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On the connection between Gaussian statistics and excited-state linear
response for time-dependent fluorescence
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Time-dependent fluorescence (TDF) of a chromophore in a polar or nonpolar solvent is frequently
simulated using linear-response approximations. It is shown that one such linear-response-type
approximation for the TDF Stokes shift derived by Carter and Hynes [J. Chem. Phys. 94, 5961
(1991)] that is based on excited-state dynamics gives the same result as that obtained by assuming
Gaussian statistics for the energy gap. The derivation provides insight into the much discussed
relationship between linear response and Gaussian statistics. In particular, subtle but important
differences between the two approximations are illuminated that suggest that the result is likely
more generally applicable than suggested by the usual linearization procedure. In addition, the
assumption of Gaussian statistics directly points to straightforward checks of the validity of the
approximation with essentially no additional computational effort. © 2007 American Institute of

Physics. [DOT: 10.1063/1.2747237]

A common experimental approach for probing solvation
dynamics relevant to charge-transfer processes is the mea-
surement of the time-dependent fluorescence Stokes shift.' ™
In these experiments a probe dye molecule—generally with a
charge-transfer electronic transition that is accompanied by a
significant change in dipole moment—is excited and the
fluorescence energy AE(r) is measured as a function of the
time after excitation. Typically, the results are plotted as the
normalized dynamic Stokes shift S(z),

AE(1) — AE()
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(1)
where AE() is the relaxed Stokes shift. The decay of S(z)
with time provides information about time scales for solvent
reorganization, time scales that are relevant, for example, to
electron and proton transfer reactions.

The normalized dynamic Stokes shift can be simulated
using nonequilibrium molecular dynamics. In this approach,
an equilibrium molecular-dynamics trajectory of the ground-
state dye molecule in solution is run to generate a represen-
tative set of initial conditions for excitation. Each of these
initial configurations of the solute and solvent nuclei is used
as the starting point of a nonequilibrium trajectory with the
dye electronic state changed to the excited one; this creates
an excited-state dye molecule in a nonequilibrium solvation
configuration. The fluorescence energy AE(?) is then fol-
lowed during the subsequent nonequilibrium trajectory and is
used to compute S(¢). Thus, this simulation is quite analo-
gous to the experiment.

Another approach to simulating the results of time-
dependent fluorescence measurements is to invoke the linear-
response approximation. In this case, the dynamic Stokes
shift can be approximated by results from equilibrium
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molecular-dynamics simulations. The general approach is to
write the Hamiltonian for the system as a zeroth-order
Hamiltonian and a “perturbation” that is turned on at time
t=0 (the moment of excitation),

H(t):Hg"_e(t)[He_Hg]» (2)

where 6(t) is the Heaviside step function and H, and H, are
the Hamiltonians for the ground- and excited-state dye mol-
ecule, respectively. The perturbation, however, is just the
fluorescence energy,

AE=H,-H,. 3)

It is sometimes convenient to write the perturbation instead
in terms of a variable Ae defined by

Ae=H,-H,—(AE),, 4)
where
fdr - e Pt
()e(0) = dle Py (5)

with I'=(p,q). However, either choice leads to fundamen-
tally the same results.

The key quantity in the time-dependent fluorescence is
the nonequilibrium energy gap,

deAE(t)e_ﬁHg

<AE>ne(t) = deE_BHg

(6)

_ JdT{e ™t AE(0) e PP
- JdTe PHe

(7)

Note that this requires initial conditions based on the ground-
state equilibrium distribution followed by dynamics on the
excited state. Two approaches to approximating this nonequi-
librium average are based on (1) describing the time depen-
dence in the excited state with ground-state dynamics cor-
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rected to first-order in the perturbation, and (2) describing
the ground-state distribution using the excited-state distribu-
tion corrected to first-order in the perturbation. The former,
which is the “traditional” linear-response approach,5 gives an
approximation to S(z) as®

