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Generalized Floquet formulation of time-dependent current-density-functional theory
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We present a generalized Floquet formulation of time-dependent current-density-functional theory for non-
perturbative treatment of multiphoton processes of many-electron systems in intense monochromatic electric
and magnetic fields. It is shown that the time-dependent Kohn-Sham-like equation can be transformed into an
equivalenttime-independenfEloquet Hamiltonian matrix eigenvalue problem. A procedure is outlined for the
determination of the dynamical properties in bound-bound multiphoton transitions. For the case of bound-free
transitions, such as the multiphoton ionization processes, we introduce the notion of complex density and
complex current and present a non-Hermitian Floquet formalism for the calculation of the complex quasien-
ergies of individual spin orbitals and total many-electron syst¢85050-294{08)04912-9

PACS numbgs): 32.80.Rm, 31.15.Ew, 31.108z, 71.15.Mb

I. INTRODUCTION the CDFT of Vignale and Raso[#8], where the action is
stationary with respect to variations in paramagnetic current

Density-functional theoryDFT) for stationary properties density as well as the density itself. The central result of the
of many-electron systems, based on the earlier fundamentaiodern TDDFT and TDCDFT is a set of time-dependent
works of Hohenberg and KoHhrl] and Kohn and Sharf2], Kohn-Sham(TDKS) equations which are structurally similar
is now a well-established and practical tool in variousto the time-dependent Hartree-Fo6RDHF) equations but
branches of chemistry and phys[&-7]. It is a formalism of  include in principle exactly all many-body effects through a
many-body theory in terms of the electron dengify). DFT  local time-dependent xc potential. To date, with the excep-
proves to be accurate and computationally much less expetiion of several of the most recent works on TDDFIL—23
sive than theab initio wave functional methods and this in intense laser fields, all the applications of TDDZR—26
accounts for its great success in the time-independerdnd TDCDFT[20] fall in the regime of linear or nonlinear
electron-structure calculations of the ground states of manyresponse irweakfields for which theperturbation theoryis
electron systems. applicable.

For problems where the magnetic properties are of inter- In this paper we present a Floguet formulation of TD-
est, the conventional DFT is not sufficient, and it is necesCDFT for nonperturbativetreatment of multiphoton pro-
sary to use the current-density-functional thed@DFT)  cesses in intense electric and magnetic fields. This is an ex-
[8,9]. In the CDFT of Vignale, Rasolt, and Geld§®,9], the  tension of our recent works on the Floquet formulation of
electron current density is included as an additioan| variabldDDFT in intense laser field&23]. The Floguet theory and
and the energy is minimized with respect to variations in thets various generalized formalisi27] have been previously
paramagnetic current as well as in the density. The CDFTeveloped and applied to the nonperturbative studies of a
has been recently implemented by Colwell and HaflJ)  number of atomic and molecular multiphoton and nonlinear
and applied to the calculation of magnetizabiliti{dd] and  optical processes in intense laser fields. However, previous
nuclear shielding tensorfl2]. However, the CDFT still Floquet applications are largely focused on the studies of
lacks reliable expressions for the exchange-correlati@h  one- or two-electron systems in intense one-color or multi-
energy functional in the presence of uniform magnetic fieldcolor laser fieldd27]. Ab initio wave function approaches
particularly for the case of strong magnetic fields. A newfor the time-dependent Schiimger equation beyond two-
approach for the construction of spin-density xc energy funcelectron systems are computationally formidable within the
tionals from CDFT[13] may be of interest here. current supercomputer technology. The motivation of this

