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Time-dependent density-functional theory for strong-field multiphoton processes:
Application to the study of the role of dynamical electron correlation
in multiple high-order harmonic generation
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We present &elf-interaction-fregtime-dependent density-functional theqfyDDFT) for nonperturbative
treatment of multiphoton processes of many-electron atomic systems in intense laser fields. The theory is based
on the extension of the time-dependent Kohn-Sham formalism. The time-dependent exchange-correlation
potential with proper short- and long-range behavior is constructed by means of the time-dependent optimized
effective potentialTDOEP method and the incorporation of an explicit self-interaction corred®i€) term.

The resulting TDOEP-SIC equations are structurally similar to the time-dependent Hartree-Fock equations, but
include the many-body effects through arbital-independensingle-particlelocal time-dependent exchange-
correlation potential. We also introduce generalized pseudospectral time-propagatimethod, allowing
optimal spatial grid discretization, for accurate and efficient numerical solution of the TDOEP-SIC equations.
The theory is applied to the study of the role of dynamical electron correlation on the multiple high-order
harmonic generatiofHHG) processes of He atoms in intense laser fields. We also perform a detailed study of
the mechanisms responsible for the production of the higher harmonics in He atoms observed in a recent
experiment that cannot be explained by #iegle-active-electroomodel. We found that both the dynamical
electron correlation and the Heion are important to the generation of the observed higher harmonics. The
present TDDFT is thus capable of providing a unified and self-consistent dynamical picture of the HHG
processed.S1050-294{©8)04601-7

PACS numbgs): 42.50.Hz, 32.80.Wr, 32.80.Qk, 71.15.Mb

I. INTRODUCTION In this paper we address such a nonperturbative formalism
based on the extension of théme-dependent density-
The study of the nonlinear response of atoms and molfunctional theory(TDDFT). The TDDFT is a nontrivial ex-

ecules in intense laser fields is a subject of much currerf€nsion of the steady-state DFT of Hohenberg, Kohn, and
Sham([4,5] to the time domairf6—9]. The central result of

interest in atomic, molecular, and optical physics. To de- ) . .
scribe such strong-field multiphoton processes usingian the TDDFT is a set of time-dependent Kohn-Sham equations
. . o that are structurally similar to the time-dependent Hartree-
Initio Wave-functlon' a_lpproach, It Is necessary to solve thq:ock equations but include in principle all the many-body
:lme-de%e_znhd_en; S(;Mmgzrtﬁquatlor;)_?:‘ m?ny-eleitron syst- effects through docal time-dependent exchange-correlation
ems, which 1S tar beéyond the capability or current compu a'(XC) potential. With the exception of the recent pioneering

tional t(_achnolpgy. Even for t_hg_ two—electron_ systems mwork of Ullrich, Grossmann, and Grog8], most applica-
strong fields, time-dependeab initio wave-function studies  {jong of the TDDFT fall into the regime of linear or nonlinear
are only at the beginning stagi] and much remains to be egponse inweakfields for which the perturbation theory is
explored. For multielectron systerfraainly rare-gas atoms applicable. Recently, Telnov and CFLO] have presented an
a time-dependent method being successfully used is the s@tternative nonperturbative formulation of TDDFT based on
called single-active-electronSAE) approximation with a the extension of thgeneralized Floquet formalisiii1], al-
frozen core[2,3], involving the numerical solution of the |owing exact transformation of théme-dependenkohn-
single-electron time-dependent Scdirger equation. The Sham equations into an equivalgimhe-independerfEloquet
SAE method has been shown to be valuable in providingnatrix eigenvalue problem. Such a TDDFT-Floguet formal-
insights on atomic multiphoton dynamics such as multipleism provides aime-independenapproach for nonperturba-
high-order harmonic generatiotHHG) [2,3]. Within the tive treatment of multiphoton processes of many-electron
SAE model, however, the electron correlation, the excitedsystems in the presence of intense periodic or multicolor la-
state resonances, and the core excitation cannot be explicither fields. In this paper, we focus on the time-dependent ap-
treated. It is desirable to explore more complete formalismgroach for the numerical solution of time-dependent Kohn-
for detailed treatment of strong-field processes, taking intSham-like equations in arbitrarily time-dependent fields.
account both the dynamical electron correlation and the In the context of DFT, it is well knowh12] that the XC
structure of the excited states and at the same time allowingnergy functionals commonly used, such as ltdwl spin-
for the core excitation of many-electron systems. density approximatiolLSDA) [13] or the more refineden-
eralized gradient-correction approximatidi®GA) [14—18,
suffer a severe deficiency, namely, the XC potential decays
*Permanent address: Institute of Physics, P.O. Box 603, Chinesexponentially and does not possess the correct long-range
Academy of Science, Beijing 100 080, People’s Republic of China(—1/r) behavior. As a result, while the total energies of the
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ground-state atoms predicted by the GGA energy functionalime-dependent one-electron Scollimger-like Kohn-Sham
are rather accurate, the ionization potentials obtained froniKS) equations forN-electron atomic systemén atomic
the highest occupied orbital energies are not satisfactorygnits),

[12,17. Such a problem can be attributed to the existence of

self-interaction energyn the conventional XC energy func- .0 .

