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Exact relations of the quasienergy functional and the exchange-correlation potential
from the Floquet formulation of time-dependent density functional theory
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In the framework of the Floquet formulation of time-dependent density functional theory we present several
exact relations involving different parts of the quasienergy functional. These relations hold when the exact
densities and exchange-correlation energy functional are employed. They can be used as useful constraints and
tests when searching for the approximate forms of the time-dependent exchange-correlation functionals. The
general results are illustrated on an exactly soluble model, Hooke’s atom in a linearly polarized monochromatic
laser field.
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I. INTRODUCTION

Time-independent density functional theory~DFT! of
many-electron systems, based on the fundamental work
Hohenberg and Kohn@1# and Kohn and Sham@2#, is now a
well established and practical tool in various branches
chemistry and physics@3#. Being a formalism of many-body
theory in terms of the electron densityr(r ), DFT has proved
to be accurate and computationally much less expensive
the ab initio wave functional methods, and this accounts
its great success in time-independent electronic-structure
culations of the ground states of many-electron systems

To study more interesting dynamical processes, one ne
a time-dependent DFT~TDDFT! @4–7#. Runge and Gross@7#
have developed a time-dependent Kohn-Sham theory by
sidering the action to be stationary with respect to the den
variations. Several groups have also considered ti
dependent current density functional theory~TDCDFT! re-
cently @8–10#, where the action needs to be stationary w
respect to variations in paramagnetic current density as
as the density itself. The central result of the modern TDD
and TDCDFT is a set of time-dependent Kohn-Sh
~TDKS! equations which are structurally similar to the tim
dependent Hartree-Fock~TDHF! equations but include in
principle exactly all many-body effects through a tim
dependent exchange-correlation potential.

Recently we presented the Floquet formulation of TDD
@11# and TDCDFT@12# for atoms and molecules in intens
periodic and quasiperiodic~multicolor! @13# time-dependent
fields, allowing the reduction of TDKS equations to equiv
lent time-independentFloquet matrix eigenvalue problem
In the Floquet formulation of TDDFT, the main role
played by thequasienergy functional~compare with theac-
tion functional in the general time-dependent formulatio
@7#!:

F@F#5^^FuĤuF&&, ~1!

whereĤ5H2 i ]/]t is the Hamiltonian operator in the ex
tended Hilbert space which contains time-periodic wa
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functions. The inner product in the extended Hilbert spac
defined as (T is the period!:

^^FuJ&&5
1

TE0

T

dt^FuJ&. ~2!

Variation of the functional~1! under the normalization con
dition

^^FuF&&51 ~3!

leads to the time-dependent Schro¨dinger equation for the
time-periodic multielectron wave functionF. The solution
brings a stationary value~equal to the quasienergy«) to the
functional ~1!. Note that the normalization condition for th
function F should be satisfied also in the ordinary Hilbe
space at any time momentt:

^F~ t !uF~ t !&51. ~4!

Equation~4! holds because the HamiltonianH is a Hermitian
operator~in other words, the number of electrons is co
served!. The quasienergy functionalF@F# can be repre-
sented as a sum of contributions from time-dependent qu
tities such as kinetic energyT(t), single-particle potential
energyU(t), electron-electron interactionVee(t), interaction
with the external time-dependent fieldVext(t), and specific
term due to the derivative with respect to timeD(t):

F@F#5
1

TE0

T

dt@T~ t !1Vee~ t !1U~ t !1Vext~ t !1D~ t !#,

~5!

where

T~ t !5K FU2 1

2 (
j 51

N

¹ j
2UFL , ~6!

Vee~ t !5K FU 1

2 (
iÞ j

1

ur i2r j u
UFL , ~7!
©2000 The American Physical Society14-1



e

nin
A

ol

od

s
-

e
si-

ge-

ap-
ity
f
erv-
, it
nc-

eral
ality

nt
he
the
nd
can
ap-

tion
FT
ge-
o-
tic

lish
ous

e

-
sic
ar-
ral
to
na-

ing

po-

DMITRY A. TELNOV AND SHIH-I CHU PHYSICAL REVIEW A 63 012514
U~ t !5K FU(
j 51

N

u~r j !UFL , ~8!

Vext~ t !5K FU(
j 51

N

vext~r j ,t !UFL , ~9!

D~ t !5 K FU2 i
]

]t UF L , ~10!

N being the number of electrons andu(r ) andvext(r ,t) the
single-particle atomic and external field potentials, resp
tively. Atomic units will be used throughout this paper.

Since time is treated like any other~coordinate! variable
in the extended Hilbert space, one has asteady-stateproblem
for the quasienergy functional~1! and it can be rigorously
justified thatĤ(t), Ĥ(t), F(t), and the quasienergy« are all
unique functionals of the electron spin densities~see, e.g.,
@5#!. Thus the quasienergy functional Eq.~1! can be ex-
pressed as a functional of the spin densities.

Consider the corresponding Kohn-Sham system of no
teracting particles with the same electron spin densities.
the spin densities are periodic in time, the quasienergy s
tions of the corresponding time-dependent Schro¨dinger equa-
tions may be sought, and one can introduce the time-peri
Kohn-Sham spin orbitalsfk

s(r ,t) ~the superscripts stands
for the spin projection, taking valuesa andb for spin up and
down, respectively; the subscriptk enumerates the orbital
with the same spin!. Denoting byrs the spin density corre
sponding to the spins, and byr the total density,

rs~r ,t !5(
k

ufk
s~r ,t !u2, ~11!

r~r ,t !5(
s

rs~r ,t !, ~12!

one can rewrite the quasienergy functional~5! in the follow-
ing form:

F†F@ra,rb#‡[F@ra,rb#

5
1

TE0

T

dt@Ts~ t !1J~ t !1U~ t !

1Vext~ t !1Ds~ t !1Exc~ t !#. ~13!

The time-dependent quantities under the integral~13! are
defined as follows:

Ts~ t !5(
k,s

^fk
s~r ,t !u2 1

2 ¹2ufk
s~r ,t !&, ~14!

J~ t !5 1
2 E d3r E d3r 8

r~r ,t ! r~r 8,t !

ur2r 8u
, ~15!

U~ t !5E d3r r~r ,t !u~r !, ~16!
01251
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Vext~ t !5E d3r r~r ,t !vext~r ,t !, ~17!

Ds~ t !5(
k,s

K fk
s~r ,t !U2 i

]

]t Ufk
s~r ,t !L . ~18!

The single-particle potential expectation valueU(t) and ex-
ternal field expectation valueVext(t) are the same as in th
original interacting multi-electron system for the spin den
ties are the same. The noninteracting kinetic energyTs(t)
and classical electron-electron repulsion~Hartree! energy
J(t) are different fromT(t) and Vee(t), respectively. The
difference is taken into account through the exchan
correlation energyExc(t):

Exc~ t !5T~ t !1Vee~ t !1D~ t !2Ts~ t !2J~ t !2Ds~ t !.
~19!

