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In the framework of the Floquet formulation of time-dependent density functional theory we present several
exact relations involving different parts of the quasienergy functional. These relations hold when the exact
densities and exchange-correlation energy functional are employed. They can be used as useful constraints and
tests when searching for the approximate forms of the time-dependent exchange-correlation functionals. The
general results are illustrated on an exactly soluble model, Hooke’s atom in a linearly polarized monochromatic
laser field.
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[. INTRODUCTION functions. The inner product in the extended Hilbert space is
defined as T is the periogt
Time-independent density functional theofdFT) of
many-electron systems, based on the fundamental works of _ 1(7 _
Hohenberg and Kohfl] and Kohn and Shar®2], is now a (®[E)= Tfo dy(®[=). (2)
well established and practical tool in various branches of
chemls.try and physids3]. Being a formahsm of many-body Variation of the functionall) under the normalization con-
theory in terms of the electron densjiyr), DFT has proved dition
to be accurate and computationally much less expensive than
the ab initio wave functional methods, and this accounts for (D|D))=1 3)
its great success in time-independent electronic-structure cal-

culations of the grpund states of mgny-electron SYSIemS. 10345 to the time-dependent Sofiriger equation for the
.TO study more interesting dynamical processes, one neeQﬁ‘ne—periodic multielectron wave functio®. The solution
a time-dependent DFITDDFT) [4-7]. Runge and Grog] brings a stationary valugqual to the quasienergy) to the

h.ave.developeq atme-depgndent thn-Sham theory by COinctional (1). Note that the normalization condition for the
sidering the action to be stationary with respect to the densnYunction ® should be satisfied also in the ordinary Hilbert
variations. Several groups have also considered timeépace at any time momett
dependent current density functional thedyDCDFT) re-

cently [8—10], where the action needs to be stationary with
respect to variations in paramagnetic current density as well
as the density itself. The central result of the modern TDDFT . o .
and TDCDFT is a set of time-dependent Kohn_ShamEquatlon(_Af) holds because the Hamiltoni&his a Herm_|t|an
(TDKS) equations which are structurally similar to the time- OPerator(in other words, the number of electrons is con-

dependent Hartree-FookrDHF) equations but include in Served. The quasienergy functionadf[®] can be repre-
principle exactly all many-body effects through a time- sented as a sum of contributions from time-dependent quan-

dependent exchange-correlation potential. tities such as kinetic energV(.t), single—partic!e potential
Recently we presented the Floquet formulation of TDDFTENErgyU(t), electron-electron interactiovq(t), interaction

[11] and TDCDFT[12] for atoms and molecules in intense With the external time-dependent fielt.,(t), and specific

periodic and quasiperiodignulticolor) [13] time-dependent term due to the derivative with respect to tirbgt):

fields, allowing the reduction of TDKS equations to equiva-

lent time-independenEloquet matrix eigenvalue problems.

In the Floquet formulation of TDDFT, the main role is

(@] P(1)=1. (4)

F[@]= %JOTdt[T(t) +Vedt) +U(1) +Vey() +D(1)],

played by thequasienergy functionalcompare with theac- (5)
tion functional in the general time-dependent formulation
[7D): where
1 N
— 7 _ 2

FL®]=(([F|®)), (D) T(t>—<¢‘—§j21 Vi <I>>, ©)
where H=H—idlat is the Hamiltonian operator in the ex- Vodt)=( @ } D 1 ® @
tended Hilbert space which contains time-periodic wave ee 2 ri—nl |7
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N
U(t)=<<I) le u(r;) q>>, (8)
N
Vext(t):<¢) jgl vext(rj 1) (1)>, )
J— H (9
D(t)={®|—i—|®), (10)

N being the number of electrons andr) andv.,(r,t) the

single-particle atomic and external field potentials, respec

tively. Atomic units will be used throughout this paper.

Since time is treated like any othéroordinate variable
in the extended Hilbert space, one hageady-stat@roblem
for the quasienergy functiondll) and it can be rigorously
justified thatF(t), H(t), ®(t), and the quasienergyare all
unique functionals of the electron spin densitisse, e.g.,
[5]). Thus the quasienergy functional E(l) can be ex-
pressed as a functional of the spin densities.

PHYSICAL REVIEW A 63012514

Vext(t):f dr P Dvexd(r,t), 17

Jd
DS(t):ko- <¢§(r,t)—iﬁ¢‘k’(r,t)>. (18

The single-particle potential expectation valuét) and ex-
ternal field expectation valué,,(t) are the same as in the
original interacting multi-electron system for the spin densi-
ties are the same. The noninteracting kinetic energft)

and classical electron-electron repulsig@dartree energy
J(t) are different fromT(t) and V.((t), respectively. The
difference is taken into account through the exchange-
correlation energy,(t):

Exc()=T(1) +Vedt) +D(t) = Ts(t) = I(t) — Dy(1).
(19

The exchange-correlation energy,(t) is an unknown func-
tional of the time-dependent spin densities. The simplest ap-

Consider the corresponding Kohn-Sham system of noninproximation for this functional is the adiabatic local-density
teracting particles with the same electron spin densities. Agpproximation(ALDA) [4], a straightforward extension of
the spin densities are periodic in time, the quasienergy soluhe steady-state LDA to the time-dependent domain, preserv-

tions of the corresponding time-dependent Sdhrger equa-

ing locality in both coordinate space and time. However, it

tions may be sought, and one can introduce the time-periodisas been inferred that the exact exchange-correlation func-

Kohn-Sham spin orbitalgy/ (r,t) (the superscript- stands
for the spin projection, taking valuesand g for spin up and
down, respectively; the subscrigtenumerates the orbitals
with the same spin Denoting byp? the spin density corre-
sponding to the spiar, and byp the total density,

2, 11

p”(r,t>=§ | g(r,t)

p(r,)=2 p°(r,t), (12)

one can rewrite the quasienergy functiot@lin the follow-
ing form:

F[®[p* pP11=F[p* p”]
1T
_Tfo dif T4(t) +I(t)+U(t)

+Vext(t)+Ds(t)+Exc(t)]- (13)

The time-dependent quantities under the intedia) are
defined as follows:

T =2 ((r,0= 3V i(r.0), (14)
_1 3 3.7 p(l’,t) p(rlvt)

J(t)—zfdrjdr —|r—r’| (15

U(t)=j d3r p(r,tu(r), (16)

tional may be nonlocal in both space and time, and several
recent attempts have been made to study time nonlocality
(memory effects[14-17.

