A symplectic method for rigid-body molecular simulation
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Rigid-body molecular dynamics simulations typically are performed in a quaternion representation.
The nonseparable form of the Hamiltonian in quaternions prevents the use of a standard leapfrog
(Verlet) integrator, so nonsymplectic Runge—Kutta, multistep, or extrapolation methods are
generally used. This is unfortunate since symplectic methods like Verlet exhibit superior energy
conservation in long-time integrations. In this article, we describe an alternative method, which we
call RSHAKE (for rotation-SHAKB, in which the entire rotation matrix is evolve@sing the
scheme of McLachlan and Scovil. Nonlin. Sci.16 233 (1995]) in tandem with the particle
positions. We employ a fast approximate Newton solver to preserve the orthogonality of the rotation
matrix. We test our method on a system of soft-sphere dipoles and compare with quaternion
evolution using a 4th-order predictor—corrector integrator. Although the short-time error of the
quaternion algorithm is smaller for fixed time step than that for RSHAKE, the quaternion scheme
exhibits an energy drift which is not observed in simulations with RSHAKE, hence a fixed energy
tolerance can be achieved by using a larger time step. The superiority of RSHAKE increases with
system size. ©1997 American Institute of Physid$S0021-960627)50931-1

I. INTRODUCTION recent example showing the improved long-term stability of
integration methods incorporating geometric structure, see
An important problem in molecular simulation is the de- Ref. 6.
velopment of stable and efficient algorithms for integrating  For systems of rigid molecules in which the potential is
the equations of motion of orientational degrees of freedomeasily written in terms of intermolecular interactions between
The straightforward parameterization for such degrees ocftomic sites on the molecules, it is possible to circumvent the
freedom, Euler anglesjs at a severe disadvantage for nu- parameterization of orientational degrees of freedom by con-
merical work because of the singularities inherent in the desidering the fundamental variables to be the individual Car-
scription. To overcome this difficulty, a parameterizationtesian coordinates of the atomic sites. The dynamics is de-

based on quaternions was proposed by Evansl has be- termined by integrating the equations of motion for these
come standard.A significant drawback in this approach sites, subject to the constraint that the molecule remains rigid

arises from the fact that the rigid-body Hamiltonian is non_(lntrzatmqlfcular lt))on.d dllstanc;asd an(_j angles are t)‘lxlé_ide
separable in the quaternion representation, therefore preverﬁgns rain's can be Imp'ementecd using appropriate --agrange

. . multipliers. A generalization of the Verlet integration
!ng the.use of the.popular Iegpfrdg/erlet? algo-nthm. for scheme(SHAKE algorithnl) is then used to integrate the
integrating the rotational equations of motigm this article,

foll h . £h i | constrained equations of motion. SHAKE is algebraically
v_ve_ oflow t_ e convention of the recgnt !tera_lture on SY“?F’ ec'equivalent to the RATTLE discretization of Andersband
tic integratiort and say that a Hamiltonian separableif it

. ( the latter scheme is formally symplectic along the manifold
can be written in the forrhl = T(p) + V(q).]Usually, then, ot constraints This fact helps to explain the excellent long-
higher-order methods such as Gear predictor—correctqfme stability of SHAKE. The use of SHAKE on a con-
methods are utilized. The superiority of the Verlet schemestrained particle description becomes inconvenient for gen-
arises from the fact that it is, like the true Hamiltonian dy- eral rigid-body integration for two reasons. First, as the
namics, symplectic that is, it preserves the wedge product number of atoms in each rigid molecule increases, the num-
dr0dp (p is the momentum conjugate t9.*> A more fa-  ber of constraints increases dramatically, which decreases the
miliar, but weaker property of symplectic maps, is that theefficiency of the computation. Second, additional computa-
flow preserves volumes in phase space. Such symplectic iional complexity is introduced in the force computations for
tegration algorithms have been shown to possess excelleifttermolecular potentials that are not easily decomposable
long-term energy stability, often far superior to nonsymplec-nto direct site—site interactions such as potentials expressed

tic methods(even those with higher-order local erroFor a s multipole expansions.
In this paper, we develop an algorithm in which the ro-

SElectronic mail: ayla@stout.chem.ukans.edu tation matrix is not parameterized, but is evolved directly.
bElectronic mail: laird@pilsner.chem.ukans.edu The structure of the equations 'of motion is suph that a
®Electronic mail: leimkuhl@math.ukans.edu SHAKE/RATTLE scheme is possible, except that, instead of
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constraining the bond lengthsr angle$, we constrain the r=0R, (4)

rotation matrix to be orthogonaf:'* We also describe effi- o g i the lab 4 bod
cient iteration procedures for the nonlinear equations thaf/herer andR are vectors in the laboratory and bo y frames,

must be solved at each time step. We will refer to this ap_respectlvely, and’is the 3 3 time-dependent rotation ma-

proach as RSHAKEfor rotation SHAKE. The advantages U1X Subject to the orthogonality condition

of this model over SHAKE with bond constraints are that the g S

number of constraints does not increase with molecular size, o =1=C . ®)

and that it is well suited for non-site-to-site interactions sucha consequence of this condition is that only three indepen-

as those generated from multipole expansions. dent parameters are necessary to describe the nine elements
of the rotation matrix.
Il. SIMULATION OF RIGID-BODY MOTION One standard parametrization of is in terms of the

