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The entropy of 1-1 and 2-2 model electrolytes is calculated from an expansion in terms of the 
multiparticle correlation functions. For electrolytes, a simple truncation of this expansion is 
never sufficient for the accurate calculation of the entropy, even in the limit oflow concentration, 
in marked contrast to the behavior for short-ranged potentials. However, a partial, but 
infinite-order, summation of the expansion is shown to yield both the correct low-concentration 
limit and excellent results over a wide range of concentrations for both 1-1 and 2-2 electrolytes. 
The consequences of this result for some earlier applications of the entropy expansion to 
electrolytes are discussed. 

I. ELECTROLYTES 

The prediction of the properties of electrolyte solutions 
poses a particular challenge to liquid theory, due to the 
long-range nature of the Coulomb forces and the require­
ments of charge neutrality.) The popular Debye-Hiickel 
(DH) approximation provides some insight, but it is of 
practical use only for very dilute aqueous solutions of uni­
valent ions (1-1 electrolytes). Efforts to go beyond the DR 
level usually involve integral equations, such as the hyper­
netted chain (HNC) approximation. Although generally 
successful for 1-1 electrolytes, the HNC approximation 
yields unphysical solutions for dilute solutions of divalent 
ions (2-2 electrolytes).2,3 Recently, Duh and Haymet4 

have developed an approximation which overcomes the 
aforementioned deficiencies of the HNC closure, and 
which yields accurate results for the 2-2 electrolyte over 
the full concentration range. The mean spherical approxi­
mation (MSA) has different but similar limitations. 5 

Computer simulations yield exact information about 
the structure of a liquid at a fixed thermodynamic state 
through the calculation of the pair correlation functions 
ga/3(r) , and integral equations yield a~proximati?ns. to 
these functions. For model electrolytes WIth only palrwlse­
additive interactions between ions, some thermodynamic 
quantities, such as the average potential energy and the 
pressure, may be calculated directly from these pair corre­
lation functions. However, for other important quantities, 
such as the entropy and free energy, such a direct and exact 
calculation is not possible. Traditionally, such quantities 
have been calculated indirectly using the technique of ther­
modynamic integration, which involves the calculation of 
the properties of the solution over an entire range of ther­
modynamic states between a reference (ideal) state and the 
state of interest, and this often requires significant com­
puter resources. 

A direct, but approximate, method for calculating the 
entropy (and hence the free energy) from the pair corre­
lations alone has been explored for a variety of liquids.6-12 

a) Author to whom correspondence should be addressed. 

This method is based on truncation of an exact, but 
infinite-order, expansion for the entropy in terms of mul­
tiparticle correlation functions. In this paper, this explora­
tion is continued for electrolytes. Comparison is made with 
a similar study of a hard-core 1-1 electrolyte by Hummer 
and Soumpasis. )3 

Our general argument applies to any model of an elec­
trolyte, since it appeals to correlation functions. To be def­
inite, in this paper we will use correlation functions gener­
ated for a particular electrolyte model, a fluid of 
symmetric, charged soft spheres introduced by Rossky and 
co-workers. 14 The interaction potential between ion species 
a and f3 is given by 

kB (a)9 ZaZf3 ~ 
<pa/3(r) =- - + 

a r €r 
(1) 

where Za is the number of electron charges on ion type a. 
The solvent is modeled as a structureless continuum with 
dielectric constant €, here taken to be that of water at 
25 ·C, €=78.358€0. The energy parameter B and the ionic 
diameter a are set equal to 5377.75 I ZaZa I A K and 
2.8428 A, respectively. These values are chosen to facilitate 
comparison with earlier work. Note that the cation and 
anion are assumed to be of equal size. This potential is 
similar to the standard restricted primitive model, except 
the ion hard core has been replaced by a more realistic soft 
repulsion. In all calculations reported here, the tempera­
ture is 25 ·C. 

For this paper we require accurate correlation func­
tions for the electrolyte. Our analysis does not depend on 
the source of these correlation functions. For example they 
could be obtained from computer simulations at each con­
centration. For simplicity, all structural data for this study 
are generated using the electrolyte integral-equation theory 
of Duh and Haymet,4 which includes an approximate 
bridge function. This closure yields highly accurate results 
for both 1-1 and 2-2 electrolytes at 25 ·C, over the wide 
concentration range c=O.OOl to 1 M (1 M= 1 mol dm- 3). 

Full details of the method are presented in the original 
paper.4 The results for the 2-2 electrolyte at low concen-
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trations exhibit none of the pathologies of the HNC ap­
proximation. This makes possible the study of very low 
concentrations, which is crucial for determining the con­
centrations above which the Debye-Hiickel approximation 
breaks down for the 2-2 electrolyte. 

In Sec. II we review the entropy expansion in correla­
tion functions and present results for electrolytes in Sec. 
III. Comparison with earlier calculations of the entropy of 
an electrolyte are present in Sec. IV, and our conclusions 
are collected in Sec. V. 