The purpose of this paper is twofold. First we present
several exact relations involving different parts of the
quasienergy functional. These relations, which hold in the
Floquet formulation of TDDFT when the exact densities and
exchange-correlation energy and potential are employed, can
be used as constraints and tests when searching for the ap-
proximate forms of the time-dependent exchange-correlation
functionals. Second, to illustrate the general Floquet TDDFT
results, we present an exact solution of the exchange-
correlation energy and potential for a soluble model of two-
electron Hooke’s atoms in linearly polarized monochromatic
laser fields.

The paper is organized as follows. In Sec. Il we establish
exact relations regarding the time dependence of various
parts of the quasienergy function@ec. Il A) and based on
the virial theoremSec. Il B). In Sec. Il we use the example
of an exactly soluble modéHooke’s atom in a linearly po-
larized monochromatic fie)cto illustrate the general appli-
cability of the exact relations. The model has some intrinsic
limitations since it exhibits the motion prescribed by the har-
monic potential theorem, which is only a subset of general
time-dependent behavior. However, it is still instructive to
test the general formulas in an environment where many ana-
lytical results are available.

II. EXACT RELATIONS IN THE FLOQUET
FORMULATION OF TDDFT

In this section, we study several exact relations regarding
the contributions to the quasienergy functional, &c). The
relations involving the exchange-correlation energy and po-
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tential are of primary importance since they can serve as d 9D 9D

additional constraints in the search for approximate time- ED(t)+£<W <I>> +s*<<1) W>

dependent exchange-correlation functionals. Exact relations

or theorems for the time-dependent quantities described g N

above may be established in the framework of the Floquet +<q) —> Vexd 1) q)> =0. (26)
formulation of TDDFT, just as they hold in the general TD- =1

DFT [18]. Since the quasienergy in the Floquet formulation
of TDDFT is a time-independent quantity, some additionalSupposing that the quasienergyis real, and taking into
constraints do exist that are not available in general TDDFTaccount normalization conditiof@), one arrives at the rela-

tion
A. Time derivatives of kinetic, potential, and exchange-
correlation energies d 5 AV axd(1 1)
. . . —D(t)+ [ d°r p(r,t)———=0. 2
First, consider a multielectron system and recall that the dt ® f p(r.) at @7)
multielectron time-periodic wave functio® satisfies the
time-dependent Schadinger equation Making use of this result in Eq23) and taking into account
P Egs.(24) and(25), the sum of time derivatives of the kinetic
[H(t)—i—}@(rl, D =e®(ry, b, energy and _electron-electr_on interac;ion can be_ expressed
ot through the integral containing the time derivative of the

(20 density and single-particle atomic and external field poten-

Since the normalization conditio@®) holds, one can write tials:
the following equation for the quasienergy
dT dV B fdg ap(r,t)
G T+ G Ved )= | & ——=[u(r)+vex(r.b)].

9
a:<CI)H(t)—|E <1>>. (21) 29

Note that the inner product on the right-hand side of 4)  Equations(27) and (28) are other important exact relations

is evaluated in the ordinary Hilbert space, so there is NQuhich hold in the framework of the Floquet formalism.

integration with respect to time. That-ls why the quasienergy Now we are going to apply the results to the Floquet

& can be represented as a sum of time-dependent terms a@rmulation of TDDFT. Consider the corresponding Kohn-

pearing in Eq(5): Sham system of noninteracting particles. The quasienergy
£ =T(t)+ Voo 1)+ U (1) + Vor (1) + D(1). 22) Kohn-Sham equation for the time-periodic spin orbigs]

reads as
The right-hand side of Eq22) must be equal to the constant
e at any time moment. Hence its derivative with respect to

1 9
time vanishes: - §V2+ u(r) +oy(r,t) +oy(rt) +vexdr,t)—i >

d d d d d X p= el (29)
—_ — — — _ - k= €k P -
dtT(t)ertVee(t)Jrd,[U(t)ertVext(t)JrdtD(t) 0.

(23 Here vy(r,t) is the Hartree potentialp,(r,t) is the
exchange-correlation potential, aefl is the orbital quasie-

Equations(22) and (23) express the first exact relations in Jr ¢
fergy. The normalization condition

the Floquet description of a multielectron system subject to
time-periodic external fieldno density functional theory so

far). The time derivatives of the single-particle potential ex- (dldi)=1 (30
pectation valudJ(t) and external field potentidf,,(t) can
be expressed as is assumed. Multiplying Eq(29) by [#¢]* and taking the
d integral with respect to the coordinate one obtains
3 dp(r,t)
—U(t)= | d°r u(r), (249
dt ot 1
Il— —V2+u(r) +oy(r,t) +o,(r.t)+o (r,t)‘ ">
d y - f d3 ﬁp(r,t) N ﬁvext(l’,t) <¢k 2 H XC ext d’k
& extt)= r Tvext(r;t) P(r,t)T

. d
(25 +<¢z —15‘¢?>=e?- (3D
On the other hand, differentiating E¢R1) with respect to
time, and taking into account thdt is an eigenfunction of Performing a summation of Eq31) over all spin orbitals
the operatof H(t) —id/adt] with the eigenvalues, one ob- results in the following relation that must be satisfied at ar-
tains bitrary time moment:

012514-3



DMITRY A. TELNOV AND SHIH-I CHU PHYSICAL REVIEW A 63012514

derivative operator expectation values on time through the
Ts(t)+Ds(t)+J’ d*r p(r,Hu(r) +op(r,t) +oy(rt) density and potentials, including the exchange-correlation
potential.
F U1, ]=Tg(1) +23(1) + U (1) + Vey(t) + Dg(t) Now we consider the most important relations involving
the time-dependent exchange-correlation energy and poten-
+J’ d3r p(r,t)vxc(r,t)=2 €y - tial. Taking into account the definition of the exchange-
ko (32) correlation energyl19) and Eq.(22), the relation(32) can be

rewritten in the following form:

Here T4(t) and D¢(t) are the kinetic energy and time-

derivative expectation values for the noninteracting Kohn- _ - 3
Sham system, respectively: Exc(t)=e kzz; 6k+‘](t)+f d* p(rhvx(r.Y).

