry with anO–H–Cl angle of 133.4° and a bar
rier height of 8.5 kcal/mole.28 The O1HCl→OH1Cl reac-
tion is endothermic. In contrast, the H1OCl asymptotic ar-
rangement is;40 kcal/mole higher in energy than O1HCl
and is therefore not a relevant product channel. Thus
refer to OH1Cl as ‘‘products’’ without ambiguity.

There is an excited (3A8) electronic state surface whic
is degenerate at linear geometries with the (3A9) ground
state. The details of this surface are not fully known and i
not included in the scattering calculations here. Howev
following Koizumi et al.28 the rate constants presented he
have been multiplied by the factor

f ~T!53/~513e2228/T1e2326/T! ~4.1!

to approximately account for collisions that end up on t
excited state as opposed to the ground state surface.

Figure 2 shows theJ50 flux-flux autocorrelation func-
tion for the O1HCl reaction atT5300 K. At very short
times the correlation function decays rapidly and go
through zero around 7 fs, corresponding to an initial pass
of flux across the dividing surface towards products. This
followed by a negative lobe indicating flux returning acro
the dividing surface from products to reactants. It is expec
that a heavy-light-heavy system such as O1HCl should ex-
hibit significant recrossing of the transition state. In a clas
cal picture the H atom in the region of the transition state
trapped between the massive O and Cl and bounces back
forth between these two collision partners. This is manifes
in the oscillations in the correlation function—the negati
lobe is immediately followed by a positive one represent
a second passage of flux towards products.~Of course the
oscillations observed depend on the position of the flux

FIG. 2. The flux-flux autocorrelation function for the O1HCl reaction at
T5300 K. The units of the correlation function are~atomic units of time!22.
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viding surface that was not optimized here for minimum
crossing.! The correlation function eventually dies to ze
around 50 fs. This is twice the time that would be expec
in the case of a direct reaction~which would be;\b.25
fs!.13

Figure 3 shows theJ50 flux-flux autocorrelation func-
tion for the O1HCl reaction atT5700 K. This correlation
function is similar to that shown in Fig. 2 forT5300 K.
There is a rapid initial decay to zero followed by a negat
lobe and then a postive lobe. At this temperature the co
lation function decays to zero in approximately 35 fs~cf.
\b.11 fs!. However, in this case the negative lobe is mu
smaller~relative to the initial value of the correlation func
tion! than for the lower temperature, while the followin
positive lobe is about the same magnitude. However
smaller oscillations observed atT5300 K are not presen
here. While in a variational transition state theory picture
optimum dividing surface for minimizing recrossing ma
change with temperature, we have used the same divi
surface at all temperatures.

Figure 4 shows the (J-shifted! rate constant versus th
number of Lanczos iterations forT5400 K. Recall that each
Lanczos iteration corresponds to an eigenvalue~and eigen-
vector! of the Boltzmannized flux operator that is included
the calculation of the rate. At this temperature the rate c
verges with around 20 iterations implying that there are 9
10 thermally accessible states of the activated complex c
tributing to the reaction rate. With the heavy masses of
oxygen and chlorine it is expected there will be more sta
accesible at a given temperature than for a reaction
H1H2 where all the atoms are ‘‘light.’’ The number of e
genvalues that it is necessary to include changes very slig
with temperature; at the highest temperature (T5700 K!
about 24 Lanczos iterations are required. Note that the
constant is within 2% of the final result after 14 iteratio
and within 1% after 18 iterations.

Results from helicity conserving calculations are p
sented in Figs. 5 and 6. The HCA rate constants forK50 are
plotted as a function ofJ(J11) on a semilog plot in Fig. 5

FIG. 3. The flux-flux autocorrelation function for the O1HCl reaction at
T5700 K.
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for T5250 and 400 K. At both temperatures a straight line
obtained. Figure 6 shows the HCA rate constant as a func
of K2 for fixed J. Results are shown forT5250 K with
J524 andT5400 K with J524 and 48. As shown on a
semilog plot,kJK(T) vs K

2 is nonlinear but can be reason
ably well approximated as a straight line. Note that f
T5400 K, the slope of the line is independent ofJ.

