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Quantum mechanical transition state theory and tunneling corrections
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An efficient implementation of the quantum mechanical transition state theory recently proposed by
Hansen and Andersegd. Chem. Phys101, 6032 (1994); J. Phys. Chem100, 1137 (1996)] is
presented. Their method approximates the flux—flux autocorrelation function by using short-time
information to fit an assumed functional fortwith physically correct propertiesThe approach
described here exploits the low rank of the half-Boltzmannized flux operator, thereby facilitating
application to reactions involving many degrees of freedom. In addition, we show how the quantum
transition state theory can be used to obtain tunneling corrections within the framework of more
traditional transition state theory approaches, i.e., those making an assumption of separability.
Directions for possible improvements of the theory are discussed19@® American Institute of
Physics[S0021-960609)02009-7

I. INTRODUCTION quantitie$ to the exact thermal rate constant for a chemical
reactiont®!!

Classical transition state thedr§TST) today remains as .
one of the most powerfql techmqyes for co_mputmg thermal k()= _f Cr()dt, (1.2
rate constants for chemical reactions, particularly for larger Qi(M) Jo
systems. Its usefulness is due to a combination of factors: U'vhereQr(T) is the reactant partition function per unit vol-
is easy to implement. There is a clear physical picture of th,me and
approximation invoked, i.e., the assumption that no trajecto- . L. .
ries recross the transition st&té. provides a rigorous upper Ci(t) =t e PH2F e AHIZgiHUAE g=iHUA] (1.2
bound to the exact classical rate. And, finally, it yields accu-

X . is_the flux—flux autocorrelation function. Herd is the
rate rate constants for systems obeying classical mechanicCs

and exhibiting direct dynamics Hamiltonian, F is the flux operator defined for a dividing

However, often one is interested in chemical reaction?l?trrf]alfe segalrtatmg rfaactantts atm_cihpr;)duc;?, ﬁ'f'?lt/kbt—[]
where classical mechanics is not a valid description, e.g.\é)vfI Har;)sZi ag dzg?jr;?sségﬁgzsagﬁort t?m:ea&SfIC)Ir?:afi:neaboeuciry
light atom ) transfer reactions which can proceed by tun-

Cs:(t) to obtain an approximation to the rate constant.

neling. Thus, a quantum mechanical transition state theorKI : . .
. . . amely, the values of the correlation function and its second
with properties analogous to those listed above would be of

) | Despite the efforts of Bafn derivative at zero time are used to determine parameters in
IMMense value. Despite the etiorts of many wor ho n assumed functional forigpossessing the desired proper-
theory satisfying all of these requirements has been deveE

, ) e9). In this paper we show how this TST can be efficiently
oped. One problem is that no meaningful upper bound to th?mplemented to make it applicable to large chemical sys-

exact quantum mechanical rate has been found. A larger dity g Wwe also outline how it can be used to obtain a tunnel-
ficulty is that of translating the fundamental assumption Ofing correction for more traditiond.e., separableTSTs. In

_classical transition state_theory, “no recrossing trajectqries,”addition, it can be utilized to improve the separability ap-
into a quantum mechanical framework. Because of this aMproximation in such cases by explicitly including several

biguity many different quantum mechanical transition statestrongly coupled degrees of freedom.

theories have been proposed. While the ultimate goal of a  As has been shown previously, the Boltzmannized flux
uniguequantum mechanical analogue of classical transitiorpperator,

state theory has not been achieved, there are several quantum . .

mechanical transition state theories which provide accurate F(8)=e #"2Fe P12, (1.3

methods for calculating thermal rate constants based on g8 of |ow rank (i.e., it has only a small number of nonzero
assumption of “direct dynamics'yielding a significant re-  eigenvalues'? This is true because the flux operator in a
duction in the computational effort single dimension has only two nonzero eigenval(iesa
Recently, Hansen and Andersen proposed a quantufihite basis representatirequal in magnitude and opposite
mechanical transition state theBfybased on the flux—flux in sign(corresponding to forward and backward fid%2%In
autocorrelation function which is capable of accurately rep-a multidimensional case the low rank is preserved by the
resenting tunnelingincluding nonseparabilily The flux—  Boltzmann factor which limits the contribution from the de-
flux autocorrelation function provides a direct rouiee.,  grees of freedom parallel to the dividing surface to states of
with no reference to state-selected or energy-dependeftwer energy(Naturally the number of these states increases
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with temperature.Thus, if the dividing surface is placed at