39
( )
__‘72

To(t)= g < o7 b7 > : (33)

The exchange-correlation enerdgy(t) itself can be ex-
pressed through the expectation value of the exchange-
. correlation potential, Hartree energyt), total quasienergy
'E‘¢k>' (34 e, and Kohn-Sham spin-orbital quasienergigs Differen-
tiating Eq.(39) with respect to time, one obtains an equation

Differentiating Eq.(32) with respect to time, one obtains that does not contain quasienergie; and relate_f, the time de-
pendence of the exchange-correlation energy directly to that

Dy(t)=2, <¢;’ -

k,o

d d 3. dp(r,t) of the exchange-correlation potential expectation value and
gr s+ aDs(t)-i'J’ dr —— on(n D +uk(r,t) Hartree energy:
Foadt D +un]+ | P p(rt) d d g d
extll p(r, &Exc(t):& d°r p(r,t)vxc(r,t)+aJ(t). (40

(39 Equations(39) and (40) are the main results of this section.
Equation (40) can serve as a constraint in the search for
On the other hand, differentiating E@®1) with respect to  approximate time-dependent exchange-correlation function-
time and following the steps described above that led to Ec@lS Since it establishes a relation between the time derivatives

(27) for the multielectron system, one arrives at the follow- Of the exchange-correlation enerBy(t) and the exchange-
ing relation: correlation potentialv,(r,t), which is supposed to be a

functional derivative of (IV)fgdt E,.(t) with respect to the
d/ | .| . S ou(rt)  duy(r,t) density.
PR e R ] e Note that our resulf{40) for the time derivative of the
exchange-correlation energy differs from that obtained in
Wexdr V)| Ref. [18]. This is because of the different definition of the
+T ¢i ) =0. (36) exchange-correlation energy. In R4fL8] the exchange-
correlation energylet us denote iE,.) is defined as in time-
After summation over all spin orbitals, E¢36) takes the independent DFT; the time-derivative contributions are not

duy(r,t v o1, t Jv r,t
% H( ) + xc( ) + ex[( ) —0.
ot ot ot

form taken into account:
d ~
S0+ f & p(rt) E o) =T(0)+ Vod )~ T(1) — (1), (41)
Ay(rt)  Gugr,t)  uegdr,t) For the time derivative of this quantity the same result as in
XNtV T |70 (B0 Ref.[18]is obtained:
Substituting Eq(37) into Eq. (35), the following expression d. dp(r,t)
is obtained: aExc(t):J d3r ot Uxellb). (42)
d 5. Ip(r,t) o _ . _
&Ts(t)=—J d-r pr [u(r) +ou(rt) +oy(r,t) However, it isE,.(t) and notE,.(t) that is present in the
quasienergy functionall3) of the Kohn-Sham system and
FVaxd 1)1 (39 makes it equal to the quasienergy of the original multielec-

tron system. The exchange-correlation potentja(r,t) is a
Equations(37) and (38) are exact relations that express thefunctional derivative with respect to the density of that part
dependence of the single-particle kinetic energy and timeef the functional(13) which containsE,(t).
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B. Virial theorem Performing the same analysis for the noninteracting
The virial theorem in the Floquet formulation of time- Kohn-Sham system, one arrives at the following relation:

dependent density functional theory can be obtained by )
straightforward generalization of that in traditional quantum 1d
mechanics. Consider first a multielectron system. It follows 2 dt2
from Eq. (20) that the expectation value of the operator

2 (plr?| oy)

o :2Ts(t)—k2 (pllr-Vu(r)][¢g)+I(t)
A= S V)RVn] @ :

satisfies the following equatidigs.(6), (7), and(8) are also - kZT (il Voydr,0)1léy)

taken into accourt

2

l\)ll—\

LN < > = 2 (B Voeu(r 011 60). (48)
—(®|A|D)=2 I
dt

The left-hand sides of Eq947) and (48) as well as the

N contributions due to the single-particle potentiglr) and
—(®|> [r;-V;u(r)]|® external fieldv4(r,t) coincide, since the multielectron and
j=1 Kohn-Sham systems possess the same density. Consequently
one obtains from combining Eq&t7) and (48)
- < ) ]Zl [ri-Vivex(rj,t)] <I>> 2T(t) +Vedt)=2T4(t) + (1)
N =2 (llr Vosdr.0ll60). (49
With the help of the expression for the exchange-correlation

(44) energy(19), Eqg. (49 can be recast in the final form

where ® is the time-periodic multielectron wave function _ R
Eq. (20). Making use of Eq(6) and the homogeneity prop- ~ ExelD) T Te() =De(t)= f d*r p(rO[r - Voy(r.0],
erties of the Coulomb potential, EG4) can be rewritten in (50

terms of the quantitie$ (t) andV(t): ) o )
where the correlation kinetic enerdly.(t) and correlation

d N time derivativeD(t) are defined as
Jr(@IA[®)=2T(t)+Vedt) = | @ X, [rj-Vju(r]|@
= T(H)=T(1)=Ty(1), (51)
—<q> vjvext(rj,t)]‘q>>. (45) De(t)=D(t) —Ds(t). (52)

. . Equation(50) is the main result of the current subsection.
On the other hand, the expectation valuefofs the time |t may serve as an additional constraint when searching for

derivative of the squared distance expectation value: approximate forms of the time-dependent exchange-
correlation energy functional and potential. Again, our result
<¢|A|¢,>_ < > (46) (50) differs from the analogous expression in Rgf8] due
2 dt to different definition of the exchange-correlation energy.
_ _ _ There is no ternD(t) in the theorem of Ref.18].
Inserting Eq.(46) in the left-hand side of Eq(45), one ob- The general results of this section will be illustrated in the
tains next section on the field-driven Hooke’s atom modVo
1 g2 N electrons interacting with the Coulomb force and bound in a
35 2< E > =2T(t) + Vodt) one-particle harmonic oscillator potenial
t =1
I1l. A MODEL STUDY: HOOKE’S ATOM IN A LINEARLY
—<<I> ,,V,u(r‘)]q)> POLARIZED LASER FIELD

