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High-order perturbation expansion of non-Hermitian Floquet theory for multiphoton
and above-threshold ionization processes
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A high-order perturbation theory is presented for efficient and accurate computation of multiphoton and
above-threshold ionization cross sections of atoms and molecules in weak to medium strength laser fields. The
procedure is based on a Raleigh-Sdhinger perturbative expansion of the time-independent non-Hermitian
Floquet Hamiltonian. The reduced Green function and generalized pseudospectral discretization techniques are
extended to facilitate the calculation of complex quasienergy resonance states without the need of diagonaliz-
ing the full Floquet Hamiltonian. Explicit expressions are presented for the determination of intensity-
dependent total and partial rates and electron angular distributions. The theory is applied to a case study of
multiphoton detachment of Hfor a range of laser frequenciésorresponding to the absorption of a minimum
of two photon$ and laser intensities from 1@ 102 W/cn?. It is found that a 16th-order perturbative Floquet
procedure provides an excellent description of the two-photon-dominant detachment processes for laser inten-
sity up to 2x10** W/cn?. The predicted electron angular distributions are in good agreement with recent
experimental data.

PACS numbes): 32.80.Rm, 32.80.Fb, 42.50.Hz

[. INTRODUCTION duced Green-function technique. We note that an earlier at-
tempt to make the connection of the Floquet matrix approach
As early as 1975, Rescigno, McCurdy, and McKoy with the conventional continued-fraction expansion of resol-
(RMM) [1,2] have outlined a method for calculatifgne- ~ vant matrix elements has been presented by Maquet, Chu,
photon, weak-fielfl atomic and molecular photoabsorption and Reinhard{8] by means of the successive formal itera-
cross sections using a discrét®basis set expansion and the tion of the Brillouin-Wigner expansion but no explicit imple-
complex scaling techniqui8]. The method has the advan- mentation procedure and application has been made. More-

. - 2 . . .
tage that it allows the calculation to be performed directly a®Ver, instead of using the® basis set expansion techniques

the physical energies of interest and relies on no second pr@S n all the previous RMM-type calculations, we have

cedure to construct the cross section. The most recent appg-domed here the complex-scaling generalized pseudospectral

cation of this procedure includes, for example, the accurat CSGPS method [9] for the discretization of the Hamil-

calculation of photoabsorption of Li, involving three active onian and the determination of the complex guasienergy

clectrons and the use of the complex scaling saddle- Oinrtesonances. As demonstrated in various recent atomic and
) P 9 PO olecular resonance calculatidres-11], the CSGPS method
technique[4]. However, the extension of the RMM proce-

: . is simple to implement and computationally highly efficient
dure[1,2] to the multiphoton case has not been discussed s P P P y high'y

L Iy , 8nd accurate.
far. In principle, the non-Hermitian Floquet formaligi,6] The organization of this paper is as follows. In Sec. I, we

can be applied to the calculation of multiphoton absorptiorbresem a high-order perturbative expansion of the non-
cross sections of atoms and molecules in both weak anfiermitian Floquet Hamiltonian and introduce the reduced
strong fields[6,7]; the procedure, however, involves the de- Green-function technique for the calculation of the succes-
termination of the complex quasienergy states from thesive higher-order complex quasienergy resonances. In Sec.
whole Floquet matrix. The motivations of this paper are two-||I, we present the explicit expressions for the calculation of
fold. First, we outline a procedure that works for both weakgeneralized cross sections for multiphoton ionization or de-
and intermediate laser intensities but does not require theachment. In Sec. 1V, the lowest-order perturbation theory
diagonalization of the full Floquet matrix. Second, thefor the electron angular distributions and partial rates for
method will not only provide an extension of the RMM above-threshold multiphoton detachment is presented. Fi-
method to the multiphoton and above-threshold ionizatiomally in Sec. V, we apply the procedure to the study of
regime but also allow the examination of the intensity-intensity- and frequency-dependent multiphoton detachment
dependent behavior of electron angular distributions and paf H~. Comparison with the recent experimental data will be
tial rates in multiphoton detachment processes. made.
Our procedure is based on a high-order Rayleigh-
Schralinger perturbative expansion of the time-independent

- . . Il. HIGH-ORDER PERTURBATION THEORY
non-Hermitian Floquet Hamiltonian and the use of the re-

FOR NON-HERMITIAN FLOQUET HAMILTONIAN
AND COMPLEX QUASIENERGY RESONANCES

*Permanent address: Institute of Physics, St. Petersburg State In this section, we start from a brief review of the non-
University, 198904 St. Petersburg, Russia. Hermitian Floquet formalisni5—7]. Then we present a de-
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tailed Nth-order perturbative analysis of the non-HermitianwhereE (the real part of the quasienefggescribes the po-
Floguet Hamiltonian and explicit formulas for the determi- sition of the shifted energy level in the external field, dhd
nation of complex quasienergy resonances. is the total ionization or multiphoton ionization rate. One can

Consider an atomic or molecular system subject to theewrite Eq.(8) in the form of the Floquet Hamiltonian eigen-
external time-dependent field. The total Hamiltonfa¢t) is ~ value problem:
a sum of the unperturbed Hamiltoni&H® and the interac- N s =
. (1) . i HFlﬂ_S‘ﬁ, (11)
tion termH'*/(t) due to the external field:

wherey represents the vector composed of the Fourier com-
ponentsis,(r), and the Floquet Hamiltoniaﬁ,: is defined
The (many-body wave function of the system depends on bY the left-hand side of Eq8). .