(Ae(n)Ae(0))
(A(0)),

Note that in this linear-response approximation only correla-
tion functions obtained from equilibrium ground-state dy-
namics are required. It can be shown that if traditional linear
response holds, then this is equivalent to an analogous ex-
pression with correlation functions evaluated in the excited
state, i.e., Eq. (16) below.” However, it is widely appreciated
that excited- and ground-state dynamics can often differ
appreciz:lbly.g_13 Such cases are sometimes considered to rep-
resent a breakdown of the linear-response approximation,
though, for example, Tao and Stratt argue, but do not prove,
that a stronger condition is more appropriate—one based on
whether the energy gap exhibits Gaussian statistics, since
“linear-response predictions are obeyed exactly if the liquid
fluctuations obey Gaussian statistics.”'® Skaf and Ladanyi
found that the linear-response approximation can be unsatis-
factory even when the ground- and excited-state correlation
functions are the same.'* Since the derivation of the excited-
state correlation function from Eq. (8) relies on the linear-
response approximation, it is useful to consider a different
approach to the derivation based instead on the second ap-
proximation described above. This provides additional per-
spective on the relation between Gaussian statistics and lin-
ear response in the ground and excited states. Moreover, it
allows us to address approximations in more complex sys-
tems, e.g., nanoconfined solvents for which the solute dye
molecule can sit in two different physical locations with dif-
ferent solvation properties in the ground and excited elec-
tronic states.'" That approach is the focus of this letter.

Instead of approximating the excited-state time depen-
dence in Eq. (7), Carter and Hynes noted that the equation
can be rewritten using

S(t) = = C,(1). (8)

¢PHy = o~PHeoPAE (9)

to give

[dT AE(t)ePrEePHe
[dT ePrEe=PH.

(AE), (1) = (10)

Dividing the numerator and denominator by the excited-state
partition function gives

(AE(n)eP),

<AE>ne(t) = <€'BAE>e

(11)

However, if we define AE= (AE),, this can be rewritten as

(AE()ePF), e PSE (AE(1)ePPE),
<AE>ne(t) = <e’356AE>€ e_BeA_E = <eﬁﬁeAE>e ’

(12)

where SAE(f)=AE(t)-AE. Subtracting the equilibrium
(fully relaxed) fluorescence energy gives

J. Chem. Phys. 126, 211104 (2007)
(AE(1)ePPE), — AE(ePF),
(ePOAEY,

(BAE(r)ePE),
= W . (13)

<AE>ne(t) - <AE>ne(w) =

Following Carter and Hynes, the exponential can then be

linearized, using eP*F=1+B5AE, to obtain a “linear-

. . 15,16,18
response-type,” or Onsager regression hypothesis, ap-

proximation,

<AE>ne(t) - <AE>ne(°o)
. (SAE(1)), + B{SAE(r) SAE(0)),
B 1 + B(SAE),

; (14)

= B(SAE(t) SAE(0)),, (15)

noting that (SAE),=0. Thus, the resulting approximation to
the normalized dynamic Stokes shift is given by

_ (OAE()SAE(0)),

S0 = T (aE P,

= C.(1). (16)

This approximation to S(¢) has the advantage that the dynam-
ics determining the energy gap autocorrelation function takes
place on the excited state, just as in the nonequilibrium case.
As noted above, this expression can also be obtained from
Eq. (8) by assuming that traditional linear response holds—
i.e., the differences between the ground- and excited-state
correlation functions are of higher than linear order. This
derivation, however, does not require such an equivalence.

The success of Eq. (16) is interesting since, in general,
the truncation of the expansion exp{ BSAE} is not obviously
justified in that SAE can be (and often is) larger than kgT.
However, as we show below, the same result can be derived
(and better understood) based on the more general assump-
tion that the system exhibits Gaussian statistics."® To see this,
we begin with Eq. (13) and note that the numerator can be
written as

(BAE(e#™,= S - pUSAEWSAEOP,.  (17)
n=0 -

o0

1
=20 (2n)!

[

1 2n+1 2n+1
+ go e B (SAE(1) SAE(0)"*), .

B SAE(r) SAE(0)*"),

(18)

If SAE(r) is a Gaussian random variable with zero mean
((SAE(1)),=0 for all ) then all m-point correlation functions
(SAE(1))SAE(ty), ..., 5AE(t,,)), are equal to zero if m is odd
and, if m is even, to the sum of all possible factorizations of
the SAE in terms of two point correlation functions,19
(SAE(t;)0AE(t))),, a property often referred to as Wick’s
theorem.” Applying Wick’s theorem to the correlation func-
tions in Eq. (18) gives
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(SAE(t)SAE(0)*™, =0, (19)
and

2n+1)

(SAE() SAE(0)>"+hy, = o !(5AE(t)6AE(O))e<5AE2)Z.

