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A symplectic method for rigid-body molecular simulation
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Rigid-body molecular dynamics simulations typically are performed in a quaternion representation.
The nonseparable form of the Hamiltonian in quaternions prevents the use of a standard leapfrog
~Verlet! integrator, so nonsymplectic Runge–Kutta, multistep, or extrapolation methods are
generally used. This is unfortunate since symplectic methods like Verlet exhibit superior energy
conservation in long-time integrations. In this article, we describe an alternative method, which we
call RSHAKE ~for rotation-SHAKE!, in which the entire rotation matrix is evolved~using the
scheme of McLachlan and Scovel@J. Nonlin. Sci.16 233 ~1995!#! in tandem with the particle
positions. We employ a fast approximate Newton solver to preserve the orthogonality of the rotation
matrix. We test our method on a system of soft-sphere dipoles and compare with quaternion
evolution using a 4th-order predictor–corrector integrator. Although the short-time error of the
quaternion algorithm is smaller for fixed time step than that for RSHAKE, the quaternion scheme
exhibits an energy drift which is not observed in simulations with RSHAKE, hence a fixed energy
tolerance can be achieved by using a larger time step. The superiority of RSHAKE increases with
system size. ©1997 American Institute of Physics.@S0021-9606~97!50931-7#
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I. INTRODUCTION

An important problem in molecular simulation is the d
velopment of stable and efficient algorithms for integrati
the equations of motion of orientational degrees of freedo
The straightforward parameterization for such degrees
freedom, Euler angles,1 is at a severe disadvantage for n
merical work because of the singularities inherent in the
scription. To overcome this difficulty, a parameterizati
based on quaternions was proposed by Evans2 and has be-
come standard.3 A significant drawback in this approac
arises from the fact that the rigid-body Hamiltonian is no
separable in the quaternion representation, therefore prev
ing the use of the popular leapfrog~Verlet! algorithm for
integrating the rotational equations of motion.@In this article,
we follow the convention of the recent literature on symple
tic integration4 and say that a Hamiltonian isseparableif it
can be written in the formH 5 T(p) 1 V(q).# Usually, then,
higher-order methods such as Gear predictor–corre
methods are utilized. The superiority of the Verlet sche
arises from the fact that it is, like the true Hamiltonian d
namics,symplectic; that is, it preserves the wedge produ
dr∧dp ~p is the momentum conjugate tor !.4,5 A more fa-
miliar, but weaker property of symplectic maps, is that t
flow preserves volumes in phase space. Such symplecti
tegration algorithms have been shown to possess exce
long-term energy stability, often far superior to nonsymple
tic methods~even those with higher-order local error!. For a

a!Electronic mail: ayla@stout.chem.ukans.edu
b!Electronic mail: laird@pilsner.chem.ukans.edu
c!Electronic mail: leimkuhl@math.ukans.edu
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recent example showing the improved long-term stability
integration methods incorporating geometric structure,
Ref. 6.

For systems of rigid molecules in which the potential
easily written in terms of intermolecular interactions betwe
atomic sites on the molecules, it is possible to circumvent
parameterization of orientational degrees of freedom by c
sidering the fundamental variables to be the individual C
tesian coordinates of the atomic sites. The dynamics is
termined by integrating the equations of motion for the
sites, subject to the constraint that the molecule remains r
~intramolecular bond distances and angles are fixed!. The
constraints can be implemented using appropriate Lagra
multipliers. A generalization of the Verlet integratio
scheme~SHAKE algorithm7! is then used to integrate th
constrained equations of motion. SHAKE is algebraica
equivalent to the RATTLE discretization of Anderson,8 and
the latter scheme is formally symplectic along the manifo
of constraints.9 This fact helps to explain the excellent long
time stability of SHAKE. The use of SHAKE on a con
strained particle description becomes inconvenient for g
eral rigid-body integration for two reasons. First, as t
number of atoms in each rigid molecule increases, the n
ber of constraints increases dramatically, which decrease
efficiency of the computation. Second, additional compu
tional complexity is introduced in the force computations f
intermolecular potentials that are not easily decomposa
into direct site–site interactions such as potentials expres
as multipole expansions.

In this paper, we develop an algorithm in which the r
tation matrix is not parameterized, but is evolved direct
The structure of the equations of motion is such tha
SHAKE/RATTLE scheme is possible, except that, instead
7/107(7)/2580/9/$10.00 © 1997 American Institute of Physics
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 This a
constraining the bond lengths~or angles!, we constrain the
rotation matrix to be orthogonal.10,11 We also describe effi-
cient iteration procedures for the nonlinear equations
must be solved at each time step. We will refer to this
proach as RSHAKE~for rotation SHAKE!. The advantages
of this model over SHAKE with bond constraints are that t
number of constraints does not increase with molecular s
and that it is well suited for non-site-to-site interactions su
as those generated from multipole expansions.