the coordinates of all particles as well as on time. We shall 10 facilitate solving Eq(11) for the complex quasiener-
use the notatiom for all the coordinates. The wave function 9i€S, we perform the complex-scaling transformafigh

W(r,t) satisfies the time-dependent Sdftirger equatiorin ;

atc()miz: units: P roered " r—rexpip) (12)

H(t)=A©+AD1). (1)

p (only radial coordinates are affected by this transformation;

i—W(r,tH)=H(OW(r,1). 2) B is the angle of complex rotatignUpon this transforma-
Jt tion, the Floquet HamiltoniarH(r expB))=Hg(B) be-

comes non-Hermitiaficomplex symmetric if the unrotated
Hamiltonian I:|F(r) is real, and the wave functions

ADE+T)=A®) 1), (3) Un(r exp(B)) become squared integrable. One can further

perform an expansion of the Fourier components

whereT is the period, one can seek the solution of Ej.in Ym(r exp(p)) on the basis of the angular momentum eigen-

If the external field is periodic in time,

the form of the Floquet state: states, and a basis set expangimngeneralized pseudospec-
tral grid discretization/9]) of the remaining functions de-
W(r,t)=exp(—iet)y(r,t), (4)  pending on the radial coordinatesThen the solution of the
Floquet Hamiltonian problem reduces tocamplex matrix
Prt+T)=y(r,t), (5)  eigenvalue problem. We shall use the notatitp, H,, and

V for the complex-rotatedotal Floquet Hamiltonian matrix,
where ¢ is the quasienergy. Expanding the time-periodicynperturbed Floquet Hamiltonian matrix, and perturbation
wave functiony(r,t) and the external fielth)(t) in Fou-  matrix, respectively. The notatiog will be used for the
rier series complex-rotated eigenvector. The non-Hermitian Floquet

formalism and its generalizations have been extensively ap-

plied to the study of atomic and molecular multiphoton pro-

[

plr,t) = ;w expl—imat) Ym(r), (6)  cesses in strong fields in the last two decades?,10—12.
We now extend the Rayleigh-Sclaiager perturbation
o theory[13] to the non-Hermitian Floquet Hamiltonian matrix
A= > exp(—imwt)AL (7)  eigenvalue problem:
m=—cwx
He(B) (B =ed(B), (13

one arrives at the following set of time-independent coupled .
equations for the Fourier ComponeM§(r): Whel’eH,:Z H0+ V. We Suppose that the E'Igenva|ue pl’oblem
for the unperturbedcomplex-rotategdmatrix Hy,

o

(RO=mo)gn(r)+ X AR n(r) =2 din(r). (® Houd =0l k=012...., S

is solved, so the unperturbed eigenvalué?, and eigenvec-

Equation(8) is an eigenvalue problem for the quasienetgy gy 9 are available, the latter subject to the following
For the special case of electric dipole coupling in the linearlyy;orthonormalrelation:

polarized monochromatic field,
(1Y) = Scn - (15

Note that the inner product in E@L5) is defined in such a
way that in the coordinate representation only the angular
the summation in Eq(8) contains onlyn=m, m=1 terms.  part of ) is complex conjugated but not its radial part. Let

AD(t)=-> (F-rj)cosmt, 9
J

In the general case the quasieneegis complex valued: k=0 correspond to the state under considerattbe theory
is not restricted to the ground states 0 can correspond to
e=E—i E (10 any stata_z Then the perturbed eigen\_/ecw and eigenvalue
2’ g for this selected state can be written as
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o= w3°>+n§1 ¥y, (16)

80=8E)0)+ nzl sgn). (17

The expansiong16) and (17) are the perturbation theory

expansions, and the termg" and y{" represent thenth
order of the perturbation theory. The expansigh§) and

PHYSICAL REVIEW A 61 013408

n-1
=GV I+ S G ™, n=2. (20
m=1

Now we take into account the structure of the unperturbed
(complex-rotatefFloquet Hamiltonian matri¥ . First, it is
a block-diagonal matrix with respect to the Floquet Fourier
index m [see Eq(8)]:

[Holmm =(ho—M®) 6y (27

(17) are unique provided the following biorthonormal rela- where h,, is the field-free atomidmoleculay Hamiltonian

tion is satisfied:
(ol ) =1 (18
or

(Wy)=0, n=12. .. (19

matrix andw is the external field frequency. The theory out-
lined above is exact for the general many-body problem. The
following details(to the end of this sectigrapply only for

the one-electron problem where the unperturbed Hamiltonian
possesses spherical symmetry. Extension to the many-
electron case is straightforward. When using the angular mo-
mentum eigenstates basis set described above, the atomic
Hamiltonian matrixhy is also block diagonal, each block

(the corrections to the eigenvector are biorthogonal to th%orresponding to the angular momentirm
unperturbed eigenvector for any order of the perturbation

theory). Substituting Eqs(16) and(17) in Eq. (13) and col-

[holji»=hoydy (28)

lecting the terms of the same order, one arrives at the fol-

lowing recursive procedure to calculate the quantiﬁé@
(n) .
and ¢y :

(Ho— e g8 =(w QI V] gd )y — vyt~

n—-1
+ 2 ey, (20

e =(yPV|yd ), n=2. (1)

The recursive procedure starts with the initial terms ffior
=1 which are as follows:

(Ho= ey = IVIug) u =V, (@2

e =(y|V] ). (23)

The inhomogeneous equatiof®0) and (22) can be solved
with the help of the reduced Green-function ma@x It is

defined by the following expansion on the basis of the un-

perturbed eigenvectors:

oo s W

R4 SALL Sy (24)
k#0 s(ko)— 880)

Note that the term wittk=0 is missing in the sum in Eq.

