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in strong fields: High-order harmonic generation of H, in intense laser fields
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We present aelf-interaction-fregime-dependent density-functional theqfyDDFT) for nonperturbative
treatment of multiphoton processes of many-electron molecular systems in intense laser fields. The time-
dependent exchange-correlatioe) energy potential with proper short- and long-range potential is constructed
by means of théime-dependent optimized effective poter(tzEP method and the incorporation of an explicit
self-interaction-correctioSIC) term. The resulting time-dependent OEP/SIC equations are structurally simi-
lar to the time-dependent Hartree-Fock equations, but include the many-body effects through an orbital-
independensingle-particlelocal time-dependent xc potential. A numerical time-propagation technique is in-
troduced for accurate and efficient solution of the TDDFT/OEP-SIC equations for two-center diatomic
molecular systems. This procedure involves the use géreeralized pseudospectnadethod fornonuniform
optimal grid discretization of the Hamiltonian in prolate spheroidal coordinates and a split-operator scheme in
the energyrepresentation for the time development of the electron orbital wave functions. High-precision
time-dependent wave functions can be obtained by this procedure with the use of only a modest number of
spatial grid points. The theory is applied to a detailed study of high-order harmonic gendkiti@) pro-
cesses of Kl molecules in intense pulsed laser fields. Particular attention is paid to the exploration of the
spectral and temporal structures of HHG by means of the wavelet time-frequency analysis. The results reveal
striking details of the spectral and temporal fine structures of HHG, providing new insights regarding the
detailed HHG mechanisms in different energy regimes.
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[. INTRODUCTION ally similar to the time-dependent Hartree-Fock equations
but include in principle exactly all many-body effects
The study of multiphoton and nonlinear optical processeshrough a local time-dependent exchange-correlatixr)
of atoms and molecules in intense laser fields is a subject gfotential. With the exception of several recent wofkg—
much current interest in science and technology. To describ&3], previous applications of the TDDFT fall in the regime of
SUCh Strong_ﬁe|d processes usminitio Wave_function ap_ linear Or.nonlinear _response in- weak fields for which the
proach, it is necessary to solve the time-dependent Schr@erturbation theory i$8—10| applicable. Recently, an alter-
dinger equation of many-electron systems, which is far pehative nonper_turbatlve formulation of the time-dependent
yond the capability of current computational technology. InPFT [15] and time-dependent current DET6] based on the

this paper we present a nonperturbative formalism based drtension of thegenerallzed Floguet forma_llsnjl?] has_
the extension of the time- dependent density—functionaPeen introduced, allowing exact transformation of the time-

theory (TDDFT) for the study of many-electron molecular dependent Kohn-Sham-like equations into an_equivalent
. . time-independenhon-Hermitian Floquet matrix eigenvalue
systems in strong fields.

Since the fundamental work of Hohenberg and Kélih problem. Such a TDDFT-Floquet formalism provides a gen-

. . eral time-independentapproach for nonperturbative treat-
and Kohn and Shaif2], the(ste_ady-stat)edenS'tY'_funCt'OnaI ment of multighoton p?opcesses of manr;/-electron quantum
theory (DFT) has become a widely used formalism for elec- 5 stems in the presence périodic, quasiperiodic, or multi-
tronic structure calculations of the ground-state properties ofgjor |aser fields. In this paper we focus on the time-
atoms, molecules, and solifi8—7]. In the Kohn-Sham DFT dependent approach and extend the TDDFT wiptimized
formalism, the electron density is decomposed into a set Offfective potential (OEP and self-interaction-correction
orbitals, leading to a set of one-electron Scfinger-like  (S|C) recently developed12,13 for the atomic systems in
equations to be solved self-consistently. DFT is computaarbitrarily time-dependent fields to the molecular systems.
tionally much less expensive than the traditiomdl initio In actual DFT or TDDFT calculations, one needs to input
many-electron wave-function approaches and this accountde xc-energy functionals whose exact forms are not known.
for its great success for large systems. However, the DFT i is known [3] that the xc energy functionals commonly
well developed mainly for the ground-state properties only.used such as thiecal spin density approximatiofLSDA)