II. SIMULATION OF RIGID-BODY MOTION

We consider a collection ofN interacting rigid bodies.
The time evolution of a rigid body can be studied by cons
ering separately the translational motion of the center
mass and the rotations about the principal axes~which pass
through the center of mass!. The Lagrangian for such a sys
tem is

L5(
i

vi
TM ivi

2
1(

i

Vi
TI iVi

2
2F~$r i%,$u i%!, ~1!

wherer i , vi , Vi , andI i are the Cartesian position vector
the center of mass, its velocity, the~body-frame! angular
velocity, and the moment-of-inertia tensor~also in the body
frame! of particle i , respectively.F is the potential energy
function andu i is a representation of the orientation of pa
ticle i . The equations for center-of-mass motion are

ṙ i5vi ,

Mi v̇i52¹ r i
F.

Numerically, these can be integrated effectively by using
leapfrog~Verlet! method:

rn11,i5rn,i1Dtvn11/2,i , ~2!

Mivn11/2,i5Mivn21/2,i2Dt¹ r i
F~rn,i !. ~3!

~Here the notationrn,i refers to thei th position variable at
the nth time step.!

To determine the rotational motion, one needs to m
use of two different reference frames: a space-fixed fra
~also called the laboratory-fixed frame! and a body-fixed
frame. Forces and torques are more conveniently calcul
in the laboratory frame whereas the rotational equations
motion are simpler in the body frame. We will use the co
vention that small letters stand for the representations
variables in the fixed laboratory frame and their counterp
in the body frame will be denoted by capital letters. With th
convention we have
J. Chem. Phys., Vol. 107,
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

129.237.46.100 On: Tue,
at
-

e,
h

-
f

e

e
e

ed
of
-
of
ts

r5QR, ~4!

wherer andR are vectors in the laboratory and body frame
respectively, andQ is the 33 3 time-dependent rotation ma
trix subject to the orthogonality condition

QQT515QTQ . ~5!

A consequence of this condition is that only three indep
dent parameters are necessary to describe the nine elem
of the rotation matrix.

One standard parametrization ofQ is in terms of the
well-known Euler angles,1 but the singularities inherent in
this description make it unsuitable for numerical work. A
other is the quaternion parametrization of Hamilton, whe
the orthogonality condition is again explicitly implemente
utilizing four quaternions instead of the three Euler angl
The quaternion method and its implementation is outlined
the next section.

In Sec. IV we present a rotational evolution algorith
for molecular simulations~RSHAKE! that is both explicit
and algebraically equivalent to a symplectic method. T
method is compared in Sec. VI for a system of dipolar s
spheres~described in Sec. V! with a quaternion method us
ing a fourth-order~Gear! predictor corrector integrator.

III. QUATERNION METHOD

In the quaternion representation,2 the orientation of a
rigid body is parameterized in terms of a set of four sca
quantities, (q0 ,q1 ,q2 ,q3) [ q, with the condition

q0
21q1

21q2
21q3

251. ~6!

In terms of the standard Euler angles,1,3 u, f, and c, the
quaternion parameters are

q05cosS u

2D cosS f1c

2 D ,

q15sinS u

2D cosS f2c

2 D ,

q25sinS u

2D sinS f2c

2 D ,

q35cosS u

2D sinS f1c

2 D , ~7!

and the rotation matrix is given by
Q5S q0
21q1

22q2
22q3

2 2~q1q22q0q3! 2~q1q31q0q2!

2~q1q21q0q3! q0
22q1

21q2
22q3

2 2~q2q32q0q1!

2~q1q32q0q2! 2~q2q31q0q1! q0
22q1

22q2
21q3

2
D , ~8!
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 This a
where the normalization condition@Eq. ~6!# ensures the or-
thogonality ofQ . The introduction of these four quaternio
parameters~plus a constraint! in place of the three Eule
angles removes the singularities of the Euler an
representation.1

Then in the quaternion representation, the equation
motion for the angular velocities augmented with the tim
derivative of the constraint@Eq. ~6!# on the quaternions re
sults in

dq

dt
5AV, ~9!

where

A5
1

2 S q0 2q1 2q2 2q3

q1 q0 2q3 q2

q2 q3 q0 2q1

q3 2q2 q1 q0

D ~10!

and

V5S 0
Vx

Vy

Vz

D ~11!

is the angular velocity in body frame. The time derivative
the angular velocity is related to the torqueT and the prin-
cipal moments of inertia in the body frame by

V̇x5
T x

I xx
1S I yy2I zz

I xx
DVyVz ,

V̇y5
T y

I yy
1S I zz2I xx

I yy
DVzVx ,

V̇z5
T z

I zz
1S I xx2I yy

I zz
DVxVy . ~12!