(hg, is the radial Hamiltonian matrix for the angular momen-
tum1). Thus the eigenvalues and eigenvectors can be enu-
merated with three indexes, the first of them corresponding
to the atomic radial eigenstatg)( the second one to the
angular momentuml}, and the third one to the Floquet
Fourier index(m) (we assume that the external perturbation
possesses the axial symmetry like in the case of linearly po-
larized laser field, so the projection of the angular momen-
tum onto the field axis is conserved and equal to that of the
initial unperturbed staje Hence in the perturbation theory
expressions above one has to make the following substitu-
tions:

eV=¢(9 (29

J,hmo

P O=p P (30)

The eigenvaluesj(ﬂ?m are related to the eigenvalugs, of
the atomic Hamiltoniarn, [see Eq.(27)]:
eV n=Ej1—mo. (31)

We assume that the initial staté’’ corresponds tg=j,,
I=1y, and m=0. Consider the vector space of dimension
NXLXM whereN is the number of radial eigenstatébe
number of radial grid points when using pseudospectral dis-
cretizatiorn), L is the number of angular momentum blocks,

(24), s0G is a regular matrix in the case when the eigenvalueandM is the number of photon blocks retained in the Floquet

e is not degenerate. The reduced Green ma&izan be

easily constructed if all the eigenvectors and eigenvalues

the unperturbedcomplex-rotatefd Hamiltonian matrixHg
are available. Using the matr{X to solve Eqs(20) and(22),
one can write

Y§D=—-GVyd, (25)

Hamiltonian matrixH,. Then the eigenvectonﬁﬁ)m have a

dilock structure in this space just like the structure of the

matrix Hy:

D T = 5 S (32

[P = {95y . (33
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Here the vectorg/{) and${9 have dimensionix L andN,  to the quasienergy eigenvector according to @6) and the
respectively. The vectorﬁj(ﬂ) is a field-free atomic radial n-order correction to the complex quasienergy according to
eigenvector corresponding to the angular momentiemd ~ EQ. (21).

the radial quantum numbgr Substituting the expressions

(31), (32), and(33) into Eg. (24), one arrives at the block-

diagonal structure of the reduced Green-function ma®ix  |II. PERTURBATIVE EXPRESSIONS FOR GENERALIZED
N-1 ©) © CROSS SECTIONS IN MULTIPHOTON IONIZATION
-~ Lot Ll ]y OR DETACHMENT PROCESSES
[G]jlm,j’l’m’: E Wﬁmmrénr . (34) ) o ) ) )
=0 Ej|j—ep —Mo Due to parity restrictions for the dipole interaction, the

) _power serieg17) for the perturbed complex eigenvalise
Here[ ¢;’]; are the components of the unperturbed atomiccontains only even powers of the external fiElénd can be
radial eigenvector, the indicem and m’ span the interval \ritten as follows:
[Mg,M¢] (such thatM;—M¢+1=M and the poinm=0 is

included, the indices andl’ vary within the interval O,L %
—1], and the indice§ andj’ vary within the interval O,N eo=e0+ D, apF (39)
—1]. Equation(34) is valid in general except for then n=1
=0, I=1g case. In this special case the sum does not include
i=jo: The coefficientsw,,, represent hyperpolarizabilities and de-
pend on the frequency of the external field. They are real
R R NN numbers fom<n, and complex numbers far=n, where
[G]j,oolj%o: E — 0 (35 ng is the minimal number of photons required for electron
i';j% Eil,— &0 detachment. The coefficienta,, can be represented as

2nth-order corrections to the quasienergff”) if one as-
As one can see, the reduced Green-function m&@rixas a sumesF=1 in the definition of the perturbatiofsee, e.g.,
simple block structure that facilitates performing matrix- Egs.(36) and(37)]:
vector multiplication in Eq(26). The dimension of this ma-
trix can be decreased by a factor 2 if the perturbation has a an=eG"lr=1= (P IVIPE" ™) e (39
definite spatial parity, as is the case for the dipole interaction
with the external field. In this case the perturbation ma#ix Note that our coefficientr, is related to the conventional
unperturbed state has=0, then even Floquet blocks of the
reduced Green-function matrix contain only even angular
momenta, and the odd Floquet blocks contain only odd an- ar=—
gular momenta. For the linearly polarized external field with
the field strength and frequencyw, the perturbation time- _ _ )
dependent operator is (F-r)coswt. The photon and angu- The real part of the complex quasienetgin Eq. (38) yields
lar blocks of the corresponding complex-rotated mawix the shift of the energy level in the external field whereas the

1

appear as follows: imaginary part describes thenultiphoton) ionization or de-
tachment rate(the ratel” is equal to minus doubled the
—FrexpiB) imaginary part ofe).

