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Multiphoton detachment of H™ is considered. An accurate one-electron model, which reproduces
precisely the known H™ detachment energy and the low-energy e-H(1s) elastic-scattering phase shifts, is
developed. Generalized cross sections, based on lowest-nonvanishing-order perturbation theory, are
evaluated by an accurate and efficient numerical algorithm for the solution of the associated set of inho-
mogeneous differential equations. Two- to eight-photon detachment cross sections are determined and
compared with a recent one-electron model and two-electron ab initio calculations. It appears that the
present study provides consistent results with an accuracy for higher-order (n > 3) photon-detachment
cross sections comparable to that of lower orders (n =2,3). Average detachment rates for linearly polar-
ized light are calculated and compared with recent experimental measurements. It is found that, for
higher-order photon detachment, the rates for circular polarization are small in comparison with the

rates for linear polarization.

PACS number(s): 32.80.Rm, 32.80.Fb

I. INTRODUCTION

Experimental and theoretical investigations of the pho-
todetachment of H™ have a long history. However, re-
cent experimental observations of multiphoton detach-
ment of this fundamental negative ion [1-3] have given a
renewed impetus to theoreticians to calculate H™ multi-
photon generalized cross sections and detachment rates
[4]. As has been pointed out several times, wide
discrepancies exist between many of the predictions,
especially for two- and three-photon absorption processes
which have occupied most of the theoretical interest so
far.

There are several purposes to the present paper. The
first is to introduce an accurate one-electron model of H™
which is suitable for efficient multiphoton detachment
calculations. Another is to develop stable and efficient
numerical schemes capable of providing generalized cross
sections, not only for two- and three-photon detachment,
where there is now beginning to be a measure of agree-
ment between different theoretical predictions, but also
for four- to eight-photon detachment where the data, if
they exist at all, are very sparse. This detailed and con-
sistent calculation of high-order multiphoton cross sec-
tions for H™ (n > 3) which accurately takes into account
the phase shifts of the detached electron. Finally, we use
our results to calculate multiphoton detachment rates for
comparison with the latest experimental measurements
and we discuss the implications of the differences which
this comparison shows for the future development of
work in this area.

We begin in Sec. II with a brief review of the expres-
sions for n-photon detachment generalized cross sections
derived from perturbation theory and how they may be
evaluated in terms of solutions of inhomogeneous
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differential equations. In Sec. III we introduce our one-
electron model of H™ and verify its accuracy by compar-
ing the predicted photodetachment cross section with
that obtained in an accurate correlated two-electron
study. Our model reproduces precisely the known H™
detachment energy, recently shown to be very important
for obtaining accurate generalized cross sections, and also
the known s-, p-, d-, and f-wave low-energy e-H(ls)
elastic-scattering phase shifts for the detached electron.
We present in Sec. IV our numerical procedures for solv-
ing the set of inhomogeneous differential equations which
replace the perturbation-theory summations and we
show, by introducing a “perturbation” into the inhomo-
geneous terms, that they do not appear to suffer from any
numerical instabilities. Section V contains our results for
n-photon detachment of H™ for » =2-8 and gives com-
parisons with other work, while Sec. VI contains our con-
clusions concerning the implications of the work on the
future development of research in H™ multiphoton de-
tachment.

II. PERTURBATION THEORY FOR MULTIPHOTON
DETACHMENT OF NEGATIVE IONS

We consider n-photon detachment of an atomic nega-
tive ion, assuming that the light intensity is such that the
ion-photon interaction may be treated as a perturbation
and that the laser is monochromatic with frequency w.
Then, to lowest order in perturbation theory, the proba-
bility per unit time that the system, initially in a bound
state |b ), will absorb n photons and make a transition to
a final continuum state |f ), ejecting a photoelectron in
the solid angle d{2; with momentum k and is given by

dWp'=Qm)" 2a"e"k | T\’ F"dQ, , (1)
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where F is the incident photon flux and T}g) is the
transition-matrix element. (Unless otherwise stated,
atomic units are used throughout this paper.) If the free
ion has (discrete and continuous) states ¢; with energies
E;, where

1

ﬁ‘ﬁi =E;¢; , (2)

and the photons have polarization specified by the unit
vector €, then [5,6]