The Hooke’s atom model has often been used in time-

independent DFT studies. Since the exéot some cases
" Vivex(r; O] @ analytig solution of the two-electron problem is available in
this model, it allows for the construction of an exact

(47) exchange-correlation potential. That is why this model ap-

_<¢
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peared so attractive in testing various approximate forms of 9 1 1
exchange-correlation potential. Extensive tests of approxi- _Véam_iE+R_+ngR§M ¢(Rrwm,t)
mate functionals in the time-independent DFT were per- RM
formed in Refs[19] and[20], and analytic solutions were =erm@(RrM ). (612)
investigated in Refs[21-23. We consider here the exten-
sion of the Hooke’s atom model to the time domain. Here ecy andegy are the CM and RM quasienergies, re-
The unperturbed Hamiltoniami, of the two-electron spectively. The total quasienergyis the sum of the CM and
Hooke’s atom is as follow§in atomic units: RM quasienergies:
= + .
Hoz—lvi—lv% o +3w3(r§+r§). (53) o oeMTERM (62
2 2 lro—rq 2

Since the Hamiltonian in Eq61) is time independent, a

In the presence of a time-dependent external field with eleciMe-independent solution(Rg ) e_XiS_tS that satisfies the
tric field amplitude&(t), the interaction of the electrons with time-independent Schdinger equation:
the external field in the dipole approximation reads as

vz ot _
Hi=—[&t)-r{]-[Et)-r,]. (54) VRRM+ RRM+4O"ORRM ¢(Rrm) = erme(RrM)-
(63

The total HamiltoniarH is defined as the sum &fy andH ;: . ] . )
For the ground state, the eigenfunctigiiRg),) is spheri-

H=Hy,+H;. (55)  cally symmetric,o(Rrm) = ¢(Rgrm)-
Let the field £(t) be linearly polarized and monochro-
The time-dependent Schiimger equation for the two- matic:

electron wave functionV(r,,r,,t) can be written as
E(t)=F coswt. (64)

J
ia‘lf(rl,u,t):H‘If(rl,rz,t). (56)  Then Eq.(60) can be recast in the infinite set of time-
independent equations for the Fourier compondntéRc )

Introducing the center-of-mass and relative coordinates ~ ©f the periodic wave functiod(Rcy ,t):

©

1 .
RCMZE(rl‘Frz), (D(RCM ’t):m;—oc exq_lmwt)q)m(RCM)! (65)
Rry=Tro—T11, (57 1
e {— 7 Ve T ©0Rem | Pm(Rem) —2(F-Rom)[@m-1(Rew)
one can represent the Hamiltonighin the following sepa-
rable form: + Py 1(Rew)]=(ecmt M) P y(Rep)- (66)

An analytic solution of Eq(60) or Eqg. (66) exists; see Sec.
11l B for detalils.

The one-electron time-dependent densityr,t) of the
field-driven ground state of the Hooke’s atom is calculated

1_, 2052
H=| =7 VRey T @oRom—2[E(D)-Rew]

1
2 2p2
= VRe, T Rrens + 7 @oRRMm|- (58 according to the following definition:
2
If the external field€(t) is periodic in time, the quasienergy _ f 3./ E / 201y _
solution of Eq.(56) can be sought. Taking into account the p(r)=2] dr’j® 2(r+r | er=r'D. (67

separability of the Hamiltonian58), the wave function
W(ry,r,,t) can be represented as Here® (Rcy ,t) ando(Rgry) are the normalized solutions of
Egs.(60) and(63), respectively. The functiop(Rg),) is the
W(ry,rpt)y=exp(—iet)®(Rcw . t)e(Rrum,t), (590  RM ground state eigenfunction, where@{Rc,,t) is the
quasienergy wave function, which reduces to the CM ground
wheree is the quasienergy, an#(Rcy ,t) and ¢(Rru,t)  state as the external field is switched off.
are periodic functions of time. They satisfy the following

center-of-mass motiofCM) and relative motioriRM) equa-

’ > A. Unperturbed Hooke’s atom
tions, respectively:

The unperturbed two-electron Hooke’s atom has been in-

1_, . - vestigated several times in the literatiE9-23. Besides

= 2 VRey 1 5 T @oRem = 2[E(1) - Reu] | P (Rew b presenting some additional result® our knowledge, the
analytic expressions for the Hartree and single-particle po-

=ecm®P(Rem 1), (600  tentials forwy=1/2 have not been published yewe include
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this subsection because it is relevant to the development diere T© and Vg%) are the unperturbed kinetic energy and
the time-dependent theory in the following subsections Il Belectron-electron repulsion of the two-electron system calcu-
and Il C. lated according to Eq$6) and(7), respectively, without ex-
Without the external fieldk =0), Eq.(60) reduces to the ternal field.
three-dimensional3D) harmonic oscillator eigenvalue prob- Since for the two-electron system the exact exchange
lem. The normalized ground state wave functibf?’)(Rcy,) (Hartree-Fock functional is expressed through the Hartree
is time independent and spherically symmetric and has thenergyJ(®), one can separate the exchange and correlation
well-known expression contributions as follows:

3/4
exp—w R2 y 68 1
0 CM) ( ) Eg(o) __](0), (77)

2
<1><°><RCM>=($

and the unperturbed eigenvalug), is given by
EQ=g@-g®, (79
3

s&u=>wo. (69)

2 The Kohn-Sham orbitadb(KOS)(r) defined by Eq(71) must

. . . . satisfy the time-independent Kohn-Sham equation:
Making use of the CM oscillator eigenfunctig68), one can

perform analytically some integrations in the definition of 1 1
the one-electron densit§67) and express the ground state — V24 —w2r2+00(r) | Q1) = €Rep%(r). (79
. , 2 ®o s KS KSPks

one-electron density of the unperturbed Hooke's atom
p©(r), which also appears spherically symmetric, through a
one-dimensional integral containing the normalized RMHeree(O) is the orbital energy, a (0)(r) is a single-particle
ground state eigenfunctiop [19]: potential that includes the Hartree potentiaﬂ?)(r) and
8 [ 2g| 72 ) exchange-correlation potentia{2(r):
(0) = | — _ 2 Pt 201
pt(r)= ( ) exp—2wor?) | dr'r’e(r’")

r\m 0 v ()=o) +0Q(r). (80)

1
Xexy{ — Emor’2>sinl‘(2worr . (70 With the help of Eqs(71) and(79), one can obtain the ex-
pression for the potential®)(r) through the density(9)(r):
The time-independent Kohn-Sham orbimffs)(r) for this

two-electron system is obtained immediately from the known ©)/ o\ 1
density(70), vs (r)= >

12

1 dp(o) 1 d2p(0)
+
rp(O) dr 2p(0) dr?