Ward H. Thompson

In Secs. Ill and V we implement the transition state

the transition state, the number of nonzero eigenvalues dheory of Hansen and Andersen using the form for the cor-
F(B) is approximately twice the number of thermally acces-relation function given in Eq(2.2). We choose this form

sible states of the activated complex at temperaiur&his
fact has previously been exploited by Miller
co-workerd?16-18and Manthe and co-workérs?®in the cal-

rather than the parabolic barrier correlation function of Eq.

and (2.1) because it is more robust, i.e., it is not always possible

to obtain the parameters, andE, .° Values fora andb in

culation of exact thermal rate constants for gas-phase chemid. (2.2) can always be found but may not always be mean-

cal reactions(including recombination proces$é4y. Sig-

nificant progress in this area has also been made by Light

and co-workerg314:22.23

ingful (see Sec. Y, however this is reasonably rare.
The expressions in Eq$2.1) and (2.2) for the correla-
tion function are positive for all times and therefore can be

Section Il describes the implementation of the quantunfonsidered to represedirect dynamics in the spirit of tran-
TST of Hansen and Andersen, including how the low rank ofSition state theorytNote that, Eq(1.1), negative values for
the half-Boltzmannized flux operator can be used to advanthe correlation function diminish the rate constamt the

tage. An illustrative application to the-EH, reaction is dis-

same time, this naturally limits the accuracy of the resulting

cussed in Sec. Ill. The separable transition state theory apate as no negative lobe in the correlation functidoe to
proach is outlined in Sec. IV and the tunneling correction is‘recrossing” of the flux dividing surface can be repro-
derived in terms ofC(t). Section V describes the applica- duced. This implies the usefulness of these methods will be
tion of the theory to a one-dimensional double well potentiallimited to reactions where there is not significant recrossing
bilinearly coupled to a harmonic bath. The calculated rateof the transition statéas would be expectg¢dUsing only the
constants are presented in Sec. V B and comparison is ma@éroth and second derivatives Gf;(t) att=0, one has no
to exact resultd* Finally, Sec. VI presents concluding re- choice but to choose a monotonically decaying function.

marks and some directions for future improvements.

Il. TRANSITION STATE THEORY APPROXIMATION

That is, these quantities give information about the initial
value of the correlation function and its initial rate of decay.
More derivatives are necessary to obtain meaningful infor-
mation about recrossing.e., to describe a negative lobe in

the correlation function Hansen and Andersen applied their

The transition state theory of Hansen and Andersen useguantum TST to the symmetric and asymmetric Eckart bar-
the values ofC(0) andC(0) (where each dot implies a riers as well as a parabolic barrier linearly coupled to a har-
time derivativé to determine the parameters in an assumednonic oscillator and found quite good agreenfehtiow-
functional form for C;(t). Specifically, they suggest two €ver, the method did not always give a rate larger than the
possibilities®® The first is the flux-flux autocorrelation func- €Xact value and so does not represent an upper bound.

tion for the parabolic barriét
b KT
C‘f)f(t):F (h Bwpl2)

wy SiN( B w,/2)cosi wyt) .
[SirP( Bl wy/2) + sint?( wpt) %2

where the two adjustable parameters afe the barrier fre-

,BE

b, (2.1

guency, andge,, the barrier height. The second is a form

based on the Padeapproximant to the function
d In[C(Z%)1/dz giving the functional form for the correla-
tion function as?®

2

(= (2 a2l (2.2
with
a=(phi12)%C(0) (2.39
and
6 Ct(0) (239

" (gh)? | 2C(0)

as the adjustable parameters. Note that(E®) has the cor-
rect properties as a function of complex titiee., it is ana-

lytic in the same regions as the tr@;(t) and has singu-
larities in the proper placgsBoth correlation function forms
have the correct short time behavi6r.