The exchange-correlation energyExc(t) is an unknown func-
tional of the time-dependent spin densities. The simplest
proximation for this functional is the adiabatic local-dens
approximation~ALDA ! @4#, a straightforward extension o
the steady-state LDA to the time-dependent domain, pres
ing locality in both coordinate space and time. However
has been inferred that the exact exchange-correlation fu
tional may be nonlocal in both space and time, and sev
recent attempts have been made to study time nonloc
~memory effects! @14–17#.

The purpose of this paper is twofold. First we prese
several exact relations involving different parts of t
quasienergy functional. These relations, which hold in
Floquet formulation of TDDFT when the exact densities a
exchange-correlation energy and potential are employed,
be used as constraints and tests when searching for the
proximate forms of the time-dependent exchange-correla
functionals. Second, to illustrate the general Floquet TDD
results, we present an exact solution of the exchan
correlation energy and potential for a soluble model of tw
electron Hooke’s atoms in linearly polarized monochroma
laser fields.

The paper is organized as follows. In Sec. II we estab
exact relations regarding the time dependence of vari
parts of the quasienergy functional~Sec. II A! and based on
the virial theorem~Sec. II B!. In Sec. III we use the exampl
of an exactly soluble model~Hooke’s atom in a linearly po-
larized monochromatic field! to illustrate the general appli
cability of the exact relations. The model has some intrin
limitations since it exhibits the motion prescribed by the h
monic potential theorem, which is only a subset of gene
time-dependent behavior. However, it is still instructive
test the general formulas in an environment where many a
lytical results are available.

II. EXACT RELATIONS IN THE FLOQUET
FORMULATION OF TDDFT

In this section, we study several exact relations regard
the contributions to the quasienergy functional, Eq.~13!. The
relations involving the exchange-correlation energy and
4-2
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EXACT RELATIONS OF THE QUASIENERGY . . . PHYSICAL REVIEW A63 012514
tential are of primary importance since they can serve
additional constraints in the search for approximate tim
dependent exchange-correlation functionals. Exact relat
or theorems for the time-dependent quantities descri
above may be established in the framework of the Floq
formulation of TDDFT, just as they hold in the general TD
DFT @18#. Since the quasienergy in the Floquet formulati
of TDDFT is a time-independent quantity, some addition
constraints do exist that are not available in general TDD

A. Time derivatives of kinetic, potential, and exchange-
correlation energies

First, consider a multielectron system and recall that
multielectron time-periodic wave functionF satisfies the
time-dependent Schro¨dinger equation

FH~ t !2 i
]

]t GF~r1 , . . . ,rN ,t !5«F~r1 , . . . ,rN ,t !.

~20!

Since the normalization condition~4! holds, one can write
the following equation for the quasienergy«:

«5 K FUH~ t !2 i
]

]t UF L . ~21!

Note that the inner product on the right-hand side of Eq.~21!
is evaluated in the ordinary Hilbert space, so there is
integration with respect to time. That is why the quasiene
« can be represented as a sum of time-dependent term
pearing in Eq.~5!:

«5T~ t !1Vee~ t !1U~ t !1Vext~ t !1D~ t !. ~22!

The right-hand side of Eq.~22! must be equal to the consta
« at any time moment. Hence its derivative with respect
time vanishes:

d

dt
T~ t !1

d

dt
Vee~ t !1

d

dt
U~ t !1

d

dt
Vext~ t !1

d

dt
D~ t !50.

~23!

Equations~22! and ~23! express the first exact relations
the Floquet description of a multielectron system subject
time-periodic external field~no density functional theory so
far!. The time derivatives of the single-particle potential e
pectation valueU(t) and external field potentialVext(t) can
be expressed as

d

dt
U~ t !5E d3r

]r~r ,t !

]t
u~r !, ~24!

d

dt
Vext~ t !5E d3r F]r~r ,t !

]t
vext~r ,t !1r~r ,t !

]vext~r ,t !

]t G .
~25!

On the other hand, differentiating Eq.~21! with respect to
time, and taking into account thatF is an eigenfunction of
the operator@H(t)2 i ]/]t# with the eigenvalue«, one ob-
tains
01251
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D~ t !1«K ]F

]t UFL 1«* K FU]F

]t L
1K FU ]

]t (
j 51

N

vext~r j ,t !UFL 50. ~26!

Supposing that the quasienergy« is real, and taking into
account normalization condition~4!, one arrives at the rela
tion

d

dt
D~ t !1E d3r r~r ,t !

]vext~r ,t !

]t
50. ~27!

Making use of this result in Eq.~23! and taking into accoun
Eqs.~24! and~25!, the sum of time derivatives of the kineti
energy and electron-electron interaction can be expres
through the integral containing the time derivative of t
density and single-particle atomic and external field pot
tials:

d

dt
T~ t !1

d

dt
Vee~ t !52E d3r

]r~r ,t !

]t
@u~r !1vext~r ,t !#.

~28!

Equations~27! and ~28! are other important exact relation
which hold in the framework of the Floquet formalism.

Now we are going to apply the results to the Floqu
formulation of TDDFT. Consider the corresponding Koh
Sham system of noninteracting particles. The quasiene
Kohn-Sham equation for the time-periodic spin orbitalfk

s

reads as

F2
1

2
¹21u~r !1vH~r ,t !1vxc~r ,t !1vext~r ,t !2 i

]

]t G
3fk

s5ek
sfk

s . ~29!

Here vH(r ,t) is the Hartree potential,vxc(r ,t) is the
exchange-correlation potential, andek

s is the orbital quasie-
nergy. The normalization condition

^fk
sufk

s&51 ~30!

is assumed. Multiplying Eq.~29! by @fk
s#* and taking the

integral with respect to the coordinater , one obtains

K fk
sU2 1

2
¹21u~r !1vH~r ,t !1vxc~r ,t !1vext~r ,t !Ufk

sL
1 K fk

sU2 i
]

]t Ufk
sL 5ek

s . ~31!

Performing a summation of Eq.~31! over all spin orbitals
results in the following relation that must be satisfied at
bitrary time momentt:
4-3
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Ts~ t !1Ds~ t !1E d3r r~r ,t !@u~r !1vH~r ,t !1vxc~r ,t !

1vext~r ,t !#5Ts~ t !12J~ t !1U~ t !1Vext~ t !1Ds~ t !

1E d3r r~r ,t !vxc~r ,t !5(
k,s

ek
s .

~32!

Here Ts(t) and Ds(t) are the kinetic energy and time
derivative expectation values for the noninteracting Koh
Sham system, respectively:

Ts~ t !5(
k,s

K fk
sU2 1

2
¹2Ufk

sL , ~33!