O@\?] 1
B(r)= (O)(r) : (71 L d ) L o o)
+ 2,00 dr 5 WOl “F €ks- (81)
and the noninteracting kinetic enerdy® and the Hartree
energyJ(® are calculated as follows: The exchange-correlation potentigf?(r) satisfies the fol-
o o 1 o lowing relation, which can be obtained from the Kohn-Sham
TO=2(¢% - 5V? ), (72)  equation(79) and the definition of the exchange-correlation
energy[a particular case of the general time-dependent rela-
10=1 J &3 pO(r)vO(r). (79 ~ Uon 39k
Here the unperturbed Hartree potentiél’(r) has its usual f d3r p(Nvy(r)=2eX—e@+EQ-30 (82

definition:

(0)( ) where£(® is the unperturbed total energy of the Hooke’s
‘0)(r) de L — (74) atom.
For some particular values @f,, the RM equation63)
. has analytic solutions[21-23. Then the unperturbed
The unperturbed exchange-correlation enefff) and  Hooke's atom problem has a completely analytic solution.
correlation kinetic energf¥f{”) are also calculated according For example, this is the case for the ground state eigenfunc-

to their conventional definitions: tion and wy=1/2. Below we consider this special case in
more detail and we present an analytic expression for the
(0)_ (0 (0)_7(0)_ 5(0 . . )
Ele = T+ Ve =T =3, (75 exchange-correlation potential. The expressions for the RM
eigenfunctionp(Rgy) and eigenvaluesgy, appear as fol-
TO=TO-T0. (76)  lows [22]
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_ 1 14+9
¢(Raw)=[4m(8+5\m)] ¥ 1+ ERRM) po- BT gg 1302 (88)
164 10\
1 2
X ex _gRRM’ (83)
8+4
5 5 vQ= —J——o 447 443 2. (89)
BRM=5 V0= 7 (84) 16+ 10y7

The total wave function®)(r,,r,,t) in the original co-

ordinates and the total energ{® read as The one-electron density calculated from the wave func-

tion (85) can be written in the following fornp22]:

WO(ry,rp,t)=m"4m(8+5\m)] Y3

1
1+ §|rl—r2|

27773/2
O)(r)= —
1 pM(r)= ex r) \/7(7+r
Xex;{—is(o)t—z(r?rrg) , (85) 8+5\m
1 1 r
e0=2 (86) +ex;<—§r2 o \/;erf —)]
5

The unperturbed two-electron kinetic energy®, one- (90)
particle potential energy(®), and electron-electron interac-
tion V) contributions to the total energy® are as follows:

As an additional contribution, we present here the analytic
(0)_ 10+77 —0.6644176 (87) expressions for the Hartree potentn'éf)(r) and the single-
16+ 107 ’ particle potentiab ®(r) produced by the densit{90):

2o ) el 3B )

\/_+ex;{——r +(r+5/r) w2 erfr/\/2)

(Ud\=l2 (7+ r2)+exr< - %rz +(r+ 1) mi2erf(r/\2)

vO(r)==>

(1/2)\/_2 r+(1/r)exr{ — —r

+(1— 1/r2)\/_2erf(r/\/—)

1
—-= . (92
(1/4) /2 (7+r2)+exp( ~ Erz) +(r+1r)Jml2erfr/\2)
|
The potenualu(o)(r) has correct asymptotic behavior as The numerical values of various quantities defined in Egs.

—o (it vanishes as ). The orbital energy value{2 ob-  (72), (73), (75), (76), (77), and (78) for the case ofw,
tained from Eq.(81) under the condition that the potentlal =1/2 are
(O)(r) vanishes at infinity is equal to 5/4. Generally, it can

0)_
be proved thae( is equal toegy [23]. The analytic expres- T=0.6352457, (94
sion for the exchange-correlation potenuéf: (r) follows )
immediately from Eqs(91) and (92): T '=0.02917195, (95
oiQ(N=0(r)—or). (93) J©=1,0302504, (96)
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E{®)=-0.5536352, (97) 0
E®=-05151252, (98) o |
3
E{®=-0.03851005. 99 3
\70 104
=
As one can see, the correlation energy is quite small com-<,
pared with the exchange energy. From E@5) and (99) “ e L
one can conclude that the correlation contributions to the
kinetic and potential energies have opposite signs, and the
potential correlation energy is more than two times larger in
absolute value. TS 10° 107 107 10° 10 10° 10°
The expectation value of the exchange-correlation poten- O, (@.u.)

tial (82) can be evaluated without actual computation since
all the quantities on the right-hand side of E®@2) are
known (see discussion aboyie

FIG. 1. Absolute values of the correlation ener@plid line)
and expectation value of the correlation potent@ddshed ling of
the field-free Hooke's atom as functions of the oscillator frequency

wq -
3/4
exp — (O]

fd3r p(Nv®(r)=—1.0838856. (100
2(1)0

2
(D(RCMrt):(T RCM—Z—ZCOSwt)

