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High-order harmonic generation in atomic hydrogen at 248 nm:
Dipole-moment versus acceleration spectrum
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%'e present a study of the high-order harmonic-generation (HG) spectra of atomic hydrogen at 248 nm

based on the Fourier transform of the expectation values of the induced dipole moment and acceleration.
The calculations were performed by extending a fast-Fourier-transformation split-operator technique (in

spherical coordinates) to the solution of the time-dependent wave functions in intense laser fields. It is

seen that the acceleration form provides a more satisfactory and accurate framework for the study of the
photoemission HG spectrum at very intense fields, particularly when ionization becomes appreciable.

PACS number(s): 42.65.Ky, 32.80.Rrn, 32.80.Wr

Recently there is much interest, both theoretically and
experimentally, in the study of high-order harmonic-
generation (HG) phenomena of atoms in intense laser
fields [1]. Almost all the theoretical calculations of the
HG spectra so far were based on the Fourier transform of
dipole moment [1]. It has been pointed out recently,
however, that a more appropriate procedure for deter-
mining the HG spectra should be based on the Fourier
transform of the acceleration vector [2,3], particularly in
very intense laser fields. The one-dimensional model cal-
culation by Burnett et al. [2] shows that the HG spectra
based on the dipole moment can lead to spurious back-
ground appearing in the HG spectrum especially in the
region where ionization is appreciable. There is as yet,
however, no report on the acceleration power spectrum
of any realistic systems.

The purposes of this communication are twofold: (i)
We perform an ab initio study of the HG spectra of
three-dimensional hydrogen atoms based on both dipole-
moment and acceleration forms; and (ii) we examine the
feasibility of extending the fast-Fourier-transformation
split-operator spectral technique [4] in spherical coordi-
nates (which has been previously used for dc field prob-
lems) to time-dependent intense-field problems.

The Hamiltonian for a hydrogen atom driven by
linearly polarized fields can be written, in spherical coor-
dinates, as (A= 1 )

0= —(2 )t) /Br +L /2r I/r Fzf (t) sinco—t, —

where F is the electric-field amplitude and f (t) the pulse
shape of the laser field. The two-dimensional split-
operator technique in (r, e) coordinates will be extended
here for the time propagation of the wave function in the
Schrodinger equation. Thus

ttt(t +b t) =exp[ i b t —P, /4]exp[ i ht(E /4—r I /2r) ]—

X exp[ i b t r cos(—9)E ( t) ]

X exp[ id, t(f /4—r I/2r)]—
X exp[ i htp„ /4—)%'( t) +0( b t '), (2)

where P„=(A'/i)t)/t)r and E(t)=Ff(t) sincot. At each
time step, we expand the wave function in Legendre poly-
nomials,

L

P(r, ,x, t)= g gt(r, , t)Pt(x ), x, = cos8, ,
1=0

(3)

where the PI's are normalized Legendre polynomials.

gt(r, , t) can be determined accurately by the Gauss-
Legendre quadrature,

1+1
gl(r;, t) = g wkPk(xk )$(ri ~xk )t)

k=1
(4)

where xk's are the L + 1 zeros of the Legendre polynomi-
al PL+, (x) and wk's are the corresponding quadrature
weights. In performing the time propagation in Eq. (2),
the evolution operator is factored into several propaga-
tors which are either functions of the coordinate r or
momentum operators. Each propagator is evaluated in a
representation for which it is diagonal and fast Fourier
transformation is used to link efficiently back and forth
between the coordinate and momentum space representa-
tion.

In our calculations, 512 evenly distributed space grid
points in r, and up to 40 partial waves (and therefore up
to 40th-order Gauss-Legendre quadrature points) are
used. A filter function of the form f (r)
=

[ 1+exp[br —90] j
' is used to filter out the wave

packet reaching the outward boundary r,„. The use of
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h d [5]. This suggests that the dipole-moment and
results atacceleration forms provide equivalent HG resu

weaker fields when little ionization occurs.
Fi ure 4 shows the dipole-moment and acceleration

power spectra for a stronger field I =figure s

and at A, =248 nm. The acceleration photoemission
power spectrum (solid line) contains well-resolved high-
order HG peaks up to 37th order, a feature similar to

~6i. However,those observed in the rare-gas experiments ~ i.
the dipole power spectrum (dotted line) contains a spuri-
ous background and all higher-order HG peaks are com-
pletely masked. Floquet calculation at this intensity
shows large ionization width (I /2=1. 657X10 a.u. .

This is also revealed from the survival probability plot
(Fi . 3, solid line): large depletion of the ground-state
population occurs before 20 optical cycles. As pointed
out by Burnett et al. [2], the spurious background in the
dipole spectrum can be attributed to the improper use of
the dipole moment which is not vanishing at large times
when ionization occurs. In our calculation, however, we
have placed a filter function at r,„ to filter out the ion-

(dotted line) shown in Fig. 5 represents only the mean di-
pole moment obtained from the bounded portion of the
wave packets whose magnitude decreases with time rap-
idly due to ionization. (There is no apparent "drift" in
the mean dipole moments and acceleration shown in
Figs. 1 and 5, since the drift motion is mainly contained
in the ionized wave packets which have been filtered out.
This is consistent with the behavior of the mean dipo e-
moment and acceleration results obtained from t e L
non-Hermitian Floquet calculation [7].) Despite this, the
dipole spectrum is not able to reveal the higher-order HG
structure. Previous classical calculations [8] indicated
that HG can occur only when the electron is close to the
nucleus and any asymptotic value of the dipole moment
is not relevant. The acceleration form Eq. (6) yields the
correct result since it takes into account automatica y
and self-consistently the fact that the dominant contribu-
tion to HG arises from the portion of the wave function
where the electron experiences the largest force.
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