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Quantum-fluid-dynamics approach for strong-field processes: Application to the study
of multiphoton ionization and high-order harmonic generation of He and Ne atoms
in intense laser fields
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We explore the feasibility of extending the quantum-fluid dynani@BD) approach for quantitative inves-
tigation of nonlinear optical processes of many-electron quantum systems in intense laser fields. Through the
amalgamation of the QFD and density-functional the@FT), a single time-dependent hydrodynamical
equation of motion can be derived. This equation has the forngeharalized nonlinear Schdinger equation
(GNLSE) but includes the many-body effects through a local time-dependent exchange-correlation potential.
Thetime-dependent generalized pseudospectrathod is extended to the solution of the GNLSE in spherical
coordinates, allowingionuniformspatial discretization and efficient, accurate solution of the hydrodynamical
density and wave function in space and time. The procedure is applied to the study of multiphoton ionization
(MPI) and high-order harmonic generatiéHHG) of He and Ne atoms in intense laser fields. Excellent
agreement with other recent self-interaction-free time-dependent DFT calculations is obtained for He, while for
Ne, good agreement is achieved. Four different exchange-correlation energy functionals are used in the study
with an aim to explore the roles of exchange and correlation on MPI/HHG processes in details. The method
offers a conceptually appealing and computationally practical approach for nonperturbative treatment of
strong-field processes of many-electron systems beyond the time-dependent Hartree-Fock level.
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I. INTRODUCTION tials possess proper asymptotic long-range Coulombic be-
havior. TheseXC potentials are constructed by means of the
The recent advancement in the technology of high-extension of theptimized-effective-potenti@OEP formal-
intensity and ultrashort laser pulses has led to the discovergm [8] to the time domain, using either the Hartree-Fock
of a number of very high order nonlinear optical phenomengnonloca) exchange energy functionff] or the incorpora-
in atomic, molecular, and cluster systems. Among thesé¢ion of an explicit self-interaction-correctiofSIC) term
novel high-intensity phenomena, multiple high-order har-[4,5]. The TDDFT/OEP-SIC approach has been recently ap-
monic generatiotHHG) is of particular current interest. The plied successfully to the study of multiphoton ionization
generation of harmonics of orders in excess of 300 fromMPI) and HHG processes of rare-gas atddis H, [5], and
rare-gas atoms has been recently demonstrated by expeN- [9] molecules in intense laser-pulsed fields.
ments[1-3] using laser pulses shorter than 20 fs and peak In this paper, we consider an alternative approach, based
intensity more than 6 W/cn?. To describe such intense- on the hydrodynamic formulation of quantum mechanics.
field processes usingb initio wave-function approach, it is The quantum-fluid-dynamic€QFD) concept was originally
necessary to solve the time-dependent Sdinger equation proposed years ago by Madelufit0], de Broglie[11], and
of many-electron systems, which is beyond the capability oBohm [12]. The QFD formulation requires solving a set of
current computer technology. Development of alternative apronlinear partial-differential equations and thus is more com-
proximate approach capable of treating many-electron quarplicated than the linear Schiimger equation. However, the
tum dynamics, including electron correlation and core exci-QFD has the conceptually appealing feature, namely, the
tation, is thus very desirable and of considerable currenglectron cloud is treated as a “classical fluid” moving under
interest in strong-field atomic and molecular physics. the influence of classical Coulomb forces and an additional
Recently, self-interaction-free time-dependent density- quantum potential. Recently there is also a renewed interest
functional theory(TDDFT) has been developeldl—6] for  in extending the QFD approach as a practical tool for solving
nonperturbative treatment of multiphoton dynamics of many+time-dependent Schdinger equatioi13—16. This is partly
electron quantum systems in strong fields. The main featureelated to the recognition that the amplitude and the phase of
of TDDFT approach is a set of time-dependent Kohn-Shamthe wave function(treated explicitly in the fluid formulation
like equations that are structurally similar to the time-as independent variableare more slowly varying in time
dependent Hartree-Focl DHF) equations but include in than the complex wave function itself, leading to computa-
principle exactly all many-body effects through a local time-tional advantages and additional physical insights of quan-
dependent exchange-correlatiQdC) potential. Unlike the tum dynamics or quantum trajectof$3—-16. However,ab
conventional DFT/TDDFT calculations using explicit XC initio QFD approach has not been applied to strong-field
energy functional$7], which contain self-interaction-energy processes even for the one-electron system involving the
and incorrect long-range potential, these recent TDDFT ap€oulomb potential. For many-electron systenad, initio
proached4-6] are self-interaction free and theC poten- QFD method encounters similar level of computational chal-
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lenges as the time-dependent Schinger equation approach. ap(r,t) _