These results can be interpreted in terms of the disc
sion in Section III B. In principle one needs to calcula
kJK(T) within the HC approximation for allJ and K that
contribute. However, if the dependence of the rate onJ and
K is smooth, interpolation between the calculated values
be used to give the total rate constant. In that sense a ro
‘‘interpolation’’ can be made by assuming lnkJK(T)
52aJ(J11) and lnkJK(T)52hK2 ~i.e., fitting the curves as
straight lines!. This is equivalent to theJ-shifting approxi-
mation ~for fixed temperature! as discussed in Section III B
and is tantamount to extracting ‘‘effective’’ moments of in
ertia. ~We refer to rate constants obtained by this proced

FIG. 4. The thermal rate constant vs the number of Lanczos iterations~i.e.,
the number of eigenvalues of the Boltzmannized flux operator used to
culate the trace! at T5400 K.

FIG. 5. The partial rate constantkJK ~within the helicity conserving approxi-
mation! vs J(J11) for K50. Results forT5400 K ~solid line with circles!
andT5250 K ~dashed line with squares! are shown.
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as HCA ‘‘adjusted.’’! Doing this we obtain at
I B54.733105 a.u. andI A51.963103 a.u. atT5400 K and
I B54.963105 a.u. and I A51.863103 a.u. at T5250 K.
This indicates that the moments of inertia do not depe
strongly on temperature. In addition, these values are in
sonable agreement with those obtained by Koizumiet al.28

from the transition state geometry. The change in the va
of the rate constant is 20% atT5250 K and 8% atT5400
K. ~See Table I and Fig. 7.!

Figure 7 presents an Arrhenius plot of the calculated r
constant as compared to the results of Koizumiet al. and
experiment.37,41 The present results are larger than both
experimental and previous theoretical rates at all temp
tures. Unfortunately, since the thermal rate constant i
highly averaged quantity, it is not possible to extract a p
ticular feature of the potential energy surface to hold
countable for the discrepancy. With regard to experimen
the barrier height were raised only;0.8-1.0 kcal/mole—
recall that theab initio value of the barrier was scaled from
18.8 to 8.5 kcal/mole in the KSG potential energy surface
then our calculated rates would be in much better agreem

FIG. 6. The partial rate constantkJK ~within the helicity conserving approxi-
mation! vs K2 for J fixed. Results are shown forT5400 K with J524
~solid line with circles! and J548 ~dot-dashed line with triangles! and
T5250 K with J524 ~dashed line with squares!.

TABLE I. Total thermal rate constants within theJ-shifting and helicity
conserving approximations compared for the three-dimensional O1HCl re-
action in units of cm3 molecule21 s21.

Temperature~K!

k~T!

J-shifting HCA ‘‘adjusted’’a

200 9.8~218!b

250 1.0~216! 1.2~216!
300 5.8~216!
350 2.0~215!
400 7.1~215! 7.7~215!
500 3.7~214!
600 1.0~213!
700 2.8~213!

aSee Section IV.
bThe number in parentheses is the power of 10.
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with experiment. The lack of agreement between our res
and Koizumiet al.’s is harder to understand. At present w
have no explanation for this. We note that the rate consta
calculated by Moribayashi and Nakamura44 for the initial
HCl rotational statesj50,1,2,—though not directly compa
rable to the present results since they are not fully Boltzm
averaged over all initial states—are also larger than the r
of Koizumi et al. ~though smaller than ours!. Moribayashi
and Nakamura also suggest that higherj states (j.2) may
contribute even more significantly to the rate and, if so, th
their fully Boltzmann averaged rate constant would be ev
larger.

We note that in Fig. 7 the present results shown indic
that the slope of lnk(T) vs 1/T increases with increasing tem
perature. This is also observed in the rates obtained by K
zumiet al.as well as in the experimental results shown he
In fact the activation energy reported by Brown and Sm
over the temperature range 293–440 K is 5.9 kcal/mol37

while a value of 7.3 kcal/mole is obtained by a least squa
fit of the data of Mahamud, Kim, and Fontijn41 over the
range 353–1486 K. Indeed, the results of Mahamudet al.
show a non-Arrhenius increase in the activation energy
the temperature is raised. Our results give an activation
ergy of 5.7 kcal/mole over the range of 200–700 K as co
pared to about 5.0 kcal/mole from the results of Koizu
et al. over 285–667 K. Thus the theoretically calculated a
tivation energies are lower than those obtained by exp
ment though the correct non-Arrhenius behavior is rep
duced.

