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We extend our previous perturbative study of the multiphoton detachment of H [Phys. Rev. A 48,
4654 (1993)]to stronger fields by considering the intensity-dependent photodetachment rates and thresh-

old behavior. An accurate one-electron model potential, which reproduces exactly the known H bind-

ing energy and the low-energy e-H(1s) elastic-scattering phase shifts, is employed. A computational
technique, the complex-scaling generalized pseudospectral method, is developed for accurate and
efftcient treatment of the time-independent non-Hermitian Floquet Hamiltonian PF. The method is sim-

ple to implement, does not require the computation of potential matrix elements, and is computationally
more e5cient than the traditional basis-set-expansion-variational method. We present detailed nonper-
turbative results of the intensity- and frequency-dependent complex quasienergies (E&,—I /2), the com-
plex eigenvalues of Pr, providing directly the ac Stark shifts and multiphoton detachment rates of H
The laser intensity considered ranges from 1 to 40 GW/cm2 and the laser frequency covers 0.20-0.42 eV
(in the c.m. frame). Finally we perform a simulation of intensity-averaged multiphoton detachment rates
by considering the experimental conditions of the laser and H beams. The results (without any free pa-
rameters) are in good agreement with experimental data, both in absolute magnitude and in the thresh-
old behavior.

PACS number(s): 32.80.Rm, 32.80.Fb, 42.50.Hz

I. INTRODUCTION

There is currently much interest in the study of multi-
photon detachment of H both experimentally [1—3] and
theoretically [4). The H ion, one of the simplest yet
important three-body atomic systems, possesses only one
bound state. Structures in the continuum far above the
ionization threshold can be safely ignored for moderate
laser fields. Thus, multiphoton detachment from the
ground state to the continua can be studied without in-
terference from any doubly excited intermediate electron-
ic states and resonances. These simplifying features
render the multiphoton detachment of H a unique and
fundamental process to study.

Theoretical study of multiphoton detachment of H
however, is by no means straightforward. In fact, wide
discrepancies exist between many of the earlier predic-
tions, even for two- and three-photon (weak-field) detach-
ment cross sections which have occupied most of the
theoretical efforts so far. Since Geltman [4] has already
provided a comprehensive review of previous theoretical
works in this field, we shall not elaborate here.

In a recent study of multiphoton detachment of H [5]
(hereafter we refer to it as paper I), we have constructed
an accurate one-electron model, which reproduces pre-
cisely the known H binding energy [6] and the low-
energy e-H(ls) elastic-scattering phase shifts [7]. Gen-
eralized cross sections, based on lowest-nonvanishing-
order perturbation theory, are evaluated by an accurate
and eScient algorithm for the solution of the associated

set of inhomogeneous difFerential equations [8]. One- to
eight-photon detachment cross sections o „
(n =1,2, . . . , 8) are determined. Our one-photon photo-
absorption cross sections are in excellent agreement with
earlier accurate correlated two-electron calculations [9].
Our o 2 and 03 are in reasonable good agreement with re-
cent two-electron ab initio calculations [10]. Overall, it
appears that this recent study [5] provides the consistent
results with the accuracy for higher-order o„(n )3)
comparable to that of lower orders (n =2,3). Detailed
discussion of this previous work is given in Ref. [5].

The motivations of this paper are threefold.
(i) First we extend the study of multiphoton detach-

ment of H to the nonperturbative regime. Both the ex-
perimental [3] and theoretical works [4,5] indicated that
the process of multiphoton detachment of H under the
experimental conditions of Ref. [3] cannot be described
adequately by perturbation theory. Intensity-dependent
threshold shifts and photodetachment rates must be con-
sidered. To study such "strong" field phenomena, we
shall extend the non-Hermitian Floquet formalism
[11,12], allowing direct nonperturbative determination of
the intensity-dependent complex quasienergy
(Ett, —I'/2) associated with the decaying ground state.
The real part (Ett ) provides the ac Stark shift and the
imaginary part (I'/2) is related to the multiphoton de-
tachment rate.

(ii) Second we introduce a computational technique,
the complex-scaling generalized pseudospectral (CSGPS)
method, for accurate and eScient determination of the
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complex quasienergies of H associated with the non-
Hermitian Floquet Hamiltonian. As will be demonstrat-
ed in later sections, the CSGPS method does not require
the computation of the potential matrix elements and is
computationally simpler and faster than the conventional
basis-set-expansion —variational method. Further, the
CSGPS method is computationally much more efficient
and accurate than some other grid discretization methods
(such as Snite dim'erence). Thus, the CSGPS method ap-
pears to be capable of providing a powerful general nu-
merical technique for the treatment of atomic and molec-
ular resonances.