tionals used in the DFT formalisms. For quantitative treat- = i =H O ¢i,(r0)

ment of ionization and multiphoton ionization processes, it is

necessary to extend the DFT to properly account for the

long-range XC potential such that both the ionization poten- = - §V2+Ueff,o(rvt) Pig(r,t),
tial and the excited-state properties can be described more
accurately. In a recent paper we addressed such a problem i=12... N 1)

and presented an extension of the steady-state DFT for accu-

rate treatment of the ionization potentials and the phOtoat\Nhereveff'U(r,t) is the time-dependent effective potential
sorption spectrum oéutoionizing resonanceid8]. The re-  genending upon the total electron density ands the spin
sults are in good agreement with available experimental datg qor  The total number of electrons in the system is

as well as configuration-interaction calculatiofis8]. The _ _ :
method is based on the extension of the recent Krieger-Li!\I 26N, whereN, ( NT OrNL) is the total number of

lafrate (KLI) [19] semianalytic treatment of theptimized electrons fc_Jr a given spigr. Within the single d_etermlnant
effective potentialormalism[20,21] along with the use of an a@pproximation, the totaN-electron wave function can be
explicit self-interaction-correctiotSIC) term[22]. A similar ~ expressed as
KLI-SIC procedure has been recently proposed indepen-
dently by Chenet al. [23], but it has been applied to the 1
studyyof)g/;round-state energies and ionization F;))Fz'ytentials only. W(t)= \/ﬁde( 2073 N (2
In the present paper, we extend such a KLI-SIC technique to '
Ejheep;miﬁelgl_elntiigtrydﬁamsatl)gexvreecg%tt?y tpt]r?)tp gsé?j'%t;‘a”tr':zﬁénd the total electron density at timds determined by the
Grossmann, and Grosg]. In the latter work[9], the single-electron orbital wave functiorig;,;} as
Hartree-Fock(nonloca) exchange energy functional form N,
(instead of the explicit SIC form in our works used in the p(r,)=2 > pi(r,)=p. (r,t)+p (r,t), ©)
construction of time-dependent optimized effective potential. o i=1 ! !
As shown in the recent steady-state DFT wdrk8,23, the
use of the SIC form in the KLI calculations involves only Where p;,(r,t)= 7, (r,t)4;,(r,t). The effective potential
orbital-independentsingle-particle local potentials and is vesf(r,t) in Eq. (1) can be written in the general form
thus computationally more efficient and yet maintains high
accuracy. The extension of such a KLI-SIC procedure to the Darr (D=0 alr 1)+ S3[p] Uy (1) @)
time domain is described in Sec. II. eff,ails extL T Sp(r,t) O xeo ot h

The motivation of this paper is thus threefold. First, we L
present a TDDFT with optimized effective potential and self- _ , , , .
interaction correction in Sec. Il for the generainperturba- where  J[p]= iffp(l’,t)p(r /|r—r|dr dr s the
tive treatment of the multiphoton dynamics of many-electronelectron-electron Coulomb interaction energy,(r,t) is
atomic systems in the presence of intense laser fields, takinge “external” potential due to the interaction of the electron
into account proper long-range behavior of the XC potentialwith the external electromagnetic field and the nucleus, and
Second, we outline eageneralized pseudospectral time- v,. ,(r,t) is the time-dependent exchange-correlation poten-
dependentnethod recently introducel®4] for efficient and  tial.
accurate treatment of the time-dependent KLI-SIC equations The set of equation$l) is an initial-value problem. In
in Sec. Ill. Such a time propagation procedure has beeperforming these TDDFT calculations, the crucial element is
shown to be capable of providing significant improvement ofthe input of reliable time-dependent exchange-correlation
the quality of the wave functions over those obtained by thepotential and the development of an efficient and accurate
conventional equal-spacing spatial discretization techniquesumerical procedure for the time propagation of the set of
and thereby giving rise to more accurate HHG spectra calcuequations (1). In Sec. 11 B below we discuss dime-
lated [24]. Finally, we apply the TDDFT in Sec. IV to the dependent optimized effective potent@imalism with KLI-
nonperturbative study of HHG of He atoms in intense laseiSIC for constructing .¢¢(r,t). The time-propagation method
fields. A comparison with experimental data is made and thesed in this work is described separately in Sec. lIl.
role of the dynamical electron correlation in the production

of higher harmonics is explored in depth. B. Time-dependent optimized effective potential formalism

Il TIME-DEPENDENT DET with self-interaction correction

WITH OPTIMIZED EFFECTIVE POTENTIAL As is well known[12], the effective potentiab.¢; in Eq.
AND SELF-INTERACTION CORRECTION (4) for the steady-state case, obtained by the functional de-
rivative of the commonly used explicit energy functiofgl,
such as the LSDA or GGA, contains the spurious self-
We first outline below the basic equations of TDDFT interaction part and does not possess the correct long-range
[6,8]. The central theme of the TDDFT involves a set of Coulomb tail behavior. This imposes severe limitations on

A. Time-dependent density-functional theory
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the applicability of DFT to excited-state and ionization prob-of VP to the solution of simple linear equations. Ullrich,
lems. In the time-independent DFT, several approaches hawgrossmann, and Gro$8] have further extended the OEP-
been suggested to remove the self-interaction proflE2h  KL| procedure to the time-dependent problems. In these
Perdew and Zung¢22] proposed the SIC version of a given steady-stat§17,19 or time-dependerii9] KLI calculations,
approximate  exchange-correlation  energy  functionathe Hartree-Focknonloca) exchange energy functional is