We consider a collection ol interacting rigid bodies. well-known Euler angle$,but the singularities inherent in
The time evolution of a rigid body can be studied by consid-thiS description make it unsuitable for numerical work. An-
ering separately the translational motion of the center ofther is the quaternion parametrization of Hamilton, where
mass and the rotations about the principal axesich pass the orthogonality condition is again explicitly implemented

through the center of massThe Lagrangian for such a sys- Ulilizing four quaternions instead of the three Euler angles.
The quaternion method and its implementation is outlined in

tem is :
the next section.
ViIM:v: Q7.0 In Sec. IV we present a rotational evolution algorithm
-~ I [} [ 1 . . . ..
%=E 5 +2 5 d{ri} {6}, (1)  for molecular simulation§RSHAKE) that is both explicit
I

and algebraically equivalent to a symplectic method. The
wherer;, v;, ©;, andl; are the Cartesian position vector of method is compared in Sec. VI for a system of dipolar soft
the center of mass, its velocity, tH@ody-fram¢ angular ~ spheresdescribed in Sec. Mwith a quaternion method us-
velocity, and the moment-of-inertia tens@iso in the body ing a fourth-orderGeap predictor corrector integrator.
frame of particlei, respectively® is the potential energy
function andé; is a representation of the orientation of par-

ticle i. The equations for center-of-mass motion are IIl. QUATERNION METHOD
M=V, In the quaternion representatibrthe orientation of a
rigid body is parameterized in terms of a set of four scalar
M;v;= —V,iQD. quantities, o,91,92,93) = (, with the condition
Numerically, these can be integrated effectively by using the 21 24 2+ %=1 6
leapfrog(Verlet) method: Qo™ Ar Tz 4= - ©
In terms of the standard Euler anglesg, ¢, and ¢, the
M+1i="niT AtV 15, (20 quaternion parameters are
MiVn+172i= MiVn_12) = AtV D(ry ). () q02005<§ cos{ ¢;¢ ,

(Here the notatiom, ; refers to theith position variable at
the nth time step.

To determine the rotational motion, one needs to make qlzsin(f) cos( ¢ "/’),
use of two different reference frames: a space-fixed frame 2 2
(also called the laboratory-fixed frasnend a body-fixed
frame. Forces and torques are more conveniently calculated (0} —
in the laboratory frame whereas the rotational equations of q2=sm(§)sm( 2 )
motion are simpler in the body frame. We will use the con-

vention that small letters stand for the representations of 0 b+

variables in the fixed laboratory frame and their counterparts q3=cos< E)sin | )
in the body frame will be denoted by capital letters. With this

convention we have and the rotation matrix is given by

95 +ai—a5-0a5 2(d10,—ols)  2(d:1G3+ o)
o=\ 2(4182+9ods)  A5—a5+05—05 2(d203—ody) |, (8)
2(0103—0od2)  2(U203+0ods)  G5—ai—a5+a3
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where the normalization conditigriEq. (6)] ensures the or- , ,

thogonality of. The introduction of these four quaternion In+1= 00+ 5 (Zn@nt ZneaQnia). (19

parametergplus a constraintin place of the three Euler o S .

angles removes the singularites of the Euler angIeThe last equation is an implicit one defined through the aux-

representation. iliary parametersl,=I,_qptAts, and |, ;=I,+Ats,,
Then in the quaternion representation, the equations g#hich are not stored, but used to calculate the angular ve-

motion for the angular velocities augmented with the timelocities in the body frame

derivative of the constrairftEg. (6)] on the quaternions re- 0

sults in Q”:(Ilé’lln . (16)
d_q:,///g, 9) In our implementation of this method, discussed in Sec. VI,
dt this method of Fincham, while comparable in per-step effi-

where ciency to the 4th-order predictor-corrector algorithm for

guaternions, exhibited much worse stability than the alterna-

G~ 7% ~G tives considered.

1A 9o —03 Q2
A= E _ (10)
G2 G % ~ IV. THE RSHAKE METHOD
0z —Q2 Qa1 Yo ) o .
In RSHAKE, the rotation matrix? is evolved directly,
and .
as opposed to evolving a set of parameté&sler angles or
0 guaternions used to represent’. In doing so, we use a
Q= Q, 11 scheme similar to that of McLachlan and Scd%ékee also
-1 Q (11) Reich'), in which one defines a momentum variable canoni-
Q, cally conjugate taZ—the resulting Hamilton’s equations of

motion subject to the orthogonality constraiit = 1 are
then of the proper form for the implementation of efficient
symplectic integrators such as SHAKE/RATTLE.