(iii) Third we determine the intensity-averaged photo-
detachment rates of H by a simulation of the experi-
mental conditions of the H and laser beams.

We begin in Sec. II the discussion of the generalized
pseudospectral discretization method and its extension to
the studies of the bound-state eigenvalue problem, the
resonance-state complex eigenvalue problem, and the
complex quasienergy resonances within the non-
Hermitian Floquet formalism. We also introduce a map-
ping procedure for removing the Coulomb singularity to
facilitate the pseudospectral discretization. In Sec. III we
present our one-electron model of H . The justification
of its accuracy has been described in paper I [5]. In Sec
IV we present our detailed nonperturbative results of the
intensity- and frequency-dependent complex quasiener-
gies, providing multiphoton detachment rates of H as
we11 as ac Stark shifts of the ground state. The laser in-
tensity considered ranges from 1 to 40 GW/cm2 and the
laser frequency covers 0.20-0.42 eV. In Sec. V we per-
form a simulation of intensity-averaged multiphoton de-
tachment rates by considering the experimental condi-
tions of the laser and H beams. Good agreement with
the experimental data is achieved. This is followed by a
conclusion in Sec. VI.

II. COMPLEX-SCALING GENERALIZED
PSEUDOSPE~RAL METHOD: NE% APPROACH

FOR THE SOLUTION OF MULTIPHOTON
QUASIENERGY RESONANCES

In this section we describe a new approach, the
complex-scaling generalized pseudospectral method, for
accurate and eScient treatment of atomic and molecular
resonances, including multiphoton quasienergy reso-
nances (within the non-Hermitian Floquet Hamiltonian
formalism) [11,12]. The method does not require the
computation of potential matrix elements (which is usual-

ly the most time-consuming part of atomic and molecular
structure calculations using the conventional basis-set-
expansion —variational method), is simple to implement,
and provides the values of the wave functions directly at
the space grid points. As will be shown later, the general-
ized pseudospectral methods are far more efficient and
accurate than the finite-difFerence method and computa-
tionally more efBcient and advantageous than the basis-
set-expansion- variational method. The generalized
pseudospectral method is a natural extension of the gen-
eralized Fourier-grid Hamiltonian (GFGH) methods re-
cently developed for the studies of atomic and molecular

bound and resonance states [13—15]. The GFGH
methods employ Fourier series and require the mesh
points to be equally spaced. The generalized pseudospec-
tral methods employ orthogonal polynomials (such as
Legendre or Chebyshev polynomial} and allow for uneven
mesh spacing. It has been shown recently that the
GFGH methods [13—15] work well for potentials
without singularity, such as the Morse potential for
chemical bond, etc. However, for problems involving
singularity and/or long-range potentials (such as the
Coulomb potential), the generalized pseudospectral
method with appropriate mapping (see Sec. IIC) is the
more effective approach.

While the pseudospectral method has been extensively
studied in mathematics [16] in the past decade and ap-
plied to quid dynamics [17] (such as aerodynamics,
meteorology, and oceanology), little attention, however,
has been paid to the usefulness of the method (at least in
its most updated form} in the study of atomic and molec-
ular structure and resonances [18]. As such, we discuss
below the essence of the pseudospectral method and its
several generalizations for the treatment of atomic and
molecular bound and resonance states, as well as complex
quasienergy resonances.

A. Bound-state eigenvalue problems

N

NI XI Qg XI
Ctl .=0

(3)

The approximate function Pz(x ) can now be represented
by the exact functional values at the collocation points,
namely,

N

PN(x )= g g,-(x )P(x; ),
i=0

where g, (x ) is the cardinal function given by

N

g;(x)=w; g u&(x;)u&(x)/a&
1=0

and possesses the unique property

g;(x~ ) =5;

(4)

(5)

The central part of the pseudospectral method is to ap-
proximate the exact solution P(x ) by order N or %+1
polynomial PN(x ):