Vimirm = , (18 1411761 21) The photon fluxJ corresponding to the electric field
2y(2I+1)(21"+1) strengthF and frequency is calculated according to
><(‘Sm,murl"_‘sm,m'fl)- (36) 2

The radial structure of the matriXx depends on the basis set 87w’

used to expand the radial functions. For the pseudospectral

discretization of the radial coordinate]9], the matrixV is ¢ peing the velocity of light. The generalized cross section

diagonal with respect to the radial indgx o) of ny-photon-dominant detachment is defined as the
ratio of the total(multiphoton ionization or detachment rate

—Friexp I' andngth f the photon flux:
lemj’lfmf: ! F( B) 5]]’(|5II’+1+|,5II’—1) an no pOWGrO ep oton Tiu
' 2J2I+1)(21'+1) ’ ’
r
X(‘Sm,m’ +1t 5m,m/71)a (37) a—(”o): — (42)

Jno
r; being the radial pseudospectral grid points.
With the reduced Green-function matri@ defined by Note that the expressio2) is valid for both weak and
Egs.(34) and(35), and the perturbation matri defined by  strong fields. In the weak field limig("® becomes indepen-
Eqgs.(36) and(37), one can construct theth-order correction  dent of the field intensity, and only the term with=n; in
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the right-hand side of Eq38) is to be included. The detach- ) 87w\ ? 0 0
ment ratel” in this limit can be written as follows: o ):Z(T) MY IVGVGVGV )y
T'=—2F2%Im(az, ), 43) — (W IVGVIU) (W IVGVI ) [e-1). (46)
0

Note that Eqs(45) and(46) are not restricted to the pertur-
and the generalized cross sectiof’® can be expressed bation form(36) and can be applied to many-body systems
through the hyperpolarizability coefficient,, : as well. Equatiort45) reproduces, in a different notation, the

0 result obtained by Rescigno and McKg| for the one-
photon case. Expressiqa6) is the generalization of RMM
theory to the two-photon case, and so on. For the one-
electron system with the spherical-symmetric unperturbed
Hamiltonian, the reduced Green-function mat@ixand the
The generalized cross sections may be expressed in terfR§turbation matrixy are given by Eqgs(34) and (36), re-

spectively. Thelbra) radial wave functions in Eq$45) and

of the matrix elements involving the unperturb@dmplex- . >
rotated initial-state wave function, reduced Green function,(.46) must not be complex conjugated, and the radial integra-

and the perturbation operator. For example, the one- anHons are periormed with the complex-rotated unperturbed

i AN i ~wave function ¢, corresponding to the complex-rotated
two photon(weak field ionization or detachment cross sec Hamiltonian Hy. For example, in the case of one-photon
tions are given by

detachment of the initiak state (the unperturbed radial
eigenfunctiong; o and unperturbed enerdy; o). the cross
167w . . . . .

1) — (0) (0) section (45) can be recast in a simple form involving the
7 c Im((o " IVGM Yo ) [r-1), 49 radial integrations only:

87w\ "o
o= _2 ——| Im(ez,). (44)

4o Nil ({41 expli B)| #{ D) AT expli B)] w
=——1Im :
7 3c =0 Eii—Ej oo
|
Again, it is assumed in Eq47) that the inner products in- (7 _ _ o
volve the complex-rotated radial eigenfunctigas without An=(2m) f_ drexginT—i(2w) °F*sin(27)
complex conjugation. T
+i(kn'F)w_2COST]f drexd —i(kp-r)
IV. LOWEST-ORDER PERTURBATION THEORY
FOR THE ELECTRON ANGULAR DISTRIBUTIONS Li(r-B)o L sin ] W(r) g(r, o), (50)
IN ABOVE-THRESHOLD DETACHMENT
OF NEGATIVE IONS F andw being the laser field strength and frequency, respec-

We consider the electron energy and angular distribution vely, W(r) being the electron-core interaction potential.

for a multiphoton above-threshold detachment of negativet he VeCtorE”thaf tgeglrectlon ””d.ef Whl'.gh.th?hele(:ted ellec-
ions such as H, which can be accurately described by the rons are detected. Expressio8) is valid in the genera

one-electron model potentifl4]. The general nonperturba- nonp_erturbative case._lnstead of usi_ng the perturbative ex-
tive expression in our previous Floquet calculationsP2nston of Eq(48), which can be tedious, we shall present

; : here only thelowest-orderperturbation theoryLOPT) for
[12,15,18 will be employed: the electron angular distributions in the multiphoton above-
threshold detachment processes, which is useful in the
weaker field regime. That means we expand EB) in
power series of and retain only the lowest power &ffor
each numben of absorbed photons. Obviously, thghoton
detachment amplitudé,, within this approximation scales
with the factorF". To obtain the LOPT approximation for
A,, note that the Fourier components of the quasienergy
k,=V2[Ree—(2w) ’F?’+nw] (490  wave functiony(r,t) within LOPT also scale with the ap-

propriate power of, so the following equation holds:

n

dQ

:(277)_2kn|An|2- (48)