The flux—flux correlation function, Eq1.2), can be ex-
pressedin a form convenient for the present purppag*?2

Ci(t) =t F(B2)e"E(pr2)euH, (2.4

whereﬁ(ﬁ/Z) is the half-Boltzmannized flux operator,

F(Bl2)=e PR BHIA (2.9
which, like F(B), is of low rank*®2° The critical quantities
required for the transition state theory af&:(0) and

C4(0). Note that all the odd derivatives are zero since
Cs:(1) is an even function of timg.See the Appendix for a
comparison of using Eq¢1.2) and (1.3) vs Egs.(2.4) and
(2.5 for the current problenj.

Here we show how the low rank cﬁf(,B/Z) can be used
to efficiently obtainCy;(0) andC;(0). Thefirst step is to
obtain the eigenstates of the half-Boltzmannized flux opera-
tor

F(BI2)|m)=1p/m) (2.6

with nonzero eigenvalues. This can be accomplished using
an iterative Lanczos scherfie?® This basis of eigenstates
can then be used to evaluate the trace required to obtain
Cy1(1).152% Then the flux—flux autocorrelation function at
zero time is
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Ci(0)=tr{F(BI2)F(BI2)}, 5

=%;<mWTBQﬁWBQNm%

=§m‘, f2. 2.7

The second derivative evaluatedtatO can be straightfor-
wardly calculated as

C,(t)x 10"

i\ 2
é”an=(%J w(E(BIR)ALTA,F (BT

_ 2 2 -1 . y ' y ‘
=—— 2 fl f(m[A%/m) 0 5 10 15 20 25 30
As m Time (fs)

. (2.9 FIG. 1. Flux—flux autocorrelation function for the+tH, reaction atT
=300 K for even parity. The quantum transition state theory regakhed
line) using Eq.(2.2) is compared with the exact correlation functiteolid
It is clear from these expressions that eigenstates Wjth line). The units of the correlation function afatomic units of timg 2.
=0 will not contribute as bottC;(0) and C;(0) consist
only of quantities proportional tcirzn or ff. It is also
noteworthy that the only work required to obtdn;(0) and  Sec. Il in order to illustrate its utility for multidimensional
C(0) once the eigenstates are known is a single multiplisystems. Specifically, we calculate the thermal rate constant

cation of the Hamiltonian onto each eigenvectéiifiy) and o the D+H, reaction for zero total angular momentum (
some vector products. =0). This provides a useful test as the reaction is known to

At this point it is useful to consider the computational be direct and the quantum transition state theory is therefore

=2 frl(m'[AIm)|?
m!

savings realized in this approximate approach. In a fully rig-8XPected to give accurate rates.

orous calculation o€(t) to obtain the rate, each eigenstate N this section we compare rate constants for theH)

of E(8/2) must be propagated in real time up2, where reaction obtained from the quantum transition state theory
7 is the time in whichCy,(t) decays to zeré? Con;/ersely approach to the exact rate constants obtained by a full calcu-

' . . lation of the flux—flux autocorrelation function. In this way,
Egs.(2.7) and (2.8) require no time propagation, but only a S o . .
. Lo L . ambiguities arising from the use of different potential energy
single Hamiltonian multiplication on each eigenvector. Exact . o
. . . . surfaces and/or theoretical approaches are eliminated and the
calculations have been carried out for several reactions in-

volving three and four atomZ:%6-2indicating that the tran- approximation ofCy;(t) is directly tested. The specifics of

sition state theory should be applicable to quite large syst—he computational approach for caIcuIatlng.the (_exact rgte
tems constant for the B-H, reaction has been given in detall

9 . . . _
We note that a general expression for the derivatives ogsr’:\;\;gﬁ;i'iozh;;gF;Iheergfngz'coen ;Sf;r;]eszmeré?(?nggzo%usage-
the flux—flux autocorrelation function evaluatedtatO can y P PP