The treatment of excited and resonance states structure af®,18] or the more refinedjeneralized gradient approxima-
time-dependent processes, both essential to the quantitativien (GGA) [3,19-21, suffer a severe deficiency, namely,
study of multiphoton dynamics of many-electron systemsthe corresponding xc potentials do not possess the correct
within the density-functional theory, is much less developedlong-range  1/r) behavior. As such, while the total ener-
The central theme of the modern TDDE&-14] is a set  gies of the ground states of atoms and molecules predicted
of time-dependent Kohn-Sham equations which are structutby these explicit xc density functionals are rather accurate,
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the ionization potentials obtained from the highest occupiedn intense laser fields. The general formalism is applicable to
orbital energies are less satisfact¢B], typically 30-40%  both atomic and molecular systems. The spin orbitals satisfy
too low. Such a problem can be attributed to the existence ahe one-electron Schdinger-like equation, in atomic units,
self-interaction energyn the conventional DFT formalism

using LSDA or GGA. For accurate treatment of photoioniza- . ~

tion or multiphoton ionization processes, it is necessary that 'Ewi”(r’t): H(r. 1) dio(r.t)

both the ionization potentials and the excited state properties
be described more properly.

In a recent paper, we have presented an extension of the
DFT for more accurate treatment of both the ionization po-
tentials of the ground states as well as the photoabsorption i=12,...N,, D
spectrum of autoionizing resonand@?]. The results are in
good agreement with available experimental data well withirwhere v ,(r,t) is the time-dependent effective potential
a few percent$§22]. The method is based on the extension ofdepending upon the total electron dengit) and o is the
the KLI (Krieger- Li-lafrate’s semianalytical treatmeif3]  spin index. The total number of electrons in the system is
of the OEP formalisni24,25 along with the use of an ex- N=X,N,, WhereN(,(=NT or Nl) is the total number

plicit SIC form [26]. As shown in our recent work2], the  of electrons for a given spi. Within the single determi-

optimized effective potential so constructed has the propehant approximation, the tot&l-electron wave function can

long-range (- 1/r) behavior and is capable of providing high be expressed as

accuracy for both excited and autoionizing resonance states.

In a recent paper, we extend the OEP/KLI-SIC formalism for 1

the atomic systems to the time domé&ir?]. We note that a W(t)=——def -y ... ¢hn], (2

related time-dependent OEP/KLI formalism has been devel- VNP

oped by Ullrichet al, [11] in the exchangex)-only limit. In

the latter approachH11], the non-local Hartree-Fock ex-

change functional form is used instead of the explicit SIC

form [12] in the construction of the optimized effective po-

tential. As shown in our recent works for atomic systems

[12,13, the use of explicit SIC form in the time-dependent p(r) g .Z Pior.)=p,(r.)+p (L), @

OEP/KLI calculations involves only orbitahdependent

single-particlelocal potentials for each time step and is thus where p;,(r,t) =i .(r,t) ,(r,t). The effective potential

computationally more efficient and yet the wave functionsvess,(r,t) in Eq. (1) will be the time-dependent OEP if we

maintain high accuracy. choose the set of spin orbitaJ®;,(r,t)} which render the
The organization of this paper is as follows. First wetotal action functionalA[{;,(r,t)}] stationary[11-13:

briefly review the time-dependent DFT formalism with OEP/

1 2
= _EV +Ueff,0—(rat) (v[/i(r(rvt)v

and the total electron density at tinhés determined by the
single-electron orbital wave functiod®;,} as

KLI-SIC in Sec. Il for the general treatment of multiphoton SA{¢i,(r,1)}]
dynamics of many-electron atomic and molecular systems in OT(”): . (4)
the presence of intense laser fields, taking into account elec- Vett.o

tron correlation and proper long-range behavior of the opti-
mized effective potential. Second, we presergeaeralized
pseudospectralGPS method in Sec. Il for thenonuniform
optimal spatial discretization of two-center diatomic molecu-
lar systems. Third, we outline in Sec. IVggneralized pseu- 4y
dospectral time-dependentethod for efficient and accurate AXC[{zpiU}]:f thXC[pT(r,t),pl(l’,t)]

treatment of the time-dependent OEP/KLI-SIC equations in -

space and time. And finally in Sec. V we apply the TDDFT/ ty

OEP-SIC formalism to a nonperturbative study mfiltiple _

high-order harmonic generatiotHHG) of H, molecules in Etr: ,Z dt{J[pm]JrEXC[p'mO]} ©
intense pulsed laser fields. Particular attention is paid to the

exploration of the fine structures of spectral and time profilevhereE, is the time-dependent exchange-correlation energy
of HHG, providing detailed new physical insights regardingfunctional and

the underlying mechanisms for harmonic generation in dif-

ferent energy regimes. IAp]= j f p(r,t)p(r',t)

r=r']