Exc[PT'PL]: used in the construction of the optimized effective potentials.
N In a recent worf 18], we showed that the KLI procedure can

ESIC -E _ 14 _ be further simplified considerably by the use of the SIC
xc [pT'pL] XC[pT’pl] E(,: Z‘l{‘][p"’] Exd pi, 01}, form, Eq. (5), without the need of using the nonlocal

(5) Hartree-Fock energy functional, in the construction of the
) _ ) _ _ optimized effective potential. Such an OEP—KLI-SIC proce-
wherep;, is the single-electron density of théh KS spin 4,16 yses onlyrbital-independensingle-particlelocal po-
orbital. In the limit that exacEJp .p | is used, the SIC oniia| and is thus computationally more efficient and yet
term {J[pi, ]+ Exd pi,0]} vanishes. Thus this SIC correc- maintains high accuracy in the calculation of the ground-
tion term can be also considered as a measure of the devigrate energies, ionization potentials as well as the singly ex-
tion of a given approximate, [ p ,p ] from the exactresult. iteq autoionizing resonancgss]. In the following, we ex-
The use of the SIC energy functiorﬁfc'o[pT,pl] [Eg. (5)], tend the time-independent OEP—KLI-SIC procediir&,23
however, leads talifferent potentials fordifferent orbitals.  to the time domain. The advantage of using the explicit SIC
Such an orbital dependence of the one-electron potentiaferm is particularly evident in the time-dependent problems
causes the orbitals to be nonorthogonal. Additional efforsince the effective single-particle potential is to be calculated

must be taken to achieve orthogonal SIC spin orbitals. for each small time step and an efficient procedure for gen-
Another promising approach for improvirfg(C[pT,pL] is  erating the time-dependent OEP is very desirable.
provided by the so-calledptimized effective potenti@DEP) First we consider theadiabatic approximationfor the
method[20,21]. In this approach, one solves a set of one-construction of the time-dependent XC potentigl ,(r,t)
electron equations, similar to the KS equations, in Eq. (4). Within such a frameworky . ,(r,t) can be writ-
1 ten as the functional derivative of thec energyE,. with
Floepdio(n)=| - 5V2+VSEF’(r>}¢ig(r>=sioqﬁig(r), fespect to the denslty:
i=12,...N,. (6) SExdp..p ]
— . . DM 1) = ©)
(To distinguish from the time-dependent wave functions ' ops

Pe=pP(r1)
{¢i,}, the time-independent wave functions will be denoted

by {#i,}.) The optimized effective potentil®="(r) is ob-

tained by the requirement that the spin orbitafs,} in EQ.  The simplest possible form is the adiabatic local spin-density
(6) are those that minimize the total energy funCt'onalapproximation(ALSDA) in the x-only limit

E[{¢iT,¢jL}]:

SECE {1 ¢} ~0 7) 6 1
EVSEP(r) s Ux,a(r:t):_[;Pa(r,t)} . (10)
with
EOEP[M”'(#”}]:Ts[{(ﬁ”’(b”}ﬁ‘][{(ﬁ”%l}] A more refined GGA energy functional such as that of Becke

[14] and Lee, Yang, and Part5] can be used in Eq9). In
the adiabatic approximation, the XC potential is local in
+Exc[{¢im¢j¢}]+f Vexd(p(Ndr, time, i.e., no memory effect. Such an approximation is ex-
) pected to be valid if the time dependencepgfis sufficiently
slow. In practice, it still gives quite good results even for the
whereT, is the kinetic-energy functional of the noninteract- rapid time-dependent case. Similar to the steady-state case,
ing electrons. Equation(8) for the energy functional however, the time-dependent XC potentials obtained by ei-
EOFP[{¢i; ¢;,}] has the same form as that of the ther ALSDA or the adiabatic GGA, etc., do not have the
Hohenberg-Kohn energy functional since the total energy isorrect long-range Coulombic—1/r) behavior. Thus the
a functional of the density and the density is determined by electrons are too weakly bound and the ionization potentials
the spin orbitalg ¢;; ¢;,}. are significantly lower than those of the corresponding real
While the physical idea of the OEP method is simple andatoms. In the following, we extend the time-independent
appealing, Eq(7) leads to an integral equation that is com- OEP—KLI-SIC method 18] to the time-dependent problem,
putationally impractical to solve. Recently, Krieger, Li, and allowing the elimination of these problems.
lafrate[19] have worked out an accurate semianalytic proce- The time-dependent Kohn-Sham-like equations with the
dure to circumvent this difficulty, reducing the determinationOEP and SIC can be expressed as
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9 . Fock approximation are used, the final expressions reduce to
'El//io(f,t)ZH(r,t)l//m(f,t) those derived by the adiabatic approximation given above,
namely, Eqs(14)—(17).