To study the more interesting dynamical properties, oneand previoug23] works is to develop new Floguet formula-
needs a time-dependent DETDDFT) [14—17. Runge and tions in the context of the TDDFT and TDCDFT, allowing
Gross[17] have developed a time-dependent Kohn-Shanthe extension to the nonperturbative treatment of multipho-
theory by considering the action to be stationary with respecton dynamics and nonlinear optical processes nudny-
to the density. Several groups have also considered a timelectron systemsThe Floquet formulation of TDCDFT is
dependent current density function@ffDCDFT) recently  particularly relevant to processes where the magnetic field
[18—20. In particular, using a classical, nonrelativisitc treat- plays a significant role. Examples are multiphoton processes
ment of the electromagnetic fields, Colwell al. have re- in the presence of both laser and static magnetic fields, pro-
cently presented a TDCDHROJ, based on the extension of cesses involving open-shell atoms or molecules, and multi-

photon processes in the presencesaperintensdaser fields
(where both time-dependent electric and magnetic fields
*Permanent address: Institute of Physics, St. Petersburg Stamake important contributionsetc., to mention only a few.
University, 198904 St. Petersburg, Russia. Electronic addressn this paper we show that the time-dependent problems in
photon94@kuhub.cc.ukans.edu TDCDFT can be exactly transformed into equivaléinte-
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independenEloquet matrix eigenvalue problems. Procedures P(t)=exp —ist)P(1), (6)
are outlined for the determination of the dynamical proper-

ties in bound-bound multiphoton transitions. For the case ofvheree is the so-calledjuasienergyand ®(t) =®(t+T) is
bound-free processesuch as multiphoton ionizatignwe  a periodic function of time. Equatiofl) can be recast in the
introduce the notion ofomplex densitandcomplex current  quasienergy eigenvalue equati@v]:

and present anon-Hermitian Floquet formulation of

TDCDFT for the calculation of complex quasienergies. Pro- (I:I(t)—i i
cedures are outlined for the analytical continuation of the at

density and current density onto the complex energy plane. o ] )
which is thesteady-statédamiltonian eigenvalue problem in

the extendedHilbert space. For the solution of E{r), we

D) =HD(t)=eD(t), (7)

TIME-DEPENDENT CURRENT-DENSITY-FUNCTIONAL
THEORY FLD]=(P[H|D)), (8)

The wave functionV (t) of a multielectron system subject \ynhere the inner product in the extended Hilbert space is de-
to external time-dependent fields satisfies the followinggeq a5

equation(atomic units are used throughout the paper

17T
' (@l=) =1 atelz). ©
ISV H=AMOW). (1) 0

Variation of the functional8) under the normalization con-
~ . . I . dition

Here H(t) is the Pauli Hamiltonian taking into account the
external field coupling to the electron spins: ((®|D))=1 (10)

2 N N leads to Eq.(7) as an equation for the functio® which
+>u(rp)+e>, ori,b) brings the stationary value to the functioti@). Note that the
=1 =1 normalization condition for the functio® should be satis-

.1 . e
H= E j:E]_ ( —iV— EA(r]‘ ,t)
o2 fied also in the ordinary configuration space:

N
- 1
2, [Br0-814 3 & @ (B()](1)=1. v

ol

. . . . Equation(11) holds irrespectively of the timealthough the
The notations in Eq(2) are as followsc is the velocity of ¢ nction & depends ort. This important relation follows

light, ande is the electron charge which is equal tol in fom the properties of the initial equatici): for the self-
atomic units; the vector operatsris the spin operator of the  adjoint Hamiltonian, the number of the electrgis the nor-
ith electron; the potential(r;) describes the Coulomb inter- malization of the total wave functiors conserved.

action of theith electron with the nucleugs(r,t) andA(r,t) Since Eq.(7) represents theteady-statgroblem, it can
are the scalar and vector potentials of the external field regq rigorously justified thati(t), FI(t), ®(t), and the
lated to the electric and magnetic field strengthand B: quasienergy are all unique functionals of the electron spin
densities and current spin densitiesge, e.g.[15] with re-
1 9A(r,t) spect to TDDFT; the generalization to TDCDFT is straight-

E(r,t)=—V<p(r,t)—E B(r,t)=VXA(r,t).