N

$(x)=PN(x}= g a&u&(x),
1=0

where u&(x )'s are orthogonal polynomials satisfying

f b
w(x )u&(x )u&.(x }dx =a&5&&, (2)

a

w(x } is the weighing factor, and a& is the normalization
constant. The pseudospectral method further requires
that the approximation be exact, i.e., Pz(xj )=$(xj.), at
the collocation points x (to be described below). The ex-
pansion coefficients a& can be written as

b
Q(= N X X Q(X X

9) a
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N —1

[Bg,(x ) Eg (—x }]P.(x ) =0,
j=1

(9)

where the differentiation A'gj(x ) can be performed exact-
ly. One of the key points of the pseudospectral method is
to require Eq. (9) to be satisfied exactly at those colloca-
tion points. This leads to the (N l)X—(N —1) inatrix
form eigenvalue problem

(10)

with

H;~ =8gi(x ) ~,

Q=($(xi), , P(xN i)) (12)

The solution of Eq. (10) provides both the bound-state en-
ergies and the values of the wave functions directly at the
mesh points. Further, the potential-energy matrix is al-
ways diagonal and the kinetic-energy matrix elements are
of simple analytical forms. Thus, for the 1D Hamiltoni-
an, Eq. (8), we have

(13)

where

Let us first consider, for simplicity, the one-
dimensional (1D) eigenvalue problem

8P(x ) =EP(x ),
where

8=P /2m+ V(x) .

Under the polynomial approximation, Eq. (1), and impos-
ing the boundary condition $(xo)=$(xz) =0, the eigen-
value problem becomes

8. Resonance-state complex eigenvalue problems

The pseudospectral method described above for
bound-state eigenvalue problems can be extended to the
resonance-state complex eigenvalue problems by means
of the use of the complex-scaling transformation [19].
Consider again for simplicity the 1D system, Eq. (8). Un-
der the complex-scaling transformation x -~xe ', the
Schrodinger equation becomes (iri = 1)

e ' + V(xe' ) /=ED,
2m

where E denotes the complex energy of the resonance
states. Pseudospectral discretization of this equation is
straightforward, yielding an (N —1)X(N —1) complex ei-
genvalue problem. The non-Hermitian Hamiltonian ma-
trix elements are written by

H,,(8)= —e 's(D, ),, /2m + V(x, e's)5,, (18)

C. Generalized pseudospeetral method with mapping
for Coulomb problems

where x; are the collocation points (not necessarily evenly
spaced) corresponding to the particular choice of polyno-
mials used in the pseudospectral method. The complex-
scaling pseudospectral method has been shown to be
simpler to implement and computationally more efFicient
than the traditional complex-scaling variational methods
using the basis-set expansion [18]. The primary attrac-
tive features of the complex-scaling pseudospectral
method are (i) no computation of potential matrix ele-
ments is required and the kinetic matrix elements have
simple analytic forms, (ii) the eigenvectors provide direct-
ly the values of wave functions at the collocation points,
(iii) no boundary conditions need to be imposed and (iv)
work for both low-lying and highly excited states.

(D&);, =g,"(x ) ~„=„. (14) For atomic structure calculations involving the
Coulomb potential, one typical problem with the grid
methods is the singularity at r =0 and the long-range na-
ture of the potential. Generally, one truncates the semi-
infinite domain into finite domain [r;„,r,„)to avoid the
problems of both the singularity at the origin and the
infinite domain. For this purpose, r;„must be chosen to
be suSciently small and r,„suSciently large. This re-
sults in the need of a large number of grid points, in addi-
tion to possible truncation errors. To overcome this
problem, we can map the semi-infinite domain [0, ~ ] into
the finite domain [ —1, 1] using the mapping r =f(x ),
and then the Legendre or Chebyshev pseudopotential
technique. In this paper we shall use the algebraic map-
ping

We give below the analytic forms of gj(x ) and (Dz);J
for the important case that u&(x ) =P&(x )=Legendre po-
lynomial. As will be shown later in Sec. II C, the Legen-
dre pseudospectral method, with appropriate mapping to
remove the singularity, can be eSciently and accurately
applied to atomic processes with Coulomb potential —a
subject of primary interest in this paper. The cardinal
functions g (x ) and (D2 ); are given by

(1 x)PN(x )—
g.(x)=—

a~P~(x )

and

r =f(x)=1.1+x
1 —x

(19)
(16}

(D2),, =g". (x)~„„=—,1~j ~N 1, —N(N+1)
3(1—x )J

(D2 );1 =g~"(x ) ~„
(x; —x,. )

1 i, j+N —1, i'
where x.'s are the roots of P~(x ) (j= 1,2, . . . , N —1)
and a~ =N(N+ 1).