An alternative QFD approach for many-particle systems i T Viry=0 2.9
was developed earlier by Blo¢t7] within the framework of
time-dependent Thomas-FerfiiDTF) model[18,19. The - s . .
TDTF method can be considered as a crude version of TDz—ind (if) the Euler-type equation of motion,
DFT where the electronic system is considered as a gas of

almost free electrons. More rigorous QFD formulations of ~ “X(":U) E(VX)ZJF OGlp] | OEerelp] +u(r,1)=0,
DFT were treated in 1980[&20—-24. A unique feature of the at 2 op op
combined QFD and DFT approach is thasiagle general- (2.2

ized nonlinear Schidinger-like equation can be derivg23]. ) _ ) _

This is different from the conventional TDDFT or the recent Wherej(r,t)=pV x(r,t), x(r,t) being the velocity potential.
self-interaction-free TDDFT formalismgt—6] where indi-  Eel-el F€presents the mterelectromc_Co_qumb_ repulsion en-
vidual occupied spin orbital is treated explicitly. The QFD- €79 v(r,t) is the external potential including electron-
DFT approach has been applied to the study of both statjfuclear attraction and the laser-atom interaction potential,
ground-state calculatiorgia imaginary time-evolution tech- While G[p] is a universal density-functional comprising the
nique [24,25 and dynamical processg3,26—3Qin cylin-  kinetic and XC energy contributions,

drical coordinates.

The motivations of this paper are threefold. First we per- Glpl=Tulp]+ Teonlp]+Exclpl,
form a precision calculation of the nonlinear QFD-DFT 10|V |2
equation in spherical coordinates by means of time- :_J' p dr+ T [ p]+ Excl p]. 2.3
dependent generalized pseudospectfBDGPS technique 8 P e

[4,5,31 recently developed, with an aim to assess the use-

fulness of QFD-DFT approach for realistic and gquantitativeln the above equationT,[p] signifies the Weizszker
investigation of strong-field processes. The TDGPS methodtinetic-energy functiona]7] that isexactfor one- and two-
allows nonuniformspatial-grid discretization and has been electron Hartree-Fock systems. Therefore, the kinetic-energy
shown to be capable of providing high-precision time-correction ternil ., [ p] vanishes for such systems. For other
dependent wave function with the use of only a modest numsystems,T, [ p] alone is not enough, and the exact form of
ber of grid points. The procedure has been applied succes$,,[p] is unknown and must be approximated:

fully to the study of HHG processd4,5,9,31,32 of atoms

and molecules and Rydberg-atom high-resolution spectros- ~

copy[33,34 in external fields. Second, we extend the QFD- Texact= Tul P+ Tearl P

DFT formalism to a detailed case study of the photoioniza-

tion and photoemission dynamics of He atoms in intenS(.An approximate form forl o[ p] iS available for rare-gas

laser-pulsed fields and explore the effects of “exchange” andftoms [35]. This has yielded good-quality results for

“correlation” in details. Third, the feasibility of the formal- electronic-structure calculations for rare-gas atdhis, Ar,
ism for more than two-electron systems is tested by applyin r, and XE? [24’25.' In the present calculation for Ne, we
to the case of Ne. This will be a testing ground of the for- mploy this _functlonal form written as a sum of several
malism as more than one orbitals are involved. Gaussians, viz.,

The layout of the paper is as follows. In Sec. Il, we
present the QFD-DFT formalism and relevant equations in _ 5/3 ) _ 20213
spherical coordinates. The numerical procedure is outlined in Teor= CKJ fnp7Andrs Cie= (310377
Sec. lll. Application of the method to the study of MPI and 2.9
HHG of He is given in Sec. IV. Section V presents results for
the Ne atoms. This is followed by a few conclusions inHeref(r) signifies an r-dependent term satisfying the bound-
Sec. V. ary conditionsf(r)—0 asr—0 andf(r)—1 asr—c. The

functional derivative is given by,

Il. THE TIME-DEPENDENT QFD-DFT FORMALISM ST eonlp]

The basic idea is to obtain a link between QFD and DFT op
for a many-electron system through the single-particle den-
sity. Here we present a brief account of the QFD-DFT for-where
malism. A more detailed account may be found in the recent
review [29]. All the electrons are regarded to be distributed