Here,

is the electron drift momentum, and thghoton detachment w
amplitudeA, is defined as followsglinear polarization of the )= Emly (Pexa —imot 51
external field is assumgd vir.b mzz—w Xi(1) XA ot). G
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Here the functiong,(r) do not depend ofr. They can be

represented as a series on the basis of the Legendre polyno-

mials depending on the angt® betweenr andF:
Xm(r):lzo IT+1/2 X ()P (cOSD). (52

Inserting Egs(51) and(52) into Eq.(50), making the expan-

PHYSICAL REVIEW A 61013408

n

A= F”I_EO a,, P (cosb), (53

with 6 being the angle betweek, and F. Due to definite

parity of the perturbation, the sum in E@3) contains only

even or odd angular momentadepending on the number of

sion in powers of and retaining only the lowest power for absorbed photons and the initial state parity. The partial
each n, one obtains the following LOPT result for the angular amplitudes,,, are defined as follows:

n-photon detachment amplitud, :

n

an =4m(21+1) X, X

n;=0 ny,=0 n3=0 m=0

n n

(21,4 1)(2l5+1)

> 5
n,2n;+ny+nz+m

(—1)"i" (k)"

n,! 24ng+ny+ng \3n;+ny+2ng

x>

I I3
n

><|§‘, (21, +1)i ™"
1=0

2 n

>

13=0

1
0 0 0

oo o3|

In Eq. (54),

ERPRNE
0 0 O

oo

stands for the Wigner j3 symbol; j,(x) is the spherical
Bessel function. The sums over andl; span the intervals
from O to n, and from O tons, respectively. They include
only even values for evem, andns, and only odd values for

oddn, andn,, respectively. The ejected electron momentum

k{®) within LOPT is defined as

kg0)= V2(ggthw).

(59

The integration with respect to the radial coordinata Eq.
(54) is performed along the real axis so the back-rotation
procedurg17] can be used to obtain the wave function for
real values of the radial coordinate. Although E&4) con-
tains multiple summations, it is easy to program and com
pute. In the one-photon case, an explicit form of Exfl) for
the initial s state reads as

0

w2

=72 5 [ ar kW o)

1 o)
+—J’ dr r3j (kI )W(r)xodr)
wlo

B[ dr RO | (69

I2
0 0 0

(ny=I )M (ny+ 1o+ D) (ng—1) ! (ng+ 15+ 1)

L4

2 oo
) N 1/2f0 drr2n2j; (Kr)W(r) xm,1,(1). (54)

The LOPT angular distributions are calculated according
to the following expression:

2

. (57)

n

dr k(©
f n |:20 a, |P(cosé)

— F2n
dQ (277)2

The partial rate$’,, corresponding to absorption nfphotons
can be obtained by the integration of E§7) over the whole
angular range:

n

FZHE

=0

Kk(0)

-n
2

2
21+1

I= EMIR (58

V. A CASE STUDY: CALCULATIONS OF COMPLEX
QUASIENERGIES AND ELECTRON ANGULAR
DISTRIBUTIONS FOR MULTIPHOTON DETACHMENT

OF H-

We have performed the calculations for the negative ion

H™ described by an accurate one-electron magdd. It re-

produces both the exact experimental binding enegdg}

and the low-energg—H(1s) elastic scattering phase shifts.
The one-photon detachment cross sections based on this
model potential are in excellent agreement with earlier accu-
rate two-electron calculatiorf49,20. Using this model po-
tential, Wanget al. [21] have performed detailed nonpertur-
bative Floquet studies of the frequency- and intensity-
dependent multiphoton detachment of tnd their results
were in good agreement with the experimental data of Tang
et al. [22]. Our recent nonperturbative Floquet study of the
electron angular distributions associated with the above-
threshold multiphoton detachment of Hby 1064-nm laser
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field [16] and that of the two-photon angular distributions  TABLE |. Complex quasienergies for two-photon-dominant de-
near one-photon thresho[d?2], again using this model po- tachment of H by 1.908«w.m radiation calculated for several inten-
tential, is also in good harmony with the recent experimentafities of the external fieldA), high-order perturbation theorghe
work of Zhaoet al. [23] and of Preestegaaset al. [24], re- notation Aq denotes perturbative calculatlor] qih order, LOPT
spectively. In our recent nonperturbative Floquet studie%orres'oOnOIS to fourth order(B), nonperturbative Floguet calcula-
[12,16,21, the CSGPS metho@] is used for the discretiza- ion. The numbers in square brackets indicate the powers of 10.
tion and solution of the non-Hermitian Floquet Hamiltonian. Laser

The CSG_PS methqd is founq be b(_)th accurate and Compum}htensity

tlonally highly efﬁuent ar_1d is applicable to both low-lying (Wicn?)  Method
and highly excited atomic and molecular resonance states
[9-11]. A detailed description of the uniform and exterior — 10° LOPT —2.77333594p-02]—i2.427 —11]
complex-scaling pseudospectral discretization can be found A6 —2.77333594p—-02]—i2.426 — 11]
elsewherd12]. In the present calculations we make use of B —2.77333594p-02] —i2.42¢ — 11]
the uniform CSGPS method.