where L is a mapping parameter. Note that this mapping
removes the singularity at r =0. Generally the introduc-
tion of nonlinear mapping can lead to either an asym-
metric or a generalized eivenvalue problem [16]. Such
undesirable features may be overcome by the following
symmetrization procedure which has been recently intro-
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1
8O = — + Vo(r ),

2m dr2

and Vo(r) contains the Coulomb potential. Introducing
the mapping r =f(x }in Eq. (19) and defining

P(x ) = &f'(x )f[f (x )],
we find the transformed Hamiltonian has the following
form:

80(x ) =—, , + Vo(r =f(x ) } .1 1 d2 1

(20)

We see that the kinetic-energy operator is now sym-
metrized, leading to a symmetric eigenvalue problem.

D. Complex-scaling generalized pseudospectral
method for the determination of complex quasienergies

associated with multiphoton ionization processes

Corresponding to the periodically time-dependent
Hamiltonian (R= 1)

P(r, t)= — V + V(r)+eFz cosset,1

2m
(21)

describing the interaction of one-electron atoms with a
monochromatic, linearly polarized, coherent laser field of
frequency co and peak field strength I', an equivalent
time-independent infinite-dimensional Hamiltonian
8z(r }may be obtained by the extension of the semiclassi-
cal Floquet Hamiltonian method [11,12]. The Floquet
Hamiltonian PF(r) has no discrete spectrum. Writing
the time-evolution operator as

exp( iPzt }= f—dz
1 exp( izt}-

2ni . z-P (22)

gives the usual result that the time dependence is dom-
inated by poles of the resolvent (z PF) ' near the real—
axis but on higher Riemann sheets, and that the complex
energies of the poles are related to positions and widths
(Es, —I /2) of the shifted and broadened complex
quasienergy states. These complex poles may be obtained
directly from the analytically continued Floquet Hamil-
tonian HF(a) obtained by the complex-scaling transfor-
mation rare' . This transformation effects an analytical
continuation of (z —8r) ' into the lower half-plane on
an appropriate higher Riemann sheet, allowing the com-
plex quasienergies to be determined by solution of a non-
Hermitian eigenproblem. This formalism, known as the
non-Hermitian Floquet Hamiltonian method [11],is usu-
ally implemented by means of the L basis-set expansion
and variational principle. It has been applied successfully
to a number of atomic and molecular multiphoton ioniza-
tion and dissociation processes in intense laser fields in

duced [18]. Consider the radial Schrodinger equation, for
example,

80$(r ) =EP( r ),
where

the past decade [12].
The complex-scaling generalized pseudospectral

method introduced earlier in this paper can be applied
directly to the discretization and solution of the non-
Hermitian Floquet Hamiltonian Pz(r' ). The computa-
tional advantages of this new pseudospectral discretiza-
tion technique will be demonstrated.

III. MODEL POTEN IIAL OF H

In order to obtain accurate results when comparing
with the experiments, we have previously introduced an
angular-momentum-dependent model potential v&(r) to
describe the photoelectron, that is, we treat H as an
effective one-electron system in which the detached elec-
tron moves in the field of a perturbed hydrogen atom.
The effective interaction between the detached electron
and the bound electron is chosen to reproduce the bind-
ing energy of H [6], and the low-energy e-H( ls) singlet
elastic-scattering phase shifts [7]. The following is the
form of the model potential:

r

v (r)= — 1+—e "— W —+u (r),1 2„d r
I 4 6 Ir C

(23)

where a =4.5 a.u. is the static polarizability of the hydro-
gen atom in its ground states,

WJ (x )= 1 —exp( —x 1} (24}

is the cutoff function, and r, is an effective hydrogen-
atom radius. The last term u&(r) in (23) is an angular-
momentum-dependent short-range correction of the form

ui(r)=(co+c, r+czr )e (25)

where the coefficients co, c„c2,and P are chosen to ap-
proximate as accurately as possible the binding energy [6]
and low-energy singlet phase shifts of H [7]. We found
it is sufficient to use two different functions u&(r): one,
uo(r), for states with angular momentum /=0, and
another, u&(r ), for states with / & 1. It is also necessary to
use two different functions because, for example, s- and
p-wave phase shifts cannot be fitted with a common po-
tential v(r }. As has been investigated in paper I [5], one-
phonon photoabsorption cross sections based on this
model potential are in excellent agreement with earlier
accurate correlated two-electron calculations [9].