- L scribed in Sec. Il. The approximate correlation function is
be found, giving thekth derivative as taken to be of the form given in E¢2.2).
) K K o Figure 1 shows the flux—flux autocorrelation function for
Cii'(0)= E fmfm/kZO Pi{mg—m }m'[my), (2.9 the D+H, reaction(for even parity at T=300 K obtained

mm - exactly and from the transition state theory approximation of
where|m,)=H¥m) and Sec. Il. The two correlation functions are in good agreement.
Note that the approximate correlation function is not greater

) (2.10 than the exact correlation function at all times, but for this
kI (K=k)! temperature does yield a thermal rate constant larger than the
(Note that no more thai/2 multiplications of the Hamil- €xact result. The exact correlation function does become

tonian onto each eigenvector is required since for dven  slightly negative around 15 fs, while the transition state
theory correlation function decreases monotonically and re-

P =(~ 1)

(m’[mg) = (Mol Migz), (213 mains positive at all times.
and an analogous, though less symmetrical, division can be An Arrhenius plot for the B-H, reaction for total angu-
made for oddk.) lar momentumJ=0 is shown in Fig. 2 al =300-1500 K.

The rate constants obtained from an exact evaluation of the
flux—flux correlation function are compared with those from
the quantum transition state theory. For reference, the exact
We now consider an application of the quantum transi+ate constants agree to within 2.5% with the previous exact
tion state theory of Hansen and Andersen as described icalculations of Mielke et al®® over this temperature

lll. THE D+H, REACTION
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107 : : . ; . wheres=s, defines the flux dividing surface then
k(T)= ! fwc t)dt
10" (M= QM) Jo t(t)dt,
2 = tr,[e AHb(%0) Jm s.(t)dt,
§1015 L | Qr(T) b[ ] 0 ff()
L]
< :
£ QX(T) (=
10 L , =— t)dt. 4.3
5 QM Jo 1Y @3
¥ We have used the fact theit,(s,) commutes witi andF,
10 and
Q¥ (T)=try[e™AHb(®]. (4.4
_18 N L L L !
7 s L0 15 2.0 25 3.0 35 The flux—flux autocorrelation functioB(t) is that for the
1000/T (1/K) reaction coordinate alone, i.e., Ed..2) [or Eq. (2.4)] with

FIG. 2. Arrhenius plot for the B-H, reaction for zero total angular momen- the full Hamiltonian replaced byls- Equat|0n(4-3) can be
tum (J=0). The rate constants obtained from an exact evaluation of thanritten in the form of Eq(4.1) with the tunneling correction
flux—flux autocorrelation functiorfsolid line) and the quantum transition given by

state theory resulfilled circles are shown.

h o0
I(T)= ﬁeﬁEbJ s, (t)dt. 4.5
. b 0
range. The agreement between the approximate and exact _ o
rates is excellent; the rates are within 5% at all temperaturel§ is worth noting that for the free particlevith E,=0), for
shown. It is interesting to note that the transition state theoryvhich the correlation function is
rate constants are smaller than the exact resulty 800 kT (4812)2

K. It would be interesting to examine the variational nature ~ CIP(t)= —— T (4.6
of the quantum transition state theory by “optimizing” the h [+ (7 BI2)°]
flux dividing surface to minimize the rate constért. one obtainsI'(T)=1. For the case of a parabolic barrier,
with Cy(t) given by Eq.(2.2),
IV. SEPARABLE TRANSITION STATE THEORY 7
Bwyl2
I'(T)= 4.7

It is instructive to examine the relation of the quantum

sin(fi Bwy/2)’
mechanical transition state theory described in Sec. Il to the . | . . .
“conventional” formulation. The conventional quantum which is the exact result previously obtained by MiffdiThe

transition state theory is given as the quantized version of thét?mdard Wi_gner tunneling correctiBris the expansion of
. this expression to lowest order #n) Naturally, the quantum
classical TST rate, ;
TST of Hansen and Andersen obtains the correct result for
kT Q¥(T) the case of the parabolic barrier using E2.1).
h Qu(T)