5
§CkP2/3(r) a(r), (2.5

over the three-dimention&BD) space-like continuous “clas-  g(r)=—f(r)+ EPZIP’(V)I p(r,);(r,rmﬁp(r ) dr’,
sical” fluid. The two basic equations in terms of the local 5 5 op(r)
variables, electron densip(r,t), and current density(r,t), (2.6
can be written agatomic units used unless otherwise men-

tioned: (i) the equation of continuity, p(r)=p(r) ¥%r), and
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n
f(n=2, Aexd —ai(r—R)?], EkDA=—CxJ p*dr, (215
=1
n and
9(r)=2, Aiexil —Bi(r=R)?]. (2.7 4 . 217
B SERN |37 T3 ey
The values ofA; ,R;,«;, andB; for Ne, Ar, Kr, and Xe are 5_p= Sp - 2p2R 7 | (2.16
given in Ref.[25]. 1+ " )
X

Equations(2.1) and (2.2) can be combined into a single
equation by defining the complex-valued TD hydrodynami-yere Cy=(3/4)(3hr) Y3, B=Cy and ay=0.02440. This ex-
cal wave function for the entire time-evolving system(®s  change functiondl36] shows correct asymptotic behavior. It
polar form is also local and gradient-free; hence requires less computa-

. 2t tional effort than other GGA functionals. This functional has
W(r,0)=p(r,peey, 2.8 been found to be capable of yielding good-quality results for
atomic system§25]. For example, the exchange enerdiies
a.u) calculated from Eq.2.14 are 1.026, 12.14, 30.15,
93.94, and 179.2 for He, Ne, Ar, Kr, and Xe, respectively,

1 aW(r,t) while the corresponding HF values are 1.026, 12.11, 30.19,
— =V2+ved[p];r ) | W (r,t)=i , (29 93.89, and 179.2, using the HF densiti&§].

2 Jt To include correlation effects, we use a simple, param-
etrized local Wigner-type functiondl37], which yielded
quite good results for electron structure calculations of
many-electron systemssee e.g., Ref§38,39). Other justi-
fications for using this form of correlation functional can be

and eliminatingy(r,t) from them. The result is a generalized
nonlinear Schrdinger equation:

where p(r,t)=|¥(r,t)|]2. The effective potential
ver([p];r,t) contains both classical and quantum potentials

5Eel-el+ 5Enu-el+ 5EXC + 5Tcorr+ 5Eext,

ver([plir,t)= found in Ref.[27]. The Wigner correlation potential is given
(2.19 13
. . , - +cp~
where the first two potentials have their usual significance, %Ec ___aree (2.17

5p (atbp 13?2’

SE 't SE z
erelp] (P70 dr'; SEnuelp] _ =, wherea=9.810,b=21.437, andc=28.582 667. Assuming
op Ir—r’| op r the linearly polarized laser field is along thexis, the inter-
(21D action potential can be written as

Eyxc is the XC energy-density functional, afi,, is the in-
teraction energy of the electron with the external electric
field. Various XC energy functionals within the local-density
approximation(LDA) or generalized gradient approximation Since the system has the axial symmetry, the spatial dimen-
(GGA) are available in the literatuf@]. We have employed  sjonality reduces to two. In the above equatipr,t) is the

two forms for the EXChange pOtentials for He, ViZ., the exaCtTD induced d|p0|e moment, OES the electric-field amp"-

Eext _

. =—pu(r,t)-E(t)=—z Eyf(t)sin(wt). (2.18

exchange-energy expression, tude,f(t) is the laser shape pulse function, ands the laser
frequency.
OExlp] 1 p(r't) Note that if Eqs(2.1) and(2.2) are written in imaginary

dr’, (212 time 7(7=—it,t being the real timeand x(r,t) is elimi-

nated, one can obtain a diffusion-type equation, viz.,

IR(r,t)
o

op 2) Jr—r'|

and the local-density approximati¢dhDA ),

—%V2+veﬁ([p];r,t) R(r,t)=— (2.19

SEXMNpl A4 . B 13
5——_§CXP ) CX_Z - . (213 ) ) )
p m The diffusion function no longer resembles the hydrody-
namical function and accordingly has been replaced by
R(r,t). This equation has been used for accurate calculations
of the static ground-state properties of many-electron sys-

For Ne, a local-exchange potent[@6] has been employed,

13
BB g —Lppdr, (214 tems(2428 AU
1+ P ) I_Equat|on (29 is hlg_hly nonlinear; nonlmeant_y arising
ay mainly through the nonintegral powers @fand the integrals
invets([p];r,t). This equation goes much beyond the TDHF
where or the linear-response approximation, since it calculates
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p(r,t) to all orders of changes, which is then employed toand the GPS metho@0,4] is used to discretize the radial
obtain the various TD quantities of interest. It may be notedcoordinater. Detailed TDGPS procedures can be found in
that the Laplacian arises from the Weigker term and not Refs.[4,31]. To prevent back reflection from the boundary,
from the fictitious “noninteracting” kinetic energy as in the an absorber of the following form has been used in the
Kohn-Sham theory. Numerical solution of E@) yields the  present calculatiofi31],