In this paper we use this model potential and perform
nonperturbative studies of the intensity-dependent multi-
photon detachment rates of H as well as the threshold
behavior, using the non-Hermitian Floquet formalism
and the complex-scaling generalized pseudospectral
discretization technique. To facilitate the complex-
scaling calculation, we replace the cutoff function 8'6
above by the following form:

2 3 4 5

W (y)=1— 1+y+ + + + e
3t 4t 51

(26}

where y =Sr /r, . The values of the parameters co, c&, c2,
and P are given in Table I.
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TABLE I. Model potential parameters for H

0
+ 1

rc

4.0
40

4.975 092 0
—2.191784 3

—4.724 867 7
2.135 522 0

0.272 268 01
—0.294 768 24

IV. INTENSITY-DEPENDENT MULTIPHOTON
DETACHMENT RATES OF H

NONPERTURBATIVE COMPLEX
QUASIENERGY CALCULATIONS

In this section we shall present the results of nonper-
turbative calculations of the intensity-dependent complex
quasienergies (Ez, —I /2) of H in the presence of
monochromatic laser fields with intensity ranging from 1

to 40 GW/cm . The real part (Ez) of the complex
quasienergy provides the ac Stark shift of the H ground
state, whereas the imaginary part (I /2) provides the
multiphoton detachment rate of H at a given laser fre-
quency ar and intensity I. In the following, we first
demonstrate the computational advantages of the gen-
eralized pseudospectral method.

A. Numerical test: Generalized Legendre
pseudospectral discretization versus basis-set

expansion and finite difFerence

As an example of the usefulness of the complex-scaling
generalized pseudospectral method, we give in Table II
the comparison of several calculations of the resonance
energies of the model problem of the tunneling in the
anharmonic oscillator V(x ) =x /4 —Ax . The methods
considered are (1) CSB, complex-scaling (harmonic oscil-
lator) basis-set expansion [20]; (2) CSFD, complex-scaling
finite difference [21], and (3) CSLPS, complex-scaling
Legendre pseudospectral discretization [18]. The number
of grid points (Ng) or the number of basis-set functions

(Nb ) used are indicated. Note that all the decimal places
shown in the table for CSLPS are converged with respect
to the rotational angle a and to Ng or Nb. Note that the
pseudospectral method (CSLPS) not only is computation-
ally simpler and faster, but can achieve accuracy compa-
rable to (or even higher than) that of the basis-set expan-
sion (CSB) method. Even in this simple model problem,
the CSLPS method is about four times faster than the
CSB method. The pseudospectral method also appears to

be more accurate and far more efficient than the earlier
exploratory finite-difference method [21] using Ng =4000.
The simplicity, efficiency, and accuracy of the CSLPS
technique make it a highly competitive alternative to the
conventional CSB method.

B. Intensity-dependent multiphoton detachment
rates and ac Stark shifts of H

In this section we present the results of complex
quasienergy (Ez, —I /2) calculations of H via the non-
Hermitian Floquet Hamiltonian formalism using the
complex-scaling Legendre pseudospectral discretization
technique. The structure of the Floquet Hamiltonian
PF(r) for H is the same as that of atomic hydrogen
[11], as we treat H by an effective one-electron model
potential. %e focus our calculations in the laser frequen-
cy range 0.20-0.42 eV and laser intensity from 1 to 40
GW/cm . The laser frequency range covers both two-
and three-photon dominant detachment processes. The
number of Legendre grid points used (Ng) is typically
31-51 points, and the number of partial waves used
ranges from 7 to 15, depending upon laser intensity and
frequency. A sufficient number of Floquet blocks (5 to
13) is used to ensure the convergence of the complex
quasienergy. Since H has only one bound state, the in-
verse iteration procedure [11] is particularly useful and
effective and is adopted here. For the strongest intensity
(40 GW/cm ) considered, the dimension of the Floquet
matrix is about 10000X 10000. The computer time used
for each calculation depends upon the dimensionality of
the Floquet matrix (NF), ranging from about 14 sec

(N~ =1600) to about 400 sec (NF =10000) for a CRAY 2

computer. This is several orders of magnitude faster than
that using the basis-set expansion and the diagonalization
of the whole non-Hermitian Floquet matrix.