The above seven coupled equations can be integr
numerically using a variety of methods. The fact that t
time derivatives of the quaternions depend not only on
angular velocityV, but also on the quaternions themselv
throughA, means that the standard leapfrog~Verlet! algo-
rithm is not applicable. For this reason, higher-order n
symplectic algorithms such as Bulirsch–Stoer extrapolat
standard Runge–Kutta methods, or the Gear predic
corrector method~see Appendix E of Ref. 3! are typically
employed.

Recently Fincham12 has devised an implicit leapfrog
‘‘like’’ integration algorithm for quaternions. His method i
based on Eq.~9! and the equation of motion for the angul
momentum

dl

dt
5t, ~13!

where l is the three-dimensional angular momentum vec
in the laboratory frame andt is the torque in the same coo
dinate system. The implicit algorithm of Fincham then pr
ceeds as follows

ln11/25 ln21/21Dttn , ~14!
J. Chem. Phys., Vol. 107,
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qn115qn1
Dt

2
~AnVn1An11Vn11!. ~15!

The last equation is an implicit one defined through the a
iliary parameters ln5 ln21/21Dttn and ln115 ln1Dttn ,
which are not stored, but used to calculate the angular
locities in the body frame

Vn5S 0
I 21Qn

Tln
D . ~16!

In our implementation of this method, discussed in Sec.
this method of Fincham, while comparable in per-step e
ciency to the 4th-order predictor-corrector algorithm f
quaternions, exhibited much worse stability than the alter
tives considered.

IV. THE RSHAKE METHOD

In RSHAKE, the rotation matrixQ is evolved directly,
as opposed to evolving a set of parameters~Euler angles or
quaternions! used to representQ . In doing so, we use a
scheme similar to that of McLachlan and Scovel10 ~see also
Reich11!, in which one defines a momentum variable cano
cally conjugate toQ—the resulting Hamilton’s equations o
motion subject to the orthogonality constraintQTQ 5 1 are
then of the proper form for the implementation of efficie
symplectic integrators such as SHAKE/RATTLE.

A basic property of Hamiltonian systems is that the flo
~time evolution of coordinates and momenta! is symplectic,
which for mechanical systems with one degree of freedo
such as a simple harmonic oscillator, means that the are
two-dimensional phase space is invariant during time evo
tion. ~For systems with more than one degree of freedom,
conserved quantity is the sum of the projected areas, o
each (pi ,qi) plane, of any arbitrary oriented two
dimensional surface in phase space.! In general, symplectic-
ness implies volume preservation in phase space~the Liou-
ville theorem!, but it is a stronger condition. It has bee
found to be very desirable to maintain the symplectic inva
ance during numerical integration. For an overview, t
reader is referred to Ref. 7.

The concept of a symplectic numerical method c
be extended to constrained dynamics9,13 compactly described
by H5T(p)1V(q)1g(q)•l, g(q)50. The SHAKE
discretization7 generalizes the leapfrog method to co
strained systems, and the symplecticness of the leap
method carries over to SHAKE. A rigorous treatment of th
fact and generalization of this argument to constrained m
chanical systems can be found in Ref. 9, for both SHAK
and the closely related RATTLE method.8

Although it is possible to formulate the quaternions a
Hamiltonian system,14 the equations then are in nonsepara
form, and the available symplectic methods for such pr
lems are implicit, meaning that the symplectic structure
maintained only if a certain nonlinear system of equatio
involving all the force contributions is solved exactly at ea
time step. This is generally expensive. Instead, we make
of an alternative formulation, writing the equations of motio
No. 7, 15 August 1997
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 This a
in the form of a separable constrained Hamiltonian sys
for the rotation matrixQ . This approach also requires th
solution of a system of nonlinear equations at each time s
but, critically, only one evaluation of the interbody forc
will be needed at each step.

The rotational kinetic energy must be expressed in te
of the time derivative ofQ . This is done by considering th
molecule to be made up of discrete atoms of massmj cen-
tered at positionRj in the body-fixed frame.~The total mass
of the molecule is thenM 5 ( jmj .! The rotational kinetic
energy of the molecule,K rot , is then given by

K rot5
1
2 (

i
mivi•vi5

1
2 (

i
mi Tr@Q̇RiRiQ̇

T#, ~17!

sincevi 5 Q̇Ri . Defining a body-frame tensor

J[(
i

miRiRi , ~18!

gives

K rot5
1
2 Tr@Q̇JQ̇T#. ~19!