The separable quantum transition state theory given by
whereQ,(T) andQ*(T) are the(quantum mechanicapar- Eqg. (4.3 may be calculated with the exa€t(t) or with
tition functions for the reactants and the activated complex

f1(t) replaced by its approximate form within the TST of
respectively,E, is the barrier height, anl(T) is a factor

Hansen and Andersen. It is important to note that @dp)
accounting for the effects of tunneling, the tunneling correc-CfannOt always _be applied using the ?XaC‘ correlgtlon function
. . . ; since the rate in the reaction coordinate alone is not always
tion. Note that this formulation of quantum TST involves an ) .
. . . .~ well-defined. For example, the flux—flux autocorrelation
assumption of separability between the reaction coordinat : . . .
unction for the one-dimensional double well potential con-

(i.e., the normal mode coordinate at the transition state with: . ) ) _ :

. . . sidered in Sec. V oscillates indefinitely and thus there is not
an imaginary frequengyand the remaining degrees of free- " "y 0o e oo ction coordinate aloffeow-
dom at the transition stat@*(T) is calculated in the degrees

of freedom orthogonal to the reaction coordinate at the trancvor !N such cases the quantum TST of Hansen and Ander-

sition state. Typically(T) is a one-dimensional tunneling sencanstill provide a useful evaluation of the rate, as will be

: : : . een shortly.When the double well is coupled to a harmonic
correction factor, though it sometimes includes some effec e : .
. ath, which is the system one wishes to describe, there can
of the curvature of the reaction péth.

Now consider the thermal rate constant as obtained fro be a well defined rate as the bath can withdraw energy from
"the reaction coordinate. The system can thereby relax into

the flux—flux autocorrelation function. If we assume separa- L :
- . ) . the product well, eliminating repeated recrossing of the tran-
bility between the reaction coordinate, which we denots,by sition state

and the bath at the transition state such that the Hamiltonian The assumption of separability at the transition state

can be written as made in Eq.(4.2) could equally well be carried out while
I:|=I:|SwL I:|b(s=so), 4.2 including several coordinates iHg. The separability ap-

e PBo, 4.1

kow(T)=T'(T)
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proximation can thereby be improved since all the coordi-nodes are then the remaining normal mode coordinates. We
nates inH are treated fully coupled in the quantum transi- @pproximate the reaction coordinate potential as a symmetric

tion state theory of Hansen and Andersen. double well such that
~ 4
~ p 1 ~ Wy A
=7 2 IS ®5

V. DOUBLE WELL COUPLED TO A HARMONIC BATH ) ) )
where w; is the absolute value of the imaginary normal

mode frequency of thémass-weightedreaction coordinate
To illustrate the quantum mechanical transition states. The bath Hamiltonian is given by

theory we apply it to the problem of a symmetric double well N

potential bilinearly coupled to a harmonic bath. This problem |:|b: E

has been studied in great detail by a large number of i=1

workers>3 and, importantly for the present purpose, exact,nere then

calculations for the rate constant have been carried out b%

2 usi e ) e (mass-weightedcoordinatesQ; , obtained from the nor-
Topaler and Makff" using the quasiadiabatic propagator ma| mode analysis at the transition state. In defining the re-
path integral approach with an influence functional. The

e ) action coordinate to be the imaginary frequency normal
Hamiltonian can be written as mode coordinate we are, in effect, making a choice of the

A. Description of the problem

AZ 1
J 2A2

j are the bath mode frequencies corresponding to

~2 2 4 flux dividing surface designed to improve the accuracy of the
~ Px 1 ~ JANOTON .. . ..
H= 2> — _ngx2+ x4 transition state theory. We have not carried out an explicit
2p 2 16Ey optimization of the dividing surface, as suggested by Hansen
N b2 1 and Andersefi? which may improve the accuracy of the rate
O+ ~m “’126112 constants.
=il2mp 2 The classical Hamiltonian corresponding to E§.1),
N N 5 with a system coordinate bilinearly coupled to a harmonic
_2 C'a'>A<+ € X2 (5.1) bath, is equivalent to the system coordinate obeying a gen-
[ = ijwjz eralized Langevin equatioll. Grote and Hynes have ob-