Ds~ t !5(
k,s

K fk
sU2 i

]

]t Ufk
sL . ~34!

Differentiating Eq.~32! with respect to time, one obtains

d

dt
Ts~ t !1

d

dt
Ds~ t !1E d3r

]r~r ,t !

]t
@vH~r ,t !1vxc~r ,t !

1vext~r ,t !1u~r !#1E d3r r~r ,t !

3F]vH~r ,t !

]t
1

]vxc~r ,t !

]t
1

]vext~r ,t !

]t G50. ~35!

On the other hand, differentiating Eq.~31! with respect to
time and following the steps described above that led to
~27! for the multielectron system, one arrives at the follo
ing relation:

d

dt K fk
sU2 i

]

]t Ufk
sL 1 K fk

sU]vH~r ,t !

]t
1

]vxc~r ,t !

]t

1
]vext~r ,t !

]t Ufk
sL 50. ~36!

After summation over all spin orbitals, Eq.~36! takes the
form

d

dt
Ds~ t !1E d3r r~r ,t !

3F]vH~r ,t !

]t
1

]vxc~r ,t !

]t
1

]vext~r ,t !

]t G50. ~37!

Substituting Eq.~37! into Eq. ~35!, the following expression
is obtained:

d

dt
Ts~ t !52E d3r

]r~r ,t !

]t
@u~r !1vH~r ,t !1vxc~r ,t !

1vext~r ,t !#. ~38!

Equations~37! and ~38! are exact relations that express t
dependence of the single-particle kinetic energy and tim
01251
-

q.
-

-

derivative operator expectation values on time through
density and potentials, including the exchange-correlat
potential.

Now we consider the most important relations involvin
the time-dependent exchange-correlation energy and po
tial. Taking into account the definition of the exchang
correlation energy~19! and Eq.~22!, the relation~32! can be
rewritten in the following form:

Exc~ t !5«2(
k,s

ek
s1J~ t !1E d3r r~r ,t !vxc~r ,t !.

~39!

The exchange-correlation energyExc(t) itself can be ex-
pressed through the expectation value of the exchan
correlation potential, Hartree energyJ(t), total quasienergy
«, and Kohn-Sham spin-orbital quasienergiesek

s . Differen-
tiating Eq.~39! with respect to time, one obtains an equati
that does not contain quasienergies and relates the time
pendence of the exchange-correlation energy directly to
of the exchange-correlation potential expectation value
Hartree energy:

d

dt
Exc~ t !5

d

dtE d3r r~r ,t !vxc~r ,t !1
d

dt
J~ t !. ~40!

Equations~39! and ~40! are the main results of this section
Equation ~40! can serve as a constraint in the search
approximate time-dependent exchange-correlation funct
als since it establishes a relation between the time derivat
of the exchange-correlation energyExc(t) and the exchange
correlation potentialvxc(r ,t), which is supposed to be
functional derivative of (1/T)*0

T dt Exc(t) with respect to the
density.

Note that our result~40! for the time derivative of the
exchange-correlation energy differs from that obtained
Ref. @18#. This is because of the different definition of th
exchange-correlation energy. In Ref.@18# the exchange-
correlation energy~let us denote itẼxc) is defined as in time-
independent DFT; the time-derivative contributions are
taken into account:

Ẽxc~ t !5T~ t !1Vee~ t !2Ts~ t !2J~ t !. ~41!

For the time derivative of this quantity the same result as
Ref. @18# is obtained:

d

dt
Ẽxc~ t !5E d3r

]r~r ,t !

]t
vxc~r ,t !. ~42!

However, it isExc(t) and notẼxc(t) that is present in the
quasienergy functional~13! of the Kohn-Sham system an
makes it equal to the quasienergy of the original multiel
tron system. The exchange-correlation potentialvxc(r ,t) is a
functional derivative with respect to the density of that p
of the functional~13! which containsExc(t).
4-4
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B. Virial theorem

The virial theorem in the Floquet formulation of time
dependent density functional theory can be obtained
straightforward generalization of that in traditional quantu
mechanics. Consider first a multielectron system. It follo
from Eq. ~20! that the expectation value of the operator

A52
i

2 (
j 51

N

@~r j•“ j !1~“ j•r j !# ~43!

satisfies the following equation@Eqs.~6!, ~7!, and~8! are also
taken into account#:

d

dt
^FuAuF&52K FU2

1

2 (
j 51

N

¹ j
2UFL

2K FU(j 51

N

@r j•“ ju~r j !#UFL
2K FU(j 51

N

@r j•“ jvext~r j ,t !#UFL
2K FU(j 51

N S r j•“ j

1

2 (
i 51
iÞ j

N
1

ur i2r j u D UFL ,

~44!

where F is the time-periodic multielectron wave functio
Eq. ~20!. Making use of Eq.~6! and the homogeneity prop
erties of the Coulomb potential, Eq.~44! can be rewritten in
terms of the quantitiesT(t) andVee(t):

d

dt
^FuAuF&52T~ t !1Vee~ t !2K FU(

j 51

N

@r j•“ ju~r j !#UFL
2K FU(

j 51

N

@r j•“ jvext~r j ,t !#UFL . ~45!

On the other hand, the expectation value ofA is the time
derivative of the squared distance expectation value:

^FuAuF&5
1

2

d

dt K FU(
j 51

N

r j
2UFL . ~46!

Inserting Eq.~46! in the left-hand side of Eq.~45!, one ob-
tains

1

2

d2

dt2
K FU(

j 51

N

r j
2UFL 52T~ t !1Vee~ t !

2K FU(
j 51

N

@r j•“ ju~r j !#UFL
2K FU(

j 51

N

@r j•“ jvext~r j ,t !#UFL .

~47!
01251
y

s

Performing the same analysis for the noninteract
Kohn-Sham system, one arrives at the following relation:

1

2

d2

dt2
(
k,s

^fk
sur 2ufk

s&

52Ts~ t !2(
k,s

^fk
su@r•“u~r !#ufk

s&1J~ t !

2(
k,s

^fk
su@r•“vxc~r ,t !#ufk

s&

2(
k,s

^fk
su@r•“vext~r ,t !#ufk

s&. ~48!

The left-hand sides of Eqs.~47! and ~48! as well as the
contributions due to the single-particle potentialu(r ) and
external fieldvext(r ,t) coincide, since the multielectron an
Kohn-Sham systems possess the same density. Consequ
one obtains from combining Eqs.~47! and ~48!

2T~ t !1Vee~ t !52Ts~ t !1J~ t !

2(
k,s

^fk
su@r•“vxc~r ,t !#ufk

s&. ~49!

With the help of the expression for the exchange-correlat
energy~19!, Eq. ~49! can be recast in the final form

Exc~ t !1Tc~ t !2Dc~ t !52E d3r r~r ,t !@r•“vxc~r ,t !#,

~50!

where the correlation kinetic energyTc(t) and correlation
time derivativeDc(t) are defined as

Tc~ t !5T~ t !2Ts~ t !, ~51!