<¢f’e'DI¢i"_1><¢in7‘|/e\'D|¢in72> U <¢i2|e'D|¢i1 ><¢ille'Dl¢b>

(n) —
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where D is the electric dipole operator and the summa-

tions include integrations over continuous intermediate

states ¢"1’¢‘2’ ey - In the case of H™, for which
e

the ground state is the only true singlet bound state, all
intermediate states are in the continuum. For n >3 it is
not a practical procedure to evaluate the right-hand side
of (3) by direct computation of the matrix elements [4].
Instead, we extend a method introduced by Dalgarno and
Lewis [7] and discussed in the present context by, for ex-
ample, Grontier and Trahin [8] and Gao and Starace [9].
A similar procedure has also been previously applied by
us to multiphoton dissociation of H," and HD ™" from vi-
brationally excited states [10]. One of the goals of this
work is to extend the Dalgarno-Lewis procedure [7] to
high-order multiphoton processes in a numerically stable
and efficient manner. The approach is to replace the
intermediate-state summations and integrations in T}f,')
by a set of coupled inhomogeneous differential equations
and one final integration. This is achieved by defining the
functions

<¢,1|eDl¢b>
4= e (42)
<¢i2 [&-Dlx,»
Xz_,.z (E,»Z—Eb—Zco)qS"l’ )
<¢i”_le'D|Xn—2>
Xn—l—iz [El _Eb_(n_l)w]¢in_l (40)

n—1 n—1

and noting that, by virtue of Eq. (2), they satisfy, respec-
tively, the inhomogeneous differential equations

(H—E,—o0)y,=¢Dé¢, , (5a)

(A—E,—20)x,=¢-Dyx, , (5b)

[HA—E,—(n —1Dwlx,_,=¢Dx,_, . (5¢)
Having computed successively X1,X2, - - - » X, —1, it 1S evi-
dent that

Tip=(¢[&Dlx,_,) . (6)

The total transition probability Wy, is defined by in-
tegrating over all angles of the ejected electron and sum-
ming over all accessible final states,

L, Ey,—(n—2)e] - (E, —E,—20)E; —E,~o) ’

[

W= a0k, Fr S [T, , ()
If,mf

where we have assumed that the initial bound state has

an angular momentum [, =0, and [, and m, are final-
state angular momentum quantum numbers. The quanti-

ty
cr("’(w)=W}1’,')/F" (8)

is the generalized n-photon detachment cross section, and
we now turn our attention to its evaluation.

III. MODEL POTENTIALS FOR H™

In order to simplify the solution of Eqs. (5) we intro-
duce an angular-momentum-dependent model potential
v;(r) to describe the photoelectron, that is, we treat H™
as an effective one-electron system in which the detached
electron moves in the field of a perturbed hydrogen atom.
The effective interaction between the detached electron
and the bound electron is chosen to reproduce the bind-
ing energy of H™ [11] and, also, the low-energy e-H(ls)
singlet elastic-scattering phase shifts [12-15]. We note
that since we are here describing the multiphoton detach-
ment process using nonvanishing lowest-order perturba-
tion theory, and since the binding energy of H™ is rela-
tively small (0.754 eV), it is adequate to have accurate
representations -of the low-energy phase shifts. Thus, we
choose the following form for the model potential:

1

a
1+ 2
p

274

v,(r)=— e ¥ s |— |+u(r), ©

c

where a; =2 is the static polarizability of the hydrogen
atom in its ground state,

Wj(x)=1—exp(—xj) (10)

is a cutoff function, and r, is an effective hydrogen-atom
radius. The last term u,(r) in (9) is an angular-
momentum-dependent short-range correction of the form

u(r)=(co+ec,;r+c,rt)e P, (11)

where the coefficients ¢y, ¢;, ¢,, and B are chosen to ap-
proximate as accurately as possible the binding energy
[11] and low-energy singlet phase shifts [12—15] of H™.
The values of the parameters thus determined are listed
in Table I. We find it is sufficient to use 2 different func-
tions u;(r): one, uy(r), for states with angular momen-
tum / =0, and another, u(r), for states with / = 1. It is
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TABLE I. Model-potential parameters [see Egs. (9)-(11)].

/ ay re Co 3! C) B
0 4.5 4.0 5.332 1766 —5.254 3795 0.420 0806 1.4
>1 4.5 4.0 —2.3020310 2.227 6939 —0.277 6654 1.4

also necessary to use two different functions because, for
example, s- and p-wave phase shifts cannot be fitted with
a common potentials v (). We also note that we have not
included phase shifts §; for / >4 in the fitting procedure
to determine the parameters in u,(r). However, v,(r)
does reproduce values in agreement with the effective
range formula [16]

7Tadkf2
(21 —1)21 +1)(21 +3)

which is accurate at low energies for / >4. The impor-
tance of employing the correct H™ binding energy has re-
cently been emphasized by Liu, Gao, and Starace [17]
and both of our potentials v,(r) and v,(7) reproduce the
precise experimental value of Lykke, Murray, and Line-
berger [11].