tained a simple and elegant expression for the rate constant
) f the bath. The last t ; lization fact for this problem, using a parabolic approximation to the
C'ﬁ_sr? € ba tH ttr? %S _errrr: '_Sé‘ renormalztarzlon acloharriers® Pollak has shown that their approach is equivalent
which ensures that the barner e|g_'g,, remains the same , c|assical transition state theory applied in the normal mode
as the system—bath mteracthn, defined by the couplmg €O hordinates of the transition stateQuantum mechanical ef-
stants{c;}, C“af‘ges- We consider the parflmt_atervalues N e cts can be included in the Grote—Hynes theory rate con-
DWll potential oflTopaIer and Makr* with w,=500 stants by a correction factor derived by Wolyriés.
cm -, E,=2085 cm -, and u=1837.15 a.u(the mass of a ; : :
hydro'get;] atom ' Finally, we note some computational details. In calculat-
The characteristics of the bath are encompassed in tHe;ggsi(r:wfcf(f?J)n;?:ani(soc)rebté Evcz];(azb@ igggﬁa{:ﬁgﬁcggg’
spectral densit , via the relatiof* X . . :
P ¥ (@) used for the one-dimensional double well potential. The flux

wherewy, is the barrier frequency and the are the frequen-

2

T Cj operator is used in the commutator form,
Jw)==> Sw— ;). (5.2
2T mjw, A T
_ . F=THAs.h(s)]. (5.7
Here we assume an Ohmic spectral density with an exponen-
tial cutoff, Four Lanczos iterations are performed to obtain the nonzero
J(w)=nwe™ ¥, (5.3 eigenvalues of (B/2) in Eq. (2.5 and their corresponding

. ) ) _eigenvalues. The ratio of partition functior®¥(T)/Q,(T),
where 7 is a measure of the system—bath interaction and ig, Eq. (4.9 is obtained using a normal mode analysis for

cutoff frequency(taken to be 500 cmt). We represent the

bath as a set df300) oscillators with equally spaced discrete
frequencies with a maximum frequency ob5. Then, the
coupling constant for a given oscillator is given by the rela-

B. Results and discussion

tion Here we present the results for the double well bilinearly
coupled to a harmonic bath using the method described in
2
ci 2 ~ologp 5.4 Secs. Il and IV.
mw; e/ @, (5.4 Following Topaler and Makr* we report the rates for

the double well potential bilinearly coupled to a harmonic

whereAw is the frequency spacing. bath as the transmission coefficient

The reaction coordinate is obtained by solving for the
normal mode coordinates of the potential in E5}.1) and is k(T)

given by the mode with an imaginary frequency. The bath ()= krst(T) 5.8



4226 J. Chem. Phys., Vol. 110, No. 9, 1 March 1999 Ward H. Thompson

25 T . . . 5

/e, o,

FIG. 3. Transmission coefficient for the double well potential bilinearly FIG. 4. Same as Fig. 3 but fdr=200 K.
coupled to a harmonic bath &t=300 K vs the coupling strength parameter
nl(rwyp). Results are shown for the present method as given in(4£8),

lid ling i i [ i [ ; " ; e ali
c(asx(;ct res{jltt;‘iﬁ;gﬁ’gf ;’?&”E;ﬁfﬁgg‘:“ggYi‘;gﬁg‘gs:‘;‘s;e" ling and the  gjop coefficient obtained from E¢4.3) is slightly larger than
that obtained from the parabolic barrier tunneling correction,
by less that 5%.
The transmission coefficient is plotted vs the coupling
The primitive transition state theory rate;s(T), is given strength parameten/(uw,) at a lower temperatureT
by =200 K, in Fig. 4. Again the transition state theory is sig-
wo nificantly in error for small coupling but reproduces the
krs(T) = ﬁefﬁEb, (5.9  transmission coefficient for larger couplingzn/(uwy)
greater than~0.5] quite well. The present method and the
where wg is the frequency in the reactant wellb§=707  parabolic tunneling correction are in very good agreement
cm* for the parameters used hgre over the entire range of coupling strength.