Up to 100 radial grid points is used for CSGPS discreti- 1¢° LOPT —2.77351621f— 02]—i2.42653—09]
zation, which is sufficient for full convergence of the com- A8  —2.77351621[—02]—i2.42386—09]
plex quasienergies and eigenvectors to machine precision. B —2.77351621[— 02] —2.42386 — 09]
For the highest16th) order of the perturbation theory used
in the prgsent calculations, the number of angu!ar momenta qqo LOPT —2.775292889— 02]—i2.426533L— 07]
needed is 91(=0-8. .In the range of the.valldlty of the AL0  —2.775293498- 02]—i2.4000248— 07]
perturbatlve method dls_cussed her_e, the high-order pertu_rba- A12  —2.775293498-02]—i2.4000245 07]
tive Floquet procedure is c_omputat|onally far less d_emandmg B 2775293498 02] — 12.4000245— 07]
than the full nonperturbative Floquet approach, since only
the diagonalization of several unperturbed matrifsdif- 104
ferent angular momentunof small dimension(up to 100
X 100) is needed. Moreover the same matrix information can
be stored and used for the construction of the reduced Green-
function matrices for different laser frequencies. In addition
to the computational advantage, the perturbative Floquet ap-
proach also allows the examination of the intensity-
dependent behavior of multiphoton processes order by order2X 10" LOPT  —2.80176754B-02]—i9.70614305[— 05]

Quasienergga.u)

LOPT  —2.790459699— 02] —i2.42653474D— 05]
A12  —2.790985490— 02]—i2.18519650p— 05]
Al4  —2.79098691p— 02]—i2.184610731—05]
A16  —2.79098651B02]—i2.18479122B 05

B —2.790986607— 02]—i2.18474763305]

First, we have performed the calculations to determine the Al2  —2.80532763p-02]—i7.969182450—05]
range of the laser field intensities where the perturbation Al4  —2.80550914p-02]—i7.89420359[— 05]
theory applies. We have calculated the complex quasiener- Al6  —2.80540840[—-02]—i7.940410991—05]
gies and partial detachment rates for the fixed wavelength B —2.80544513p—02] —i7.92249058B— 05]

A=1.908um (v=0.02388 a.y, used in experimenf24].
This wavelength corresponds to the two-photon-dominant

detachment casen§=2). The calculations have been per- paper. Alternatively one can simply extend the nonperturba-
formed for several intensities of the external field, using thetive Floquet method for stronger field cases. We also note
present perturbative approach and nonperturbative Floquéhat the perturbative Floquet approach should be applicable
method employed in our previous studig?,16. The re- to significantly larger intensity for neutral atoms and mol-
sults are shown in Table | for the complex quasienergies andcules since the electron-binding energies there are (gyder
in Table Il for the partial rates. For the complex quasiener-of magnitude larger than those of negative ions.

gies, the full high-order perturbation theory of Sec. Il was Table | contains also the LOPT results for the complex
applied (maximum to the 16th order for higher intensifies quasienergiegcorresponds to the fourth-order perturbation
whereas for the partial rates the LOPT of Sec. IV was usedheory for the two-photon detachmgms shown, the LOPT

As one can see from Table I, the high-order perturbativés adequate for laser intensity up to®1/cn?, but it begins
description is excellent for the intensities as high as 2to show deviation from the nonperturbative results as the
x 10" W/cm?. For the highest intensity presented (2 laser intensity approaches ®onV/cn?. At the intensity

x 10t W/en?) here, the 16th-order perturbative result is 10 W/cn? the discrepancy between LOPT and nonpertur-
converged to five digits of accuracy for the level shift andbative quasienergies is already quite significant, and the
within 0.03% for the width. This intensity is about the stron- LOPT description of the total detachment rates becomes
gest intensity considered in the experime@8] and[24]. completely inadequate.

We have also studied the higher-intensity cases. For laser Table Il shows the comparison of the partial rates calcu-
intensity larger than % 10'* W/cn?, the 16th-order pertur- lated by the LOPT and nonperturbative Floquet method.
bative calculation is not sufficient to achieve full convergedSimilar to the total rates, the LOPT is excellent for laser
results. For even higher intensity, other high-order resummaintensity less than fow/cn? but becomes inadequate for
tion technique(such as Padapproximation may be used to intensity larger than 76 W/cn?.
facilitate the convergence but this is not the focus of this In Figs. 1 and 2 we present ttieeak-field generalized
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TABLE II. Partial detachment rates for above-threshold multiphoton detachment diyHL.908.m
radiation calculated for several intensities of the external field using L@PBnd nonperturbative Floquet
approach(B). The numbers in square brackets indicate the powers oinl8. the number of photons

absorbed.
Laser intensity Method Partial detachment rdizs)
(W/cn?) 2 3 4 5
10’ A 4.853 —13] 2.213-18] 8.283 —24] 3.056 —29]
B 4.853 —13] 2.213-18] 8.283 —24] 3.054 —29]
108 A 4.853 —11] 2.213-15] 8.283 —20] 3.056 —24]
B 4.857 —11] 2.213-15] 8.283 —20] 3.056 —24]
10° A 4.853 —09] 2.213-12] 8.283 — 16] 3.056 —19]
B 4.846 —09] 2.211-12] 8.277—16] 3.054 —19]
10% A 4.853 —07] 2.213-09] 8.283 —12] 3.056 — 14]
B 4,778 —07) 2.191-09] 8.223-12] 3.037—14]
101! A 4.853 —05] 2.213-06] 8.283 —08] 3.056 —09]
B 4.16% —05] 1.996 — 06] 7.652 —08] 2.847-09]
2x 101 A 1.947 —04] 1.771-05] 1.325 —06] 9.779 —08]
B 1.434 —04] 1.433 —05] 1.118 —06] 8.341—08]