forward. Thus the quasienergy functional E) can be
(3) expressed as a functional of the spin densities and current
spin densities. A& (t) in Eq. (7) is periodic in time, one can
The last term on the right-hand side of E8) represents the introduce the time-periodic Kohn-Sham spin orbitals

at

classical electron-electron repulsion. ¢p(r,t)o(s) (with o ands being the spin function and the
If the external fields are periodic in time, then the Hamil- spin coordinate, respectively; the notatienstands for both
tonianH(t) is also periodic in time: possible spin functions; we shall use the notatienand 8

when we need to distinguish different spin projectjoishe

N A spatial parts of the spin orbitals are orthonormal to each
Ht+T)=H(1), (4) other according to

whereT is the period. One can introduce also the fundamen- (i (r,O)]7(r,t)=5. (12

tal frequencyw defined as ) - _
The electron spin densitigg’(r,t) can be written as follows:

0=—. (5) p”(r,t)=; |pg(r,0)[2, (13

The Floguet theorem allows the wave functi#(t) to be and the total density(r,t) is a sum of the spin densities
written in the form p?(r,t):
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p(l’,t)zE po(r,t). (14) Eed p%p 'Jp.] ]

. . o . => = f dt f d3
The paramagneticcurrent spin densitieg(r,t) are defined s TJo

according to
2

1 x(u(r)+v"(r,t)+ e—ZAz(r,t))p"(r,t)
=5 Zk {{k(rD]* Ve (r,t) — i (r,H[Veie(r,t) I* ). 2c

(15 e 1(T
rie > 2 g olam)

The summation with respect toin Egs. (13), (15) is per- ko 170
formed over all occupied spatial orbitals; for the closed-shell
atoms the number of spatial orbitals is equaNt@, N being
the total number of electrons.

The quasienergy functiondB) can be rewritten in the
following form:

FI®[p®pPjp i 11=Fp% PP i ib1=Tdp% PP i i5]

+(V-A) (1)), (20

A more general theory which allows magnetic fields with
variable directions is required to employ spin-density and
spin-current matricef3].

The Kohn-Sham equations for the time-periodic orbitals
¢p(r,t) are obtained from the stationary principle for the

+I[pl+Ep® 0P i"] guasienergy functiondlL6) under the constrainid 2). Using
e em eee the functional differentiation of Eq€16) and (12) with re-
+Eex{p“,p5,jg ,jé’]- (16) spect to the orbitalg/(r,t) one arrives at the following set

of time-dependent Kohn-Sham equations:
Here T p“ ,p'B,jp ,jB] is the modifiedkinetic energy func-
tional for the nonlnteractmg reference system represented by

1
. v 4
the determinant of the Kohn-Sham spin orbitals: F & (nD=| =5 VUM +uo(r.H+ovd(ry

TLp* 25 i) e’ e
+—2A2(r,t)+iz[(A-V)+(V-A)]
zz E < (r t)‘ —V2 . 2c
k,o T

> 7

e
+i— + -
and the functionall[p] represents the classical electron- IZC[( VTV-AQ] el dilrb,

electron repulsion:
(21

r ry,t)
J[p]— dtJ d3rlf d°r, ol 1 (|2 (18)  where the exchange-correlation vector potendigl(r,t) is
f2 defined as a functional derivative Bf. with respect to the

. - o
The exchange-correlation functionELc[p“,pﬁ,jg,jg] con- paramagnetic currenfg [that means, the projections of

tains the difference between the exact kinetic energy an(igc(r‘t) are the functional derivatives @, with respect to
t

Ts[pa,pﬁ,jg,jg] as well as the nonclassical part of the e corresponding projections .

electron-electron interaction. It should be stressed that within

CDFT and TDCDFT, the exchange-correlation energy is a —A‘ (rt)=— SEd PP 5 i ] (22
. ; " . e

functional of the spin densities as well as the current spin 5%

densities(see below. Finally, Eex.{p“,pﬁ,j;‘,jg] is the part

of the quasienergy functional due to the external potentialsThe single-particle potentiat¢(r,t) includes the classical