Transmission coefficients are presented for the approach  Finally, Fig. 5 plots the logarithm of the transmission
described in Sec. IV, specifically the rate given by Eg3).  coefficient as a function of/(uw,) at T=100 K. Note that
The correlation function for the reaction coordinate aloneat this temperature the exact transmission coefficient exhibits
Cfi(t) is obtained using the Padapproximant form of a turnover(such as those observed in Figs. 3 ané#expo-
Hansen and AndersénEq. (2.2), for the correlation func- nentially small couplingf and so it does not appear in this
tion. The values ofC4(0) and C(0) are obtained from data. At this low temperature the parabolic tunneling correc-
Egs. (2.7 and(2.9), respectively and used to determine thetion does not give a useful rate for small couplivghereT
parameters andb via Egs. (2.3). For comparison we have is below the crossover temperature, i.e., defined as that for
carried out calculations using the parabolic tunneling correcwhich Eq.(4.7) diverges, given bf .=fiw+/(2Kp)]. How-
tion from Eq.(4.1) using Eq.(4.7) for I'(T).

Figure 3 shows the transmission coefficienTat300 K
vs the parameter/(rwp) governing the coupling strength
[see Eqs(5.3) and(5.4)]. The exact calculations of Topaler
and Makrf* and the results obtained using the traditional
parabolic barrier tunneling correction are plotted for com-
parison. It is immediately obvious that the transition state
theory (with either tunneling correctiordoes not reproduce
the correct behavior of the transmission coefficient for small
coupling. This regime is dominated by recrossing effects as
the small coupling inhibits the relaxation of the system in the
product well resulting in repeated recrossing of the transition
state. Since the transition state theory makes no accounting
for recrossing dynamics, it severely overestimates the rate
for small coupling. However, for intermediate to large cou-
pling [ 7/ (nw,) greater than-1], the transition state theory
correctly(and quantitativelypredicts the decrease of the rate
with increased coupling. This is because the dynamics for

TthiS range of coupliqg strength is d_ir_eCt* le., itis CharaCte_r'FIG. 5. Same as Fig. 3 but foF=100 K and here the logarithm of the
ized by little recrossing of the transition state. The transmistransmission coefficient is plotted.

35

log x

n/(uw,)
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ever, because the present approach for obtaining the tunnel- Finally, we offer some suggestions for possible improve-
ing correction is based on a physically realistic one-ments to the theory. While the Pad@proximant form for
dimensional potential iloesgive meaningful rates in this the correlation function, Eq2.2), proposed by Hansen and
regime. The present transition state theory approach givesndersen possesses many desirable characteristics it is pos-
transmission coefficients in reasonable agreement with thsible to obtain a positive value for the paramdiagiven by
exact calculation over the entire range of coupling. The re£qg. (2.3b), resulting in a meaningless value for the rdi&e
sults from the parabolic barrier tunneling correction areobserve this for the double well problem in Sec. V fbr
shown for larger values of the coupling and are in good=50 K. Thus, a form for the correlation function which
agreement with the present method. alwaysyields a useful ratéwhile still possessing the other

It is instructive to consider how the present method com-desired propertigss wanting.
pares to other quantum transition state theory approaches. Another possibility for improvement involves moving
Topaler and Makf* compared their exact results with those beyond the separability approximation of Sec. IV. It should
from Grote—Hynes theof§ with a quantum correcticiand  be possible to include some effects of the coupling in the
centroid density theor§.At T=300 and 200 K, these ap- calculation ofC;(0) andC;(0) by a perturbative or other-
proaches significantly overestimate the rate constants fafise approximate approach.
small coupling, as does the present method, but are in excel- As shown in Sec. Il and the Appendix it is possible to
lent agreement with the exact results for larger couptthg. calculate many derivatives of the flux—flux autocorrelation
The centroid density theory gives rates in good agreemefftinction (evaluated at=0), via Eq.(2.9), and it should be
with the exact results al =100 K, while Grote—Hynes possible to use this additional information to obtain more
theory is in poor agreement for small coupling and reasonaccurate representations of the correlation function, includ-
able agreement abovey/(uw,)~1.5. Thus, the present ing the description of recrossing dynamics. A natural exten-
method is capable of obtaining rate constants of accuracyjon is to approximate the correlation function using a func-
comparable to either of these approaches. tional form with more parameters, and thus requiring the

values of higher derivatives at=0. Naturally, such an ap-
proach involves moving beyond the traditional assumption of