For a continuous mass distribution described by a mass
sity r(R), we have

J[E dR r~R!RR. ~20!

Note thatJ differs slightly from the moment-of-inertia tenso
I , so that if, as usual, the body frame is chosen to be s
that J ~and thereforeI ! is diagonal, we have

I aa5Jbb1Jgg , ~21!

where~a,b,g! is a cyclic permutation of~1,2,3!.
In terms of Q , the Lagrangian for asingle rigid body

with center-of-mass position vectorr cm is then

L5
M

2
ṙ c.m.• ṙ c.m.1

1

2
Tr@Q̇JQ̇T#2F~Q ,r c.m.!

1Tr@l~QTQ21!#. ~22!

The first and the third terms are the usual translational
netic energy and the total potential energy. The last te
involving the Lagrange multiplier matrixl, has been added
to ensure that the equations of motion are such that the r
tion matrix remains orthogonal.l is a symmetric matrix
since it enforces a constraint on a matrix which is symmet

To construct the rotational equations of motion, we d
fine the momentumP conjugate toQ in the usual way

P[
]L

]Q̇
5Q̇J. ~23!

~Like Q , P is a 3 3 3 matrix.! The rotational kinetic energy
becomes

K rot5
1
2 Tr@PJ21PT#. ~24!

Hamilton’s equations for the rotational motion are the

Q̇5PJ21, ~25!
J. Chem. Phys., Vol. 107,
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Ṗ52]QF12Ql, ~26!

g~Q !5QTQ2150. ~27!

The structure of these equations is such that a SHAK
RATTLE integration algorithm is applicable:

Pn11/25Pn21/21Dt@2Qnln2]Qn
F#, ~28!

Qn115Qn1DtPn11/2J
21, ~29!

g~Qn11!50. ~30!

Equations ~28!–~30! define RSHAKE ~for rotational
SHAKE!. We now have 23 9 5 18 parameters to evolve
instead of the 7 for quaternions, plus the added work to so
for the 6 independent elements ofl. A discussion of a vari-
ety of methods for solving the nonlinear constraint equatio
is included in Appendix A. If the constraint is iterated
convergence, the local error occurring after one step with
RSHAKE integrator isO((Dt)3). ~Note that, for planar and
linear molecules the matrixJ is not invertible. For these
cases, minor modifications in the equations of motion a
the RSHAKE algorithm are required. These are discusse
Appendix B.!

It should be noted that a method for propagating
rotation matrix directly was presented by Ahlrichs a
Brode15—the relation to the present work is not immedia
since the notations differ substantially. The method of A
richs and Brode does not, as in RSHAKE, solve the c
straint equation to within a small multiple of the compute
unit roundoff error, but instead writes the rotation matrix
an exponential of some antisymmetric matrixA and, using
information aboutA from the last step, determines the ne
value ofA to third order inDt by expanding the equations o
motion. The newA is then exponentiated to give the ne
rotation matrix—which is guaranteed to be orthogonal due
the antisymmetry property ofA. From the point of view of
the present paper, the most important drawback of their p
cedure is that it will not be symplectic, since the Lagran
multiplier matrix is only being solved to third order inDt.

V. MODEL AND IMPLEMENTATION

We have applied the algorithms outlined in the previo
sections to a system ofN dipolar soft spheres~DSS!. This
system has been the subject of earlier simulations using
quaternion method.16,17 The DSS interact with the two-bod
potential of the form

U5US1UD , ~31!

where

US54eS s

r i j
D 12

~32!

and

UD5S 1

r i j
3 D ~mi•mj23~mi• r̂ i j !~mj• r̂ i j !!, ~33!
No. 7, 15 August 1997
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wheree ands are energy and length scales,m are the dipole
moments of particles, andr i j is the separation of particlesi
and j . For a given particlei the dipole moment can be writ
ten as

mi~ t !5Q i~ t !mref , ~34!

where we have taken all the reference dipoles parallel tẑ.
Both potentials generate a force on the centers of mass, w
only the dipolar interaction results in a torque. For the p
poses of the present simulations we have truncated the a
potentials at a distancer c 5 2.5s. A shifting function was
then added to ensure that both the potentials and the fo
approach zero continuously asr c is approached. For the
short ranged part of the potential (Us) we have added a
linear term of the form

US⇒US1Ari j 1B. ~35!

For the dipole–dipole part of the potential we shift only t
radial part of the potential, as follows

1

r i j
3 ⇒ 1

r i j
3 1ari j

4 1b. ~36!

The constantsA, B, a, andb are determined from the con
tinuity condition.