An essential step is that we propose the following explicit
SIC expression for the exchange-correlatirc) action func-
tional [12,13,

drdr’. (6)

Il. TDDFT WITH OEP-SIC FOR INTENSE-FIELD

MULTIPHOTON PROCESSES The use of the SIC form in Eq5) removes the spurious

self-interaction terms in conventional DFT/TDDFT and re-
In this section we briefly describe the TDDFT with OEP sults in properong-rangepotential. Another major advan-
and SIC for multiphoton processes of many-electron systemige of this procedure is that onliycal potential is required
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to construct therbital-independen©EP for each time step. The TDDFT/OEP-SIC procedure outlined in this section

This facilitates the numerical computation considerably.  is general and applicable to any atomic and molecular sys-
By extending the steady-state OEP/KLI-SIC procedure tdems. For the special case of homonuclear diatomic mol-

the time-dependent case, we obtain the time-dependent OEules, our present focus, the time-dependent OEP potential,

as[11-13: Eq. (7), has the following explicit form:
adlp] '
\/OEP Z Z p(r',t)
VOEP (1) = exd 1)+ == +Vgicol(rt).  (7) \/OEP 1L f 3/
€ ex Opo(r,t) Vett,oll )= “TR—t|  [Rp—r1| + ] dr Ir—r']
Herev,(r,t) is the “external” potential due to the interac- +E() -1 sinwt+ Ve e (r,t) (16)
tion of the electron with the external laser field and the the 7

nuclei, and whereVg,c ,(r,t) is given in Eq.(8). Herer is the electronic

coordinate, E(t) the electric field amplitude, andR;

Vgicol(r,t)= E Pio ){vm (r t)+[V5|cg(t) m(t)]}, =(0,0a) andR,=(0,0,—a) are the coordinates of the two

a(r t nuclei in Cartesian coordinates, with nuclear chaiggand
(8) Z,, respectively. The internuclear separati@ris equal to
2a.
SExdp (r1).p (O] 83[pi,(r,0)]
vio’(rit) = - -
Op,(r,t) Opig(r,t) Ill. PSEUDOSPECTRAL SPATIAL DISCRETIZATION OF
TWO-CENTER SYSTEMS
5Exc[pi(r(rlt)10]
N Spig(r,t) ©) In this section, we first present the procedure for the spa-
tial discretization and solution of field-free two-centieli-
and atomic molecularsystems. We shall use the prolate spheroi-
- dal coordinates 4,v,¢), O0<u<wo,0<py<m,0<¢
Vo) =(#io|Vsico(r, O] i), (100 <2, for the description of the system:
Vi) =(Yiolvin(r.0]1). (11 x=asinhu sinv cose, (17
In Egs.(10) and(11), Vi, , andv;,, are constants at a given y=asinhusinvsing, (18)
. vl .
time t, although the value d¥g,c , is unknown, The KLI 2=a coshy cosv. (19

method[11-13,23 suggests a way to calculat@s,c',,(t)

—u—:{,(t) through a solution of the following linear equations Due to the axial symmetry of the diatomic systems, the field-
free solution takes the form

; [ 0= Mii o(DIIVE1c.6(D) = 0i(D]= V(D) —vj,(1), U (=B (u,p), (M=0,1,+2,...). (20)

We first consider thenonuniformoptimal discretization of
the spatial coordinates by means of the GPS techriigde
In the GPS method, we expand any spatial wave function

i=12,...N,, (12

h
where D(u,v) by (I)NM’NV(,LL,V), the polynomials of ordeN,, and
P, t)pis(r,t) N, in u andv, respectively,
ji g(t)=fjp(—rlt)df, (13
7 ‘D(/J«,V):‘DN# N (M v)
N N,

3 pio(F D 0i(1,1)
S () ={(u; AR ALY 14
=Wl 2 Ty e (9 = 2 )G ), (2D
In the time-dependent OEP/KLI-SIC method outlined here, . L
Egs. (1) and(7) are to be solved self-consistently. Note thatand further require the approximation to be exact at the col-