cross sections of multiphoton detachment calculated accordisee Eq(38)]. For the frequency range corresponding to the
ing to Eq.(44). The calculations were performed for three- two-photon-dominant case¢=2), the coefficientsy,, are
and eight-photon detachment frequency ranges. Our preseligted in Table Ill. The imaginary part of the coefficieny
LOPT-Floquet results are in complete agreement with thean be used for calculations of the two-photon generalized
previous calculations by Laughlin and CH4] obtained cross section according to Ed@4). Note that imaginary parts
with the use of conventional perturbation theory andof higher hyperpolarizability coefficientsyg to aqp) are of-
Dalgarno-Lewis procedurg25], using the same model po- ten positive. That means the contribution to the total detach-
tential for H [14]. The agreement demonstrates the numeriment rate from the particular above-threshold detachment
cal accuracy and convergence of the present perturbativate is overridden by the negative higher-order corrections to
Floquet procedure. the above-threshold rates for lower number of photons ab-
The dependence of the complex quasienergies on the isorbed. For example, the positive imaginary part «f
tensity of the laser field is determined by the coefficients = means that the contribution to the total rate from the three-

80 . . . . 6.0

7.0 |

6.0 |

50

40

30

Generalized cross section
Generalized cross section

S
<
T

0‘2%0040 2260.0 240‘0‘() 2660.0 2860.0 3000.0 0‘960.0 78&).0 8()1).0 82&).0 84;).0 860.0
Photon energy Photon energy
FIG. 1. Generalized cross sectiot®) of three-photon detach- FIG. 2. Generalized cross sectiott® of eight-photon detach-
ment of H™ (in units of 10 ”® cm® &) as a function of photon ment of H™ (in units of 102 cm'®s’) as a function of photon
energy(in units of cm %), energy(in units of cni 1),
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TABLE lll. Hyperpolarizability coefficientsy,, for multiphoton detachment of H The frequency range
corresponds to the minimum of two absorbed photons. The numbers in square brackets indicate the powers

of 10.
Laser Coefficientsy,, (a.u)
frequency

(a.u) as ay ag ag @10

0.014 —5.63901] —8.59806] —2.54412] —1.38918] —2.83225]
—i3.50806] +i7.70712] +i1.15319] +i3.57925]

0.015 —5.71701] —3.85906] —-6.81511] —-2.10417] —2.46722]
—i6.43706] +i1.00912] +i1.53117] +i9.51§22]

0.017 —5.90201] —2.69(05] —1.72411] +4.736G15] —4.11721]
—i5.90Q06] +i5.13611] —i4.33716] +2.68721]

0.019 —6.13401] +1.42506] —2.24111) +1.91416] —1.28321]
—i5.01906] +i3.58711] —i1.97716] +i7.47220]

0.021 —6.43101] +2.50806] —-2.51011] +1.66116] —9.09720]
—i4.13706] +i2.27711] —i9.43315] +i5.18§20]

0.023 —6.82401] +3.28406] —2.59311] +1.57216] —1.00721]
—i3.31306] +i1.41911] —i5.669 15] +i4.12320]

0.025 —7.37401] +4.02506] —2.92§11) +2.06Q 16] —1.79821]
—i2.61306] +i9.160 10] —i4.42Q15] +i4.22520]

0.027 —-8.26301] +5.44( 06] —5.35411] +8.156 16] —1.82122]
—i2.04506] +i6.63910] —i5.77515] +i1.21q21]

photon above-threshold detachment is completely reversed For the above-threshold detachmegbrresponding to
by the negative six-order contribution to the two-photon de-three to five photons absorbethe variation of the different
tachment rate. angular momenta populations is hot monotonous within the
The LOPT partial angular amplitudes,, [Eq. (54)] for ~ frequency range between the two-photon and one-photon
the same frequency range correspondingige-2 are pre- thresholds. In general, the weight of the lowest angular mo-
sented in Table V. Also shown are the weights in the partiaimentum increases at the beginning of the frequency range,
detachment rat&, of the electrons ejected with the particu- reaches its maximum, and then decreases as the frequency
lar angular momentunh. For the two-photon detachment, approaches the one-photon threshold. The behavior of the
one can see how the weightsoandd electrons vary as the highest angular momentum population is opposite; first it
frequency increases. At the beginning of the frequencydecreases, reaches its minimum, and then increases. One can
range, for the frequencies close to the two-photon thresholdotice that for all above-threshold channéteree to five
(0.01387 a.y, the weight of thes electrons is almost 100%, photons absorbedhe weight of the highest angular momen-
in accordance with the Wannier threshold law. With the fre-tum is larger at the high-frequency end of the interval than at
guency increasing, the weight dfelectrons also increases, the low-frequency end.
and at the end of the frequency range, in the vicinity of the In summary, we have presented a high-order perturbation
one-photon threshol.027 73 a.y, the situation is almost Floquet approach for the calculation of the complex quasien-
reversed. Thel electrons constitute about 95% of the total ergies and electron angular distributions. The method does
population after two-photon detachment. This result was alsaot require the diagonalization of the full Floquet Hamil-
obtained in our previous nonperturbative Floquet calculatiorionian matrix, and the block structure of the unperturbed
[12] (for the intensities equal or less than*1®@v/cn?) and  Floquet Hamiltonian matrix greatly facilitates the calcula-
confirmed experimentally24]. The tendency is preserved tions. The comparison of the perturbative and nonperturba-
for higher frequencies where one-photon detachment is posive results in the model potential Hcalculations shows that
sible. Our previous nonperturbative Floguet calculations othe high-order perturbation theory description of the total
multiphoton detachment by 1064-nm radiatiomell above  detachment rates is adequate for weak and medium strong
the one-photon threshgld16] also give about 90% ofl  laser fields(up to the intensity X 10'* W/cn? for the two-
electrons in the two-photon above-threshold rate. photon-dominant frequency rang&he LOPT description of
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TABLE IV. Partial angular amplitudea,, | for the above-threshold detachment of H'he frequency range corresponds to the minimum
of two absorbed photons. The column “%” shows the percent weight of the electrons with the particular angular momentum in the partial
detachment raté&',,. The numbers in square brackets indicate the powers of 10.