VI. CONCLUDING REMARKS a “transition state theory,” namely, that of direct dynamics.

We have shown how the quantum transition state theor§10re systematic approaches have previously been applied in
recently proposed by Hansen and Andefdecan be effi- ~ different contexté>*
ciently implemented by taking advantage of the low rank of
the _half-Bo_Itzmanmzed flux operator. This approach can b?ACKNOWLEDGMENTS
easily applied to systems with several degrees of freedom.
We have also described how the method of Hansen and |t is a pleasure to thank Professor William H. Miller for
Andersen can be used to obtain accurate tunneling corregis encouragement as well as for many fruitful discussions
tions within the context of the more traditionéle., sepa- and useful suggestions. | also wish to acknowledge Dr.
rablg quantized transition state theory approach. An imporHaobin Wang for several productive conversations and help-
tant addendum is that the present approach can be used fi§ comments. | am grateful to Professor James T. Hynes for
improve the separability approximation in such TSTs by ex-is generous support.
plicitly treating multiple (fully coupled degrees of freedom
in the calculation of the tunneling correction.

We have demonstrated the present implementation thPPENDIX: TIME DERIVATIVES OF THE FLUX-FLUX
quantum transition state theory of Hansen and Andersen bUTOCORRELATION FUNCTION
using it to calculate thermal rate constants for the HD
reaction. This reaction is known to be direct and the quantunl](th

transition state theory gives rate constants in excellent agrees ajuated at zero time. In particular, we exploit the low rank

ment with exact results. of the Boltzmannized flux operator,
We have also used the present method to calculate tun-

neling corrections for a one-dimensional double well poten-  £(8)=e #HI2Eg= A2 (A1)

tial bilinearl led t harmoni th. This transition . : . .
al bilinearly coupled to a harmonic bq S transitio which appears in Eq1.2) for the correlation function. Thus,
state theory approach severely overestimates the transmis-

sion coefficient, Eq(5.8), when there is significant recross- If the nonzero eigenvalues and eigenvectors @8) are ob-

ing of the transition statéas would be expectédHowever, ~t@ined by a Lanczos scheme

when the transition state theory gnsatz of direct dynamics is 'E(ﬁ)|n>= faln), (A2)

met the present results are in good agreemit T

=100, 200, and 300 Kwith the exact results obtained by then the correlation function becomes

Topaler and Makrf* The use of a physically realistic poten- . .

tial for obtaining the tunneling correction allows for an ac- C(t)=2, fo(n|eHViFe Ry, (A3)
curate rate to be obtained even at temperatures below the ;

crossover temperaturévhere, for example, the parabolic It is easy to show that the time derivatives ©f;(t) evalu-
barrier tunneling correction is not vajid ated at zero time are given by expressions containing com-

In this Appendix we derive a general expression for the
derivative of the flux—flux autocorrelation function
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mutators between the Hamiltonian and the flux operator.
the first two nonzero derivatives, one obtains

Cff(O)ZEn: fo(n|FIn), (A4)

and
i\ 2
éff<0>=c<f?><0)=('g) 2 fonl[A[HLFIIN). - (AS)

Then the derivativeC{K)(0) is composed oK nested com-
mutators of the Hamiltonian with the flux operator. How-
ever, theKth nested commutator can be expressed as

PKAKE+ P _ AKX IFA+ P _ AR 2FA2+ . .
+PXAFAR 1+ PEFAK, (A6)

where the coefficient®l _, are those given in Eq2.10. It
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