II. THERMODYNAMICS FROM ENTROPY EXPANSIONS 

As mentioned above, some thermodynamic quantities 
cannot be calculated directly from the pair correlation 
functions. The major drawback to the traditional thermo­
dynamic integration method for calculating the free energy 
is that it is indirect; the free energy cannot be calculated 
simply from the structural properties at the thermody­
namic state of interest, but rather requires information 
about all thermodynamic states along some path connect­
ing the state with a convenient (ideal) reference state. 
Such additional information is often inconvenient, time­
consuming or even impossible to obtain. For this reason, 
the development of accurate direct methods has been of 
much recent interest.Cr8,10-12 

One such direct method involves the use of an expan­
sion for the entropy in terms of multiparticle correlation 
functions. For a multicomponent liquid with pairwise­
additive interparticle potential energies, the average poten­
tial energy may be written exactly as a functional of those 
potentials and the pair correlation functions gafJ(r) , where 
a and f3 index particle species. However, a calculation of 
the free energy requires a knowledge of both the entropy 
and the energy. Unfortunately, even for pairwise-additive 
systems, the expansion of the entropy in terms of multi­
particle correlation functions does not truncate at the pair 
level, but instead has contributions from all orders. 15,16 At 
present the calculation of muItiparticle correlation func­
tions is at best an extremely difficult task, and recent work 
has focused on manipulating the entropy expansion in or­
der to obtain the best possible estimate of the entropy from 
the pair correlation functions alone. 10 

Building upon the work of Kirkwood,17 Green,15 Net­
tleton and Green,16 and Raveche,18 Hernand08,9 recast the 
entropy expansion into a particularly useful form, via a 
partial resummation of the higher-order terms. General­
ized to a mixture of v components by Laird, Wang, and 
Haymet,19 the resulting expansion can be written as the 
sum of four terms, 

S[g(n)]lNk=Sideal+ S(2)+Sring+ f s:mx(i)[g~p':.;m<i]. 
i=3 

(2) 

The functions g~.~.(ra,r.B'''') are the m-particle (multi­
component) correlation functions of the liquid. In the en­
semble invariant form,6 the first term 

5 v 

Sideal=-2- L Xa In PaA~ 
a=1 

(3) 

is the ideal gas contribution, where a is the species label, 
Aa is the de Broglie thermal wavelength, Pa is the partial 
number density, P=!.~=IPa is the total number density, 
and xa= Pal P is the mole fraction. The second term, 

P v v J sC2)= -2 L L XaX{3 drafJ[g~(rafJ)lng~(rafJ) 
a=1 P=I 

-g~(raP) + 1], (4) 

results from the usual second-order truncation of the en­
tropy expansion, and contains the familar "g In g" term. 
The next term is the so-called "ring" contribution, 

1 J [ - 1_ 
Sring 2 (2'7Tp) 3 dk 1nII+H(k) I +"2 Tr H2(k) 

-TrH(k)1, (5) 

where I is the v X v identity matrix and 

(6) 

Hernando derived this term by extracting the leading con­
tribution ("ring" diagram) from each individual order of 
the expansion hierarchy, and sl!.mming these contributions 
to infinite order. The function hafJ(k) is the Fourier trans­
form of the total correlation function hafJ(r) =gap(r)-1. 
Note that when pair correlation functions obtained from 
the HNC approximation are inserted into this expansion, 
the sum of the first three terms is exactly equal to the 
well-known HNC entropy. 

The first three terms require structural information 
only up to pair correlation functions. The remaining terms, 
s:nix (i), result from the subtraction of the "ring" terms 
from the higher-order U;;;.3) terms in the expansion, and 
they contain contributions from all multiparticle correla­
tion functions up to order i. For a given order of expansion, 
these terms are higher order in the density than the corre­
sponding "ring" term, and to a good approximation they 
may be neglected in the low to moderate density regime lO 

of simple liquids. Our goal here is to explore this expansion 
for electrolytes. 

III. RESULTS FOR ELECTROLYTES 

As a function of concentration, we have calculated S(2) 
and i 2) +sring (hereafter referred to as the ring approxi­
mation) for both 1-1 and 2-2 electrolytes at 25 'C, using 
structural data obtained for the model electrolyte model 
using the integral equation described above. For compari­
son, the "exact" excess entropy for these electrolytes has 
been calculated using thermodynamic integration of the 
data from the integral equation from the p=O zero con­
centration limit. The results of these calculations for the 
1-1 electrolyte up to the concentration 9.0 M are shown in 
Fig. 1, and in Fig. 2 for the 2-2 electrolyte up to 2.25 M. 
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FIG. 1. Excess entropy per particle at 25·C for the model I-I electrolyte 
described in the text, as a function of the square root of the molar con­
centration. Three methods of calculation are shown, thermodynamic in­
tegration from the c=O state (solid line); the entropy expansion trun­
cated at second order, s(Z) (diamonds); and the same entropy expansion 
with the "ring" term added, i 2

) +sring (crosses). 