The present consideration assumes that the external magnegilectron-electron repulsion as well as the exchange-

field has a constant direction in spaedong the quantization correlation scalar potentialJ.(r,t):

axis for the spins In this case we can account for the spin

coupling to the external magnetic field through the spin- p(r’,b)

dependentscalar potential [8]. Let us introduce the spin- a(r,t f d3r’—,+v;’c(r,t), (23

dependent scalar potentiaf(r,t) as [r=r']

SExdp®.p”.i5 ib]
op? '

p

1 @ B — e o _
Sy —vA(r,H]=—5-B(r.Y), va(r,t)=
(19

(24

The Lagrange multipliersy play the role oforbital quasien-
ergies. The set of equatiori2l) is solved self-consistently
producing the Kohn-Sham orbitalg)/(r,t) and orbital
Then Eex{p“,pﬁ,jg,j'g] can be expressed as follows: quasienergies, . Then the total quasienergy of the N-

1
LoD +u(rn]=ep(r.t).
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electron system can be determined according to(Eg).as a
stationary point of the quasienergy functional:

s=k2 €7 — I p1+Edp%p”.i% i8]
1 (T
—; ?Jo dtJ d3roZ(r,t)p(r,t)

e 17 - -
Tl ;fo dt(B(r. D (A% V)

+(V-ADI (D). (29

The expression&1) and (25) are the main equations of the
present Floquet formulation of TDCDFT.

Since the paramagnetic currefifsare gauge dependent
[the physical current”=]7—(e/c)p”A is gauge invariart
it may seem that the total quasienergy functio(i®) also
depends on the gauge. However, it can be shi@jithat the

exchange-correlation functional actually depends on the vor-

ticity
oy P
=VX—,

(o8

p

(26)

which is gauge invariant. Specific forms of this functional

are available within the adiabatic local density approxima-

tion (ALDA) [9]. For example, the following simple form is
applied in the case of sufficiently weak magnetic fields:

Exdp®.pP.i5.i81=Exd p%.p”,0,0]
1 (T
+3 1 [at [ @rgronis vyl
(o T 0
(27)

where g? are some known functions depending locally on
the corresponding spin densitigg&9,20. Other approximate

forms of the exchange-correlation functionals within TD-
CDFT and ALDA can be obtained by the approach of Ref.
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independentmatrix equations by means of the Fourier ex-
pansion of the periodic functions; (r,t), p?(r,t), v7(r,t),
A(r,t), Ay (r,t), andv(r,t). For example, one can write
the following expansion for the Kohn-Sham orbitg[(r,t):

[

SR(rD=_ 2 exp(—imat) ¢iiy(r).

(31

Equation(31) defines the Fourier componentg, (r) of the
orbital ¢, (r,t). Similarly we can define the Fourier compo-
nents of the other quantities mentioned above, namely,
pl(r,t), vo(r,t), A(r,t), Ag(r,t), andv(r,t), and denote
their mth Fourier components with a subscript In this
fashion, one can recast EqQR1) in the following set of
infinite-dimensional time-independentcoupled differential
equations:

1 o)
— 5 VAU —mo | ¢+ 2 vfa(n)

eZ

+(Ug)m—n(r)+g Am—n-nAns

i (Ao )+ (V- A ) + (A V]

V- (A m-n} din(1) = € bicn(T). (32)
Equations(32) are the working equations of the present Flo-
quet formulation of TDCDFT. They can be rewritten in the
familiar form of the time-independent Floquet matrix eigen-
value problen{27]:

AHOEAEATS (33

whereH? is the Floquet Hamiltonian defined by E&2) and

qZﬂ is the vector consisting of the componewt§,(r). The

orbital quasienergy eigenvalueg and eigenfunctionsZg
are to be solved self-consistently.
To calculate bound-bound transition probabilities under

[13]. A recent treatment of TDCDFT beyond ALDA leads to the influence of the external fields, let us consider a complete
the appearance of viscoelastic stresses in the electron flugithonormal sefy;} of orbital eigenfunctions for the unper-
[28]. turbed field-free Kohn-Sham Hamiltonian. Then the basis in