TD effective potential and a single “hypothetical” TD orbital
for the entire interacting system. CO§'2{g(f—ro)/(fmax—ro) rer,

I1l. NUMERICAL PROCEDURE . . . .
where r . is typically 150-200 a.u., while that af; is

It is known that the equal-spacing spatial-discretization100—150 a.u. Absorber position and the grid size have been
methods require a very large number of grid points to get thehosen carefully such that only those parts that are traveling
converged results. The generalized pseudospe¢G&9 away from the nucleus and witiot return are absorbed.
method[40,41]] alleviates such problems and allowsnuni- Once the hydrodynamical function is obtained, the TD
form and optimal spatial-grid discretization: denser mesh atlensity can be calculated that yields all other density-based
shorter distances and sparser mesh at longer range. This“isbservables” of the process. The rich dynamics of the in-
important for the HHG, because it is the probability densityteraction process is revealed in the TD density plots. Apart
near the origin that determines the dipole acceleration. In thifom the TD density, the following quantities have been cal-
section, we extend the numerical scheme of the timeeulated.
dependent GPS methd®1] to the solution of Eq.2.9). (1) The normalized total electronic char§t) at a par-
Denoting the nonlinear operator in square bracket. bjq.  ticular instantt is given by,

(2.9 can be recast in to the following form:

W (r,t) N(t)=f p(r,t)dr. (3.5

ot

=—iLW(r,t)=—i[Ho+V]¥(r,t), (3.1
This gives the information about the ionization probability.

. - - (2) The excitation and ionization probabilitf.(t), is
.e., 9/gt=—iL. Here H denotes the “unperturbed” opera- gijven by

tor and includes potentials arising from the Coulomb repul-
sion, Eyc, nuclear-electron attraction and the nonclassical Pei(t)=1—Pg1), (3.6)
kinetic-energy correction terni ., at the zero time. The

operatorV consists of two terms: the classical external inter-where Pgs()=(W(0)| ¥ (1)) is the TD ground-state popu-
action potentiab 4,(r,t) as well as the “residual” effective lation of the He/Ne atom and is normalized to unitytat

potentialv JT1,t), =0.
(3) Another important “observable” is the radiated har-
V(N ) =0 dr ) +vedrt) monic spectra emitted due to the strong perturbation. The

induced dipole moment can be expressed in the length and
acceleration form, respectively, as follows:

Ured 1) = ve(r, 1) —ven(r,0). 3.2
The time propagation is implemented by the use of second- d(t)=f p(r,t)zdr 3.7
order split-operator scheme in tlemergyrepresentation in
spherical coordinatest,31], and
W(r,t+At)=el Hodexd —iV(r,6,t+ At/2)At] 42
" da(t zf r,t)—dr. 3.8
x e("HoA2hp (1 1)+ O(AL3). (3.3 AD= | ot )dt2 (39

This is different from other commonly used split-operator The corresponding HHG power spectrum can be calcu-
schemes in the literatufd2,43 where H is generally taken lated from the modulus square of the Fourier transformation

to be the radial kinetic-energy operator avidhe remaining of the respective TD dipole moments in the two gauges
Hamiltonian depending on the spatial coordinates only. The

2
advantages of using thenergyrepresentation has been dis- P(w)= thfd(t)e—iwtdt (3.9
cussed elsewheld,5,31]. ti—tiJy
Now the hydrodynamical wave functiow(r,t) is ex-
panded in the Legendre polynomial basis, and
1 1 [y G
\I’(ri 10] ,t)=2| g|(ri ,t)P|(C039J'), (34) PA((U): ﬁ;ft dA(t) e 'tdt (31@
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N of the acceleration form beyond the cutoff is well understood
' [43,44. It is generally believed that the extra harmonics be-
M A 1 yond the cutoff in the length gauge is spurious and the ac-
., celeration form is the more accurate representation. Accord-

T .. 1 ingly, we will present only the acceleration HHG power
. spectra henceforth. In this calculation, 300 grid points are

used for the Legendre pseudospectral discretization of the
radial coordinater (using a nonlinear algebraic mapping
[4,31]] to map r=[0ynal to Xx=[—1,1]) and 30 partial

10910 ld(@) (a.u.)
-

6l . | waves are used to achieve the convergence. Typicgllyis
* about 150-200 a.u., and an absorber is placed at around
a8l ., | r=100 a.u. Higher accuracy can be achieved by increasing
* . the number of grid points. We note that our HHG results are
7 S S S W S S S—" generally in excellent agreement with the recent calculation
ST e 2 ® B using the TDDFT/OEP-SIC methdd]. This provides addi-