For both the 1-1 and 2-2 electrolytes, Figs. 1 and 2 
show that the ring approximation is extremely accurate 
over the concentration ranges studied. Note that the en­
tropy of the 2-2 electrolyte is qualitatively different than 
the 1-1 electrolyte entropy. In both cases, the second-order 
term S(2) is a poor approximation to the entropy. This is to 
be expected, since the ring approximation for the entropy is 
identical to that obtained from the HNC closure, which is 
known to be very accurate for electrolytes. 19,20 A third 
approximation, the so-called "incompressible" approxima-
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FIG. 2. Same as Fig. I for the 2-2 electrolyte. 

tion developed recentIylO has not been considered here, 
because even at these seemingly high concentrations, the 
actual number density of the electrolyte species is quite 
low, leading to compressibilities that are too high for this 
approximation to be valid. 

IV. COMPARISON WITH THE DEBYE-HOCKEL 
APPROXIMATION 

At sufficiently low concentrations (low ionic 
strengths), the properties of an electrolyte are governed by 
the so-called Debye-Hiickellimiting law, in which the pair 
correlation function is given by 

ZaZ,recr 

In gaper) -+ - kTer ' 

where the inverse Debye length K is defined from 

41Te2 v 

~=kT L Z~Pa' e a=1 

(7) 

(S) 

Using thermodynamic integration, it can be shown21 that, 
in this limit, the excess entropy per particle varies as 

K3 

S;::::SDH= -241TP' (9) 

It is useful to examine the behavior of the entropy expan­
sion approximations in this limit. For the second-order 
truncation S<2), substituting the DH correlation function 
[Eq. (7)] into Eq. (4) yields 

K3 

S(2)~ __ -

~ 321TP' 
(10) 

Comparison of Eqs. (9) and (10) shows that P) ap­
proaches the zero-concentration limit with the incorrect 
limiting slope! This is a consequence of the long-ranged 
nature of the Coulomb potential. In liquids with short­
ranged potentials, the virial series is analytic at p = 0, 10 and 
there is no difficulty with this limit. 

The limit of the ring approximation sring yields 

~ 00 (2n-5)!! K3 

Sring ;::::-S1Tp i~3 n(2n-2)!! -961TP' (11) 

The addition of Eqs. (10) and (11) recovers the correct 
low concentration limit [Eq. (9)]. 

To illustrate these limits, Figs. 3 and 4 display S(2), the 
ring approximation S<2) +Sring' and the thermodynamic in­
tegration result as a function of c1!2 (at 25 ·C) at very low 
concentrations for the 1-1 and 2-2 electrolytes. The limit­
ing slopes are also shown. The ring limit slopes are clearly 
correct. In addition, note that for the 2-2 electrolyte the 
entropy attains the DH limiting law only for concentra­
tions below 10-7 M! 

Hence, the entropy of an electrolyte cannot be approx­
imated by a simple finite sum of two-body, or three-body 
terms. The simple pair entropy yields a limiting slope in­
correct by 25%. Some evidence of this arose previously in 
a computer simulation of the restricted primitive model of 
a 1-1 electrolyte (NaCl) by Hummer and SoumpasisY 
Using thermodynamic integration of the computer simula-
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FIG. 3. Excess entropy per particle at 25 ·C and low concentration for the 
1-1 electrolyte as a function of the square root of the molar concentration. 
Three methods of calculation are shown: thermodynamic integration 
from the c=O state (solid line); the entropy expansion truncated at sec­
ond order S<2) (diamonds); and the same entropy expansion with the 
"ring" term added, s(2) +sring (crosses). The limiting slopes for the S(2) 

truncation (short dashed line) and the Debye-Hiickel model (long 
dashed line) are also shown. 

tion data to obtain the "exact" entropy, they showed that 
neither a second- nor third-order truncation of the entropy 
expansion yields correct results for intermediate densities. 
Since data for very low concentrations are not published, 
one cannot obtain information about these approximations 
in the extremely dilute limit. 
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FIG. 4. Same as Fig. 3 for the 2-2 electrolyte. 

v. CONCLUSIONS 

We have shown that the entropy of an electrolyte can­
not be described by simple, finite-order truncations of an 
expansion in terms of multipartic1e correlation functions, 
even at very low concentrations (Debye-Hiickel limit). 
This differs from liquids with short-range potential ener­
gies. 

Our results prove that it is never correct to omit the 
"ring" term [Eq. (11)] to the entropy expansion when 
studying systems with long-range, Coulombic interactions. 
Therefore the results of electrolyte studies that use only a 
low-order truncation, such as the calculation of the free 
energy for the electrical double layer,22 must be treated 
with caution. 

In addition, we show that the entropy of a 2-2 elec­
trolyte at 25·C approaches the Debye-Hiickel limiting 
value only for concentrations below 10-7 M. It is well 
known that the Debye-Hiickel approximation breaks 
down for dilute 2-2 electrolytes, but the difficulty of doing 
computer simulations at very low concentrations, com­
bined with the fact that most integral equations (such as 
the HNC) fail to yield physical solutions for dilute 2-2 
electrolytes3 has prevented previous efforts to locate pre­
cisely the concentration at which the breakdown occurs. 
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