A basic property of Hamiltonian systems is that the flow
(time evolution of coordinates and momenta symplectic
which for mechanical systems with one degree of freedom,
e such as a simple harmonic oscillator, means that the area in
Qy:l_y_|_( ZZI XX)QZQX, two-dimensional phase space is invariant during time evolu-

is the angular velocity in body frame. The time derivative of
the angular velocity is related to the torqueand the prin-
cipal moments of inertia in the body frame by

Tx (Iyy—lZZ

Q="+
IXX

)Qyﬂz,

IXX

vy vy tion. (For systems with more than one degree of freedom, the
T [y conserved quantity is the sum of the projected areas, onto
Q==+ )Qny- (12 each 6;,q;) plane, of any arbitrary oriented two-

Y4 Y4

) _ dimensional surface in phase spada.general, symplectic-
The above seven coupled equations can be integratgthss implies volume preservation in phase sp#oe Liou-

numerically using a variety of methods. The fact that theyjjle theorem, but it is a stronger condition. It has been
time derivatives of the quaternions depend not only on th§ound to be very desirable to maintain the symplectic invari-
angular velocity(2, but also on the quaternions themselvesgnce during numerical integration. For an overview, the
through. 7, means that the standard leapfragerlet) algo-  reader is referred to Ref. 7.
rithm is not applicable. For this reason, higher-order non-  The concept of a symplectic numerical method can
symplectic algorithms such as Bulirsch—Stoer extrapolationye extended to constrained dynamitcompactly described
standard Runge—Kutta methods, or the Gear predictolyy H=T(p)+V(q)+g(q)-\, g(q)=0. The SHAKE
corrector methodsee Appendix E of Ref.)3are typically  giscretizatioA generalizes the leapfrog method to con-
employed. _ o strained systems, and the symplecticness of the leapfrog
_ Recently Fincharff has devised an implicit leapfrog- method carries over to SHAKE. A rigorous treatment of this
“like” integration algorithm for quaternions. His method iS fact and generalization of this argument to constrained me-
based on Eq(9) and the equation of motion for the angular chanical systems can be found in Ref. 9, for both SHAKE

momentum and the closely related RATTLE meth&d.
dl Although it is possible to formulate the quaternions as a
TR 13 Hamiltonian system? the equations then are in nonseparable

) ) . form, and the available symplectic methods for such prob-
wherel is the three-dimensional angular momentum VecCtOfigis are implicit, meaning that the symplectic structure is

in the laboratory frame andis the torque in the same co0r- \aintained only if a certain nonlinear system of equations

dinate system. The implicit algorithm of Fincham then pro-jnq\ying all the force contributions is solved exactly at each

ceeds as follows time step. This is generally expensive. Instead, we make use
lhr1o= 1ot Atm,, (14 of an alternative formulation, writing the equations of motion
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in the form of a separable constrained Hamiltonian system 1= —3,®+ 20N, (26)
for the rotation matrixZ. This approach also requires the
solution of a system of nonlinear equations at each time step, 9(£)=¢"¢—1=0. (27
bL_Jt critically, only one evaluation of the interbody forces The structure of these equations is such that a SHAKE/
will be needed at each step. RATTLE integration algorithm is applicable:
The rotational kinetic energy must be expressed in terms
of the time derivative ofZ. This is done by considering the 1= no 1ot At[200M =3, @], (28)
molecule to be made up of discrete atoms of magsen- B
tered at positiorR; in the body-fixed frame(The total mass Cni1=Cn+ Aty g0 7 (29
of the molecule is theM = Z;m;.) The rotational kinetic 9(Chi1)=0. (30)

energy of the molecule,;, is then given by
Equations (28)—(30) define RSHAKE (for rotational

_1 ooy =1 i n.R T SHAKE). We now have 2x 9 = 18 parameters to evolve
o= F 2 mvi-vi=3 2 m TICRRCT], (A7 instead of the 7 for quaternions, plus the added work to solve
for the 6 independent elements Xf A discussion of a vari-
ety of methods for solving the nonlinear constraint equations
is included in Appendix A. If the constraint is iterated to

sincev; = é‘Ri. Defining a body-frame tensor

J= Z mRiR;, (18  convergence, the local error occurring after one step with the
RSHAKE integrator i90((At)®). (Note that, for planar and
gives linear molecules the matrid is not invertible. For these
1 cases, minor modifications in the equations of motion and
Kio=3 T I, (19 the RSHAKE algorithm are required. These are discussed in
For a continuous mass distribution described by a mass de#ppendix B)
sity p(R), we have It should be noted that a method for propagating the
rotation matrix directly was presented by Ahlrichs and
JEJ dR p(R)RR. (20) Brode™—the relation to the present work is not immediate,
since the notations differ substantially. The method of Ahl-