_ _ tional check on the accuracy and usefulness of the present
FIG. 1. Comparison of HHG spectra of He in lengfbpen QFD-DFT approach.

circles and acceleratiortfilled circles forms calculated from the
TD QFD-DFT method. The laser intensity isx30* Wicn?,
wavelength is 527 nm, and the field has & ginlse shape with 60
o.c. in duration. In conventional steady-state DFT calculations, explicit
XC energy functionals have been often used, including the
The HHG power spectra obtained from these two exprestDA and the more refined GGA such as the Bedkg$
sions should be identical if the TD wave function is fully exchange energy functionpd5] and Lee-Yang-Par(LYP)'s

B. Exchange(X) and correlation (C) energy functionals

converged. [46] correlation energy functional, etc. Since exact time-

dependent XC energy functionals are currently not available,

IV. MPI AND HHG OF HE ATOMS IN INTENSE the common procedure in TDDFT calculations is to adopt the
LASER FIELDS adiabatic approximation. Within such a framework, the XC

potentialv yc(r,t) can be written as the functional derivative
In this section, we extend the QFD-DFT formalism to aof the XC energyEyc with respect to the density:
case study of the nonlinear response of He atoms in intense

laser fields, with particular attention to the investigation of e SExclp] 41
the effects of the exchang) and the correlatiofC) effects Uxe(r ) =—g"— p R 4.9
on the MPI and HHG processes. The key equation is the p=p(r.D

generalized nonlinear Schdimger equation, E¢2.9), which . ] ] )

is solved by the TDGPS method. The initial wave function atlt IS well known that DFT/TDDFT calculations, using either
t=0 is obtained by the GPS discretization and solution of-DA or GGA explicit energy functionals, contain self-
the corresponding time-dependent Kohn-ShafDKS) interaction energy terms and the corresponding XC poten-
equation in imaginary time. Here it may be mentioned thatials decay too fast and do not possess the correct asymptotic
the earlier TDKS approaches for the laser-atom interactiofPng-range— 1/ Coulombic behaviof7]. Thus the excited-
studies have usually employed the ground states-dt ob-  State energies, and the ionization potentials obtained from the
tained from the solution of the corresponding time-highest-occupied spin orbitals are not very accurate. Typi-
independent equations. In the absence of the laser fields, tif&!ly the ionization potentials are about 30 to 50% too low
unperturbed energy of the ground state is preserved to &°mpared to the experimental values. To overcome such dif-
least 10-12 digits of accuracy and the norm of the wavdiculties, it is essential to remove the self-interaction energy.

function maintains unity during the whole time propagation. The recent developments of teelf-interaction-freeDFT
[8,47] and TDDFT[4—6] are along this direction.

To study the effects of exchange and correlation on the
intense field processes, we shall therefore consider the fol-
Figure 1 shows a comparison of the HHG power spectrdowing four different XC energy functionals, in the order of

obtained from the length and acceleration formé;) and  decreasing accuracyi) exact Hartree-FockHF) exchange
da(t), respectively, for the case of linearly polarized laser-(X) + Wigner correlation C), denoted by “exacX+C,”
pulsed fields with wavelength 527 nnw &0.086 46 a.u, (i) exactX only, (iii) LDA exchange+ Wigner correlation,
peak intensity X 10" Wi/cn? (E,=0.09246 a.), sirf  denoted by “LDAXC,” and (iv) LDA-X only. The Wigner
pulse shape and 60 optical cycl@sc) in pulse length. As correlation energy functional is used here because of its sim-
shown, excellent agreement is achieved from the lowest haplicity and its reliability for atomic systems. It has been dem-
monic, through the plateau, all the way to the cutoff, indicat-onstrated that the Wigner correlation can provide rather ac-
ing the time-dependent wave function is converged. Theurate results for the atomic systems including two-electron
largest disagreementthe third harmonig is only about atoms[24-27,38,39 For example, the ground-state total en-
1.92%. The deviation of the length form spectrum from thatergies obtained by the above four different energy func-

A. Test of numerical convergence of QFD-DFT calculations
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tionals are, respectively;-2.9031;-2.8609;-2.7657, and !
—2.7235 a.u. All these should be compared with the BLYP  csss| @
value of —2.905 a.u.[47] and the experimental value of
—2.9037 a.u[48]. As shown, ourexactX+C) energy is in
very good agreement with the experimental value. In the
following, we study in details the effects of different XC 098
energy functionals on the MPI/HHG processes.