All simulations were carried at a density ofrs3 5 0.5
with a dipolar strengthm* 2 5 m2/(es3) 5 2. Initially, all the
particles were placed on an fcc lattice. The initial dipo
orientations randomly distributed on the unit sphere.
implement the quaternion method, the rotational velocit
and their time derivatives, as well as the time derivatives
the quaternions, were taken to be zero initially. In RSHAK
we took P21/2 5 0 for all the particles. Cubic periodic
boundary conditions were used. All particles were assum
to be spherical using a diagonal body-frame moment
inertia tensor withI xx 5 I yy 5 I zz 5 0.025Ms2, whereM is
the mass of each particle. For spherical particles, theJ ma-
trix @Eq. ~20!# reduces to1

2I .

VI. RESULTS AND DISCUSSION

To compare RSHAKE with the standard quaterni
method~using a 4th-order Gear predictor/corrector integ
tor!, we have performed simulations on the DSS syst
using both methods for a variety of system siz
~N5108,256,500,864!, and time steps ranging from 0.001
0.010t0 wheret0 5 Ams2/e. ~For SPC water, the time scal
t0 will be around 2 ps.! All reported results are for a fixed
total time oft* 5 t/t0 5 252. All quoted CPU times are for a
IBM RS6000 workstation~Model 43P!.

In our analysis, we define two measures of energy er
global energy drift,eg , and local energy fluctuations,e l .
Both are determined from a plot of the instantaneous t
energy ~per particle! as a function of time over the entir
length of the simulation. Global energy drift is defined as
slope of this curve~determined by a least-squares fit! multi-
plied by the duration of the simulation. Local fluctuatio
error is defined as the standard deviation energy about
above linear fit. In Fig. 1 we show energy-versus-time pl
J. Chem. Phys., Vol. 107,
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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for a variety of time steps~Dt* 50.002,0.004,0.006,0.008
0.010! for a DSS system of 500 particles. Results for bo
quaternions and RSHAKE are shown.~The plots for the dif-
ferent Dt* values have been shifted for clarity.! From this
figure it is clear that global energy drift for the quaternio
method increases rapidly with time step and always do
nates the local energy fluctuation for the method. In contr
the global error for RSHAKE is negligible—being alway
smaller than the local fluctuations for the method. The lo
fluctuations in RSHAKE are always larger than those for
quaternion method, due largely to the use of a higher-or
~Gear! integrator.

In Table I is shown the derived global energy drift an
local energy fluctuations for both methods for two systems
one small (N 5 256) and one large (N 5 864)—for a variety
of time steps. The CPU time~in seconds! for each run is also
reported. Although, for a given time step, the quatern
method is always faster than RSHAKE, the global ene
drift of the nonsymplectic quaternion integrator is so lar
that, for fixed energy error tolerance and simulation leng
RSHAKE allows for a much greater time step to be used.
illustrate this, we show in Fig. 2 a log–log plot ofe l and
eg for both RSHAKE and our implementation of quate
nions. This shows that, for example, for a fixed total er
tolerance of 1 part in 1024, in our runs a time step of jus
above 0.002t0 would be required for quaternions, where
0.007t0 would be sufficient for RSHAKE—for larger toler
ances the difference is even greater! The slopes of the cu
in Fig. 2 give the order of the error measurement for ea
method. The slopes for the local fluctuations of each met
are equal to about 2, indicating anO((Dt)2) method—this
makes sense despite the fact that the integrator used fo

FIG. 1. Total energy as a function of time for a 500 particle DSS syst
using both RSHAKE~dashed-horizontal lines! and standard quaternion
~solid-sloped lines!. ~The results for a variety of time steps have been shif
relative to each other along the energy axis for clarity.!
No. 7, 15 August 1997
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quaternions is fourth order, since the integrator for the tra
lational degrees of freedom is the same in both methods
is second order in the time step. The slopes of the glo
energy-drift curves for RSHAKE and quaternions are ab
2 and 3, respectively—the origin of this difference is uncle
To view the same data in a slightly different way for the 5
particle simulations, we plot in Fig. 3 the dominant error f
each method~global for quaternions and local for RSHAKE!
as a function of CPU time~in seconds! for a fixed length run
of 252t0—the different points correspond to different tim

TABLE I. Comparison of RSHAKE with quaternion method.

N Dt* e l* eq* CPU ~s!