Note that] differs slightly from the moment-of-inertia tensor fichs and Brode does not, as in RSHAKE, solve the con-
I, so that if, as usual, the body frame is chosen to be suchtraint equation to within a small multiple of the computer’s

thatJ (and thereford) is diagonal, we have unit roundoff error, but instead writes the rotation matrix as
an exponential of some antisymmetric matAxand, using
laa=Jpptdyy (21) information aboutA from the last step, determines the new
where(a,B,7) is a cyclic permutation of1,2,3. value ofA to third order inAt by expanding the equations of
In terms of 7, the Lagrangian for aingle rigid body ~ motion. The newA is then exponentiated to give the new
with center-of-mass position vectog,, is then rotation matrix—which is guaranteed to be orthogonal due to
the antisymmetry property ok. From the point of view of

M. - 1 v : the present paper, the most important drawback of their pro-

L= FomeTomt 5 TLOICT]-D(L presen’ paper, porar: dra P

7= Tem Tem™ 5 AT P(Crem) cedure is that it will not be symplectic, since the Lagrange
TN O-1)]. 22) multiplier matrix is only being solved to third order ikt.

The first and the third terms are the usual translational ki-

netic energy and the total potential energy. The last termy, \,~~F1 AND IMPLEMENTATION

involving the Lagrange multiplier matrix, has been added

to ensure that the equations of motion are such that the rota- \We have applied the algorithms outlined in the previous

tion matrix remains orthogonal is a symmetric matrix sections to a system & dipolar soft sphere¢DSS. This

since it enforces a constraint on a matrix which is symmetricsystem has been the subject of earlier simulations using the
To construct the rotational equations of motion, we de-quaternion metho&!” The DSS interact with the two-body

fine the momentunll conjugate to7 in the usual way potential of the form
=—=71. (23
o0 where
(Like 2, I1is a 3 X 3 matrix) The rotational kinetic energy o\1?
becomes Us=4e ’ (32
Kro=7 T3] (249 and
Hamilton’s equations for the rotational motion are then 1
- 1 UD_( )(”’I M~ 3 rlj)(”’j Ij)) (33
Q:HJ y (25) rlj
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wheree and o are energy and length scalgsare the dipole 1.94 v Y .
moments of particles, and; is the separation of particlés o
andj. For a given particlé the dipole moment can be writ- ‘ %MM‘
ten as WM‘MMM
()= G0 prer, (34 e A
where we have taken all the reference dipoles parall@l to v o
Both potentials generate a force on the centers of mass, while v ipnnth e ooy 0-010
only the dipolar interaction results in a torque. For the pur- E* | R
poses of the present simulations we have truncated the abow e
potentials at a distanag, = 2.50. A shifting function was WMM
then added to ensure that both the potentials and the force: ” ,,m-mm:m,W,WW.M,,,,,hb,,,,,.,,w,W,WWM,, 0.008 |
approach zero continuously as is approached. For the T
short ranged part of the potentialf) we have added a gwww”f”f’“ﬁ“w? N aniposie 0.006
linear term of the form s om 0.004
Us=Ugt+Ar;;+B. (35 LoL ' — ___.0.002
For the dipole—dipole part of the potential we shift only the 0 150 300
radial part of the potential, as follows t*
1 1 4
— = -z +arj+b. (36) FIG. 1. Total energy as a function of time for a 500 particle DSS system

i ij using both RSHAKE(dashed-horizontal lingsand standard quaternions

The constanté\, B, a, andb are determined from the con- (soliq-sloped lines (The results foravariety of time st_eps have been shifted
tinuity condition. relative to each other along the energy axis for clarity.

All simulations were carried at a density pb> = 0.5
with a dipolar strengtiu*2 = u?/(eo®) = 2. Initially, all the
particles were placed on an fcc lattice. The initial dipolefor a variety of time stepgAt* =0.002,0.004,0.006,0.008,
orientations randomly distributed on the unit sphere. T00.010 for a DSS system of 500 particles. Results for both
implement the quaternion method, the rotational velocitiegjuaternions and RSHAKE are showiihe plots for the dif-
and their time derivatives, as well as the time derivatives oferent At* values have been shifted for clarityzrom this
the quaternions, were taken to be zero initially. In RSHAKE,figure it is clear that global energy drift for the quaternion
we took IT_y, = O for all the particles. Cubic periodic method increases rapidly with time step and always domi-
boundary conditions were used. All particles were assumedates the local energy fluctuation for the method. In contrast,
to be spherical using a diagonal body-frame moment-ofthe global error for RSHAKE is negligible—being always
inertia tensor with ,, = I,y = I,, = 0.023M0?, whereM is  smaller than the local fluctuations for the method. The local
the mass of each particle. For spherical particles Jtmea-  fluctuations in RSHAKE are always larger than those for the