Figures 1(a) and 1(b) show, respectively, the energies
(Ex 's) and the multiphoton detachment rates ( I"s) of H
for laser intensity 5 =4, 8, 12, 16, and 20 GW/cm and
laser frequency from co=0.20 to 0.42 eV. Figures 2(a)

TABLE II. Complex resonance energies (E,——' I ) for the anharmonic oscillator V(x ) =0.25x' —0.034m '.

CSB (nb =40) CSLPS (ng =40) CSFD (ng =4000)

0.485 679 37
1.391 574 8
2.132 135 6
2.817 874
3.586 675

—0.000 002 866 98i
—0.001 341 93i
—0.068 762 6i
—0.363 974 i
—0.777 257 i

0.485 679 371 77
1.391 574 841 1

2.132 135 56
2.817 874 15
3.586 674 7

—0.000 002 866 98i
—0.001 341 934 Oi
—0.068 762 61i
—0.363 973 68i
—0.777 256 8i

0.485 678 6
1.391 572
2.132 13
2.817 86
3.586 65

—0.000003 Oi
—0.001 342 Si
—0.068 762 i
—0.363 967 i
—0.777 24i
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—0.7547

4GW-0.7549—

—0.7551

—0.7553—

—0.7555—

I~8 GW/c m

I=12 GW/c m

I=16GW/cm

I ~20 GW/c m

—0.7557
0.20

10

I

0.25
I

0.30
~ (ev)

I

I

0.35
1

0.40

(b)-

10

10'0 -I-2oGW/c '

- I~16GW/c

1 0 = I~12 GW/cm
9

I

/ (- I-eGW/cm

10
I

N I

I2
I

0.40
I

0.35
10

I~4 GW/cm

0.20 0.25 0.30
~ (ev}

FIG. 1. The frequency- and intensity-dependent complex
quasienergies (E&,—I /2) of H for I=4, 8, 12, 16, and 20
QW/cm~ and co=0.20-0.42 eV: (a) E& (real energies), showing
the ac Stark shifts of the H ground state, and (b) I (imaginary
energies), showing the multiphonon detachment rates.

and 2(b) show the same complex quasienergies for higher
laser intensity I=20, 30, and 40 GW/cm . Several dis-
tinct behaviors are noticed.

(i} The energies of the H ground state show
significant intensity-dependent ac Stark shifts. The larger
the laser intensity, the larger the ac Stark shift. The ener-
gies of the H ground state (at a given laser intensity)
generally show smooth dependence on the laser frequen-
cy co, except near the onset of multiphoton ionization
thresholds where Ez's show dips. The positions af the
dips are blueshifted and the dips are more pronounced as
the laser intensity increases.

(ii) The multiphonon detachment rates ( I ) are strongly
intensity dependent. For each laser intensity, the photo-
detachment rates show rapid change with photon fre-
quency ~ near the onset of each multiphoton ionization
threshold. The lower the laser intensity, the sharper the
threshold behavior. Similar to the behavior of Ea, the
positions of the photodetachment threshold jumps are
blueshifted as the laser intensity increases.

V. AVERAGED MULTIPHOTON DETACHMENT
RATES: COMPARISON OF THEORETICAL

AND EXPERIMENTAL RESULTS

In Sec. IVB we present the multiphoton detachment
rates of H driven by monochromatic laser fields. To
compare with the experimental measurement [3],we per-
farm the following simulations of intensity-averaged mul-
tiphoton detachment rates. We simulate the experiment
with a uniform H beam (diameter 3 mm) and a Gauss-
ian distribution of laser intensity in space:

-0.7555

I~20 GW/c ms I( z) I e
—2P /w (z)0

P&
=

0 ~( )
(27}

—0.7560—

Q

LIJ

—0.7565—

—0.7570
0.32

1 012

10

10

0.34
I I

0.36 0.38
~ (eV)

I 30 GW/cm

I ~20 GW/c m

0.40 0.42

I0 is the laser peak intensity in the atom frame at the spot
center (p=z=0}, W(z }is the spot size given by

W(z ) = 8'0( 1+z /za )
' (28)

where Wo (=110 pm) is the waist of the focus beam,
za =n. Wo2/A, is the associated Rayleigh range, A, =10.6
pm is the laser frequency in the laboratory frame, and z is
the distance from the waist. The laser pulse used in the
experiment [3] is linearly polarized and temporarily
smooth and had a duration of 136 ns full width at half
maximum (FWHM), and a 1-ps-long tail. Because of the
long duration of the laser pulse, it is a good approxima-
tion to treat it as a monochromatic laser field.