g oors | Exact X+C
Exact X-only -------
LDA-XC --------
0.97 | LDA-Xonly ——--= R et
C. Effects of exchange and correlation on multiphoton 0965 | _
ionization of He 096 p

In this subsection, we consider the effects of exchange osss|
and correlation on the MPI processes of He in three different . ) , , , ,
laser intensities(a) 3x 10" Wicn?, (b) 6x 10" Wicn?, ° 10 2 e % .
and (c) 1x10% W/cn?. The laser parameters used are
wavelength 527 nm, stnpulse shape with 60 o.c. pulse
length. The comparison of the time-dependent electron popu oee|  ©
lation, N(t), for the four different XC energy functionals 006 |
used[(i)—(iv) mentioned abovi are shown in Figs. (3)—
2(c), for the respective laser intensities indicated above. Note
that the ionization probability can be calculated By, (t) 092
=1-N(t) and the ionization rate from the slope of the de-
caying curves shown in Figs(@—-2(c). Several general be- | .. .xc
haviors of the effects oK and C are noticed. First, we see L —
that there is a substantial differenceNift) among various ose Aoy
XC energy functionals used for a given laser intensity. How- o8
ever, (i),(ii) and (iii),(iv) tend to form two widely separated 082 -
groups. The first grougi) and (ii), has the exact exchange o . . . . .
and correct long-range potential but they differ in the corre- 0 10
lation (with or without Wigner correlation The second
group, (iii) and(iv), belongs to the LDA-level calculations ! '
(with or without the Wigner correlationrand does not have
the correct exchange functional and proper long-range poten
tial. Clearly the effect of exchange on MPI is much larger
than that of the correlation. Thus it is essential to have the
correct exchange and long-range potential in the QFD-DFT .|
calculations. Second, as the laser intensity increases frorg
Figs. 2a)—-2(c), we notice that the discrepancy within each  os} saexc —
group|[(i),(ii) or (iii),(iv)] also increases. This indicates that LDAXC -
effect of correlation cannot be ignored. In fact, it is more o}
pronounced in higher laser intensities. Third, it is instructive
to note that the order of ionization probability B(iv)
>P(iii) >P(iiy >P(i) for all the three laser intensities,
where the number in the parenthesis indicates the type of XC ) 0 20 w W %0 60
energy functional used. This order is consistent with the or- Cpeateyoles
der of decreasing binding energy of the electrons. Thus the FIG. 2. variation of the total electronic charge(t), with time
LDA electron(with X only), case(iv), has the smallest bind- for the four different caseé)—(iv) of XC energy functionals used
ing energy and the largest ionization probability, while the(see text (a—(c) correspond to the laser intensities of 3
electron described by exact exchangeWigner correlation  x 10" Wi/cn?,6x 10 Wicn?, and 1x 10'5 W/cn?, respectively,
[case(i)] has the largest binding energy and smallest ionizaat the wavelength 527 nm. Sipulse shape is used and the pulse
tion probability, etc. That the binding energy, which is deter-duration is 60 o.c.
mined by the XC energy functional used, is the major factor
accounting for the observed ionization-probability behavior
in He has been also reported recently in other study using the Figures 3a)—3(c) show the comparison of the HHG
TDDFT/OEP-SIC formalisni4]. The situation can be differ- power spectra of He for the four different energy functionals
ent for more complex atoms, where the orbital orientation(i)—(iv)], corresponding to the same three respective laser
can also play an important role in the MPI of atofds. intensities in Figs. @) —2(c). Similar to the ionization case,

094 -

0.9

N(t)

09

LDA-X only e

0.7

D. Effects of exchange and correlation on HHG of He
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FIG. 4. Calculated HHG power spectra of He for a laser inten-
sity of 3x 10*> W/cn? and wavelength 527 nm. The laser field has
a sirf pulse shape with 60 o.c. in duration. Exact Wigner cor-
relation energy functionals are used.

The relative order of HHG intensities and cutoff positions
follow roughly the following pattern: the LDA calculations
tend to have larger HHG intensities and earlier cutoff than
those of calculations with exact exchange. Such differences
may be attributed to the typical behavior of looser-bound
LDA electrons versus the tighter-bound electrons; namely, an
atom with smaller binding energy tends to have larger HHG
intensities and shorter cutdi#]. Due to the rather large dis-
crepancy in using different XC energy functionals, it is clear
that the effects of exchange and correlation, particularly the
exchange, are both significant. To achieve quantitative study
of HHG processes of many-electron systems, it is thus essen-
tial to adopt either exact exchange energy functional such as
the one used here or the self-interaction-free TDD&F6],

both give rise to the correct asymptotic long-range potential.