In calculations on the photodetachment of H™ in an
electric field, Du and Delos [18] employed the initial-state
wave function

¢b$B exp(—mn,r)/r (13)

tand; = (12)

where 7, is given in terms of the ground-state energy E,
of H™ (relative to the ground-state energy of hydrogen)
by Eb=—%n§ and, following the prescription of Bethe
and Longmire [19], the constant B is determined from the
effective range of the potential energy [20]. This form of
initial-state wave function has also been used by Adelman
[21] to determine two-photon detachment rates for H™.
The value B =0.315 52 thus derived gives the normaliza-
tion {4,|¥,)=2.655. The asymptotic behavior of the
model-potential ground-state wave function ¢, [calculat-
ed with vy(7)] is described by Eq. (13) but, unlike ¢, it is
normalized to unity. The lowest (/ =0) eigenvalue of
v,(r) also reproduces the binding energy of H™ exactly,
but the corresponding wave function does not behave
asymptotically like ¢,; instead it behaves as the normal-
ized function

172

L

= — h =
0, =N exp(—mn,r)/r, where N o |

for large ». The numerical value of N is 0.1936 and we
note that B2=2.655N?2.

Table II presents a comparison of our model-potential
phase shifts with other accurate data. Agreement is satis-
factory in all cases. Further validation of our model is
provided by the good agreement shown in Table III be-
tween our predicted H™ photodetachment cross section
and the cross section of Stewart [13], obtained from an
accurate perturbation-variation method, and Wishart
[22], who used a close-coupling pseudostate expansion
with the addition of Hylleraas-type correlation terms.
Our results favor those of Wishart [22].

We finally note in this section that consistent applica-
tion of the model-potential theory implies the use of a di-
pole operator D which includes the contribution from the
dipole moment induced on the hydrogen-atom “core” by
the “valence” electron [23,24]

D=

2y
1—7W3 T. (15)

r
rC
Because our wave functions are correct asymptotically,

the “length” form of the dipole operator, given in Eq.
(15), is appropriate.

IV. CALCULATIONS

We now solve sequentially the set of inhomogeneous
differential equations (5) for x,X5, - - -, X,—1, Where the
Hamiltonian H is given by

A=1v2+y(r), (16)

with the model potentials v;(7) specified by Egs. (9)-(11).
This allows computation of the generalized cross sections
o™ (w) defined in (8), via Egs. (6) and (7). We also repeat,
and extend to n =8, calculations with a zero-range poten-
tial model introduced by Geltman [25].

A. Solution of inhomogeneous differential equations

If the eigenfunctions ¢; in the definition of Xu
N

(u=1,2,...,n—1), Egs. (4), have angular-momentum
quantum numbers / =/, and m =m w then the substitu-
tion Xu=r*1P#(r)Y,Mm#(?) reduces the equation for x,, to
the second-order ordinary differential equation

TABLE II. e-H(1s) singlet elastic-scattering phase shifts as a
function of electron energy (in a.u.).

Angular Model Accurate
momentum Energy potential calculation?
1=0 0.005 2.5532 2.5530

0.020 2.0666 2.0673
0.045 1.6971 1.6964
I=1 0.005 0.0065 0.0058
0.010 0.0108 0.0100
0.020 0.0155 0.0146
0.040 0.0161 0.0164
1=2 0.005 0.0013 0.0012
0.020 0.0051 0.0052
0.045 0.0101 0.0108
1=3 0.045 0.0040 0.0038
0.080 0.0069 0.0066

“See Refs. [12-15].
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TABLE III. H™ photodetachment cross sections (in units of
10~ cm?) as a function of electron energy (in a.u.).

Cross section

Energy Model potential Stewart? Wishart®
0.005 1.57 1.54 1.55
0.010 2.86 2.82 2.85
0.015 3.58 3.52
0.020 391 3.85 3.90
0.025 4.01 3.94
0.030 3.98 3.90 3.97
0.035 3.87 3.78
0.040 3.72 3.62 3.71
0.050 3.37 3.27 3.37

*Reference [13].
"Reference [22].

a2 L,+1)
?—”—:‘—2—————2v,p(r)+2(Eb+,uw) P,

=—2q,DP, ,, (7)
where €-D=DC,, (%) and
aq=(Yl“m#('f)lclq('r\)lerlm”_ ) . (18)

1

For convenience, we define y,=¢,. Equation (17) may be
integrated numerically by use of the Numerov method
[26]. The matrix formulation described by Froese
Fischer [27] was employed in the present work. The
boundary conditions are P,(0)=0 and P,(r)—0 as
r— oo. In practice, the equation was integrated in the in-
terval 0<r=<R, where R is sufficiently large that
IP#(r)l <€ for r >R and € is a suitably chosen (small) pa-
rameter.