If we redefine the exchange-correlation functional as d@he extended Hilbert space is composed of the vectors
functional of p” and »”: |[kon)=|ko)®|n)= iy exp(—inwt), wherek and o are, re-
spectively, the electron orbital and spin index, ani the
Fourier index of the classical field. The transition probability
from the initial statey to the final statey? for the time
then the expressions for the exchange-correlation scalar angtervalt—t, averaged over the initial timeg is written as
vector potentials are written §8,20] [27]

Exd p®.0P.i% JE1=Ed p® 0P v 17], (28)

SE, «pB Pl el - A .
vI(r,t)= xd P 5”0 ]—E—U(A;’C-jg), (29) pr(t_to):; [(fonlexd —iHE(t—to)]]i 0>
p p (34)
EAU __ iVx SExd p.pP v V] (30 Given the time-dependent total electron dengity,t),
c x p” Sv° ' one can determinaonperturbativelyarious nonlinear opti-

cal properties of many-electron systems in strong laser fields,
such as nonlinear optical susceptibilities, high-order har-
monic generation rates, etc. For example, for tie har-

The solution of the set of TDKS equatioiigdl) can be
greatly facilitated by recasting it into a set dfme-
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monic of the fundamental frequenay, the photon emission TDDFT [23], we used the well-known complex-scaling
ratel'! (the number of photons of frequenoy emitted per  transformation(CST) for the analytical continuation of the

unit time) can be written as Floquet Hamiltonian into the complex plaj@7]. Under
CST and the associated biorthogonality relationship, only the
A 4ndw3|dy)? angular part of the wave function needs to be complex con-
ry=——m—— (35 jugated (for the bra vectorin the inner product or matrix

3
3¢ element calculations. The radial part of the wave function

5 ) needsnot be complex conjugated in the corresponding bra
where|d|* is the squared absolute value of the dipole MO-ygctor The implementation of CST procedure leads to the
ment Fourier component calculated as follows: notion of complex densityvhich is complex valued on the
1T 2 real axis of the radial coordinate. Physically the nonvanish-
|d,|2= ‘_f dtj d3rr exp(inwt) p(r,t) ing imaginary part _o_f the complex density on the reaixis

TJo reflects the probability of decay of the quantum system, and
) a procedure for extracting the orbit@ingle photon or mul-

_ (36) tiphoton ionization rates was propos¢@3]. The test case
results of the photoionzation of He atoms are in good agree-
ment with the experimental daf23]. However, the analyti-

To conclude this section, we note that the Floquet formuca| continuation procedure proposed 28] for the spin den-
lation of TDCDFT presented here is applicable in principlesjty cannot be directly applied to the case of current density,
to any bound-bound transitions of multielectron atomic Ofsince the latter requires the use of the Comp|ex_conjugated
molecular systems in weak or strong fields. Since the Hamilradia| wave functions(as well as the angu|ar wave func-
tonian7(t) and the Floquet HamiltoniaRZ are Hermitian ~ tions). This requires further generalization of the analytical
operators, the orbital and total quasienergies are real nuncontinuation procedure for both spin density and current den-
bers. In Sec. Il we describe the extension to include boundsity. In the following we introduce an alternative definition

= f d®rrpn(r)

free transitions, namely, ionization processes. of the complex spin density:
C — [ * * ag
IIl. NON-HERMITIAN FLOQUET FORMULATION OF P’(r't)_; [ (r™, 01" i (r,0). (37)
TIME-DEPENDENT CURRENT-DENSITY-FUNCTIONAL
THEORY IN PERIODIC FIELDS Equation(37) represents an explicitly analytically continu-

. o :
In the presence of intense external electromagnetic ﬁeld?,ble quantitythe notationr* stands for the vector with the

atoms(molecule$ can be ionized by the absorption of mul- complex-conjugated radial_coordingt&_e,_ and for realr re-
tiple photons, and all the bound states becashiited and ducesexactlyto the conventional definitiofil3). That means

broadenedmetastable resonance states possessimgplex the spin density define_d b.y E@7) is al\_/vays real and non-

quasienergiess =&, —iT'/2. The real parts of the complex negative on the realaxis, in contrast with the complex spin
; . ) ) .