It is useful to recall the experimental setup for the H
experiment [3]. The 800-MeV H target ions travel at a
speed =2. 53 X 10 m/s, corresponding to p= v /c =0.842
and y = 1.85, where p and y are the usual relativistic pa-
rameters. The photon energy in the laboratory frame
(E&,b) was Doppler shifted to E, in the center of mass
(c.m. ) (or, equivalently, the atom frame of the H ion) ac-
cording to

10
0.32 0.34 0.36

I

0.38 0.40

(b)
0.42

E, =y( 1 +P cosa )E„b, (29)
~ (ev)

FIG. 2. Same as Fig. 1 except for higher laser intensities
I=20, 30, and 40 GW/cm .

where a is the angle of intersection (a=0 when head on)
of the H and laser beams. The laser intensity in the
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c.m. frame (I, } transforms from the laboratory value

I»b according to

01 1

I, =y (1+Pcosa) I&,b . (30) 10
~O Oo 0

o~ oooo o 0 00' ~ ~ o«oo~
~ ~ ~ o p~ ~ 0 p~ y~O

0 0

In the Los Alamos experiment [3], the laboratory laser
wavelength is fixed at A,&,b

= 10.6 pm. By adjusting the in-
tersection angle a, one can generate different laser wave-
lengths in the atom frame via Eq. (29). Further, accord-
ing to Eqs. (29) and (30),
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9 0 (P ~10 0 0000

~ygf
o o ~
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I, /Ihb = (co, /cot, b ) (31} 1 08
0.20 0.25 0.35 0.40
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10

0 o
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0

where co, is the laser frequency in the atom frame and
co„b=2~c/A, „b. Equation (31) shows that for different
co, , the H ions are exposed to different laser peak in-
tensities I, ; even the laboratory peak intensity I&,b is
fixed. Further, the larger co, is, the larger the laser
peak intensity I, that needs to be considered.

To perform the averaged multiphoton detachment
rates, we use the expression

I
I (co, )=f W(I)&co, ,I)dI, (32)

0

where I is the laser intensity in the c m. frame,
I~,k=I, is the peak intensity in the c.m. frame given
in Eq. (30), and W(I) is a weighting factor. In principle,
W(I) depends also upon co, , since for different co,

I~,k is different. Figure 3 shows a typical example of
W(I) for the case of co, =0.39 eV. In performing the
average in Eq. (32), Pco, ,I) are obtained from the
complex quasienergy calculations for given values of I
and co

We present in Fig. 4 the averaged multiphoton detach-
ment rates determined from the above-mentioned simula-
tion procedure corresponding to the case of Ij,b=4
GW/cm and A,&,b=10.6 pm. Also shown in Fig. 4 are
the experimental data [3]. The overall agreement appears
quite satisfactory, well within the estimated experimental
uncertainty of a factor of 5. Note that, in our simulation,
there are no adjustable parameters and the fact that the
absolute photodetachment rates of experimental and
theoretical investigations are on top of each other is rath-

FIG. 4. Comparison of the intensity-averaged photodetach-
ment rates for the case of I&,„=4GWfcm: 0, theoretical simu-
lation, 0 experimental data.

er encouraging. The theoretical prediction of the onset of
two- and three-photon thresholds are also in good accord
with the experimental curve, although the theoretical
curve tends to be slightly sharper at thresholds. The
smail discrepancy may be attributed to the difBculty in
the "exact" simulation of the experimental conditions.
We have previously also performed a simulation of the
averaged multiphoton detachment rates using the gen-
eralized cross sections from perturbative calculations [5].
The results there were less satisfactory as the predicted
onset of n-photon thresholds is much sharper than the
experimental data and the current results. Further, the
perturbative simulation contains a free parameter in the
laser profile to fit the experimental data. Our present
study indicates that nonperturbative treatment is re-
quired and capable of describing satisfactorily the process
of multiphoton detachment of H in the Los Alamos ex-
periments [3].

VI. CONCLUSIONS

In this paper we have (i) developed a computational
technique, the complex-scaling generalized pseudospec-
trai method, for accurate and eScient solution of the
complex quasienergies associated with the non-Hermitian
Floquet Hamiltonian, (ii) determined detailed intensity-
and frequency-dependent multiphoton detachment rates
and ac Stark shifts of H based on an accurate one-
electron model potential, and (iii) performed the
intensity-averaged photodetachment rate calculations by
a simulation of the experimental conditions. The results
(without any free parameters) are well within the estimat-
ed experimental uncertainty, both in the absolute magni-
tude and in the threshold behavior.
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FIG. 3. A representative example of the weighting factor
W(I) versus laser intensity I (corresponding to m, =0.390
eV).