trix [Eq. (20)] reduces tojl . quaternion method, due largely to the use of a higher-order
(Gea) integrator.
VI. RESULTS AND DISCUSSION In Table | is shown the derived global energy drift and

local energy fluctuations for both methods for two systems—
To compare RSHAKE with the standard quaternionone small N = 256) and one largeN = 864)—for a variety
method (using a 4th-order Gear predictor/corrector integra-of time steps. The CPU tim@n secondsfor each run is also
tor), we have performed simulations on the DSS systemeported. Although, for a given time step, the quaternion
using both methods for a variety of system sizesmethod is always faster than RSHAKE, the global energy
(N=108,256,500,86¢ and time steps ranging from 0.001 to drift of the nonsymplectic quaternion integrator is so large
0.01G, wheret, = Vmo?/e. (For SPC water, the time scale that, for fixed energy error tolerance and simulation length,
to will be around 2 p9g.All reported results are for a fixed RSHAKE allows for a much greater time step to be used. To
total time oft* = t/ty = 252. All quoted CPU times are for an illustrate this, we show in Fig2 a log-log plot ofe; and

IBM RS6000 workstatiorfiModel 43B. €, for both RSHAKE and our implementation of quater-
In our analysis, we define two measures of energy erromions. This shows that, for example, for a fixed total error
global energy drift,eq, and local energy fluctuations; . tolerance of 1 part in 10%, in our runs a time step of just

Both are determined from a plot of the instantaneous totahbove 0.008 would be required for quaternions, whereas
energy (per particlé as a function of time over the entire 0.00%, would be sufficient for RSHAKE—for larger toler-
length of the simulation. Global energy drift is defined as theances the difference is even greater! The slopes of the curves
slope of this curvédetermined by a least-squares fitulti- in Fig. 2 give the order of the error measurement for each
plied by the duration of the simulation. Local fluctuation method. The slopes for the local fluctuations of each method
error is defined as the standard deviation energy about thare equal to about 2, indicating & (At)?) method—this
above linear fit. In Fig. 1 we show energy-versus-time plotanakes sense despite the fact that the integrator used for the
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TABLE |. Comparison of RSHAKE with quaternion method. 10°2 F % T T 3
N At* € eg CPU(s) 0@
RSHAKE §
256 0.002 1.x10°5 1.2x10°6 5022 | é\ i
0.004 4.%10°° 4.7x10°8 2853
0.006 1.0<10°* 1.5x107° 2054 é?
0.008 1.8¢107* 4.8x10°5 1632 e* \9
0.010 2.%1074 3.0x10°° 1381 Oa \
864 0.002 58106 6.4x10—7 21391 104 b A \\ J
0.004 2.%10°° 6.6x10°° 12 167 Qe
0.006 5.2¢10°° 8.5x 1076 9421 O "\
0.008 9.5¢10°5 1.0x10°° 8069 Q. N
0.010 15104 1.6x10°° 7619 o
Quaternion 5 N :
256 0.002 7.410°° 6.0x107° 3306 E Qx.__b
0.004 3.x10°° 5.9x 1074 1762 S
0.006 6.9<107° 2.4x10°3 1246 \‘0
0.008 1.%x10°4 6.4x10°3 992 6
864 0.002 4.%10°° 6.1x 105 15643 10 — . .
0.004 1.5¢10°5 5.8x10-4 9160 108 10 10°
0.006 3.5¢107° 2.4x1073 7026
0.008 6.5¢10° 6.4x 1073 5815 CPU(s)

FIG. 3. Dominant energy error as a function of CPU tifimesecondsfor a
500 particle DSS system using RSHAKEircles and the quaternion inte-
grator (diamonds.

guaternions is fourth order, since the integrator for the trans-
lational degrees of freedom is the same in both methods and

is second order in the time step. The slopes of the globaft€Ps: Again,
energy-drift curves for RSHAKE and quaternions are abou
2 and 3, respectively—the origin of this difference is unclear.
To view the same data in a slightly different way for the 500,
particle simulations, we plot in Fig. 3 the dominant error for

it can be clearly seen that, for fixed energy
folerance, RSHAKE is superior to the standard implementa-
tion of quaternions.