Dc~ t !5D~ t !2Ds~ t !. ~52!

Equation~50! is the main result of the current subsectio
It may serve as an additional constraint when searching
approximate forms of the time-dependent exchan
correlation energy functional and potential. Again, our res
~50! differs from the analogous expression in Ref.@18# due
to different definition of the exchange-correlation energ
There is no termDc(t) in the theorem of Ref.@18#.

The general results of this section will be illustrated in t
next section on the field-driven Hooke’s atom model~two
electrons interacting with the Coulomb force and bound i
one-particle harmonic oscillator potential!.

III. A MODEL STUDY: HOOKE’S ATOM IN A LINEARLY
POLARIZED LASER FIELD

The Hooke’s atom model has often been used in tim
independent DFT studies. Since the exact~in some cases
analytic! solution of the two-electron problem is available
this model, it allows for the construction of an exa
exchange-correlation potential. That is why this model a
4-5
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peared so attractive in testing various approximate form
exchange-correlation potential. Extensive tests of appr
mate functionals in the time-independent DFT were p
formed in Refs.@19# and @20#, and analytic solutions were
investigated in Refs.@21–23#. We consider here the exten
sion of the Hooke’s atom model to the time domain.

The unperturbed HamiltonianH0 of the two-electron
Hooke’s atom is as follows~in atomic units!:

H052
1

2
¹1

22
1

2
¹2

21
1

ur22r1u
1

1

2
v0

2~r 1
21r 2

2!. ~53!

In the presence of a time-dependent external field with e
tric field amplitudeE(t), the interaction of the electrons wit
the external field in the dipole approximation reads as

H152@E~ t !•r1#2@E~ t !•r2#. ~54!

The total HamiltonianH is defined as the sum ofH0 andH1:

H5H01H1 . ~55!

The time-dependent Schro¨dinger equation for the two
electron wave functionC(r1 ,r2 ,t) can be written as

i
]

]t
C~r1 ,r2 ,t !5HC~r1 ,r2 ,t !. ~56!

Introducing the center-of-mass and relative coordinates

RCM5
1

2
~r11r2!,

RRM5r22r1 , ~57!

one can represent the HamiltonianH in the following sepa-
rable form:

H5F2
1

4
¹RCM

2 1v0
2RCM

2 22@E~ t !•RCM#G
1F2¹RRM

2 1
1

RRM
1

1

4
v0

2RRM
2 G . ~58!

If the external fieldE(t) is periodic in time, the quasienerg
solution of Eq.~56! can be sought. Taking into account th
separability of the Hamiltonian~58!, the wave function
C(r1 ,r2 ,t) can be represented as

C~r1 ,r2 ,t !5exp~2 i«t !F~RCM ,t !w~RRM ,t !, ~59!

where« is the quasienergy, andF(RCM ,t) and w(RRM ,t)
are periodic functions of time. They satisfy the followin
center-of-mass motion~CM! and relative motion~RM! equa-
tions, respectively:

F2
1

4
¹RCM

2 2 i
]

]t
1v0

2RCM
2 22@E~ t !•RCM#GF~RCM ,t !

5«CMF~RCM ,t !, ~60!
01251
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F2¹RRM

2 2 i
]

]t
1

1

RRM
1

1

4
v0

2RRM
2 Gw~RRM ,t !

5«RMw~RRM ,t !. ~61!

Here «CM and «RM are the CM and RM quasienergies, r
spectively. The total quasienergy« is the sum of the CM and
RM quasienergies:

«5«CM1«RM . ~62!

Since the Hamiltonian in Eq.~61! is time independent, a
time-independent solutionw(RRM) exists that satisfies the
time-independent Schro¨dinger equation:

F2¹RRM

2 1
1

RRM
1

1

4
v0

2RRM
2 Gw~RRM!5«RMw~RRM!.

~63!

For the ground state, the eigenfunctionw(RRM) is spheri-
cally symmetric,w(RRM)5w(RRM).

Let the fieldE(t) be linearly polarized and monochro
matic:

E~ t !5F cosvt. ~64!

Then Eq. ~60! can be recast in the infinite set of time
independent equations for the Fourier componentsFm(RCM)
of the periodic wave functionF(RCM ,t):

F~RCM ,t !5 (
m52`

`

exp~2 imvt !Fm~RCM!, ~65!

F2
1

4
¹RCM

2 1v0
2RCM

2 GFm~RCM!22~F•RCM!@Fm21~RCM!

1Fm11~RCM!#5~«CM1mv!Fm~RCM!. ~66!

An analytic solution of Eq.~60! or Eq. ~66! exists; see Sec
III B for details.

The one-electron time-dependent densityr(r ,t) of the
field-driven ground state of the Hooke’s atom is calcula
according to the following definition:

r~r ,t !52E d3r 8UFS 1

2
~r1r 8!,t D U2

w2~ ur2r 8u!. ~67!

HereF(RCM ,t) andw(RRM) are the normalized solutions o
Eqs.~60! and~63!, respectively. The functionw(RRM) is the
RM ground state eigenfunction, whereasF(RCM ,t) is the
quasienergy wave function, which reduces to the CM grou
state as the external field is switched off.

A. Unperturbed Hooke’s atom

The unperturbed two-electron Hooke’s atom has been
vestigated several times in the literature@19–23#. Besides
presenting some additional results~to our knowledge, the
analytic expressions for the Hartree and single-particle
tentials forv051/2 have not been published yet!, we include
4-6
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this subsection because it is relevant to the developmen
the time-dependent theory in the following subsections II
and III C.

Without the external field (F50), Eq.~60! reduces to the
three-dimensional~3D! harmonic oscillator eigenvalue prob
lem. The normalized ground state wave functionF (0)(RCM)
is time independent and spherically symmetric and has
well-known expression

F (0)~RCM!5S 2v0

p D 3/4

exp~2v0RCM
2 !, ~68!

and the unperturbed eigenvalue«CM
(0) is given by

«CM
(0) 5

3

2
v0 . ~69!

Making use of the CM oscillator eigenfunction~68!, one can
perform analytically some integrations in the definition
the one-electron density~67! and express the ground sta
one-electron density of the unperturbed Hooke’s at
r (0)(r ), which also appears spherically symmetric, throug
one-dimensional integral containing the normalized R
ground state eigenfunctionw @19#:

r (0)~r !5
8

r S 2v0

p D 1/2

exp~22v0r 2!E
0

`

dr8r 8w2~r 8!

3expS 2
1

2
v0r 82D sinh~2v0rr 8!. ~70!