This work was partially supported by the Division of
Chemical Sciences, Ofhce of Basic Energy Sciences, of the
U.S. Department of Energy. We are grateful to Dr. Ho-
ward Bryant for providing the experimental data for the
comparison with the present work and to Dr. C. Y. Tang
for useful discussions on the experimental conditions.



50 MULTIPHOTON DETACHMENT OF H . II. INTENSITY-. . . 3215

[1]C. Y. Tang, P. G. Harris, A. H. Mohagheghi, H. C.
Bryant, C. R. Quick, J. B. Donahue, R. A. Reeder, S.
Cohen, W. W. Smith, and J. E. Stewart, Phys. Rev. A 39,
6068 (1989).

[2] W. W. Smith, C. Y. Tang, C. R. Quick, H. C. Bryant, P.
G. Harris, A. H. Mohagheghi, J. B. Donahue, R. A.
Reeder, H. Sharifian, J. E. Stewart, H. Toutounchi, S.
Cohen, T. C. Altman, and D. C. Rislove, J. Opt. Soc. Am.
B 8, 17 (1991).

[3]C. Y. Tang, H. C. Bryant, P. G. Harris, A. H.
Mohagheghi, R. A. Reeder, H. Sharifian, H. Tootoonchi,
C. R. Quick, J. B. Donahue, S. Cohen, and W. W. Smith,
Phys. Rev. Lett. 66, 3124 (1991).

[4] For a summary of recent work and a more complete list of
references in this direction, see S. Geltman, Phys. Rev. A
43, 4930 (1991).

[5] C. Laughlin and S. I. Chu, Phys. Rev. A 48, 4654 (1993).
[6] K. R. Lykke, K. K. Murray, and W. C. Lineberger, Phys.

Rev. A 43, 6104 (1991).
[7] C. Schwartz, Phys. Rev. 124, 1468 (1961);A. L. Stewart, J.

Phys. B 11, 3851 (1978); M. R. H. Rudge, ibid. 8, 940
(1975);J. Callaway, Phys. Lett. 65A, 199 (1978).

[8] A. Dalgarno and J.T. Lewis, Proc. R. Soc. London, Ser. A
233, 70 (1955).

[9] A. W. Wishart, J. Phys. B 12, 3511 (1979); A. L. Stewart
ibid. 11,3851 (1978).

[10]See, for example, C. R. Liu, B. Gao, and A. F. Starace,

Phys. Rev. A 46, 5985 (1992).
[11]S. I. Chu and W. P. Reinhardt, Phys. Rev. Lett. 39, 1195

(1977); A. Maquet, S. I. Chu, and W. P. Reinhardt, Phys.
Rev. A 27, 2946 (1983).

[12] For reviews on non-Hermitian Floquet methods, see S. I.
Chu, Adv. At. Mol. Phys. 21, 197 (1985); Adv. Chem.
Phys. 73, 739 (1989).

[13]S. I. Chu, Chem. Phys. Lett. 167, 155 (1990); J. Chem.
Phys. 94, 7901 (1991).

[14]G. Yao and S. I. Chu, Chem. Phys. Lett. 197, 413 (1992);
Phys. Rev. A 45, 6735 (1992).

[15]E. Layton and S. I. Chu, Chem. Phys. Lett. 186, 100
(1991)~

[16]See, for example, J. P. Boyd, Chebyshev and Fourier Spec
tral Methods (Springer, Berlin, 1989), and references
therein.

[17]C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A.
Zang, Spectral Methods in Fluid Dynamics (Springer, Ber-
lin, 1988), and references therein.

[18]G. Yao and S. I. Chu, Chem. Phys. Lett. 204, 381 (1993).
[19]E. Balslev and J. M. Combes, Commun. Math. Phys. 22,

280 (1971);A. Aguilar and J. M. Combes, Math. Phys. 22,
265 (1971).

[20] K. K. Datta and S. I. Chu, Chem. Phys. Lett. 87, 357
(1982).

[21]O. Atabek and R. Lefebvre, Chem. Phys. Lett. 84, 233
(1981).