To examine the size dependence of our results, we show
in Fig. 4 a plot of CPU time versus particle numibéfor our

each methodglobal for quaternions and local for RSHAKE WO methods. The time steps chos@00S and 0.003 for

as a function of CPU timén secondsfor a fixed length run
of 252,—the different points correspond to different time

RSHAKE and quaternions, respectivejive comparable to-
tal energy errors for our 2%g length runs of the 500 particle

1600 T T T T
1072 F ' ?
9/6
i & | I
¢~
e o CPU
<& O
1074 - 085° o
3 A O 4 E
3 /6 8 2 3 800 F /A + B
€ d & o /O +
e e _
L ...<>»-f-<>""<>
106 o ]
0
: 100 900
0.001 0.01 0.02
At*

FIG. 4. Total CPUcrossepas a function of the system sikefor RSHAKE

FIG. 2. Global(diamond$ and local(circles energy errors as functions of
time step,At, (as a log—log plotfor a 500 particle DSS system using both
RSHAKE (dotted line$ and the 4th-ordefGea) quaternion integrator
(dashed lines

(dotted line At = 0.008,) and quaternionglashed lineAt = 0.002). Also
shown is the CPU time for the force evaluations in both mettirégmgles

as well as the CPU time required to solve for the Lagrange multiplier matrix
in RSHAKE (circles.
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25 — v formed our detailed comparisons only between quaternions

S and RSHAKE.
_ -0 - ———0———9
(107%)

Vil. SUMMARY

We have developed a new algorithm, RSHAKE, for the
€ 1 numerical integration of the equations of motion for the ori-
o entational degrees of freedom of rigid molecules. Unlike
15 F . other standard methods such as quaternions, in which the
rotation matrix is parameterized, the entire rotation matrix is
treated in RSHAKE as a dynamical variable with corre-
sponding conjugate momentum. The resulting equations of
"o\ motion for the rotation matrix must then be solved subject to
G the constraint that the matrix remain orthogonal. In analogy
o 1 with the standard SHAKE algorithm for molecules with
bond constraints, RSHAKE uses a Verltapfrog integra-
tion scheme while simultaneously solving the constraint
0 500 1000 equations exactly. Like SHAKE and true Hamiltonian dy-
N namics, RSHAKE can be shown to be fully symplectic—a
property that gives the method superior stability with respect
to energy conservation. For a system of soft-sphere dipoles
we have demonstrated that RSHAKE is superior to
quaternion-based integration schemes using both a 4th-order
(Geay predictor-corrector method and an implicit leapfrog-
system (see Fig. 2 In addition to total CPU time, the like algorithm due to Fincharif.
amount of time spent in forcéand torquée evaluations is
plotted for both methods, along with the amount of time AckNOWLEDGMENTS
required in RSHAKE to solve for the Lagrange multiplier
matrix. For allN, the RSHAKE method remains the faster ~ This research was supported by National Science Foun-
algorithm. Also note that, since the Lagrange multiplier de-dation Grants CHE-950281B.B.L and A.K) and DMS-
termination Step scales 0n|y |inear|y wilh—as Opposed to 9303223(BJL) The authors also thank the Kansas Institute
the N2 scaling of the force evaluations, this step will becomefor Theoretical and Computational Science and the Depart-
much less important for large system sizes, further increasinfient of Applied Mathematics and Theoretical Physics of
the efficiency of RSHAKE. It should also be noted that theCambridge University for providing stimulating research en-
local energy fluctuations in the energy per particle will scalevironments during this project.
asN~ Y2 thereby decreasing with system size, whereas the
global energy drift appears to be relatively size independentappENDIX A: SOLUTION OF THE NONLINEAR
Therefore the total error of RSHAKE, being dominated by EQUATIONS
local fluctuations, will decrease as larger systems are consid-
ered, but that for quaternions will remain nearly constant. ~We can simplify Eqs(28)—(29) to

FIG. 5. Dominant energy error as a function Mffor RSHAKE (circles,
At = 0.008,, local energy errgrand the quaternion integrat@diamonds,
At = 0.003,, global energy error

This_is illustrated for our system in Fig. 5, which ShOWS the Q}Hl:(}ﬁﬁ2(At)2(/“*n)\n\]’1, (A1)
dominant error for RSHAKE 4t* = 0.006) and quaternions .
(At* = 0.003) over our 253 runs. where,, . 1 represents the unconstrained stegin

We have also studied our system using the implicit o 1 2 1
. . . . . . =Cnt _ - .
method of Fincham for integrating the quaternion equations Cne1=Cnt Atlln- ) (AD) ﬁf/n(b‘] (A2)
of m.o.tion(Sec. ). Our resu!ts show that.this.method has asubstituting Eq(A1l) into Eq.(30) and multiplying on either
significantly larger energy drift for all studied time steps thanside byJ results in a quadratitmatrix Riccat) equation for
when the predictor-corrector is used. For example, for a 50éhe six independent elements of tteymmetrig X matrix:

particle system with time stept* = 0.002, the global energy 5 -

error in Fincham’s method is 1.X 102 in reduced units, F(An)=aky+X,B+B '\, +C=0, (A3)
compared to 6.3 107° for predictor-corrector. In a recent where

papert® Fincham compared results for a linear molecule us- ) Ta

ing his implicit method and several other methods, including a=2(A1)%,  B=CnCniad,

his LEN algorithm, which is shown in Appendix B to be ) R
equivalent to RSHAKE applied to a linear molecule. Fin- C=WJ((JI+1§;1+1—I)J.