Eg. (1) is an initial value problem and the initial wave func- location  points, i.e., (DN#,NV('“i i) = (i, vi) = dij

tion can be determined by where{x(u;)} and{y(»;)} are the two sets of collocation
. points to be described below. In E@®1), gi(x) andg;(y)
i1 D)1—0= din(r)-e '€idt|_y, (15)  are the cardinal function®7,28 defined as
where ¢;,(r) ande;, are the eigenfunction and eigenvalue 1 (1—x?)P{, (x)
of the time-independent Kohn-Sham equati@vith OEP/ gi(x)=— L (22
SIC) for the field-free casg22]. | NL(N,+1)Py (%) X=Xi
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1 (1_y2)P’/\IV(y) 5 T T s T T T T T T
(V)= — . (23 - - s 0B - -

GNPy vy, P sE
In the case of the Legendre pseudospectral mefA@dg, ; 3T i
which we adopt in this article, the boundary points age = , | i
=yp,=—1 and XN#ZYNfl- x(i=1,...N,-1) and x
yj(j=1,... N,—1) are the collocation points determined, T 1
respectively, by the roots of the first derivative of the Leg- R ERT .
endre ponnomiaPNﬂ with respect tax and the first deriva- 0_5 4 -3 3 4 5
tive of Py with respect toy, namely, z(au)

p -0 (24) FIG. 1. The grid structure of the spatial coordinates gfdt-
N#(Xi)_ ’ tained by the generalized pseudospectral discretization technique.
Py (yj)=0. (25 gence since the intensity of various harmonic peaks can span
" a range of many orders of magnitude. High-precision wave

It follows that the cardinal functions possess the followingfunctions are generally more difficult to achieve by the

unique properties equal-spacing spatial-grid-discretization time-dependent
techniques, due to the Coulomb singularity at the origin and
gi(Xi)=26r, (26)  the long-range behavior of the Coulomb potential. To
achieve precision time-dependent wave-function propaga-
9i(yj)=6jr (27)  tion, we have recently introduced a new numerical procedure

) ) _ ) [34], which consists of the following two basic elemen(s:
We shall use the following mapping relationships betwgen A gps techniqud27] is used fornonuniformoptimal grid

andx and between andy: discretization of the radial coordinatetensemesh near the
1+ nucleus and short distances. The extension of the GPS
=L X (29) method to the two-center systems has been described in the
,U. ) . N .
1-x last section. We have previously shown for the atomic sys-

tems that the number of grid points required is orders of
magnitude smaller than those used by the equal-spacing dis-
cretization methods. Yet higher accuracy in wave functions
and therefore HHG spectra can be achieved since the physi-
where xe[—1,1], ye[—1,1], upe[0p0], w»e[0m], cally more important short-range regime is more accurately
and L is a mapping parameter. The collocation points oftreated by this metho[B4]. (ii) A split-operator technique in
X(u) andy(v) are determined by Eq$24) and (25). the energy representation is introduced for efficient time
A most detailed discussion of the construction of the dif-propagation of the wave functions. In the following, we ex-
ferentiation matrix and the symmetrization of the Hamil- tend this procedure to the numerical solution of the time-
tonian matrix is given elsewhef@7]. A major advantage of dependent OEP/SIC equations in two-center diatomic mo-
the outlined generalized pseudospectral method is that it alecular systems.
lows for nonuniform optimal spatial grid discretization: Consider the solution of the time-dependent one-electron
denser mesh near the nuclei and sparser mesh for long-rang@hn-Sham-like equation with OEP/SIC fbkelectron sys-
part of the Coulombic potential. With the use of only a mod-tems in linearly polarized laser fields,
est number of grid points, high-precision eigenvalues and
eigenfunctions can be obtained since the physically most im-
portant short-range regime is accurately treated. Figure 1
shows the grid structure for two-center diatomic systems.

™
v=5(1+y), (29

J N N ~
iE'rlliu(r!t):H'r//iu'(r!t):[HO(r)+V(r1t)]¢iU(r!t);