E. Intensity-dependent HHG power spectrum and
hydrodynamical radial density distribution

Figure 4 shows the HHG power spectrum at a stronger
field with laser intensity 3.5 10 W/cn?, wavelength 527
nm, sirf pulse shape, and 30 o.c. in pulse duration. The cut-
off harmonic now extends to well beyond 100. Further in-
sight regarding the He-laser interaction is revealed in the
time-dependent hydrodynamical radial dendigpherically
averagefiplots, particularly for the stronger-field cases. Fig-
ures %a) and 3b) show the time-dependent radial densities
of He at the two largest laser-intensity cases considdead:
1x 10" Wicn?, and (b) 3.5x10' Wicn?, respectively.

FIG. 3. Comparison of the HHG spectra of He atom for the fourFor case(a), we see the radial electron density is monotoni-

different casedi)—(iv) of XC energy functionals usetsee text  cally decreasing with increasing time and a small fraction of
(@—(c) correspond to the laser intensities of<30'* Wicn¥?,  glectron density leaks to larger distances. For the stronger-
6 10" W/cn, and 1x 10" W/ent, respectively. The laser wave- fie|d case(b), the pattern is more dramatic, particularly near
length, pulse shape, and pulse length are the same as those in Fig{Rea peak-intensity regim@round 15 o.c., where more com-

. o el , plicated spatial pattern is developed.
two different groupg(i),(ii) and(iii ),(iv)] can be clearly dis-

tinguished and the effect of the exchange is considerably
larger than that of the correlation. Typically, the effect of

correlation can cause a difference of harmonic intensity by a
factor of 2—3 or more while the exchange can cause 2—3 or In this section, we extend the TD QFD-DFT approach to
more orders of magnitude difference in harmonic intensitythe study of MPI and HHG of Ne atoms. The major differ-

V. MPI AND HHG OF NE ATOMS: A TEST OF TD QFD-
DFT APPROACH FOR MANY-ELECTRON SYSTEMS

043402-7
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FIG. 5. Radial density plots of He for laser intensitigg 1
X 10* Wicn? and (b) 3X10*® W/cn?, at wavelength 527 nm,
sir? pulse shape and pulse duration of 60 and 30 o.c., respectively

ence in this case from that of He is that, the modified kinetic-
energy term,T.o, in EQ. (2.3, is nonzero. To see the sig-
nificance of including theT.,,, term, we first present the
field-free ground-state results. The total electronic energy
calculated from the diffusion Eq2.19, using the nonclas-
sical kinetic-energy tern ., in Eq. (2.4), and the exchange
and correlation potentials given by Eq2.16 and (2.17),
respectively, yieldE=—128.9103 a.u. Similar calculation
but including the LDA-exchange energy functional in Eq.
(2.15 and the same correlation functional in E@.17),
gives rise toE= —127.4513 a.u. All of these should be com- &
pared with the best theoretical literature result-0£28.939
a.u.[49]. Figure 6 gives a plot 06T,/ Sp versus r for Ne.
This apart from the total energy values clearly demonstrates
that the nonclassical kinetic-energy teflig,,, in addition to

Tw, IS absolutely necessary to include for more than two-
electron systems to produce physically meaningful results.
Moreover, the form ofT,, given by Eqs.(2.4—(2.7) ap-
pears to be capable of providing a good description for the
electronic-structure calculations of Ne and other rare-gas at- FiG. 7. Variation of the normN(t), with time for Ne.(a) and
(b) correspond to the laser intensities of x%0'® W/cn? and 1

oms|[25].

Figures 7a) and 7b) present the profile of the time-

45
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1 15 2
ra.u.)

FIG. 6. Plot of 5T/ 8p vsr, in a.u., for Ne.

the following laser parameters=1064 nm, siA pulse with
60 in duration. Each plot contains the comparison of the
present TD QFD-DFT resulfavith XC potentials given by
Egs. (2.16 and (2.17] with the individual orbital (2 and

1

0.998

0.996

0.994

0.992

0.99

0.988 -

0.986

0.984

I TD QFD-DFT —— 4 E
TDKLI-SIC 25 -------

T
o
1

0.982
0

0.9998 -
0.9996 -
0.9994 |-

0.9992 -

0.999

0.9988 L L L L L
0

% TD QFD-DFT ——
% TDKLI-SIC 25—
© : TOKLI-SIC 2p -—--—---

10 20 30 40 50 60
optical cycles

X 10" Wi/cn?, respectively, at the wavelength 1064 nm2ginlse

dependent norm(t) (normalized to unityfor the two laser
intensities, 5 10" and 1x 10 Wi/cn?, respectively, for

shape is used and the pulse duration is 60 o.c. See text for
explanation.
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0 T T T T T T TooroorT 'e and the effect is similar to that noticed in He, namely, the
@ TR 2 LDA electrons tend to have higher HHG plateau intensity but

a shorter cutoff. The overall agreement of the present TD
QFD-DFT results(with full XC potentialy with the all-
electron TD KLI-SIC data[4] are considerably closer,