The time-independent Kohn-Sham orbitalfKS
(0)(r ) for this

two-electron system is obtained immediately from the kno
density~70!,

fKS
(0)~r !5F1

2
r (0)~r !G1/2

, ~71!

and the noninteracting kinetic energyTs
(0) and the Hartree

energyJ(0) are calculated as follows:

Ts
(0)52^fKS

(0)u2 1
2 ¹2ufKS

(0)&, ~72!

J(0)5 1
2 E d3r r (0)~r !vH

(0)~r !. ~73!

Here the unperturbed Hartree potentialvH
(0)(r ) has its usual

definition:

vH
(0)~r !5E d3r 8

r (0)~r 8!

ur2r 8u
. ~74!

The unperturbed exchange-correlation energyExc
(0) and

correlation kinetic energyTc
(0) are also calculated accordin

to their conventional definitions:

Exc
(0)5T(0)1Vee

(0)2Ts
(0)2J(0), ~75!

Tc
(0)5T(0)2Ts

(0) . ~76!
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Here T(0) and Vee
(0) are the unperturbed kinetic energy an

electron-electron repulsion of the two-electron system ca
lated according to Eqs.~6! and~7!, respectively, without ex-
ternal field.

Since for the two-electron system the exact excha
~Hartree-Fock! functional is expressed through the Hartr
energyJ(0), one can separate the exchange and correla
contributions as follows:

Ex
(0)52

1

2
J(0), ~77!

Ec
(0)5Exc

(0)2Ex
(0) . ~78!

The Kohn-Sham orbitalfKS
(0)(r ) defined by Eq.~71! must

satisfy the time-independent Kohn-Sham equation:

F2
1

2
¹21

1

2
v0

2r 21vs
(0)~r !GfKS

(0)~r !5eKS
(0)fKS

(0)~r !. ~79!

HereeKS
(0) is the orbital energy, andvs

(0)(r ) is a single-particle
potential that includes the Hartree potentialvH

(0)(r ) and
exchange-correlation potentialvxc

(0)(r ):

vs
(0)~r !5vH

(0)~r !1vxc
(0)~r !. ~80!

With the help of Eqs.~71! and ~79!, one can obtain the ex
pression for the potentialvs

(0)(r ) through the densityr (0)(r ):

vs
(0)~r !5

1

2 F 1

rr (0)

dr (0)

dr
1

1

2r (0)

d2r (0)

dr2

1S 1

2r (0)

dr (0)

dr D 2G2
1

2
v0

2r 21eKS
(0) . ~81!

The exchange-correlation potentialvxc
(0)(r ) satisfies the fol-

lowing relation, which can be obtained from the Kohn-Sha
equation~79! and the definition of the exchange-correlatio
energy@a particular case of the general time-dependent r
tion ~39!#:

E d3r r~r !vxc~r !52eKS
(0)2« (0)1Exc

(0)2J(0), ~82!

where « (0) is the unperturbed total energy of the Hooke
atom.

For some particular values ofv0, the RM equation~63!
has analytic solutions@21–23#. Then the unperturbed
Hooke’s atom problem has a completely analytic solutio
For example, this is the case for the ground state eigenfu
tion and v051/2. Below we consider this special case
more detail and we present an analytic expression for
exchange-correlation potential. The expressions for the
eigenfunctionw(RRM) and eigenvalue«RM appear as fol-
lows @22#:
4-7
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w~RRM!5@4p~815Ap!#21/2S 11
1

2
RRMD

3expS 2
1

8
RRM

2 D , ~83!

«RM5
5

2
v05

5

4
. ~84!

The total wave functionC (0)(r1 ,r2 ,t) in the original co-
ordinates and the total energy« (0) read as

C (0)~r1 ,r2 ,t !5p23/4@4p~815Ap!#21/2F11
1

2
ur12r2uG

3expS 2 i« (0)t2
1

4
~r 1

21r 2
2! D , ~85!

« (0)52. ~86!

The unperturbed two-electron kinetic energyT(0), one-
particle potential energyU (0), and electron-electron interac
tion Vee

(0) contributions to the total energy« (0) are as follows:

T(0)5
1017Ap

16110Ap
50.664 417 6, ~87!
al
an

01251
U (0)5
1419Ap

16110Ap
50.888 139 2, ~88!

Vee
(0)5

814Ap

16110Ap
50.447 443 2. ~89!

The one-electron density calculated from the wave fu
tion ~85! can be written in the following form@22#:

r (0)~r !5
2p23/2

815Ap
expS 2

1

2
r 2D F1

4
Ap

2
~71r 2!

1expS 2
1

2
r 2D1S r 1

1

r DAp

2
erfS r

A2
D G .

~90!

As an additional contribution, we present here the analy
expressions for the Hartree potentialvH

(0)(r ) and the single-
particle potentialvs

(0)(r ) produced by the density~90!:
vH
(0)~r !5

8p21/2

815Ap
X1
r F5p

4
erfS r

A2
D 12Ap erf~r !G2

1

4
Ap

2
expS 2

1

2
r 2D

1
p

2 H 12FerfS r

A2
D G 2J 2

3

r
expS 2

1

2
r 2DAp

2
erfS r

A2
D C, ~91!

vs
(0)~r !5

1

4

5Ap/21expS 2
1

2
r 2D1~r 15/r !Ap/2 erf~r /A2!

~1/4!Ap/2 ~71r 2!1expS 2
1

2
r 2D1~r 11/r !Ap/2 erf~r /A2!

2
1

8F ~1/2!Ap/2 r 1~1/r !expS 2
1

2
r 2D1~121/r 2!Ap/2 erf~r /A2!

~1/4!Ap/2 ~71r 2!1expS 2
1

2
r 2D1~r 11/r !Ap/2 erf~r /A2!

G 2

. ~92!
qs.
The potentialvs
(0)(r ) has correct asymptotic behavior asr

→` ~it vanishes as 1/r ). The orbital energy valueeKS
(0) ob-

tained from Eq.~81! under the condition that the potenti
vs

(0)(r ) vanishes at infinity is equal to 5/4. Generally, it c
be proved thateKS

(0) is equal to«RM @23#. The analytic expres-
sion for the exchange-correlation potentialvxc

(0)(r ) follows
immediately from Eqs.~91! and ~92!:

vxc
(0)~r !5vs

(0)~r !2vH
(0)~r !. ~93!
The numerical values of various quantities defined in E
~72!, ~73!, ~75!, ~76!, ~77!, and ~78! for the case ofv0
51/2 are

Ts
(0)50.635 245 7, ~94!

Tc
(0)50.029 171 95, ~95!

J(0)51.030 250 4, ~96!
4-8
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Exc
(0)520.553 635 2, ~97!

Ex
(0)520.515 125 2, ~98!

Ec
(0)520.038 510 05. ~99!

As one can see, the correlation energy is quite small c
pared with the exchange energy. From Eqs.~95! and ~99!
one can conclude that the correlation contributions to
kinetic and potential energies have opposite signs, and
potential correlation energy is more than two times large
absolute value.