RSHAKE
256 0.002 1.131025 1.231026 5022

0.004 4.331025 4.731026 2853
0.006 1.031024 1.531025 2054
0.008 1.831024 4.831025 1632
0.010 2.731024 3.031025 1381

864 0.002 5.831026 6.431027 21 391
0.004 2.331025 6.631026 12 167
0.006 5.231025 8.531026 9421
0.008 9.531025 1.031025 8069
0.010 1.531024 1.631025 7619

Quaternion
256 0.002 7.431026 6.031025 3306

0.004 3.031025 5.931024 1762
0.006 6.931025 2.431023 1246
0.008 1.231024 6.431023 992

864 0.002 4.131026 6.131025 15 643
0.004 1.531025 5.831024 9160
0.006 3.531025 2.431023 7026
0.008 6.531025 6.431023 5815

FIG. 2. Global~diamonds! and local~circles! energy errors as functions o
time step,Dt, ~as a log–log plot! for a 500 particle DSS system using bo
RSHAKE ~dotted lines! and the 4th-order~Gear! quaternion integrator
~dashed lines!.
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steps. Again, it can be clearly seen that, for fixed ene
tolerance, RSHAKE is superior to the standard implemen
tion of quaternions.

To examine the size dependence of our results, we s
in Fig. 4 a plot of CPU time versus particle numberN for our
two methods. The time steps chosen~0.005 and 0.002t0 for
RSHAKE and quaternions, respectively! give comparable to-
tal energy errors for our 252t0 length runs of the 500 particle

FIG. 3. Dominant energy error as a function of CPU time~in seconds! for a
500 particle DSS system using RSHAKE~circles! and the quaternion inte-
grator ~diamonds!.

FIG. 4. Total CPU~crosses! as a function of the system sizeN for RSHAKE
~dotted line,Dt 5 0.005t0! and quaternions~dashed line,Dt 5 0.002t0!. Also
shown is the CPU time for the force evaluations in both methods~triangles!
as well as the CPU time required to solve for the Lagrange multiplier ma
in RSHAKE ~circles!.
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system ~see Fig. 2!. In addition to total CPU time, the
amount of time spent in force~and torque! evaluations is
plotted for both methods, along with the amount of tim
required in RSHAKE to solve for the Lagrange multipli
matrix. For allN, the RSHAKE method remains the fast
algorithm. Also note that, since the Lagrange multiplier d
termination step scales only linearly withN—as opposed to
theN2 scaling of the force evaluations, this step will becom
much less important for large system sizes, further increa
the efficiency of RSHAKE. It should also be noted that t
local energy fluctuations in the energy per particle will sc
as N21/2, thereby decreasing with system size, whereas
global energy drift appears to be relatively size independ
Therefore the total error of RSHAKE, being dominated
local fluctuations, will decrease as larger systems are con
ered, but that for quaternions will remain nearly consta
This is illustrated for our system in Fig. 5, which shows t
dominant error for RSHAKE (Dt* 5 0.006) and quaternion
(Dt* 5 0.003) over our 252t0 runs.

We have also studied our system using the impl
method of Fincham for integrating the quaternion equati
of motion ~Sec. III!. Our results show that this method has
significantly larger energy drift for all studied time steps th
when the predictor-corrector is used. For example, for a
particle system with time stepDt* 5 0.002, the global energy
error in Fincham’s method is 1.13 1023 in reduced units,
compared to 6.33 1025 for predictor-corrector. In a recen
paper,18 Fincham compared results for a linear molecule
ing his implicit method and several other methods, includ
his LEN algorithm, which is shown in Appendix B to b
equivalent to RSHAKE applied to a linear molecule. Fi
cham concluded that LEN~RSHAKE! was superior to his
implicit quaternion integrator. Thus, concluding that Fi
cham’s implicit method does not compare well, we have p

FIG. 5. Dominant energy error as a function ofN for RSHAKE ~circles,
Dt 5 0.006t0 , local energy error! and the quaternion integrator~diamonds,
Dt 5 0.003t0 , global energy error!.
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formed our detailed comparisons only between quaterni
and RSHAKE.

VII. SUMMARY

We have developed a new algorithm, RSHAKE, for t
numerical integration of the equations of motion for the o
entational degrees of freedom of rigid molecules. Unli
other standard methods such as quaternions, in which
rotation matrix is parameterized, the entire rotation matrix
treated in RSHAKE as a dynamical variable with corr
sponding conjugate momentum. The resulting equations
motion for the rotation matrix must then be solved subjec
the constraint that the matrix remain orthogonal. In analo
with the standard SHAKE algorithm for molecules wi
bond constraints, RSHAKE uses a Verlet~leapfrog! integra-
tion scheme while simultaneously solving the constra
equations exactly. Like SHAKE and true Hamiltonian d
namics, RSHAKE can be shown to be fully symplectic—
property that gives the method superior stability with resp
to energy conservation. For a system of soft-sphere dip
we have demonstrated that RSHAKE is superior
quaternion-based integration schemes using both a 4th-o
~Gear! predictor-corrector method and an implicit leapfro
like algorithm due to Fincham.12
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APPENDIX A: SOLUTION OF THE NONLINEAR
EQUATIONS

We can simplify Eqs.~28!–~29! to

Qn115Q̂n1112~Dt !2QnlnJ21, ~A1!

whereQ̂n11 represents the unconstrained step inQ :

Q̂n115Qn1DtPn21/2J
212~Dt !2]Qn

FJ21. ~A2!