i=1,2,...N,. (30
IV. GENERALIZED PSEUDOSPECTRAL

TIME-PROPAGATION METHOD EOR NUMERICAL HereI:|0 is the time-independent Hamiltonian with OEP/SIC
SOLUTION OF TIME-DEPENDENT att=0, andV includes the electron-laser field interaction
OEP/SIC EQUATIONS and the residual time-dependent OEP/SIC:
In this section we discuss the numerical procedure for the . 1 1 J [ J
solution of the set of time-dependent OEP/SIC equations, Ho(N) =~ 522 (sinf .+ sirv)sinhx S'”hﬂﬁ
Eq. (1), for two-center systems. The commonly used proce-
dures for the time propagation of the Sctlirger or TDDFT 1 d | . d
equation employequal-spacingspatial grid discretization +(sinhz,u+sin2v)sinv5 va%
[29-32. For processes such as HH@3], accurate time-
dependent wave functions are required to achieve conver- +VEiE,(r,0), (30)
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V(rt)=—E(t)-r sinwt+Vg’E¢P (r t)_VgIECP (r,0), grid points(N) are required in the present method, and since
7 7 (32) only half of the grid points in the coordinate are required
for homonuclear diatomic molecules, the overall operation is
whereE(t) is the electric field, assumed to be parallel to therather efficient. Finally we perform another fast propagation
internuclear g) axis, andE(t)=Ff(t), wheref(t) is the Step similar to that in Eq34):
envelope function of the laser pulse. We shall extend the A
second-order split-operator technique in prolate spheroidal W(rt+At)=exp(—iV(r,hH AP (r,t). (39
coordinates and in thenergyrepresentation for the propaga-

tion of the time-dependent OEP/SIC equations: This completes one time propagation step in &§). After

the time-dependent single-electron wave functipps,} are

Do (1 1+ Aty =exp(—iV(r,t) At/2)exp( —iH o(r)At) obtained, the total electron densityt) can be determined.
A ' 0 The induced dipole moment and dipole acceleration can now
Xexp(—iV(r, ) At/2) g, (r,t) + O(AL®). be expressed, respectively, as
(33

d<t>=f P02 =, (o012, (1.0), (40)

Note that such an expression is different from the conven-
tional split-operator techniqug¢29-32, WheAreI:Io is usually and
chosen to be the kinetic-energy operator &nithe remaining
Hamiltonian depending on the spatial coordinates only. The 9 J' o1 d?z

use of theenergyrepresentation in Eq.33) allows the ex-
plicit elimination of the undesirable fast-oscillatingigh-

energy components and speeds up considerably the time chPa(f t)
propagation34]. In addition, the symmetry properties pos- —E (Hio(r t)|—
sessed by:IO can be used to simplify and facilitate the cal-
culations. E(t)-r sin(wt)
To pursue the time propagation, we first discretize the T z | io(r,1)). (41)

Hamiltonian by the GPS method introduced in the last sec-
tion. Then the wave function on the pseudospectral gridThe corresponding HHG power spectrum can now be ob-
W (r,t), is first propagated according to tained by the Fourier transformation of the respective time-

dependent dipole moment or dipole acceleration:

V() =e VDY (), (34) i

d(t)e et =ld(w)?, (42

Since ex—iV(r,t)At/2) is a diagonal matrix in the coordi- Pw)=
nate representation, this is a fast step as far as the CPU time
is concerned. To pursue the next step of propagation in thgng

H, energy space, we construct the titnelependentvolu-
tion operator

2

A PA0)= = 2, a0 ] =l 43
e HoAl=g (35)
by means of the GPS discretization and solution of the field- V. HIGH HARMONIC GENERATION OF H , IN INTENSE
free Hamiltonian, Eq(31): LASER FIELDS: A CASE STUDY
~ _ In this section we present an application of the TDDFT/
Ho(u, ) xidv) = @ mav). @8 oep-sic procedure to the study of HHG of, h intense

Then the matrix S can be constructed as pulsed laser fields. First we discuss the field-free electronic
structure calculations using the steady-state DFT/OEP-SIC
N procedurg22], and thegeneralized pseudospectraiethod
Sij =; xk(r) x (r)e st (37 [27] is extended to discretize the molecular Hamiltonian in
the prolate spheroidal coordinates. As a measure of the ac-

Note that S is a complex symmetric matrix and needs to b€Uracy of the procedure, we have first tested the method for

constructed only once. Thus the time propagation in the erfn€ H™ molecule, where exact results are available for com-
ergy space, parison. Using only a modest number of grid poif28 for

the u coordinate and 9 for the coordinate, we obtain the
W (r,t)=exp(—iH AW’ (r,t)=S¥'(r,t), (38  9ground-state energy to be 1.1026342144949 a.u., in
complete agreement with the exact value of
is reduced to the matrix-vector produydD(N?) operatioj  —1.1026342144949 a.u[35]. For H,, the calculated
which can be performed efficiently using the basic linearground-state energy is 1.1336 a.u(using LSDA exchange
algebra subroutines. Note that since only a modest number @hergy functional onlyand —1.1828 a.u.(including both
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LSDA exchange and correlation energy functionaise lat- . 0.4 . ' '

ter is within 1% of the exact value of 1.174 448 a.u[36]. ; oz - ]