The expectation value of the exchange-correlation po
tial ~82! can be evaluated without actual computation sin
all the quantities on the right-hand side of Eq.~82! are
known ~see discussion above!:

E d3r r~r !vxc
(0)~r !521.083 885 6. ~100!

Numerical computation of the integral using the analytic e
pressions~90! and ~93!, ~91!, and ~92! confirms this result.
Using the decomposition of the exchange-correlation po
tial vxc

(0)(r ) into the Hartree-Fock exchange potential@which
is equal to 2(1/2)vH

(0)(r )] and the correlation potentia
vc

(0)(r ), one obtains the following relation for the correlatio
potentialvc

(0)(r ):

E d3r r~r !vc
(0)~r !520.053 635 24. ~101!

We have calculated the correlation energy and the expe
tion value of the correlation potential over a wide range
v0. This information can serve as constraints in the sea
for the correlation energy functional, since the correct fo
of the functional must reproduce both the correlation ene
and the correlation-potential expectation value. The dep
dence of the correlation energy and correlation-potential
pectation value on the oscillator frequencyv0 are presented
in Fig. 1 for a wide range ofv0. Small values ofv0 corre-
spond to the low-density~and strong correlation! limit while
large values ofv0 correspond to the high-density~and weak
correlation! limit.

B. Hooke’s atom in a laser field: an exact Floquet solution
of the two-electron problem

For the two-electron Hooke’s atom model, only the C
equation ~60! is affected by the external time-depende
field. Equations~60! and~64! describe a 3D harmonic osci
lator subject to a linearly polarized monochromatic field.
this case analytic results also can be obtained. The ti
periodic partF(RCM ,t) of the quasienergy wave functio
originating from the ground state of the center-of-mass m
tion can be expressed as
01251
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F~RCM ,t !5S 2v0

p D 3/4

expF2v0S RCM2
F

v0
22v2

cosvt D 2

2 i2v
~F•RCM!

v0
22v2

sinvtG
3expF i

F2~v0
21v2!

4v~v0
22v2!2

sin 2vtG , ~102!

and the field-dependent quasienergy«CM reads as

«CM5«CM
(0) 2

1

2
F2

1

v0
22v2

5
3

2
v02

1

2
F2

1

v0
22v2

.

~103!

Note that the density distribution of the field-driven ha
monic oscillator produced by the wave function~102! has the
same shape as in the field-free case and oscillates rig
†harmonic-potential theorem~HPT! @24#‡:

uF~RCM ,t !u25S 2v0

p D 3/2

3expF22v0S RCM2
F

v0
22v2

cosvt D 2G .

~104!

As a consequence, the one-electron density of the Hoo
atom in the laser field,r(r ,t) @see Eq.~67!#, has the same
property. It can be calculated according to the expressio

FIG. 1. Absolute values of the correlation energy~solid line!
and expectation value of the correlation potential~dashed line! of
the field-free Hooke’s atom as functions of the oscillator frequen
v0 .
4-9



us

c

s

om

he

n
a

is

s of
e-

nal

an-

tal

DMITRY A. TELNOV AND SHIH-I CHU PHYSICAL REVIEW A 63 012514
r~r ,t !5
8

r F~ t ! S 2v0

p D 1/2

3exp@22v0r F
2~ t !#E

0

`

dr8r 8w2~r 8!

3expS 2
1

2
v0r 82D sinh@2v0r 8r F~ t !#, ~105!

wherer F(t) is the absolute value of the time-shifted radi
vector,

r F~ t !5Ur2
F

v0
22v2

cosvtU . ~106!

In other words, the following relation holds:

r~r ,t !5r (0)
„r F~ t !…. ~107!

The time-dependent components of the energy can be
culated with the help of the wave function~102! or the den-
sity ~107!. The kinetic energyTCM(t) and one-particle po-
tential energyUCM(t) contributions from the center-of-mas
motion are calculated as follows:

TCM~ t !5
3

4
v01

1

2
F2

v2

~v0
22v2!2

2
1

2
F2

v2

~v0
22v2!2

cos 2vt, ~108!

UCM~ t !5
3

4
v01

1

2
F2

v0
2

v0
22v2

1
1

2
F2

v0
2

~v0
22v2!2

cos 2vt.

~109!

Taking into account the time-independent contributions fr
the relative motion, one obtains the following exact~two-
electron! Hooke’s atom kinetic and potential energies in t
laser field:

T~ t !5T(0)1
1

2
F2

v2

~v0
22v2!2

2
1

2
F2

v2

~v0
22v2!2

cos 2vt,

~110!

U~ t !5U (0)1
1

2
F2

v0
2

~v0
22v2!2

1
1

2
F2

v0
2

~v0
22v2!2

cos 2vt.

~111!

In the case ofv051/2 the field-free valuesT(0) andU (0) are
given by Eqs.~87! and ~88!, respectively. The expectatio
valueVext(t) of the external time-dependent field also has
analytic expression:

Vext~ t !52F2
1

v0
22v2

2F2
1

v0
22v2

cos 2vt. ~112!
01251
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Thus, we present the expectation valueD(t) of the time-
derivative operator2 i ]/]t that is important in time-
dependent problems:

D~ t !52F2
v2

~v0
22v2!2

1
1

2
F2

1

v0
22v2

cos 2vt.

~113!

The electron-electron interaction energyVee is time indepen-
dent since it depends on the relative motion only, which
not affected by the external field:

Vee5Vee
(0) . ~114!

In the casev051/2 it is given by Eq.~89!.
Note that dependence on time of the expectation value

kinetic energy, potential energy, external field, and tim
derivative operator is confined to the function cos 2vt. This
is inherent to the harmonic oscillator behavior in the exter
monochromatic field.

One can also calculate various combinations of the qu
tities T(t), U(t), Vext(t), andVee. For example, the time-
dependent expectation value of the total HamiltonianH @the
time-dependent energyE(t) of the Hooke’s atom# is ex-
pressed as

E~ t !5T~ t !1U~ t !1Vee1Vext~ t !

5«RM1«CM
(0) 2

1

2
F2

v0
223v2

~v0
22v2!2

2
1

2
F2

1

v0
22v2

cos 2vt. ~115!

Other important combinations areT(t)1U(t) and T(t)
2U(t):

T~ t !1U~ t !5T(0)1U (0)1
1

2
F2

v0
21v2

~v0
22v2!2

1
1

2
F2

1

v0
22v2

cos 2vt, ~116!

T~ t !2U~ t !5Tr2Ur2
1

2
F2

1

v0
22v2

2
1

2
F2

v0
21v2

~v0
22v2!2

cos 2vt. ~117!

Note that the combinationE(t)1D(t)5T(t)1U(t)1Vee
1Vext(t)1D(t) is time independent and equal to the to
quasienergy«:

T~ t !1U~ t !1Vee1Vext~ t !1D~ t !