Numerical computation of the integral using the analytic ex-

pressiong90) and (93), (91), and(92) confirms this result.
. . , . (F-Rem)
Using the decomposition of the exchange-correlation poten- —i20—— sinwt
tial v&%)(r) into the Hartree-Fock exchange potenfiahich wé— w?
is equal to —(1/2)v{")(r)] and the correlation potential s 9
v(co)(r), one obtains the following relation for the correlation <ext i Fo(wot+ o) sin 2ot (102
potentialv (%)(r): 4o (wi— w?)? ’
f d®r p(Nv®(r)=-0.05363524.  (101) and the field-dependent quasienetgy, reads as
We have calculated the correlation energy and the expecta-
! : . . 1 1 3 1 1
tion value of the correlation potential over a wide range of SCMIS(CO,\)A— ZF2 = —wy— = F?
wg- This information can serve as constraints in the search 2 wg—wz 2 2 wi-w?
for the correlation energy functional, since the correct form (103

of the functional must reproduce both the correlation energy

and the correlation-potential expectation value. The depen-

dence of the correlation energy and correlation-potential exNote that the density distribution of the field-driven har-
pectation value on the oscillator frequeney are presented monic oscillator produced by the wave functid®2) has the

in Fig. 1 for a wide range ofsg. Small values ofw, corre- same shape as in the field-free case and oscillates rigidly
spond to the low-densitiand strong correlatiorimit while ~ [harmonic-potential theorerttHPT) [24]]:

large values ofvg correspond to the high-densitsgnd weak

correlation) limit.

3/2
o
2_
0(Rew D= 222
B. Hooke’s atom in a laser field: an exact Floquet solution
of the two-electron problem
X exf{ - 2(1)0

For the two-electron Hooke’'s atom model, only the CM
equation (60) is affected by the external time-dependent
field. Equationg60) and(64) describe a 3D harmonic oscil- (104
lator subject to a linearly polarized monochromatic field. In
this case analytic results also can be obtained. The time-
periodic part®(R¢y ,t) of the quasienergy wave function As a consequence, the one-electron density of the Hooke’s
originating from the ground state of the center-of-mass moatom in the laser fieldp(r,t) [see Eq.(67)], has the same
tion can be expressed as property. It can be calculated according to the expression

2
Rev— coswt | |.
w2 2
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8 (2w Thus, we present the expectation valDét) of the time-
P(r,t):m T derivative operator—ig/ot that is important in time-
F dependent problems:
xexF{—Zworﬁ(t)]fo dr'r’@?(r'") D)= —F2 w2 +1|:2 .
=—F'————+z COS 2wt.
(cug—wz)2 2 w%—wz
(113

1
Xex;{ — 5ol ’2) sinf{ 2wer 're(1)], (105
The electron-electron interaction eneidy, is time indepen-

wherer(t) is the absolute value of the time-shifted radiusdent since it depends on the relative motion only, which is
not affected by the external field:

vector,
. Vee=VLY. (114
re(t)=|r— ———coswt|. (106) B .
Wi~ o In the casewy=1/2 it is given by Eq.(89).
Note that dependence on time of the expectation values of
In other words, the following relation holds: kinetic energy, potential energy, external field, and time-
derivative operator is confined to the function cas.2This
p(l’,t)=p(0)(l’|:(t)). (207 is inherent to the harmonic oscillator behavior in the external

monochromatic field.

The time-dependent components of the energy can be cal- One can also calculate various combinations of the quan-
culated with the help of the wave functiéh02) or the den- tities T(t), U(t), Vey(t), andV... For example, the time-
sity (107). The kinetic energylcu(t) and one-particle po- dependent expectation value of the total Hamiltortfthe
tential energyJcy(t) contributions from the center-of-mass time-dependent energi(t) of the Hooke's atorhis ex-

motion are calculated as follows: pressed as
Teu(t) 3 1F2 2 E(t)=T(t) +U(t) + Veet Vexd)
em()=Zgwot SF ————
470727 (of-0?)? o 1, 0i-307
i
2F (wg_wz)zcos 2wt, (108 .
—EFZ > COS 2wt (115
3 1 wS 1 wS @om @
— 2 g2
Ucem(t)= 4“’0+2F wg_w2+ 2': (wo_wz)zcos t. Other important combinations ar€(t)+U(t) and T(t)
(109 —U(1):
Taking into account the time-independent contributions from _(0) 1 1(0) 1, wp+ w?
the relative motion, one obtains the following exdtto- TH+U=T"+U +§F (02— ?)?
electron Hooke’s atom kinetic and potential energies in the 0
laser field: 1
+ S F? cos 2wt, (116
1 w? 1 w? w%—wz
T(t)=TO+ EFZ TR Z—EFZ 555 COS 2wt,
(wg— %) (05— %) 1 1
(110 T(t)—U(t):Tr—Ur—Eszz_wz
0
1 wg 1 wg 2, 2
U(t)=U@+ ~F2 +-F2 cos 2wt. 1, wote
2 (wg_w2)2 2 (wg_w2)2 EF (w(z)_—wz)ZCOS 2wt. (117}
(113

i Note that the combinatiorE(t) +D(t)=T(t)+U(t)+V

In the case ofvg= 1/2 the field-free value$(® andU(® are ST ee
given by Eqs.(%?) and (88), respectively. The expectation +Ve)§t(t)+D(t) is time independent and equal to the total
valueV,(t) of the external time-dependent field also has an1asIenergy:

analytic expression: T()+U(t)+ Vet Ver (t) +D(1)
, 1 , 1 o 1., 1
Vext(t)Z_F wz_ 2_F 7 2C052wt. (112) :szsRM+8CM_§F = 2 (118)
0~ W Wy~ W Wy~

012514-10



EXACT RELATIONS OF THE QUASIENERGY . .. PHYSICAL REVIEW A3 012514

C. Hooke’s atom in a laser field: construction of the exact M(r,t)= ¢f<0§,(f|:(t)), (126)
Kohn-Sham orbital and exchange-correlation potential

In this section, using the exact Floquet solution of theWhererg(t) is given in Eq(106). Then the phasB(r,t) can
two-electron problem described in Sec. Il B, we calculatePe calculated from Eq(124). This is a general continuity
the exact Kohn-Sham orbital and invert the time-dependerfquation but because of the specific dependence of the func-
Kohn-Sham equation to obtain the exact exchangefion M(r.t) on time (through the variable'e), it can be
correlation potential. The time-periodic Kohn-Sham orbital'ecast in the following form:
dks(r,t) must satisfy the quasienergy Kohn-Sham equation:

V.| M3 VP+F

, 1, ) > 2sinwt) ]=0. (127
_EV +§w0r —(F~r)c03wt+vs(r,t)—|ﬁ Wo— @

The particular solution of Eq127) that serves the purpose is

X is(r,t) = exsPis(rt). 119 35 follows:
Here e is the orbital quasienergy and(r,t) is the time-
dependent single-particle potential, which includes the Har- P(r,t)=—(F-r) @ sinwt+f(t). (128
tree and exchange-correlation potentials: ’ wi— w?
vs(r,t) =vh(r,t) +oy(r,t), (120 The unknown functiorf(t), which depends on the time only,
cannot be determined from the continuity equation. The par-
3 p(r',t) ticular choice of this term can be made when inserting the
ou(r,)= | d°r =] (12D phaseP(r,t) in Eq.(123. The requirement that the potential

vs(r,t) vanishes as—o determines both the terifi(t) and
In the time-dependent problem, the phase of the complef'® quasienergys. The final expressions for the time-
Kohn-Sham orbitakp,s(r,t) is important. Let the function dependent Kohn-Sham orbitas(r,t) and quasienergyys
oks(r,t) be represented through its modulus and phase: @€ as follows:

b, =M(r,t)exdiP(r,t)]. (122 brs(r,) = dArE(1))
Upon substitution of Eq(122) in Eq. (119, one obtains the % . (F-r) | ¢
following two coupled equations to solve for the modulus en e 5 2o
and phase: 0
1 P i Foat o) (129
200 din 2wt
—E[VZM—M(VP)Z]—FME Bw(wi— w?)?
Lz oy t+oyrt) |M=eceM, (123 0 1o, 1 1, 1
50 (F-r)coswt+uvg(r,t) [M=exsM, EKSZGKS_ZF - _wZZSRM_ZF R
0 0
2 (130

M
—_— . 2 f—
ot FLV-(MTVP)]=0. (1249 When employing the calculated modulus and phase of the

Kohn-Sham orbital in Eq(123), another important conclu-
Our goal is to calculate both the modulus and phase of thgion can be made regarding the single-particle potential
Kohn-Sham orbital and then obtain the time-dependent(r,t), namely, it can be expressed by means ofuthper-
single-particle potentiad(r,t). As one will see, the results turbed single-particle potentiab(®) calculated at the shifted
can be obtained in the analytic form if the RM problem hasindependent variable:(t):
an analytic solution. At least, all the quantities can be ex-

pressed through th@ime-independent, spherically symmet- ve(r,)=vO(re(1)). (131
ric) RM wave function, and the time dependence of the ex-
pectation values can be obtained analytically. Since the Hartree potentialy(r,t) defined by Eq(121) ob-

First, the modulus/(r,t) is easily obtained from the one- viously satisfies the similar equation
electron density(105),
vu(r)=vP (1) (132

1 1/2
M(r,t):[ip(r,t)} ' (129 due to the corresponding property of the densitge Eg.
(107)], it follows that the exchange-correlation potential
and, taking into account Eq$107) and (71), can be ex- vy(r,t) alone also must satisfy a similar equation:
pressed through thenperturbedKohn-Sham orbitalp{
calculated at the shifted variabte(t), VoI D=0 QI E(1)). (133
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0.2

0.01
\ exact
\
X ¥
\

10 15 20
z (a.u.)

0 % 1‘0 ]‘5 20
z (a.u.)

FIG. 3. Exact and ALDA correlation potentials for the Hooke’s
atom atwy=1/2 a.u. as measured along the positive part ofzhe
axis (external field is polarized in thedirection at different time
moments. The curve notations are the same as those in Fig. 2.

FIG. 2. Exact and ALDA exchange potentials for the Hooke’s
atom atwy=1/2 a.u. as measured along the positive part ofzhe
axis (external field is polarized in the direction) at different time
moments. The solid lines correspond to the zero instantaneous fiel

coswt=0, while the dotted and dashed lines correspond to the peak lati tential in its static f v th ist
values of the field, cost=—1 and cosvut=1, respectively. correlation potential in Its Statc 10rm, namety, ine exisience

of the self-interaction term in the LDA energy functional.
Similar problems still exist even when one uses the more
refined generalized gradient approximati@]j in the adia-
batic approximation.

In the study of time-dependent dynamics involving the

This is again a manifestation of the HH24]. The exact
exchange-correlation potential satisfies Ef33) as shown
by its construction. Equatiofil33) serves as a useful con-
straint and test of the accuracy and applicability of the ap-

imate time-d dent h lati tent xcited and continuum states, it is essential that the long-
proximate ‘time-gependent . exchange-correlation potenti ange exchange-correlation potential be treated more accu-
form used. For example, if the approximate exchange-

correlation potential used is a local functional of the densityrately' The recent development of time-dependent optimized
; L ffecti tential(OE thods[27,28 b ten-
[as in ALDA, vo(f,t) =0,(p(r,t))], it will have the same effective potential(OEP methods[27,28 based on exten

, . sion of the KLI (Krieger-Li-lafrate theory[29] to the time
functional form as for the unperturbedime-independent . L o6 .~
system but calculated with the shifted densitf)(r (1)), domain has significantly advanced this field. If an explicit

) he densi fth in the field. H . self-interaction-correctiofSIC) form is further introduced,
l.e., the density(r,t) 0 t. e system In the field. TOWEVET, IN - e time-dependent OEP/KLI-SIC procedure leads to a
general the exact functional can be nonlocal in both spac

§ingle-particle exchange-correlation potential that is both lo-
and time; the possible forms of the exchange-correlation pox glep d P

. ; _ | and orbital ind dent and has th long-
tential with memory that satisfy Eq133) and other exact cd anc orbia’ InCepentier ant has e proper fong-range

. died in RELTL A i R tth Coulombic behavior[28]. For the special case of two-
symmetries were studied in R¢L7]. An investigation of the g0 1o systems, the OEP/KLI procedure in fact reduces to
adiabatic and dynamic contributions to the exchange

. e . X the exact Hartree-Fock potentidbr the exchange partAp-
correlation potential in a model involving the 2D Hooke’s P k ge partAp

) -~ = plying this time-dependent OEP/KLI-SIC procedure to the
atom_(bufc not for HPT _m_0t|0m [25] showed that dynamic present problem, we recover the exact time-dependent ex-
contributions were negligibly small.