1 .,  oep In the time-dependent OEP formulation, the time-
=| =5V Vsico(r ) | dig(r1), dependent OEP with SIC is to be determined in such a way
that the time-dependent orbital wave functiong,(r,t)}
i=1,2,...N,, (11)  render the totaactional functional A[{¢;,(r,t)}] stationary,
ie.,
where V& (r,t) is the time-dependent OEP with SIC,
which can be writterisimilarly to the time-independent case SA{ i ,(r,0)}] o 19
in the general form 5VS,EC’,’(,(r,t) .
VOEP (1) =voe(r t)+f p(r,'t)d3r’+VS|C(r t). Following a procedure similar to the time-dependent OEP-
SIGaR T extn Ir—r’| XGon KLI scheme[9], one obtains the general expression for the
(12)  time-dependent XC potential,
We now consider two different routes for the determination pis(r,t) 1

of VI& (r,1); both lead to the same final expressions. The wa(r,t):Z (1D Stvio(r, D) +oi(r )}
first route is to start from the adiabatic approximation and the 7
time-dependent effective potentdf?, in Eq. (11) is to be Pio(r,t)

_ I —
determined in such a way that the time-dependent orbital te FR(E] {Vcio— zlvietvis]}
wave functions{#;,(r,t)} are those that minimize the total
energy functionaE®EP at any given timet: [
+ o2 Vapionb)
OEP 4p(r(rvt) |
W =0. (13 t . .
SIGo L= iy (r i =i (111) ><fﬁwdt’[vig(t’)—v?g(t')], (19)

Here ECEP is given by an expression similar to E@) ex-

cept that the orbital wave functions and the density are no
explicit functions of bothr andt. The time-dependent OEP
with SIC can now be written as v (r )= OAxe * (rt) SAxc (20)

y UVig t)= %
(/lra5¢i0' ‘piaéwio’

vahere the last term contains the memory effect. Here

VaiC (rt)=2, ”i”(r't){ku,tH[W'C (=0 (D1},

xe.o T psr,t) Xcio andA,. is the XC action functional. In the present work, we
(14) shall use the following SIC expression fAg.:
SESp SE.p et N
ey Eeteord Edee] rpury o A= [ at Etip 0N, @
vt iy 5Py Ir—r’| o
9B pis0] s from which we obtain
Opis(r,t) ' 5Ef(':c
H r;t = * rlt = . 22
o i1 =0y (r =5 (22
VS (D) = (i Vol (r, )| o), (16)  Note thatv;, is now a real function of andt. Thus the
memory term in Eq(19) vanishes identically. The final ex-
N : SIC ;
010 (0= (o] 010(F D) 1) (17) pression forvi, - (r,t) in Eq. (19) now reduces to the same

form of Eq.(14). Thus both derivations lead to the same final
In deriving Eq.(15), use has been made of the explicit SIC results when the KLI procedure araplicit XC energy func-
expression in Eq(5) with the density now depending on tional forms are used. o
time. Note that in Eq.(14), the last two termsV,c ,(t) and
An alternative route for deriving the time-dependent opti-;,. (t) are constants, although the values\dc . are un-

mized effective potential with SIC is to implement the ex- knhown. The KLI method suggests a way to calculate
plicit SIC expression into the time-dependent OEP formalr

ism recently developed by Ullrich, Grossmann, and Grossvs'c"’(t)_ vis(t) through a solution of the linear equations
[9]. This formulation is more general and does not need ton,

make the adiabatic approximation, and it also allows for 'Fhez [8i.0— Mji,a(t)][V—'sm,g(t)—U_ia(t)]ZV_jSa(t)—v_ja(t)y
inclusion of the memory effect in principle. However, as will i=1

be shown below, when the commonly used explicit XC en-

ergy functionals such as those of the LDA, GGA, or Hartree- i=1,2,... N,, (23
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where d N o
IElpio’(rit):Hlpia’(rit):[HO_l—V]lpia'(rit)!
jo rt io rt
M ()= f PiolDPio(1Y) 1 (24 |
’ po(r.t) i=12,...N,. (26)
and Here I:|0 is the unperturbed Hamiltonian with an optimized
N effective potential and SIC at=0, andV is the electron-
— . { pjolr,t)-vju(r,t) field interaction and the residual time-dependent optimized
V“’(t)_w‘“lgl po(r,t) i) (29 effective potential with SIC:
. 1 d2 12
We can now solve Eql1) and construct the optimized ef- " _ - = | \JOEP
. ; Ho(r)= + +Vgc (1,0, (27)
fective potential through Eq$12)—(17) and (23)—(25). We 2dr2 2r2 '
shall call this time-dependent procedure the TD—KLI-SIC
method below. Ur=—Frg)+V3E,1 .0 -VEE,(r.0., (29
ll. GENERALIZED PSEUDOSPECTRAL where F is the electric-field amplitude and(t) the total
TIME-PROPAGATION METHOD time-dependent part of the laser field. For the one-color field,
FOR NUMERICAL SOLUTION OF TIME-DEPENDENT g(t) =f(t)sin(wt), wheref(t) is the envelope function. We
KOHN-SHAM-LIKE EQUATIONS shall extend the second-order split-operator technique in

. . . . spherical coordinatd®5,26 for the time propagation of the
In this section we discuss the numerical procedure for th?(%hn—Sham-like eqi[ationé: propag

solution of the set of time-dependent Kohn-Sham-like OEP—
KLI-SIC equations(11). The commonly used procedures for — o iHAt20— V(1. 0,4+ AU2)At o —iF pAL2, )

the time-dependent propagation of the Sclimger equation Yio(r,tH At =e o™ Te € Yio(11)
employequal-spacingpatial grid discretizatiof2,3,25-28. +0O(Atd). (29