Laser Number of photons absorbed
frequency 2 3 4 5
(a.u) | ay, % | ag % | ay, % | as %

0.014 0 +7.66304] 999 1  +4.90606] 172 0 +1.14909] 102 1  +1.96111] 317

—i1.07504] —i6.29406] —i4.84908] +i9.92911]

2  —579603] 001 3 +3.41904] 828 2 +6.56309] 594 3 —4.44311] 56.3
—i0.41600] —i2.67Q07] +i1.44909] +i2.01712]

4  +6.45309] 304 5 —1.44G09] 12.0
+i1.41607] +i1.19712]

0.015 0 +543704] 926 1 +9.91606] 347 0 +9.79408] 121 1 —1.29011] 39.3
—i2.32104] —i5.23506] +i3.3708] +i7.62711]

2 —373§04] 74 3  +3.95104] 653 2 +4.38709] 585 3 —524711] 495
—i2.27701] —i2.35107] +i2.59409] +i1.21612]

4 +4.84709] 294 5 —2.17109] 11.2
+i1.42707] +i7.88Q11]

0.017 0 +2.8504] 623 1 +836406] 39.2 0 +522008 173 1 -2.04Q11] 46.1
—i2.18§04] —i3.63706] +i4.78708] +i3.22911]

2 —6.26404] 377 3 +522904] 608 2  +209509] 532 3 —3.05411] 425
—i1.04702] —i1.73507] +i1.82709] +i4.69611]

4  +277Q09] 291 5 —256909] 11.4
+i1.29907] +i3.64311]

0.019 0 +156104] 375 1 +565106] 362 O +255508 19.6 1 —1.30711] 49.4
—i1.65704] —i2.52Q06] +i3.41708] +i1.32711]

2  —657504] 625 3 +582104 638 2 +1.07309] 485 3 —1.49Q11 38.1
~i1.78Q02] —i1.25607] +i1.04909] +i1.99§11]

4  +1.63309] 319 5 -154309] 125
+i1.11507] +i1.78§11]

0.021 0 +871Q03] 224 1  +3.62306] 314 0 +1.21708] 198 1  -7.29910] 50.3
—i1.18704] —i1.76§06] +i2.14608] +i5.42Q 10]

2  —6.12q04] 776 3 +576704] 686 2 +583308] 444 3 -7.17410] 354
~i2.26902] —i9.10706] +i5.8308] +i9.18Q 10]

4  +9095Q08] 358 5 —1.09109] 14.3
+i9.00706] +i9.27510]

0.023 0 +4.87303] 134 1 +226406] 260 0 +563107] 186 1 —3.92010] 49.3
—i8.25703] —i1.25906] +i1.28§08] +i2.18Q10]

2 —544704] 866 3 +533G04 740 2  +3.33908 404 3 —3.46010] 33.7
—i2.53902] —i6.66606] +i3.21708] +i4.495 10]

4  +6.25608] 410 5 —7.16108] 17.0
+i6.99306] +i5.045 10]

0.025 0 +2.66603 077 1 +137106] 205 O +245Q07] 161 1 —2.05310] 46.1
~i5.52703] —i9.11§05] +i7.46Q07] +i8.29409]

2 —475Q004] 923 3  +4.74304] 795 2  +1.98708 363 3 —1.65§10] 32.9
~i2.65002] —i4.94706] +i1.73308] +i2.32310]

4 +4.04908] 476 5 —4.65508] 21.0
+i5.33706] +i2.86310]
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TABLE IV. (Continued.

Laser Number of photons absorbed
frequency 2 3 4 5
(a.u) I ay, % | ag % I ay, % I as, %
0.026 0 +1.92803] 5.6 1 +1.04306] 178 0 +1.54207] 14.3 1 —-1.46210] 434
—i4.41403] —i7.81805] +i5.56707] +i4.877209]
2 —4.42304] 944 3 +4.43004] 822 2 +1.55208] 341 3 -1.13410] 327
—i2.66102] —i4.28406] +i1.25Q08] +i1.70110]
4 +3.29008] 516 5 —3.80308] 23.9
+i4.647106] +i2.188 10]
0.027 0 +1.35Q 03] 3.8 1 +7.70205] 150 O +9.16Q 06] 12.0 1 —1.01910] 395
—i3.41303] —i6.75Q05] +i4.05107] +i2.66609]
2 —-4.1104] 962 3 +4.11704] 85.0 2 +1.22708] 31.8 3 —-7.569409] 32.9
—i2.65102] —3.72306] +i8.77907] +i1.25910]
4 +2.69008] 562 5 —-3.07708] 27.6
+i4.03806] +i1.68710]

the partial detachment rates and angular distributions is valithe procedure to the study of two- and three-active-electron

for lower intensitiesapproximately, up to 18 W/cn?). systems is in progress.
In conclusion, the present perturbative Floquet approach
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