5«5«RM1«CM
(0) 2

1

2
F2

1

v0
22v2

. ~118!
4-10
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C. Hooke’s atom in a laser field: construction of the exact
Kohn-Sham orbital and exchange-correlation potential

In this section, using the exact Floquet solution of t
two-electron problem described in Sec. III B, we calcula
the exact Kohn-Sham orbital and invert the time-depend
Kohn-Sham equation to obtain the exact exchan
correlation potential. The time-periodic Kohn-Sham orbi
fKS(r ,t) must satisfy the quasienergy Kohn-Sham equati

F2
1

2
¹21

1

2
v0

2r 22~F•r !cosvt1vs~r ,t !2 i
]

]t G
3fKS~r ,t !5eKSfKS~r ,t !. ~119!

HereeKS is the orbital quasienergy andvs(r ,t) is the time-
dependent single-particle potential, which includes the H
tree and exchange-correlation potentials:

vs~r ,t !5vH~r ,t !1vxc~r ,t !, ~120!

vH~r ,t !5E d3r 8
r~r 8,t !

ur2r 8u
. ~121!

In the time-dependent problem, the phase of the comp
Kohn-Sham orbitalfKS(r ,t) is important. Let the function
fKS(r ,t) be represented through its modulus and phase:

fKS~r ,t !5M ~r ,t !exp@ iP~r ,t !#. ~122!

Upon substitution of Eq.~122! in Eq. ~119!, one obtains the
following two coupled equations to solve for the modul
and phase:

2
1

2
@¹2M2M ~¹P!2#1M

]P

]t

1F1

2
v0

2r 22~F•r !cosvt1vs~r ,t !GM5eKSM , ~123!

]M2

]t
1@“•~M2

“P!#50. ~124!

Our goal is to calculate both the modulus and phase of
Kohn-Sham orbital and then obtain the time-depend
single-particle potentialvs(r ,t). As one will see, the result
can be obtained in the analytic form if the RM problem h
an analytic solution. At least, all the quantities can be
pressed through the~time-independent, spherically symme
ric! RM wave function, and the time dependence of the
pectation values can be obtained analytically.

First, the modulusM (r ,t) is easily obtained from the one
electron density~105!,

M ~r ,t !5F1

2
r~r ,t !G1/2

, ~125!

and, taking into account Eqs.~107! and ~71!, can be ex-
pressed through theunperturbedKohn-Sham orbitalfKS

(0)

calculated at the shifted variabler F(t),
01251
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M ~r ,t !5fKS
(0)
„r F~ t !…, ~126!

wherer F(t) is given in Eq.~106!. Then the phaseP(r ,t) can
be calculated from Eq.~124!. This is a general continuity
equation but because of the specific dependence of the f
tion M (r ,t) on time ~through the variabler F), it can be
recast in the following form:

H“•FM2S“P1F
v

v0
22v2

sinvt D G J 50. ~127!

The particular solution of Eq.~127! that serves the purpose
as follows:

P~r ,t !52~F•r !
v

v0
22v2

sinvt1 f ~ t !. ~128!

The unknown functionf (t), which depends on the time only
cannot be determined from the continuity equation. The p
ticular choice of this term can be made when inserting
phaseP(r ,t) in Eq. ~123!. The requirement that the potentia
vs(r ,t) vanishes asr→` determines both the termf (t) and
the quasienergyeKS . The final expressions for the time
dependent Kohn-Sham orbitalfKS(r ,t) and quasienergyeKS
are as follows:

fKS~r ,t !5fKS
(0)
„r F~ t !…

3expF2 iv
~F•r !

v0
22v2

sinvt

1 i
F2~v0

21v2!

8v~v0
22v2!2

sin 2vtG , ~129!

eKS5eKS
(0)2

1

4
F2

1

v0
22v2

5«RM2
1

4
F2

1

v0
22v2

.

~130!

When employing the calculated modulus and phase of
Kohn-Sham orbital in Eq.~123!, another important conclu
sion can be made regarding the single-particle poten
vs(r ,t), namely, it can be expressed by means of theunper-
turbedsingle-particle potentialvs

(0) calculated at the shifted
independent variabler F(t):

vs~r ,t !5vs
(0)
„r F~ t !…. ~131!

Since the Hartree potentialvH(r ,t) defined by Eq.~121! ob-
viously satisfies the similar equation

vH~r ,t !5vH
(0)
„r F~ t !… ~132!

due to the corresponding property of the density@see Eq.
~107!#, it follows that the exchange-correlation potenti
vxc(r ,t) alone also must satisfy a similar equation:

vxc~r ,t !5vxc
(0)
„r F~ t !…. ~133!
4-11
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This is again a manifestation of the HPT@24#. The exact
exchange-correlation potential satisfies Eq.~133! as shown
by its construction. Equation~133! serves as a useful con
straint and test of the accuracy and applicability of the
proximate time-dependent exchange-correlation poten
form used. For example, if the approximate exchan
correlation potential used is a local functional of the dens
@as in ALDA, vxc(r ,t)5vxc„r(r ,t)…], it will have the same
functional form as for the unperturbed~time-independent!
system but calculated with the shifted densityr (0)

„r F(t)…,
i.e., the densityr(r ,t) of the system in the field. However, i
general the exact functional can be nonlocal in both sp
and time; the possible forms of the exchange-correlation
tential with memory that satisfy Eq.~133! and other exact
symmetries were studied in Ref.@17#. An investigation of the
adiabatic and dynamic contributions to the exchan
correlation potential in a model involving the 2D Hooke
atom ~but not for HPT motion! @25# showed that dynamic
contributions were negligibly small.

In Figs. 2 and 3 we compare exact and ALDA@26# ex-
change and correlation potentials, respectively, at differ
time moments. The oscillator frequency used in the calcu
tions is v051/2 a.u. and the laser field parameters are
follows: v50.22 a.u. andF50.05 a.u. This is a rather stron
external field and the potential curves at different time m
ments ~dotted line for cosvt521 and dashed line fo
cosvt51) are displaced significantly from that of the ze
instantaneous field (cosvt50). The ALDA potentials are ob-
tained directly from extension of the static LDA form@26# to
the time domain using the adiabatic approximation. For
exchange potential at larger, the ALDA curve decays to zero
exponentially, while the exact potential follows the corre
21/r Coulombic behavior. There is also substantial diffe
ence in the short-range part between the two potent
Similarly, there is significant difference in the two correl
tion potentials. Such discrepancies are expected and ca
attributed to an intrinsic defect of the LDA exchang

FIG. 2. Exact and ALDA exchange potentials for the Hooke
atom atv051/2 a.u. as measured along the positive part of thz
axis ~external field is polarized in thez direction! at different time
moments. The solid lines correspond to the zero instantaneous
cosvt50, while the dotted and dashed lines correspond to the p
values of the field, cosvt521 and cosvt51, respectively.
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correlation potential in its static form, namely, the existen
of the self-interaction term in the LDA energy functiona
Similar problems still exist even when one uses the m
refined generalized gradient approximation@3# in the adia-
batic approximation.