guasienergies;, , provide the ac Stark shifted energy levels, ge?snythdefmed Im Ref[23]t. In. thde saf{n.e manner we can

while I are equal to the total ionizatiofissociation rates eline the compiex current spin density:

of the corresponding atomienoleculay states. To determine 1

these complex quasienergy states,rntba-Hermitian Floquet jg(r,t)z — E {[p2(r* ,)]*Vpi(r,t)

Hamiltonian formalismspreviously developed for atoms 2i

[29,3Q and molecule$31,32, which employ the use of the e Ok v

complex-scaling transformation methd®3,34), can be ex- G OVLS(r*, D"} (38)

tended to TDCDFT as described below. The use of th

: : o !
gglmf):l(()er)l(t-iifjaal':ir:)%tri?szﬁ;mﬁlecirr]nﬁi; ’FT(I)IOW‘Q’,[th: an_zlatlytl_- Using EQgs.(37) and (38) for analytical continuation of the
c o ) . que a_m| ‘?”'a” spin densities and current spin densities, one can also ana-
HE(r), Eq.(33), into anon-HermitianFloguet Hamiltonian |ytically continue the vorticities””, Eq. (26), in the complex
H{(re'®), reducing the problem of the determination of the plane of the radial coordinate. The analytical continuation of
complex quasienergy eigenvalues; and eigenvectors the potentials in Eq(21) is as follows. The potentials(r),
#Z(re'®) to the solution of a non-Hermitian eigenvalue v°(r,t), andA(r,t) are explicit functions of ; their calcu-
problem. (Note that in the spherical coordinates, only thelation for complexr is ;tralghtforwarq. For the potentials
radial distance is complex rotated.In the non-Hermitian ~ vs(r,t) and Ai(r,t), which are functionals op” and »”,
Floguet formulation of TDCDFT, all the quantities given in EGs-(37), (38), and(26) can be applied to obtain those quan-
the quasienergy functional, E¢g), as well as the spin den- titiés for complexr. . _
sities and current spin densities themselves beaooneplex The actual computational procedure can be summarized
quantities. as follows. First, the non-Hermitian Floquet eigenvalue prob-
A delicate task is to perform the analytical continuation of'lem (33) is solved in the complex plane. We use the
the exchange-correlation scalar and vector potentials in Eq§omplex-scaling generalized ~pseudospectral  technique
(29) and (30), which depend on the spin densitip§ and [35,36 to discretize the Floquet Hamiltonighf(re'*) and
paramagnetic current spin densitjgs to the complex plane. solve for the complex-rotated Fourier componepfs,(re'®)
In the previous non-Hermitian Floquet formulation of of the Kohn-Sham orbitals. Second, the Fourier components

For realr, Eq. (38) reduces to the conventional for(ib).
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¢§m(rei “) are rotated back to the real axis with the help of
the back rotation procedure developed [i87] yielding
vm(r). Third, the spin densities” and current spin densi-
ties j, are calculated according to the conventional defini
tions (13) and (15) for the real radial coordinate Then the

potentialsv {(r,t) in Eq. (23) and Ay (r,t) in Eq. (22) and

their time Fourier components are calculated. Fourth, the
Fourier components of the potentials are complex rotated to

the original position in the complex plane ¢—re'®) and
substituted into Eq(32). [This approach gives exactly the

same result as the direct calculation of the complex-scaled

potentials with the help of Eq$37) and(38).] Together with
the Fourier components of the external field§re'“,t) and
A(re'?,t) and electron-nucleus interactiargre'®), they de-

termine the non-Hermitian Floquet eigenvalue problem in

Eg. (33). Since Eq.(33) involves a self-consistent field, an

iterative process is required to solve it. The procedure de-

scribed above should be applied on each iteration step un
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TABLE I. Total ionization rated” for the ground state of the He
atom as calculated using the present procedure and that giZ3gf.
Numbers in brackets indicate the power of &0andF are, respec-
tively, the field frequency and amplitude, ands the number of

photons absorbed to ionize the atom.

convergence is achieved. On the first iteration step, the re3

quired quantitiep” andjg can be easily calculated for the
initial guess orbitals are defined in the analytical form.