3 ol a 1 though not perfect. It is gratifying that the present single-
= a orbital TD QFD-DFT approach can provide such a semi-
S § quantitative accuracy, suggesting that the procedure may be
g ’r RN . sy et e 1 extendable to considerably larger systems wheralkhiaitio

s Cglo B 300, TD KLI-SIC method becomes inaccessible. The main source

of error in the present QFD calculations may be attributed to
the approximation used in thig,,,, term in the kinetic-energy
functional.

poe

20}

o> e
po®
bos
2]

25 ' L ' I L L L ' ' L ' L
1 5 9 13 17 21 25 29 33 37 41 45 49 53

harmonic order

VI. CONCLUSION

Trokise 5 We have investigated the feasibility and usefulness of ex-

tending the QFD-DFT approach for quantitative study of

)

M 1 many-electron systems in strong fields. Instead of solWng
°8. coupled nonlinear partial-differential equatioi®DES (as in
ol | the TDHF or TDDFT approachgsthe present methodology

9380 caote requires one to solve only one single nonlinear Sdmger-

like PDE in terms of the 3D single-particle density for the
field-driven N-electron quantum systems. All other time-
dependent dynamical properties of interest such as MPI
probability and HHG can be obtained from the time-
dependent density. The nonlinear hydrodynamical equation
in spherical coordinates can be solved accurately and effi-
e ciently by the time-dependent generalized pseudospectral
TO11 20 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 method. The procedure is app"ed to the study of MPI/HHG
e o processes of He and Ne atoms in intense laser fields. The
FIG. 8. Comparison of the HHG spectra of Ne atga).and(b) results are generally in consonance with those obtained from
correspond to the laser intensities of<x80'® Wicn? and 4  other recent self-interaction-free TDDF4], allowing addi-
X 10" W/cn?, respectively. The laser wavelength, pulse shapetional validation of the time-dependent QFD-DFT approach.
and pulse lengths are the same as those in Fig. 7. We also explore the role of exchange and correlation on the
MPI/HHG processes of He in details by using four different
2p) norm obtained from the more accurate all-electron TDXC energy functionals.
KLI-SIC calculations[4]. The overall agreement is satisfac-  The present methodology can be extended, in principle, to
tory, well within 0.1%. Figure @) additionally presents the the study of other more complex atomic and molecular sys-
result from the TD QFD-DFT calculation but using the LDA- tems in strong fields. The success of the method will be,
X potential. In the latter case, the noi(t) falls off more  however, dictated by the choice and availability of suitable
rapidly than other more accurate calculations. Similar to theinetic and XC energy functionals. Approximate but reliable
He case, this can be attributed to the weaker binding of th&inetic energy functionals for larger noble-gas atdixs, Ar,
LDA electrons arising from the lack of correct asymptotic Kr, and Xe are already availablg85]. Development of uni-
Coulombic-potential tail. Note that the present approactversal and more accurate kinetic energy functionals in QFD-
does not distinguish the individual orbital components andPFT formalism will be highly desirable. The unique feature
therefore, theN(t) in the present calculation does not di- of the QFD-DFT single-equation approach lies in its simplic-
rectly correspond to the TD KLI-SIC results. However, sinceity and it can provide a powerful and practical method for
the ionization probability is considerably higher for thp 2 large systems, where other TDDFT approaches become com-
and X orbitals compared with the 1s orbital, it still gives a putationally infeasible. More work on this direction is in
guantitative comparison. progress.
Figures &) and &b) show the comparison of the calcu-
lated HHG power spectra for Ne obtained (ythe present
TD QFD-DFT approach using the XC potentials given by
Egs.(2.16 and(2.17), and(ii) the all-electron TD KLI-SIC This work was partially supported by U. S. Department of
approach[4], for the two laser intensities %610 and 4  Energy, Office of Science, Office of Basic Energy Sciences,
x 10" Wicn?, respectively. All other laser parameters areDivision of Chemical Sciences. We acknowledge the Kansas
the same as those in Fig. 7. Figuri@&also shows the result Center for Advanced Scientific Computing for providing the
for the TD QFD-DFT calculation using the LDX-potential,  Origin2400 supercomputer time.
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