For processes such as high-order harmonic generation, very

accurate time-dependent wave functions are required thote that such an expression is different from the previous

achieve convergence, since the intensity of various harmo”i§plit-operator techniquef25,26,33, where |:|0 is usually

peaks can span a range of many orders of magnitude. H'gr(]:'hosen to be the radial kinetic-energy operator &the

precision accuracy is generally more difficult to achieve byr maining Hamiltonian depending on the spatial coordinates

the equal-spacing spatial-grid-discretization time-dependenf3 o

techniques. Due to the Coulomb singularity at the origin, th only. The use of thenergyrepresentation in E429) allows
ques. g Y gm, e[pe explicit elimination of the undesirable fast-oscillating

equal-spacing spatial-grid methods require a large number i .
grid points to achieve converged results. To achieve highgﬁ"gh energy components and speeds up considerably the

o i . . _1{ime propagatiori24].
accuracy for the time-dependent wave-function propagation, To pursue the time propagation, we expand the single-

we have recently introduced a numerical proced@d that . ) )
: : : . electron wave functiony;,(r,t) in Legendre polynomials
consists of the following two basic elemen(s. A general- [24—26

ized pseudospectrakchnique[29,3( is used for optimal
grid discretization of the radial coordinatedensermesh Imax

near the origin_and short distar_lces. The number of grid Yio(r1,6; ,t)=z 9i(r))Py(coss)), (30)
points required is generally considerably smaller than those =0

used by the equal-spacing discretization methods. Yet higher

accuracy in wave functions and therefore HHG spectra cawhere theP,’s are the normalized Legendre polynomials.
be achieved, since the physically more important short-rangg,(r,t) can be determined accurately by the Gauss-Legendre
regime is more accurately treated by this meth®d]. The quadrature
generalized pseudospectral mettaé,30 also has been re-

cently applied successfully to the time-independent non-
Hermitian Floquet studies of atom[@9,31] and molecular gl(ri):kzl WP (o) io(ri, Ok, 1), (31)
[32] processes in strong fields. It was found that the method -

is capable of providing high accuracy for both low-lying and
highly excited complex guasienergy resonance stiigsA

L+1

where {cosj} are theL+1 zeros of the Legendre polyno-

, X ! mial P nd{w,} are th rr ndin ratur
split-operator technique in thenergyrepresentation is intro- L+1(Costl) and{ _k} are the corresponding quadrature
duced for efficient time propagation of the wave functi0ns.‘(’3")‘(1')5:2;55'egr;leS propagation ihl, energy space can now be

In this work, we extend this procedure to the numerical so-

lution of the time-dependent KLI-SIC equations. In the fol- o

lowing we outline the basic procedure involved. A detailed iy aw2 _ _iHOt2

description of the method can be found in Ref4]. e O g1 0, ’t)_;o [e” ™1™ ai(ri ) ]Pi(coshy),
Consider the solution of the time-dependent one-electron (32

Kohn-Sham-like equation with OEP and SIC fdrelectron

systems in linearly polarized field|(z), with
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1d2 1(1+1) B d’z .
HP=—§E+?+ng§0(r,oy da(t)= | p(r,t) gz dr
. . _ VI (r,b)
Note that in Eq.(32), each partial-wave componengi is =2 (his(r,1) —T+Fg(t)
propagatedndependentlyinder individuall3||0 energy space, b
leading to efficient propagation of the total wave function. X i (1, 1)) (39
The key step in the time propagation of E®2) is to
construct the evolution operator in length form and acceleration form, respectively, where the
second equality in Eq:38) or (39) is valid within the single
e—iH?At/ZE (1), (33 determinant approximation. The corresponding power spec-

trum can now be obtained by the Fourier transformation of

through an accurate representatior‘l:t?f. Here the general- the respective time-dependent dipole moment

ized pseudospectral methf2i4,29,3Q is used for an optimal 2

1 t )

grid discretization and for accurate and efficient solution of P(w)= f fd(t)e*'wt =|d(w)|? (40)
the eigenproblem: ti—tiJy,

" and

AP xi(r)=ex(r). (34

i i i-infini i e —iwt ? 2

The first step is to map the semi-infinite domdiye] or Pa(w)= ﬁ?] da(t)e =|da(w)]*.  (42)
[0f max] onto the finite domairf —1,1] using a nonlinear foh ti

mappingr =r(x), followed by the Legendre or Chebyshev

pseudospectral discretizatiof29,30,34. This allows for IV. EFFECT OF DYNAMICAL ELECTRON
denser grids near the origin, leading to more accurate eigen-  CORRELATION ON MULTIPLE HIGH-ORDER
values and eigenfunctions and the use of a considerablyHARMONIC GENERATION OF He IN INTENSE LASER
smaller number of grid points than those of the equal-spacing FIELDS: A CASE STUDY

grid methods. A suitable algebraic mapping for atomic struc-

ture calculations is provided by the forf29,30,34 The study of multiple high-order harmonic generation in

intense laser fields is a subject of much current interest both
1+4x experimentally{ 35] and theoreticallyf3]. For the theoretical
(35 studies of HHG processes, the most successful time-
dependent approach so far is the single-active-electron ap-
_ . proximation with a frozen corg2,3]. In this approach, how-
whereL and a=2L/rpnay aré mapping parameters. The in- ger electron correlation and core excitation, etc., cannot be
trod.uctlon of the nonll_near mapping, howeyer, usually Iead*thpricitIy treated. We note that in an earlier work, Kulander
to either an asymmetric or a generalized eigenvalue problenP27] has used the time-dependent Hartree-Fock method to
Such undesirable features may be removed by the use of @ torm a two-electron calculation of He multiphoton dy-
symmetrization procedure recently introdu¢@8,30. Thus,  namics. However, only the multiphoton ionization process
by defining has been studied if27]. In this work, the finite-difference
algorithm with equal grid spacing is used to discretize the
() =~r"(x) x(r(x)), (38 cylindrical coordinates. In a recent paper, Ullrich and Gross
[28] have applied their time-dependefTD) OEP-KLI
one finds that the transformed Hamiltonian possesses ﬂ}ﬁethod[g] to the study of the HHG of He, using the same

rEr=LbIS e

symmetrized form numerical proceduréeven grid spacingdescribed in27].
However, no comparison of the TDOEP-KLI results with
~ 0 11 d*> 1 those of the SAE model is made in this latter wda8]. In
HI() =~ 5 —— ——= ——+Vi(r(x)), (87)  this section, we shall extend the time-dependent OEP—KLI-