Substituting Eq.~A1! into Eq.~30! and multiplying on either
side byJ results in a quadratic~matrix Riccati! equation for
the six independent elements of the~symmetric! l matrix:

F~ln!5aln
21lnB1BTln1C50, ~A3!

where

a52~Dt !2, B5Qn
T

Q̂n11J,

C5
1

2~Dt !2 J~Q̂n11
T

Q̂n112I !J.

Observe that from Eq.~A2!, and the fact thatl is bounded as
Dt→0, the matrixC also remains bounded asDt→0.
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Following the standard approach, we localize the so
tion of this nonlinear equation by assuming that we ha
some initial guessl̄ ~such asln21! near to the solution
ln . We compute an improved approximation by linearizi
the equation

F~ l̄1D!50, ~A4!

and solving forD. This givesD as the solution of the matrix
Lyapunov equation

KTD1DK52F~ l̄!, K5al̄1B.

We then obtain a corrected value

l̂5l̄1D.

The iteration of this process is just the Newton meth
which, started from an initial guessl (0) computes a se
quence of approximationsl (1), l (2),... to ln recursively
from

l~m!5l~m21!1D~m!,

where

Km
T D~m!1D~m!Km52F~l~m21!!, Km5al~m21!1B.

~A5!

Although there is a substantial body of literature on t
efficient solution of matrix Riccati and Lyapunov equation
this research is primarily oriented to the treatment of lar
dimensional problems. In our case, we need to solve m
small-dimensional decoupled problems. For such sm
dimensional problems, the straightforward methods are p
ably optimal. The simplest approach is to write Eq.~A5! as a
six-dimensional vector equation, requiring the factorizat
of a 6 3 6 matrix at each Newton iteration step.

There are several possible ways to reduce the comple
of the Newton step, all obtained by different simplificatio
of the Lyapunov equation~A5!:

~i! Observe thatK is an O(Dt) perturbation ofJ, and
replaceK by J in Eq. ~A5!. This results in a modified
Newton iteration which is linearly, not quadraticall
convergent, with rate of convergencer 5 O(Dt).

~ii ! Write Eq. ~A5! for the components ofD (m) in stan-
dard linear algebraic form as a system,

WmD̂~m!5b,

whereD̂(m) P R6 is a vector composed of the entries
the upper triangular part ofD, b is the corresponding
part of the right hand side of Eq.~A5!, andWm is a
636 matrix determined from the components ofK.
Instead of inverting~i.e., factoring! Wm at each itera-
tion, compute and factorW once, at the beginning o
the time step, and use these factors to solve the p
lem at each step of the iteration. This method is a
only linearly convergent, with rater 5 O(Dt), but we
expect this to be faster than variant~i!.

~iii ! In caseJ 5 b1, with scalarb, observe that the matrix
B is also nearly a scalar multiple of the identity an
that Km andD (m) will commute to second order,
J. Chem. Phys., Vol. 107,
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D~m!Km5KmD~m!1O~Dt2!.

ReplacingD (m)Km by KmD (m) we obtain an equation

~Km
T1Km!D~m!52F~ln

~m21!!.

This equation generally does not have a solution w
symmetric D (m), but we enforce the symmetry di
rectly by solving for only the upper triangular part o
D (m) and then reflecting this about the diagonal
obtain the update. The latter operation can be view
as a projection from the class of 33 3 matrices onto
the symmetric matrices. The combination of these o
erations can be viewed as equivalent to anO(Dt2)
alteration of the matrixWm in the Newton iteration,
hence this scheme would be expected to yield an
gorithm that gainstwo orders of the step size at eac
iteration.

The modified iterations will typically require severa
more iterations per time step than the Newton iteration
achieve the same tolerance, although they have the ad
tage of reduced complexity. In our implementation the ite
tion is considered converged if the norm ofD is less than
10215 or Eq.~A4! is satisfied within 10220. We set the maxi-
mum number of iterations to 50, which was necessary for
largest time steps that we have studied.