cham concluded that LENRSHAKE) was superior to his

implicit quaternion integrator. Thus, concluding that Fin- Observe that from EqA2), and the fact thaX is bounded as
cham’s implicit method does not compare well, we have perAt—0, the matrixC also remains bounded as—0.
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Following the standard approach, we localize the solu- AMK =K, AM™+O(A).
tion of this nonlinear equation by assuming that we have
some initial guess\ (such as\,_;) near to the solution
An. We compute an improved approximation by linearizing (KL +KAM=—F\M),
the equation

ReplacingA (MK, by K,A(™M we obtain an equation

_ This equation generally does not have a solution with
F(N+A)=0, (A4) symmetric A(™, but we enforce the symmetry di-
rectly by solving for only the upper triangular part of
A and then reflecting this about the diagonal to
_ _ obtain the update. The latter operation can be viewed
KTA+AK=—F(\), K=a\+B. as a projection from the class of>8 3 matrices onto
the symmetric matrices. The combination of these op-
o erations can be viewed as equivalent to @At?)
A=\+A. alteration of the matrixV,,, in the Newton iteration,
hence this scheme would be expected to yield an al-
gorithm that gaingwo orders of the step size at each
iteration.

and solving forA. This givesA as the solution of the matrix
Lyapunov equation

We then obtain a corrected value

The iteration of this process is just the Newton method,
which, started from an initial guess®> computes a se-
quence of approximations™®, A(® ... to A, recursively
from The modified iterations will typically require several

A (M) (m=1) 4 A (m) more iterations per time step than the Newton iteration to

' achieve the same tolerance, although they have the advan-
where tage of reduced complexity. In our implementation the itera-
tion is considered converged if the norm &fis less than

Kpd™+AMKy=—FA™Y), Kp=ar™V+B. 10 % or Eq.(A4) is satisfie% within 102°. We set the maxi-

(AS) mum number of iterations to 50, which was necessary for the

Although there is a substantial body of literature on thelargest time steps that we have studied.
efficient solution of matrix Riccati and Lyapunov equations, In our examples]) was a scalar multiple of the identity.
this research is primarily oriented to the treatment of largednitially we took the simplest initial guess for the Lagrange
dimensional problems. In our case, we need to solve mangnultipliers: the value from the previous step. Even with such
small-dimensional decoupled problems. For such smalla simple minded guess, variafiti) of the Newton method
dimensional problems, the straightforward methods are protperformed better than the standard Newton. For the soft-
ably optimal. The simplest approach is to write EQ5) as a  sphere dipole system we consider in Sec. V, this is faster
six-dimensional vector equation, requiring the factorizationthan standard Newton by 60% fdart = 0.005. One can im-
of a 6 X 6 matrix at each Newton iteration step. prove the speed by improving the initial guess, for example,

There are several possible ways to reduce the complexitpy keeping the previous three Lagrange multipliers and ex-
of the Newton step, all obtained by different simplifications trapolating from these points. For large time steps this might
of the Lyapunov equatiofA5): be beneficial, although it did not have much of an effect in
our simulations. Also note that, as the number of particles is
increased, the relative time spent in solvinggets smaller
because the total time consumed goes linearly with number
of particles—compared to the time required to evaluate
forces and torques, which increases superlinearly with par-
ticle number(in general quadratically if no cutoffs or special
force approximations are used
Wmﬁ(m):b, Variant (i) of the modified Newton iteration was not

- _ ~_ competitive with eithe(iii ) or the standard Newton. We did
whereA™ e R®is a vector composed of the entries in not implementii).

the upper triangular part &, b is the corresponding

part of the right hand side of E¢A5), andW,, is a

6X6 matrix determined from the components Kf

Instead of invertinqi.e., factoring W, at each itera- APPENDIX B: RSHAKE FOR LINEAR AND PLANAR

tion, compute and factdoW once, at the beginning of MOLECULES

the time step, and use these factors to solve the prob-

lem at each step of the iteration. This method is also  For a linear molecule, assumed to be aligned in the ref-

only linearly convergent, with rate = O(At), butwe  erencex direction, only thel;; element of thel matrix is

expect this to be faster than variant nonzero. ThereforeJ is not invertible, preventing the
(i) Incasel = B1, with scalarB, observe that the matrix straightforward implementation of Eg25)—(27), and modi-

B is also nearly a scalar multiple of the identity and fications must be made. As before, the Lagrangian for a

thatK ,, and A(™ will commute to second order, single rigid body is

(i) Observe thaK is an O(At) perturbation ofJ, and
replaceK by J in Eq. (A5). This results in a modified
Newton iteration which is linearly, not quadratically,
convergent, with rate of convergenege= O(At).

(i)  Write Eq. (A5) for the components oA(™ in stan-
dard linear algebraic form as a system,
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TABLE Il. Dimensions of parameters for different molecular geometries.