2 ¢! 2 1
r(x) dxr(x) SIC formalism and the generalized pseudospectral time-

propagation method for a nonperturbative study of HHG of
He atoms in intense laser fields. The results of both the SAE
. : ‘approximation and the all-electron calculations will be pre-
endre pseudospectral m?”‘o‘,” the coIIocatlon_ pdisare sented and compared to examine the range of validity of the
the roots of the polynomial®y, 1(x), whereN is the total  gaAE model. In the present study, the SAE calculation is
number of grid points used in the discretization. _performed within the time-dependent KLI-SIC formalism
After the time-dependent single-electron wave function§yit, the 1s electron being held frozen. A comparison with
{¢i,} are obtained, the total electron densjift) can be rgjeyant experimental data will be made. As will be shown
determined. The induced dipole moment can now be eXpg|ow, the all-electron time-dependent KLI-SIC formalism
pressed as allows a detailed exploration of the the effectsdyhamical
electron correlationor dynamical screeningn both the ion-
d(t):f p(r,)z dsr:iz (i1 )2t ,(r,1), (39 :iz;tri](l)qrérand HHG processes in a unified and self-consistent

where V,=1(1+1)/22+ V& (r), reducing Eq.(37) to a
symmetric eigenvalue problem. For example, in the Leg
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FIG. 1. Comparison of the HHG spectra of He atoms calculated F!G- 2. Comparison of the HHG spectra of He atoms in length
by ALSDA (open circles and TD—KLI-SIC-LSDA (filled circles (open circleg and acceleratiofffilled circles forms obtained from

methods. The laser intensity used is 10 W/cn? and the wave- e TD-KLI-SIC method. The laser intensity used is
length used is 527 nm. 6X 10 W/cn? and the wavelength used is 527 nm.

For the special case of He, it can be shown that the TD-bound SIC-LSDA electrons, namely, an atom with smaller
KLI-SIC equation (14) can be formally reduced, in the ionization potential in general tends to produce a higher
exchange-only limit, to the time-dependent Hartree-FockHHG plateau and earlier cutoff. For quantitative prediction
(TDHF) equation, since there are onlg $pin orbitals being of the HHG spectrum, it is thus essential to have the struc-
occupied initially. However, the present TD—KLI-SIC for- ture of the atomsin this case, the long-range interaction and
malism is intended for general many-electron atoms. It ighe ionization potentialcorrectly represented before pursu-
desirable to develop a general TD—KLI-SIC code for many-ing the time-dependent calculations. Because of the relative
electron atoms, including He. We have thus performed botlsimplicity and reasonably high accuracy, we have adopted
TD-KLI-SIC and TDHF calculations for He. The results are the LSDA energy functional in our TD—KLI-SIC calcula-
essentially identical even though the detailed procedures irtions discussed below.
volved are completely different. Such a comparison is useful Figure 2 shows the comparison of the HHG power spectra
and necessary, as it provides a benchmark for calibration df length and acceleration forms for the case of a linearly
the accuracy of the general TD—KLI-SIC code for morepolarized field with laser wavelength 527 nm and peak in-
complex atoms. tensity 6x 10 W/cm?. The procedure for the field turning