In the study of time-dependent dynamics involving t
excited and continuum states, it is essential that the lo
range exchange-correlation potential be treated more a
rately. The recent development of time-dependent optimi
effective potential~OEP! methods@27,28# based on exten-
sion of the KLI ~Krieger-Li-Iafrate! theory @29# to the time
domain has significantly advanced this field. If an expli
self-interaction-correction~SIC! form is further introduced,
the time-dependent OEP/KLI-SIC procedure leads to
single-particle exchange-correlation potential that is both
cal and orbital independent and has the proper long-ra
Coulombic behavior@28#. For the special case of two
electron systems, the OEP/KLI procedure in fact reduce
the exact Hartree-Fock potential~for the exchange part!. Ap-
plying this time-dependent OEP/KLI-SIC procedure to t
present problem, we recover the exact time-dependent
change potential as shown in Fig. 2.

Now we proceed to the calculation of the various con
butions to the quasienergy functional of the Kohn-Sham s
tem. The noninteracting kinetic energyTs(t) defined as

Ts~ t !52^fKS~r ,t !u2 1
2 ¹2ufKS~r ,t !& ~134!

is determined with the help of Eq.~129!, giving

Ts~ t !5Ts
(0)1

1

2
F2

v2

~v0
22v2!2

2
1

2
F2

v2

~v0
22v2!2

cos 2vt.

~135!

Note that the dependence on the external field and tim
Ts(t) are the same as in the exact two-electron kinetic ene
T(t) @Eq. ~110!#. Thus the correlation kinetic energyTc is
time independent and coincides with its unperturbed valu

Tc~ t !5T~ t !2Ts~ t !5T(0)2Ts
(0)5Tc

(0) . ~136!

ld,
ak

FIG. 3. Exact and ALDA correlation potentials for the Hooke
atom atv051/2 a.u. as measured along the positive part of thz
axis ~external field is polarized in thez direction! at different time
moments. The curve notations are the same as those in Fig. 2
4-12
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The expectation valueDs(t) of the noninteracting time-
derivative operator is calculated according to

Ds~ t !52K fKS~r ,t !U i ]

]t UfKS~r ,t !L . ~137!

It is found thatDs(t) is the same as the two-electron expe
tation valueD(t):

Ds~ t !5F2
v2

~v0
22v2!2

2
1

2
F2

1

v0
22v2

cos 2vt5D~ t !.

~138!

The Hartree energyJ(t) is defined according to

J~ t !5 1
2 E d3r E d3r 8

r~r ,t !r~r 8,t !

ur2r 8u

5 1
2 E d3r r~r ,t !vH~r ,t !. ~139!

Since the densityr(r ,t) and Hartree potentialvH(r ,t) pos-
sess the properties~107! and~132!, respectively, the integra
in the right-hand side of Eq.~139! becomes time indepen
dent, and the Hartree energy coincides with its unpertur
value:

J~ t !5J(0). ~140!

Similarly, the exchange-correlation energyExc(t) defined
according to Eq.~19! also reduces to its unperturbed valu

Exc~ t !5Exc
(0) . ~141!

The results~135! and~138!, yielding the time dependence o
the noninteracting kinetic energy and time derivative, a
~136!, ~140!, and ~141!, demonstrating actual timeindepen-
denceof the correlation kinetic energy, Hartree energy, a
exchange-correlation energy, can be attributed to the spe
model under consideration~HPT motion!. In particular, that
the Hartree and exchange-correlation energies do not a
ally depend on time is not true in the more general case

As in the field-free case~see Sec. III A!, one can split the
exchange-correlation energy into exchange-only~Hartree-
Fock! and correlation parts. The further analysis here is
sentially the same as in Sec. III A since all the expectat
values related to the exchange and correlation potentials
duce to the unperturbed ones.

To apply the general time-dependent relations~37! and
~38!, note that for HPT motion the following equations hol

]vH~r ,t !

]t
5@F•¹vH

(0)~r F!#
v

v0
22v2

sinvt, ~142!

]vxc~r ,t !

]t
5@F•¹vxc

(0)~r F!#
v

v0
22v2

sinvt. ~143!

Then in the right-hand side of Eq.~37! the integrals contain-
ing the time derivatives of the Hartree and exchan
01251
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correlation potentials vanish due to exact symmetry~the total
interparticle repulsion and exchange-correlation forces
equal to zero by Newton’s third law!. The remaining integral
containing the time derivative of the external field is exac
the same as in Eq.~27!, so the time dependence ofD(t) and
Ds(t) is the same@actually, for HPT motion, the entire ex
pectation valuesDs(t) andD(t) coincide; see Eq.~138!#. In
the right-hand side of Eq.~38! the integrals containing the
exchange-correlation and Hartree potentials are expre
through the integrals appearing in Eq.~37! and the time de-
rivatives of the expectation values of exchange-correlat
and Hartree potentials, respectively,

E d3r
]r~r ,t !

]t
vH~r ,t !5

d

dtE d3r r~r ,t !vH~r ,t !

2E d3r r~r ,t !
]vH~r ,t !

]t
,

~144!

E d3r
]r~r ,t !

]t
vxc~r ,t !5

d

dtE d3r r~r ,t !vxc~r ,t !

2E d3r r~r ,t !
]vxc~r ,t !

]t
.

~145!

Since the expectation values of the Hartree and excha
correlation potentials are time independent for HPT moti
the time derivatives ofTs andT are the same, in accordanc
with Eqs. ~110! and ~135!. To confirm the general relation
~39! regarding the exchange-correlation energy, one ne
only to make sure that the quasienergy combination app
ing on the right-hand side of Eq.~39! is field independent,
since all the expectation values reduce to the unpertur
ones. With the help of Eqs.~118! and~130!, one can see tha
this is the case, so the general relation~39! holds.

In conclusion, we have presented in this paper sev
exact relations that hold in the Floquet formulation of TD
DFT. The most important results are those involving t
time-dependent exchange-correlation energy and poten
Eqs.~39!, ~40!, and~50!. They can be used as constraints f
testing the validity and accuracy of approximate forms of
time-dependent exchange-correlation functionals. The g
eral relations are verified in an exactly soluble model,
two-electron Hooke’s atom in a linearly polarized laser fie
This model exhibits a special kind of motion, described
the harmonic potential theorem@24#. Further work including
the consideration of models beyond the HPT would allow
more complete investigation of the time-dependent prop
ties of the exchange-correlation energy functionals and
tentials. Work in this direction is in progress.
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