Mo 1 1,57 :
L= Temlem™T 5 T IO = D(D,F o)

2 Molecule < IT J N
+ TN 0—-1)]. (B1) 3D 3% 3 3% 3 3% 3 3% 3
. . . Planar 3X 2 3 X2 2X 2 2x2
In the linear molecule case, the trace operation in the rota- |jnear 3x 1 3% 1 1% 1 1x1

tional kinetic energy ternfsecond terminvolves onlyZ/,4,
wherea = 1,2,3. Also, the potential energy depends only on
<.,1, because the position of any atom in the Iaboratory
frame will be the rotation of a reference coordinate that lie
on thex axis of the body frame; that is, the position of itie
atom is given by

together withr.,,. In this case the evolution of/,; is
S1rrelevant—only two noncolinear vectors are necessary to
describe a planar molecule. In this representation these two
vectors are the first and second columns of the rotation ma-
rl ()= (DR, (B2) trix. The rotational equations of motion for a planar molecule

. are then
As a result, the potential energy depends onlyZopn and

the center-of-mass coordinatg,, . The behavior of,; for T, // iJdii s (B11)
B = 2,3 is irrelevant to the dynamics of the system. In other
words, a description of the orientation of a linear molecule
requires only the specification of a single vector, which in
this case is the first column of the rotation matrix. Thus, the 9()= 0'”‘ aj = % =0, (B13)
only relevant constraint is that this vector has unit magnitudevhere« = 1,2,3 andi, j = 1,2 and repeated indices are
Oo1Ou1—1=0 (B3) summed over. The RSHAKE algorithm for a planar mol-
Tatve ' ecule reduces to
In summary, the Lagrangian and the corresponding rotational

—d, ®+204\ji, (B12)

n+ 1/2_ n 1/2 n
equations of motion for a linear molecule are o =g +At[2</a1)‘u ’99&@]’ (B14)
oM Ot = O A AT YA (B15)
L= 2 Fem: femt [Qal\]ll//al] D(Dy1:lem)
g h=0. (B16)
,\»T . .
tMi(C10Ca1— 1), (B4) In summary, whether the molecule is linear, planar, or
and three dimensional, the equations of motion and the corre-
sponding leapfrog algorithm are described by E85)—(27)
M1 =Ca1du1, (B5  and Egs.(29) and (30) with the understanding that the di-
fT,,= ~0p 420, (B6) mensions of the variables are given as in Table II.
g(@ _ //;:Il-awﬂal_ 1=0 (B7) lTéSSOIdStein’ Classical Mechanics(Addison-Wesley, Reading, MA,
; : 2D. J. Evans, Mol. Phys34, 317 (1977.
with the RSHAKE algorithm becomes 3M. A. Allen and D. J. TildesleyComputer Simulation of Liquid€xford
M1 2= TG, Y54 A2 M= 0 @], 88 3 Ci&ncgér?zxgr‘h;gfgd M. P. Calvbiumeri itoni
@ .M. - . P. lumerical Hamiltonian Problems
1 12 (Chapman and Hall, New York, 1995
n+ //al""AtHn+ 1311, (B9) 5V. I. Arnold, Mathematical Methods of Classical Mechani&pringer-
S Verlag, New York, 1978
g(Z" ) =0. (B10) 6J. Frank, W. Huang, and B. Leimkuhler, J. Comput. Pliyspress.

. . . . . 7J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. PBys.
In this case the constraint E¢B10) is simply a quadratic 5, (1979,

equation for\7; which can be solved exactly. The above ®H. c. Andersen, J. Comput. Phys2, 24 (1983.

algorithm for a linear molecule has appeared in the zB- Leimkuhler and R. D. Skeel, J. Comput. Ph§42 117(1994.

literaturé® and is referred to as the LEN method. Fincham,,R- - McLachlan and C. Scovel, J. Nonlinear S&i.233(1995.

S. Reich, Physica 06, 375—-383(1994.
showed that LEN is remarkably stable and superior to hiSzp Eincham, Mol. Simuls, 165 (1992.
implicit, explicit, and ORT methods. 13B, Leimkuhler and S. Reich, Math. Com@3, 589 (1994).
For a planar molecule, assumed to lie entirely inxhe 1:3- JA-h?ﬁCEmang gn%J-dH- '\éaddOCkspth' Ngnlinezrasggzlléég%-

; : . richs and S. Brode, Comput. Phys. Commda, .

plane of the body frame, thEmatrix will hav_e.]11 an(_szz a5 16p G Kusalik, J. Chem. Phy83, 3520(1990.

the only nonzero elements. In analogy with the linear caseyp wej and G. N. Patey, Phys. Rev. 46, 2043(1992.

the potential energy will only depend upen,, and Z,, 18D, Fincham, Mol. Simull1, 79 (1993.
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