Now let us discuss the calculation of the ionization or
multiphoton ionization rates. There is a well-known relation
between the total ionization ratéand the imaginary part of
the total quasienergy:

I=—2Ime. (39

n w (a.u) F (a.u) I' (a.u)
Present work Ref.23]
1.40 1.0-3] 5.298 — 7] 5.29 — 7]
1.40 1.0-2] 5.300 —5] 5.294 —5]
1.00 1.0-3] 1.293 - 6] 1.293 - 6]
1.00 1.0-2] 1.299 — 4] 1.293 — 4]
2 0.60 2.0-2] 5.977 7] 5.977 7]
0.60 5.0—2] 2.32Q - 5] 2.32q -5]
0.50 2.0-2] 1.156 — 6] 1.156 — 6]
> 0.50 5.0-2] 4.444 —5] 4.457 —5]
3 0.40 2.0-2] 6.126 — 9] 6.124 —9]
0.40 5.0—2] 2.588 — 6] 257§ —6]
0.35 2.0-2] 1.027 — 8] 1.027 - 8]
0.35 5.0-2] 2.234—6] 2.236—6]

g=-2Imey, (42

where 'Y is the ionization rate from the particular Kohn-
Sham spin orbital with the indexdsand o. Summing Eg.

The total quasienergy can be calculated according to thgy5) oyer all occupied spin orbitals and taking into account

functional form (25). Using the Fourier expansions of the

Egs.(39) and(41) one obtains

orbitals, densities, and potentials, it can be expressed as fol-

lows:
s=§ 7+ p1+Ed p%pP.i% i8]
-> ; fd3r<v;’>m<r>pim<r>

e
—is % mZn (DA m-n-V]

+[V'(A>(<Tc)m—n]|¢gn(r)>- (40)
All the terms in the right-hand side of E¢40) are real ex-
cept the sum of the orbital quasienergi&fs One can see it
from the equivalent equatio(25) if the spatial integrations
are performed on the real axis of the radial coordinate
Thus one arrives at the following result:

Ime=>, Imey.
k,o

(41)

In addition to the totalmultiphoton ionization rates of
atoms in external electromagnetic fields, it is also importan
to determine the partial ionization rate from each individual

r=>r

k,o

k- (43

Thus thetotal ionization rate can be expressed as a sum of
spin orbital ionization rates.

We note that the expression E42) is considerably sim-
pler than the one we derived in the previous work on Floquet
formulation of TDDFT[23]. In the latter work, the current
spin densities were not involved, and we used a different
procedure to analytically continue the spin densigéér,t)
to the complex plane. For the special case of the helium
atom, it can be shown that there is no contribution from the
current density to the exchange-correlation part of the total
quasienergy functional. This provides an opportunity to test
the analytical continuation procedure introduced here against
the previous work. The calculations were performed for mul-
tiphoton ionization of He at several laser frequencieg (
and laser(electrig field amplitudes F), using the same
quasienergy functional as in R¢23]. The field parameters
used correspond to the two- and three-photon ionization re-
gimes. The computed total ionization rates of the ground
state of the helium atom are presented in Table | along with
the results of Refl23]. One can see that while the analytical
continuation procedures are different, the final results for the

electronic orbital. In the Appendix we show by means of theionization rates are nearly identical.

equation of continuity that the imaginary parts of the spin-

orbital quasienergieg; have the usual physical meaning,
namely,

The primary purpose of this paper is to present the theo-
retical formulation of TDCDFT in the Floquet framework.
Extension of the Floquet-TDCDFT procedure to the study of