If the GGA energy functional such as that of Becke-Lee-

Yang-Parr(BLYP) [3] is used, the calculated ground-state 5 0.0 —~ ]

energy is improved te-1.17444 a.u. 3 o2 L i
In the following we consider the interaction of,Hnol- 2

ecules with an intense linearly polarized laser fields with 045 5.0 10.0 15.0
wavelength 1064 nm, sirpulse shape, and 20 optical cycles

in pulse length. The time-dependent xc potential is con—g
structed by means of the time-dependent OEP/SIC procedurg

using the LSDA exchange and correlation energy functionals 8’?
for Ey in Eq. (5). We shall assume the electric-field polar- § g1
ization is aligned along the internuclear—axib (direction. % -0.3
This approximation is justified by the experimental observa-§ —9°
tion that the laser-molecular interaction tends to force the® 700 5.0 100 15.0 20.0

molecule to align along the polarization axXi40,41. The Time (optical cycle)

rotation of the molecules can be also safely ignored under FIG. 2. The induced dipole momefi(t)) and dipole accelera-
the present short-pulse conditions. In this paper, we shall P 2 B h »
focug our stud onpthe HHG process of H]OIF()ecEIes from llon_ ((d*2()/de%) ;) of H at R=1.42 as a function of imein

g y ' p ] ~ optical cycles. The laser intensity is 6 W/cn? and wavelength
the ground vibrational state with the internuclear separationpga nm. The laser field has the %ipulse shape with a pulse
fixed nuclei approximation is justifiable since the zero-point

vibration of H, in the ground state is rather smaWithin +3.17U,]/%iw, whereU, is the ponderomotive potential.

0.25, of R,) and the inclusion of the vibrational degree of Thus forR nearR,, the behavior of high harmonic genera-
freedom is not expected to alter the main features of th(’ﬁon in H, is atomeic like

HHG phenome_non, particularly when the time QUrat_ion of Figures 3 and 4 show that those harmonic peaks near the
the laser pulse is short. However, the molecular vibration can toff regime are structureless. However, for harmonics in

play a so:gnlflcr?nthlrole ".1 EHGb |ft.the Img)lizcu_lreh'ls 'r.‘I:t'é‘"y the plateau and well below the cutoff, they possess some
prepared in a highly excited vibrational state. This will be anmultiple—peak fine structures. As shown in our recent time-

interesting subject to explore in the future. . _frequency analysis of the HHG power spectrum of atomic H

The solution of the timg-dependent OEP-SIC equation 'T42], these fine structures carry significant information re-
performed by means of thtene-dependent generalized pseu- garding detailed HHG mechanisms

dospectraimethod described in Sec. IV. To achieve full con- To explore the detailed spectral and temporal structure of

vergence for .the time propaga_tion, we have l.JSEd.ZOO Leq;”_'G and the underlying mechanisms in different energy re-
endre grid points for thg. coordinate and 40 grid points for gimes, we perform the time-frequency analysis by means of

the v coordinate for the time propagation. In the field-free
case, the energy and the norm of the wave function is con-
served to at least 10 digits of accuracy during the whole time
propagation. The time mesh used is about 0.1 a.u. A soﬁ
absorber[34] is placed at large electron distance,y
=60 a.u.) to filter out the ionized electron wave packet.

TABLE I. The comparison of the length and acceleration forms
f HHG power spectra of i The laser wavelength and intensity
sed are, respectively, 1064 nm and“0v/cn?. (HO stands for
“harmonic order.”) The internuclear distance is fixed &

Figure 2 shows the time-dependent induced dipole mo: L4 au
ment and dipole acceleration of,Hat R=R.=1.4a) for Length  Acceleration Length  Acceleration
the case of laser intensity= 104 W/cn?. As a measure of HO form form HO  form form
the accuracy of the time-dependent results, Table | and Fig. 3
show the comparison of the HHG power spectrum of H 3 —5.99 —5.97 2r —1081  -10.81
obtained by the Fourier transform of the induced dipole and® —7.75 - 29 -11.32  -11.35
dipole acceleration, respectively. Excellent agreement of thé —-8.73 —8.71 31 -11.70 —11.69
two spectra is obtained from the lowest harmonics all the? —8.84 —8.84 33 —12.07 —12.04
way to the cutoff regime, indicating the the full convergencell —8.75 —8.75 35 —11.90 —11.89
of the time-dependent wave functions. 13 —-8.39 -8.39 37 —11.87 —11.88