We have also performed calculations for the thermal r
constant of the O1DCl reaction. These are compared to t
results for the O1HCl reaction in Fig. 8. The deuterated ra
constants were obtained by using the same basis set
given temperature as was needed for the O1HCl reaction.
The most interesting result here is the tunneling enhan

FIG. 7. Arrhenius plot of calculated and experimental thermal rate c
stants. The presentJ-shifted calculations are shown as a solid line and t
results of Koizumiet al.as a dashed line. The asterisks are the present H
‘‘adjusted’’ rate constants~see the text!. The experimental results of Brown
and Smith~Ref. 37! are shown as filled circles and that of Mahamudet al.
~Ref. 41! as open squares.~The results of Koizumiet al. were measured
from their Fig. 2 and hence may be considered approximate.!
No. 1, 1 January 1997
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ment of the rate when H is substituted for D. While t
thermal rate constants for the reaction with DCl follow
Arrhenius form~i.e., lnk(T) vs 1/T is a straight line with the
slope equal to the activation energy!, with HCl the activation
energy becomes smaller as the temperature is lowered.
change in the activation energy at lower temperatures ca
attributed to the tunneling of the H atom. In the deutera
case the tunneling rate is reduced due to the heavier m
and the rate therefore remains Arrhenius at low temperat
Indeed, the activation energy for the O1DCl reaction is 6.7
kcal/mole, larger than that for O1HCl. Experimental mea-
surements of Brown and Smith found the ratio of the r
constantskO1HCl /kO1DCl at T5400 K as 2.460.7.38 This is
smaller by a factor of 2 than the ratio of 4.8 obtained in t
present calculations.

V. CONCLUDING REMARKS

A method fordirectly calculating thermal rate constan
for chemical reactions by means of the flux-flux autocorre
tion function was presented. The method has three main
tures:~1! The low rank of the Boltzmannized flux operator
used to advantage in evaluating the quantum mechan
trace. An iterative Lanczos scheme is used to obtain
eigenfunctions ofF̂(b) corresponding to the largest~in ab-
solute value! eigenvalues and the trace is evaluated in t
~much smaller! basis.~2! Absorbing potentials are used i
the ~real! time propagation to prevent reflection from th
edge of the finite basis~here a DVR grid! making the method
stable and thereby allowing the size of the basis to be
duced.~3! A split-operator algorithm is used for both the re
and imaginary time propagation. For the real time propa
tion, this produces the time correlation function at all inte
mediate times necessary to perform the integral ofCf f(t) at
no additional computational effort.

We have applied this method to the calculation of th
mal rate constants for the O1HCl reaction over the tempera
ture rangeT5200–700 K. Significant recrossing of the d
viding surface is seen at all temperatures from

FIG. 8. Calculated thermal rate constants,k(T) vs 1000/T for the O1HCl
~solid line! and O1DCl ~dashed line! reactions.
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oscillations in the flux correlation function. It is found tha
about 20–24 Lanczos iterations are needed for the Boltzm
nized flux operator to obtain the full rate constant, implyi
that, in this temperature range, between 9 and 12 states o
activated complex contribute significantly to the rate. T
calculated rate constants display a non-Arrhenius temp
ture dependence in agreement with experiment. Howe
the present rate constants are larger than experimental re
and previous theoretical calculations.

We have included the effects of nonzero total angu
momentum using theJ-shifting and helicity conserving ap
proximations. These two approximations give results in r
sonable agreement~within 10%–20%! with each other. It is
expected that the HC approximation will be in good agre
ment with exact calculations since the projection quant
number along the O–Cl axis should be well conserved.

Rate constants were also calculated for the O1DCl re-
action. In the deuterated reaction, the rates obey the Arrh
ius relationship over the entire temperature range calcula
(T5200–500 K!. Comparing these results to those for t
O1HCl reaction illustrates the effect of the tunneling e
hancement of the rate constant at low temperatures. The
action involving H shows a non-Arrhenius increase in t
rate below about 350 K that is not present in the deutera
case.
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