PRA 58 GENERALIZED FLOQUET FORMULATION OF TIME- ... 4755

multiphoton and nonlinear optical processes of more comtg7(r,t)|? is time periodic, the left-hand side of E¢A2)
plex atoms, in which the current density plays a significanianishes after the time integration. This results in the follow-

role, is in progress. ing differential form of the equation of continuity:
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APPENDIX: EQUATION OF CONTINUITY AND PARTIAL 0

RATES _
=(V-Jk), (A7)

1 Tg|2p0
To calculate the partial ionization rate from each spin or- " TJO ALV (4]
bital, we need to study the equation of continuity on tbal
axis of the radial coordinate The spin density“(r,t), as  where the time-averaged orbital paramagnetic and physical
defined by Eq(37), as well as the vectoki(r,t) and scalar  current spin densitieg §)7(r) andj{(r) are defined, respec-
ve(r,t) potentials arereal quantities on the real axis of tively, as follows:
Starting from the TDKS equatiof21) and the analogous
equation for the complex-conjugated orbital, one readily ar-

rives at theequation of continuityor the Kohn-Sham orbital — O
¢E(r t): q y (Jp)k(r): ffo dt(] p)k(rYt)l (A8)

i o 2_ _ (i \O E . o2
G0 [2= = [V ()71 + V- (| 6712A)] -2 [T, n9)

e TI2A0 a o2
V- A ]=2(m €0 4] To obtain theintegral form of the equation of continuity,
(A1) one needs to perform the spatial int_egration of E@?_).

However, there is a problem regarding the calculation of
integrals which involve the resonance wave functions. The

=—(V-jp)—2(Ime)| oy, (A2)  complex-scaledr(—re'®) resonance wave functions are lo-

o ] calized in the coordinate space, but they become delocalized

where we have used the notatiofg)f for theparamagnetic  ypon the back rotation to the real axis of the radial coordi-

orbital current spin density: nate. On the real axis such functions diverge exponentially
asr—o. The present formulation of TDCDFT makes use of

) 1 analytically continuable expressions for the den§iy) and
(p)i(r, )= 5L (r,H]* Vi (r,t) current density(38) which for realr reduce to the conven-
tional definitions of those quantitigd3) and (15), respec-
—Pp(r,H)[Voi(r,t)]*}, (A3) tively. Thus the normalization integral for the density con-
tains the squaredbsolute valuesf the Kohn-Sham orbitals.
andjy for the physicalorbital current spin density: Such an integral diverges and cannot be regularized if the

integration is performed in the infinite coordinate space. This
e e problem does not arise if the Kohn-Sham equations are
i(r,H=(pi(r.t)— E(|¢§|2A)— E(|¢E|ZA§C). (A4)  solved within a finite interval of, 0<r<r,y, with suffi-
ciently larger 2. FOr a wide range of .., the eigenfunc-
dions representing the true resonances are stable against
Vvariation of r,,x. Such eigenfunctions possess complex
quasienergies and describe decay processes. On the other
hand, the spin densities calculated with such Kohn-Sham or-
. bitals can be normalized for the integration is performed
o _io o within the finite interval of the radial coordinate. Note that a
(o =lp(r.t) C[p (rDAD], (A5 similar approach was used recently for construction of the
] ) o ) Siegert pseudostat¢38s].
since the exchange-correlation vector potential is subject to Performing the integration of EqA7) within the range

Note that the summation over all occupied orbitals leads t
the following relation between the total physical and para
magnetic current spin densities:

the constrain{8] [see Eq/(30)] 0<r<r ,axand taking into account the normalization condi-
tion (12), one obtains théime-independenintegral form of
[V-(p?Ay)]=0. (A6)  the continuity equation:

The time-independent form of EGA2) can be obtained by " "
integration over the time period. Since the function —2(Imeg) =T (A10)
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HereI'y is the electron current through the sphere with the(f is the unit vector in the direction. As one can see, the

radiusr = may: currentI' corresponding to the orbitab?(r,t) is equal to
o twice the absolute value of the imaginary part of the orbital
§=f dr[r~j§(r)]|,:rmax (A1l)  quasienergyy .
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