Figure 4 shows the HHG power spectra of, IR 15 —-8.95 —-8.95 39 -—12.13 -12.14
=1.4 a.u.) under higher laser intensityl=3 17 —9.43 —9.43 41 -12.64 —12.65
X 10 W/cn?, where the HHG plateau is seen to extend19  —10.13 -10.12 43 —13.36 -13.36
well beyond the 100th order. Again, excellent agreement op1 -9.61 -9.62 45 —14.25 —14.26
the length and acceleration results is obtained. The cutoff3 ~10.70 ~10.70 47 —15.29 —~15.30
harmonics in Figs. 3 and 4 are consistent with the quasiclass ~10.20 ~10.19 49 —16.48 —16.50

sical  prediction [37-39, namely,  Neyeor=[lp
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FIG. 3. The HHG power spectrum of ,Hat R=1.4a,) in a
20-optical cycle, 1064 nm, sirpulse shape laser fields with peak
intensity 164 W/cn?. Both the length forn{solid line) and accel-
eration form(dotted ling power spectra are shown for comparison.

the wavelet transforni42,43 of the induced dipoldor di-
pole acceleration

Aulto,0)= [ dOW, (Ddt=dy0), @4

with the wavelet kerneW, ,(t) = JoW(w(t—to)). For the

harmonic emission, a natural choice of the mother wavelet
given by the Morlet wavel€i43]

W(x) = (1) e*e ¥, (45)

Unlike the Garbor transfornj43] where the width of the
window function is fixed, the wavelet window function var-

PHYSICAL REVIEW A 63 023411

varying its value from 5 to 30. Although the absolute value
of d(t) changes a little, the general pattern does not change.
In the discussion below we choose=15 to perform the
wavelet transform. We found the time profiles obtained by
the induced dipole and acceleration are essentially identical,
indicating the full convergence of the time-dependent results.
Figure 5 shows the modulus of the time-frequency pro-
files of H, (at R=1.4a,) in (1064 nm, 20 o.c., sfpulse
shape, and 0 W/cn?) laser fields, revealing striking and
vivid details of the spectral and temporal structures. Figures
6(a)—6(d) show representative time profiles of harmonics in
different energy regimes obtained by performing the cross
section of the time-frequency profile in Fig. 5 at a given
harmonic frequency. Several salient features are notiegd.
First, for the lowest few harmonics, the time profilat a
given frequency shows a smooth function of the driving
laser pulse. This is an indication that the multiphoton mecha-
nism dominates this lower harmonic regime. In this regime,
the probability of absorbindN photons is roughly propor-
tional to IV, andl (laser intensity is proportional toE(t)?.
(b) Second, the smooth time profile is getting shofieitime
duration and broadenedn frequency as the harmonic or-
der is increased, as is evident in Fig. 5 and Fig) 6om the
1st to the 7th harmonics. As the harmonic order is further
increased, the time profilessee particularly the 11th har-
monic in Fig. 5 develop extended fine structures. This can
be attributed to the effect of excited states and the onset of
the ionization thresholdc) Third, for those high harmonics
ién the plateau regime well above the ionization threshold, the
most prominent feature is the development of fast burst time
profiles. At a given time, we see that such bursts actually
form a continuous frequency profile Fig. 5. This is clear
evidence of the existence of the bremsstrahlung radiation
emitted by each recollision of the electron wave packet with
the parent ionic coKg). This confirms the bremsstrahlung

ies with the frequency but the total number of oscillationsmodel of HHG [45]. In contrast, we find that the

(proportional tor) within the window is held constant. We
have tested the dependencedgf(t) on the parameter by

0.0 ; ;
-5.0 ]
3
5 -10.0 ]
S
s
-15.0 | 1
-20.0 : '
0 50 100 150

Harmonic Order

FIG. 4. The HHG power spectrum of,H(R=1.4a,) in a 20-
optical cycle, 1064 nm, sfpulse shape laser fields with peak in-
tensity 3x 10" W/cn?.

02341

(multiphoton-dominantlowest-order harmonics form @on-
tinuous time profileat a given frequency. In the intermediate
energy regime, where both multiphoton and tunneling
mechanisms contribute, the time-frequency profiles show a
netlike structure, as seen in Fig. 5.