(20)
Using these approximations gives Eq.(18) as

*® 2n 2\n
(BAE()e ), = ONE() AE), S, —-EATE)
n=0 -

21

= B(SAE(t) SAE(0)),eF B2 (22)

The denominator in Eq. (13) can be easily evaluated with the
assumption of Gaussian statistics for SAE. The average
(ePEy, is the characteristic function, evaluated at —if3, for
the probability distribution for SAE, which if SAE is as-
sumed to be a Gaussian random variable, is given by5

( eﬁ&AE>g - 652<(6AE)2)e n (23)

Then, combining the two results, we find that assuming
Gaussian statistics gives the approximation

(AE)ne(1) = (AE)pe() = B(SAE(1) SAE(0)),., (24)

and the resulting approximation to the normalized dynamics
Stokes shift is the same as given by Eq. (16). Thus, the
approximation of S(z) by C,(¢) is obtained by assuming that
SAE is a Gaussian random process. It is not necessary to
linearize ¢#?*F or assume BSAE<1, nor is it necessary to
use Eq. (8) and assume that the ground- and excited-state
Gaussian statistics are the same to obtain Eq. (16).

It is interesting to examine why the linearization of e
yields the same result as the more general assumption of
Gaussian statistics in the excited state. Note that while
higher-order correlation functions, (SAE(t) SAE(0)"), for
n=2, are neglected in the linearization, they are included in
the Gaussian statistics approximation but they provide no
new information, i.e., they are either zero or proportional to
(SAE(1r)SAE(0)),. This is analogous to the neglect of the
higher-order cumulants in the traditional linear-response
21ppr0ach.16’17 Importantly, this provides a straightforward
way to check the validity of the approximation by comparing
the higher-order correlation functions, (SAE(t) SAE(0)"), for
n>2, to their Wick’s theorem factorizations. While expres-
sions for the lowest-order neglected terms were obtained by
Bernard and Callen'® for the traditional linear-response ap-
proach, their use as tests of the approximation has been ex-
tremely rare (see Ref. 17). Yet, they should represent a pow-
erful diagnostic tool for both ground- and excited-state
approaches.

Further, the present result shows that the excited-state
correlation functions [Egs. (16) and (24)] can be valid even
when BSAE>1, as is often the case; this indicates that, as
long as the statistics are Gaussian, these approximations can
be accurate even if configurations far from equilibrium are
sampled. Related to this, we note that the linearization of

BOAE
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ePE implies a local approximation, i.e., that SAE is small,

whereas the approximation used above to obtain Eq. (24)
involves only the assumption that SAE exhibits globally av-
eraged Gaussian statistics. Geissler and Chandler found a
breakdown of the linear-response approximation in a system
for which C,(1)=C,(¢) and for which they observed Gaussian
statistics.”’ They attributed the inequivalence of S(z) and
C,(t)=C,() to the nonstationarity of the Gaussian statistics.
The connection between the present approach and nonsta-
tionary Gaussian statistics requires further study (note that,
in principle, Wick’s theorem requires only that the statistics
be Gaussian, not stationary).

Finally, the requirement of Gaussian statistics for SAE in
the excited state is presumably a weaker one than that re-
quired for the validity of the traditional linear-response ap-
proximation [Eq. (8)], which assumes that the excited-state
dynamics are not far removed from the ground-state
dynamics.&n’18 This implies that the approximation may
have a wider validity for complex systems—e.g., time-
dependent fluorescence in nanoconfined solvents where the
ground- and excited-state statistics can be dramatically dif-
ferent due to the dependence of the solute position on the
electronic state—than indicated by the traditional linear-
response approximation.

It is noteworthy that other quantities besides the time-
dependent Stokes shift can be obtained using the Gaussian
statistics approximation. Consider a variable A which, for
convenience, is assumed to have the property (A),=0. Then,
using the same approach as above, it is straightforward to
show that

(Ane(t) = BlA(1) SAE(0)),., (25)

assuming only Gaussian statistics. It is possible that such an
approximation may be reasonable even when A itself is not a
Gaussian random process but SAFE is. At present it is unclear
if this is the case, and we are currently investigating this
issue.
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