It is instructive to first make a comparison of the presenton is the same as that for Fig. 1. The total number of Leg-
TD-KLI-SIC procedure with the corresponding time- endre pseudospectral grid points used is 300 for the radial
dependent LSDAor ALSDA) method. Due to the lack of coordinater and a filter functior 24] is used at some large
long-range potential, the LSDA electron is too loosely bounddistance(typically 50—70 a.y.to filter out the ionizing wave
with an ionization potential of 0.517 a.u. This is significantly packet. Up to 30 partial waves are used, which are sufficient
lower than than the experimental value of 0.904 a.u. and th& achieve the convergent results for the present case. Figure
SIC-LSDA value of 0.918 a.u. For the case of laser wave2 shows that the HHG power spectrum in the length form
length 527 nm, while the actual He atom requires the absormearly coincides(within a few percent with that of the
tion of 11 photons from the ground state to reach the conacceleration-form calculation throughout the plateau regime.
tinuum, the LSDA electron only requires 6 photons to beDeviation occurs only well beyond the cutoff point where the
ionized. Thus it is of interest to see the effect of the changecceleration-form results are believed to be more accurate
of the ionization potential on the HHG spectrum. Figure 1[26,36. The agreement of the length- and acceleration-
shows the comparison of the HHG power spectra of He atpower spectra in the physically important regime demon-
oms obtained from the TD—KLI-SIC-LSDAfilled circle§  strates that reasonably high-quality electron orbital wave
and ALSDA (open circleg calculations for the case of laser functions can be achieved by the present TD—KLI-SIC for-
intensity 1x 10'* W/cm? and wavelength 527 nm. The field malism and the time-propagation numerical algorithm. In the
is turned on using a strramp for the first 10 optical cycles following discussions, only the acceleration-form HHG
and the field amplitude is held constant afterward. The wave@ower spectra will be presented. It is known that the accel-
functions are propagated for 25 optical cycles and the HHGeration form provides the more accurate framework for the
spectra are obtained from the Fourier transformation of thelescription of the HHG processes when ionization becomes
induced dipole momeriin length forn) for the last 5 optical  important[26,34.
cycles. There are apparently significant differences between In Figs. 3a)—3(d), we show the comparison of the results
the two results both qualitatively and quantitatively): The  of the all-electron time-dependent KLI-SIQilled circles
HHG intensities in the plateau regime of the ALSDA calcu- and SAE—KLI-SIC(open circleg calculations for the case of
lation are about 2—3 orders of magnitude larger than those daser wavelength 527 nm and laser intensity
TD-KLI-SIC LSDA and (ii) the HHG cutoff position from 1=10" 3x10% 6x10" and 18° Wicn?, respectively.
the ALSDA occurs earlier than that of the TD—KLI-SIC Several interesting features are noted. First, for the lower-
LSDA. Such differences may be attributed to the typical be-intensity casefFigs. 3a) and 3b)], there is good agreement
havior of looser bound LSDA electrons versus the tighterof the SAE and all-electron HHG power spectra. The dis-
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FIG. 3. Comparison of the HHG spectra of He atoms obtainecAlOM are completely equivalent and the spin index can be
from the all-electron calculatior(@lled circles with those from the ~ ignored in Eq.(42). The physical meaning dfi;(t) is the
SAE model(open circles (a)—(d) show the results corresponding total electron probabilitydensity within the finite regime
to the laser intensity=10", 3x 10" 6x 10" and 16° w/cn?, bounded by the filter. For the case of two-electron time-
respectively. The laser wavelength used is 527 nm . dependent KLI-SIC calculationg\;¢(t) includes the total

bound electron probability due to the neutral He atom and
crepancy increases with increasing laser intensity. For théhe He™ ion all together. In the SAE modeN4(t) repre-
highest-intensity case considered higfigy. 3(d)], where ion-  sents only the probability of the “active” electron bounded
ization becomes appreciable, there is signifiddrt2 orders to the neutral He atom, while the othes &lectron is frozen
of magnitude departure of the SAE results from those of theto the 1s orbital. The ionization rates can be estimated from
all-electron calculations. the slopes of thél;¢(t) vs time plots in Figs. &)—4(c). It is

The most notable distinction of the SAE versus the two-seen that the SAE model always predicts larger ionization
electron results in Fig. (@) arises in both the lower- and rates than those of the two-electron calculations and the dis-
higher-harmonic regimes. The SAE model overestimates therepancy increases with increasing laser intensity. We note
harmonic-generation rates in the lower-energy harmonic rethat in the actual time-dependent ionization process of the He
gime, while significantly underestimates the higher-energyatom, the average electron binding energy of the atom should
harmonics. To understand the origin of such a discrepancyncrease with time. This is because when the atom is partially
we show in Figs. &)—4(c) the time-dependent bound-state ionized(in terms of the ionization probabilitythe remaining

populationN4(t), electrons(in terms of bound electron probabiljtywill be
more tightly bounded by the nucleus due to the dynamical
N(t) screening effect. For example, the ionization potential of the
— * __ 7 ’
le(t)—f $1s(r, D) das(r,ndr=——, (42 heutral He atom is 0.904 a.u., while for the Héon the

binding energy is 2.0 a.u. The all-electron TDDFT takes into
of the He atom for the case of 527 nm and three differenaccount such a dynamical screening effect or equivalently
laser peak intensities: (a8 3x10" Wicn?, (b) the dynamical electron correlation, while the SAE model
6x 10" Wicn?, and (c) 1xX 10'° W/cn?, respectively.(In  does not. In the SAE model, the ionization potential is a
both Figs. 3 and 4, we use a $iramp for the first ten optical ~static quantity since the remaining electron is frozen. As a
cycles and the field amplitude is held constant afterward.result, the SAE electron is always less bounded by the
Note that the two & electrons(spin up and downin the He  nucleus, leading to the overestimation of the ionization rate.
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A similar argument can be applied to the explanation of the 1
discrepancy of the all-electron and SAE HHG results in Figs. [
3(c) and 3d). In general, for a given laser intensity and fre- 08 |

guency, an electron with smalldargen ionization potential .
tends to produce largésmalley harmonic-generation rates = 06 -
for lower harmonics but with a shortéiongen cutoff in the Zl’ .
higher-harmonics regime. Since the active electron in the 04 r
SAE model has smaller ionization potential than that in the

all-electron theory when ionization occurs, the SAE model 0.2 ;
tends to predict earlier HHG cutoff, as can be seen in Figs. E . . . L i
T T G S T
3(c) and 3d). L . 0O 20 40 60 8 100 120
In this context, it is instructive to pursue further explora- Time (in optical cycle)

tion of the effect of dynamical electron correlation on the
production ofhigher harmonics. This is prompted by a re- i
cent experimental study of the HHG of the He atom by ok
Sarukuraet al. [37], using an ultrahigh-power KrF laser :
(248.6 nm with a peak intensity of X 10" W/cn?. Due to

the possible effect of defocusing of the laser beam, the actual
effective peak intensity responsible for the HHG production
is estimated to be about X8.0'° W/cn? [38]. To fit the