Now we focus on the discussion of the origin of the
power spectrum patterns near and below the cutoff in Fig. 3.
Figures 7 and 8 show, respectively, the time profiles of 43th
and 23th harmonics obtained by performing the cross section
of the time-frequency profile of Fig. 5 at a given harmonic
frequency. Figure 7 shows a representative time profile near
the cutoff, which exhibits two bursts within each optical
cycle. Each burst is due to the recollision of the electronic
wave packet with the ionic cof®. Although H, has two
ionic centers, a quasiclassical analysis of two-center systems
[44] shows that the the two-center effect is not appreciable at
short internuclear distance such as thatRat1.4a,, the
present focus. Thus the pattern seen in Fig. 7 is atomiclike.
However, the classical returning timémdicated by the
vertical-dotted lines in Fig.)7do not coincide with our quan-
tum prediction of the light-emission times. This indicates
that the electron-nuclear interactiofwhich are ignored in
the quasiclassical modedre significant in the determination

1-7
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FIG. 7. The time profile of the 43r¢hear cutoff harmonic of
H,. The laser parameters are the same as those in Fig. 3. Also FIG. 9. The time profiles of the subpeaks of the 23rd harmonic
shown here are the dynamical phasbtack dots and classical ©Of Hz (R=1.4a,) in intense pulsed laser fields. The laser param-
returning times(vertical-dotted lines eters are the same as those in Fig. 3.

of the actual harmonic time-frequency profiles. As the lasein the plateau below the cutoff. In this case, there exists two

intensity is increased, however, we find that the classicabursts of light emission for each half optical cycle for the

returning times are actually getting closer to the quantal pretime range corresponding to the central part of the laser

diction for near cutoff harmonicénot shown. This is con-  pulse.

sistent with the fact that as the laser interaction becomes Also shown in Figs. 7 and 8 are the “dynamical phases”

more dominant than the Coulomb potential, the quasiclassif(t,) (denoted by black dotsobtained from the wavelet

cal model for cutoff harmonics become more valid. transform of the induced dipol@r dipole acceleration cor-
Next we consider the time-frequency behavior of thoseresponding to each instant,} of electron-ion core recolli-

harmonics below the cutoff. According to the quantumsion:

model(in the strong-field approximatigrior one-center sys-

tems[46,47), when the electron return energy is below the

cutoff, there exists two returning trajectories: the first dw(tq)=|dw(tq)|e*i5(‘q), (46)

(“short™) trajectory returns at a phaseft) less than 342°

(or 162°), and the secondlong” ) trajectory at a phase

larger than 342 {or 162 °). This feature is confirmed in Fig. whereS(t,) = wt,+ 6(t,). First we note that the dynamical
8, where we show a representative time profile for harmonicghase for the harmonics near the cutoff, Fig. 7, show a time
profile mimic the laser-pulse shape. For the harmonics below
. w . w . . . the cutoff, we see in Fig. 8 that the “long” electronic trajec-
5L 110 tory has stronger phase dependence on laser intensity than
. that of “short” one. Similar feature was observed in our
recentab initio quantum study of the atomic H systefd<].
Finally it is instructive to explore the origin of the fine-
structure peak splitting of harmonics in the plateau regime
0.6 below the cutoff, see for example, the 23rd harmonic in Fig.
3. Figure 9 shows the time profiles at the three sub-peak
positions(denoted by 1, 2, and)3vithin the 23rd harmonic.
0.4 Strikingly, their time profiles nearly coincide. This is an evi-
dence that all the harmonic subpeaks within a given har-
monic are produced by the same mechanism, namely, they
are produced by the interference in time of all the brems-
strahlung radiation emitted from all the returning electronic
0 ' : : 0.0 wave packets within the incident laser-pulse duration. To our
e 4 8 T‘?’ e 1 e 1B B knowledge, this is the firgb initio calculation exhibiting the
ime (optical cycle) . L X .
details of the time profiles of the subpeak harmonics for a
FIG. 8. The time profiles of the 23rd harmorglelow cutoff of ~ Molecular system.
H,. The laser parameters are the same as those in Fig. 3. The In conclusion, we have presented the first TDDFT/OEP-
dynamical phases are shown as black dots. SIC formalism for molecular systems and applied the proce-

0.8

Time profile, |d, (0 (10 a.u.)

0.2
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dure for a detailed study of the HHG processes of (it  effect on molecular HHG at largd® will be considered in a
equilibrium internuclear distangen intense pulsed laser- future publication.

fields. We have also explored the fine structure of HHG

spectrum by means of the wavelet time-frequency transform. ACKNOWLEDGMENTS
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