. change potential as shown in Fig. 2.
In Figs. 2 and 3 we compare exact and ALD26] ex- gep g

: . . ; Now we proceed to the calculation of the various contri-
c_hange and correlatlon'potentlals, respectlve!y, at dlfferenlButions to the quasienergy functional of the Kohn-Sham sys-
time moments. The oscillator frequency used in the calcul

4em. The noninteracting kinetic enerdy(t) defined as
tions is wy=1/2 a.u. and the laser field parameters are as ¢ ()

follows: @=0.22 a.u. and-=0.05 a.u. This is a rather strong To(t)=2(ps(r 1) — 3V drs(r,1)) (134
external field and the potential curves at different time mo-

ments (dotted line for cost=—1 and dashed line for is determined with the help of E§129), giving

coswt=1) are displaced significantly from that of the zero L ) . )

|tn_stanta_neous field (coa—(_)). The ALDA .potentlals are ob- (1) _TO, Tp2 0] Ll 1) 08 2ot

ained directly from extension of the static LDA forr26] to s 2 (wg_ w?)? 2 (w(Z,— 0?)?

the time domain using the adiabatic approximation. For the (135
exchange potential at largethe ALDA curve decays to zero

exponentially, while the exact potential follows the correctNote that the dependence on the external field and time in
—1/r Coulombic behavior. There is also substantial differ-T¢(t) are the same as in the exact two-electron kinetic energy
ence in the short-range part between the two potentials[(t) [Eq. (110]. Thus the correlation kinetic enerdly. is
Similarly, there is significant difference in the two correla- time independent and coincides with its unperturbed value:
tion potentials. Such discrepancies are expected and can be (0)_ 7(0)_ ~(0)

attributed to an intrinsic defect of the LDA exchange- T(O)=TMO-T()=T"=Tg'=T¢". (136
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The expectation valudg(t) of the noninteracting time- correlation potentials vanish due to exact symmeétng total
derivative operator is calculated according to interparticle repulsion and exchange-correlation forces are
equal to zero by Newton'’s third IgwThe remaining integral
containing the time derivative of the external field is exactly
Ds(t)= 2< Prs(r t)‘ ‘d)KS(r t)> 137 ihe same as in Eq27), so the time dependence bft) and
D((t) is the samdactually, for HPT motion, the entire ex-
It is found thatD(t) is the same as the two-electron expec- pectation value®(t) andD(t) coincide; see Eq139)]. In

tation valueD(t): the right-hand side of Eq38) the integrals containing the
) exchange-correlation and Hartree potentials are expressed
D(t)=F?—" —}FZ 1 008 2ot =D(1) through the integrals appearing in H§7) and the time de-_
S (03— 0)? 2 wi—w? ' rivatives of the expectation values of exchange-correlation

(139  and Hartree potentials, respectively,

The Hartree energy(t) is defined according to ap(r,t d
ay(t) g f dr p;t )UH(r,t):af d3 p(r,t)uu(r,t)
r,tp(r’,t
J(t)=%fd3jd3’ LS H(rt)
lr—r’| Jd3r p(r ) ————
—%J d3r p(r,t)ou(r,t). (139 (144
Since the density(r,t) and Hartree potential,(r,t) pos- J' s, P v f 3
sess the propertig407) and(132), respectively, the integral o at ot VD= dt dr p(r,hoxe(r.t)
in the right-hand side of Eq.139 becomes time indepen-
dent, and the Hartree energy coincides with its unperturbed J d3r p(r,H)—2 Xc(r t)
value:
J()=JO), (140 (149

Similarly, the exchange-correlation enerdy(t) defined Since the expectation values of the Hartree and exchange-
according to Eq(19) also reduces to its unperturbed value: corre;latlon p_ote_ntlals are time independent fpr HPT motion,
the time derivatives of g and T are the same, in accordance
Exc(t):E§<?;)- (141  with Egs. (110 and (135). To confirm the general relation
(39 regarding the exchange-correlation energy, one needs
The resultg135 and(138), yielding the time dependence of only to make sure that the quasienergy combination appear-
the noninteracting kinetic energy and time derivative, andng on the right-hand side of E¢39) is field independent,
(136), (140, and(141), demonstrating actual time@depen- since all the expectation values reduce to the unperturbed
denceof the correlation kinetic energy, Hartree energy, andones. With the help of Eq$118 and(130), one can see that
exchange-correlation energy, can be attributed to the specittlis is the case, so the general relati@8) holds.
model under consideratioffPT motion. In particular, that In conclusion, we have presented in this paper several
the Hartree and exchange-correlation energies do not actexact relations that hold in the Floguet formulation of TD-
ally depend on time is not true in the more general case. DFT. The most important results are those involving the
As in the field-free casésee Sec. Il A, one can split the time-dependent exchange-correlation energy and potential,
exchange-correlation energy into exchange-ottiartree- Eqgs.(39), (40), and(50). They can be used as constraints for
Fock) and correlation parts. The further analysis here is estesting the validity and accuracy of approximate forms of the
sentially the same as in Sec. Ill A since all the expectatiortime-dependent exchange-correlation functionals. The gen-
values related to the exchange and correlation potentials r@ral relations are verified in an exactly soluble model, the
duce to the unperturbed ones. two-electron Hooke's atom in a linearly polarized laser field.
To apply the general time-dependent relatig®%) and  This model exhibits a special kind of motion, described by
(38), note that for HPT motion the following equations hold: the harmonic potential theoref4]. Further work including
the consideration of models beyond the HPT would allow a

duy(r,t) ) ) ) more complete investigation of the time-dependent proper-
o P Vuyi(re)] 22 sinot, (142 {es of the exchange-correlation energy functionals and po-
0 tentials. Work in this direction is in progress.
Joxe(r,t) ©0) ® i
T—[F-Vuxc(rp)]wz_ Ssinot. (143 ACKNOWLEDGMENT
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