Logyq | d(nw)? |
S
1

experimental datéfrom 9th to 23rd harmonigsseveral the- !

oretical works found that it was necessary to use a two-step 4r

model[38,39. The fitting of the lower harmonic&ip to the P STV T T T VA TR TR I0.
13th—15th harmonjcwas achieved by the SAE model for 9 11 13 15 17 19 21 23 25
the neutral He atom, while a separate Hmodel was used Harmonic Order

to fit the higher harmonics. In essence, in the two-step model ) )
the HHG of He is considered to be purely two separate one- FIG- 5. (8 Comparison of the bound-state populatidfs(t) of
electron phenomena. In a recent paptd] using the two- H_e atoms obtained from the aII-e_Iec_tron calculatidtisck lines
electron wave-function approach, a different interpretation of‘”th those from the SAE modthin lineg. The envelope of the
the He HHG data was inferred: Tleatire HHG spectrum of e;ser pulse_ is also presentéihshed ling (b) T.he HHG. spectrum
He is due to the neutral He atom alone and the higher hag2! 1 oPtained from the all-electron calculatiaapen circles and
. . from the SAE modelfilled triangles. The experimental datavith
monics are the result of strong electron Cor_relatlons. How'error barg are also shown for comparison. The HHG yields are
ever, in this latter work, only the wave functions of the

1 ) ave Y . normalized to the 13th harmonic peak. In béahand(b), the laser
and “P states are included and no ionization information iSpeax intensity used in the calculationlis 3.5x 10% W/cn? and
provided. Thus it appears that the actual mechanism respogye wavelength = 248.6 nm.
sible for the observed higher harmonics in [[3€] is still not
yet settled. there is little ionization produced. As the field increases from

To explore the origin of the observed HHG beha\i8r] 30 to about 60 optical cycles and approaches the peak inten-
and to resolve the discrepancy of the two different theoreticasity, N,,(t) drops rapidly from 1.0 to about 0.5. During this
interpretations[38—-4( of the experimental results, we period, the neutral He atom is rapidly ionized to Hand the
present below a detailed analysis of both the ionization an¢fe™ jon becomes the dominant species. After the peak in-
HHG processes using the time-dependent KLI-SIC formaltensity is over(60—80 optical cycles the decay ofN;(t)
ism. Following Ref.[38], we consider a laser fielR48.6  continues, but with a slower rate due to the decrease of the
nm) with a sirf pulse of 128 optical cycle&l05 f§ and a |aser intensity. After about 80 optical cycle¥;(t) drops
peak intensity of 3.5 10" W/cn?. Figure §a) shows the much more slowly and nearly approaches a constant. This
time-dependent populatidy, 4(t) and the laser pulse profile. can be attributed to the fact as the laser intensity is further
It is seen that in the SAE modéthin line), the neutral He  decreased, He, the dominant species, becomes much more
atom is completely ionized to the Heion before the peak difficult to ionize due to its substantially larger ionization
intensity is reached. The two-electron TDDFT calculationpotential than that of the neutral He atom.

(thick line), however, shows quite different behavior. We  Figure gb) shows the corresponding harmonic-generation
discuss below the implications of the behavior of dig(t)  power spectra obtained, respectively, by the two-electron
curve (two-electron calculationsn Fig. 5a). First note that  calculations(open circley and the SAE modelsolid tri-
N,4(t)=1.0 means that all the electrons are bounded to thangle3. Also shown are the experimental d48¥] (normal-
neutral He atom and that there are no ions. WReg(t) =0, ized to the 13th harmonjdsolid circles with error bajsfor

all the electrons are ionized, and this corresponds to the Heomparison. Similar to the previous theoretical studiRg-

2* jon limit. For the intermediate cas#l;4(t)=0.5, it im-  40], we found that the SAE HHG spectrum shows a large
plies thaton averageone electron has been ionized and™He departure(underestimationfrom the experimental data for

is the dominant species, though there could still have beeharmonics higher than the 15th harmonic. However, our two-
some neutral He atom and Peion exist. Figure &) shows  electron TDDFT results agree well with thehole experi-
that N,4(t) stays close to 1.0 during the rising part of the mental HHG spectrum. From the analysis of the data in Fig.
pulse (from t=0 to about 30 optical cyclesand 5(a), we can draw the following conclusion on the actual
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mechanism responsible for the the observed higher harmoprovides a unified and self-consistent dynamical picture of
ics in He[37]: Both the He" ion and the dynamical electron the origin of the generation of the higher harmonics in He.
correlation are important to the production of the higher har- We are currently extending the time-dependent KLI-SIC
monics. In fact, for the present case, these two factors a®drmalism to the study of multiphoton dynamics of more
related to each other to some extent. The production of theomplex atoms in intense laser fields. Results will be pre-
higher harmonics is clearly a two-electron correlated phesented elsewhere.

nomenon because the SAE model fails completely in this
high-intensity regime, whereas the two-electron TDDFT pro-
vides the correct result. However, the production of the
higher harmonics appears not entirely due to the neutral He
atom as inferred in a recent wofkQ]. In fact, Fig. %a)
shows that while both the neutral He atom and the"Hen
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