In our examples,J was a scalar multiple of the identity
Initially we took the simplest initial guess for the Lagrang
multipliers: the value from the previous step. Even with su
a simple minded guess, variant~iii ! of the Newton method
performed better than the standard Newton. For the s
sphere dipole system we consider in Sec. V, this is fa
than standard Newton by 60% forDt 5 0.005. One can im-
prove the speed by improving the initial guess, for examp
by keeping the previous three Lagrange multipliers and
trapolating from these points. For large time steps this mi
be beneficial, although it did not have much of an effect
our simulations. Also note that, as the number of particle
increased, the relative time spent in solvingl gets smaller
because the total time consumed goes linearly with num
of particles—compared to the time required to evalu
forces and torques, which increases superlinearly with p
ticle number~in general quadratically if no cutoffs or speci
force approximations are used!.

Variant ~i! of the modified Newton iteration was no
competitive with either~iii ! or the standard Newton. We di
not implement~ii !.

APPENDIX B: RSHAKE FOR LINEAR AND PLANAR
MOLECULES

For a linear molecule, assumed to be aligned in the
erencex direction, only theJ11 element of theJ matrix is
nonzero. ThereforeJ is not invertible, preventing the
straightforward implementation of Eqs.~25!–~27!, and modi-
fications must be made. As before, the Lagrangian fo
single rigid body is
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L5
M

2
ṙ c.m.ṙ c.m.

T 1
1

2
Tr@Q̇JQ̇T#2F~Q ,r c.m.!

1Tr@l~QTQ21!#. ~B1!

In the linear molecule case, the trace operation in the r
tional kinetic energy term~second term! involves onlyQ̇a1 ,
wherea 5 1,2,3. Also, the potential energy depends only
Qa1 , because the position of any atom in the laborat
frame will be the rotation of a reference coordinate that l
on thex axis of the body frame; that is, the position of thei th
atom is given by

r a
i ~ t !5Qa1~ t !R1

i . ~B2!

As a result, the potential energy depends only onQa1 and
the center-of-mass coordinater c.m.. The behavior ofQab for
b 5 2,3 is irrelevant to the dynamics of the system. In oth
words, a description of the orientation of a linear molec
requires only the specification of a single vector, which
this case is the first column of the rotation matrix. Thus,
only relevant constraint is that this vector has unit magnitu

Qa1Qa12150. ~B3!

In summary, the Lagrangian and the corresponding rotatio
equations of motion for a linear molecule are

L5
M

2
ṙ c.m.• ṙ c.m.1

1

2
@Q̇a1J11Q̇a1#2F~Qa1 ,r c.m.!

1l11~Q1a
T

Qa121!, ~B4!

and

Pa15Q̇a1J11, ~B5!

Ṗa152]Qa1
F12Qa1l11, ~B6!

g~Q !5Q1a
T

Qa12150, ~B7!

with the RSHAKE algorithm becomes

Pa1
n11/25Pa1

n21/21Dt@2Qa1
n l11

n 2]Q
a1
n F#, ~B8!

Qa1
n115Qa1

n 1DtPa1
n11/2/J11, ~B9!

g~Qn11!50. ~B10!

In this case the constraint Eq.~B10! is simply a quadratic
equation forl11

n which can be solved exactly. The abov
algorithm for a linear molecule has appeared in
literature18 and is referred to as the LEN method. Fincha
showed that LEN is remarkably stable and superior to
implicit, explicit, and ORT methods.

For a planar molecule, assumed to lie entirely in thex–y
plane of the body frame, theJ matrix will haveJ11 andJ22 as
the only nonzero elements. In analogy with the linear ca
the potential energy will only depend uponQa1 and Qa2
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together with r c.m.. In this case the evolution ofQa3 is
irrelevant—only two noncolinear vectors are necessary
describe a planar molecule. In this representation these
vectors are the first and second columns of the rotation
trix. The rotational equations of motion for a planar molecu
are then

Pa i5Q̇a j Jj i , ~B11!

Ṗa i52]Qa i
F12Qa jl j i , ~B12!

g~Q !5Q ia
T

Qa j2d i j 50, ~B13!

wherea 5 1,2,3 andi , j 5 1,2 and repeated indices ar
summed over. The RSHAKE algorithm for a planar mo
ecule reduces to

Pa i
n11/25Pa i

n21/21Dt@2Qa j
n l j i

n 2]Q
a i
n F#, ~B14!

Qa i
n115Qa i

n 1DtPa j
n11/2~J21! j i , ~B15!

g~Qn11!50. ~B16!

In summary, whether the molecule is linear, planar,
three dimensional, the equations of motion and the co
sponding leapfrog algorithm are described by Eqs.~25!–~27!
and Eqs.~29! and ~30! with the understanding that the d
mensions of the variables are given as in Table II.
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TABLE II. Dimensions of parameters for different molecular geometrie

Molecule Q P J l

3D 3 3 3 3 3 3 3 3 3 3 3 3
Planar 33 2 3 3 2 2 3 2 2 3 2
Linear 3 3 1 3 3 1 1 3 1 1 3 1
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