In our model, the ground state of H™ has an angular
momentum / =0. When the laser has circular polariza-
tion it follows that I, in Eq. (17) must have the value
l,=p and that the angular momentum of the ejected
photoelectron is I, =n, the number of photons absorbed.
However, for linear polarization several values of / u are,
in general, possible and thus there are several functions
Pu to be found. For example, the four-photon detach-
ment with a linearly polarized laser the following
angular-momentum paths are possible:

0—-1-52-53-4, (19a)
0—-1-2-53-2, (19b)
0—-1-2->1-2, (19¢)
0—-1-2—>1-0, (19d)
0—-1-0—->1-2, (1%e)
0—-1-0—-1-0. (191)

It is clear that if the number » of photons is even then the
final continuum states have angular momenta [, which
are also even, and vice versa if n is odd. It is also clear
that there is only one function P; (with /, =1), but that
there are two functions P,, namely P, (/,=2) and P,
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(1,=0), and three functions Pj, one of which has /;=3
and two of which have /;=1. The number of angular-
momentum paths is given by the binomial coefficient (}),
where h =[n /2] is the integer part of n /2. The calcula-
tions are obviously most efficiently executed by first
determining P, then the two functions P, (both of which
depend on P,), then the three functions P;, etc. For
eight-photon detachment, where there are 70 angular-
momentum  paths and, in total, 1+2+3+6
+10+20+35=77 inhomogeneous differential equations
to solve, the time required to calculate o‘® on a VAX-
6410 computer was approximately 12 seconds per laser
frequency. Thus, the procedure developed in this work is
highly efficient and can be extended to multiphoton pro-
cesses of even higher order.

B. Multiphoton detachment cross sections

Generalized cross sections o™ for n-photon detach-
ment of H™ were calculated as described above for pho-
ton energies in the range —E,/n <w < —E,/(n —1) for
each n=2,...,8. Results for linear laser polarization
are presented in Figs. 1-7. We also performed calcula-
tions in which the model potentials v;(r) were set equal to
zero, so that the initial bound-state wave function is the
normalized function 6, of Egs. (14) and the final states
are plane waves, and these results are also displayed in
Figs. 1-7. This approximation, the zero-range plane-
wave (ZRPW) model, has been employed by Geltman [25]
to obtain generalized cross sections for two- to seven-
photon detachment of H™. Geltman used a completely
different calculational method and the agreement of our
ZRPW results with his provides validation for our nu-
merical procedures. Following the prescription of Gelt-
man [4] we have multiplied our ZRPW cross sections by
a factor of 2 to account for both equivalent electrons in
H™.

It has been suggested that the sequence of coupled
differential equations, (5a)—(5c), may eventually become
numerically unstable as the order of the photon process n

3.0
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UL(Z)( 10"*%cm®s)

0.0 L . L L
0.30 0.40 0.50 0.60 0.70 0.80

Photon Energy(eV)

FIG. 1. Generalized cross sections o’ for two-photon de-
tachment of H™ using linearly polarized light plotted vs photon
energy. Solid curve: present model-potential calculation.
Dashed-dotted curve: ZRPW results.
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FIG. 2. Generalized three-photon detachment cross sections

o®.  Solid

curve: present model-potential calculation.

Dashed-dotted curve: ZRPW results.
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FIG. 3. Generalized four-photon detachment cross sections
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curve: present model-potential calculation.

Dashed-dotted curve: ZRPW results.
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FIG. 4. Generalized five-photon detachment cross sections
calculation.
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Dashed-dotted curve: ZRPW results.
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FIG. 5. Generalized six-photon detachment cross sections

ot®. Solid curve: present model-potential calculation.
Dashed-dotted curve: ZRPW results.
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FIG. 6. Generalized seven-photon detachment cross sections

o\, Solid

curve: present model-potential calculation.

Dashed-dotted curve: ZRPW results.
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FIG. 7. Generalized eight-photon detachment cross sections
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curve: present model-potential calculation.

Dashed-dotted curve: ZRPW results.
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is increased [28]. This is because an error in X, for ex-
ample, is fed into the right-hand side of the equation for
X.+1 and errors are thus propagated to the higher equa-
tions. Gao and Starace [28] have proposed a variational-
ly stable procedure to overcome any such unstable
behavior in the solution of equations (5) and applications
of their procedure to multiphoton processes have been
made [9,29]. However, we have not found any evidence
of instability in Egs. (5) in our calculations on H™. As
well as the dipole operator D given by Eq. (15), modified
to include polarization effects, we have also used the
unmodified dipole operator Dy=r. If the inhomogeneous
differential equations were sensitive to errors in the
right-hand-side terms, then it would be expected that the
perturbations introduced by the polarization term

Ay
—3 W3
3

D,=— Lor (20)
rC

in D would result in progressively larger differences be-
tween the two sets of generalized cross sections (calculat-
ed with D, and D, respectively) as the photon number n
increased. Large differences were not found. General-
ized cross sections for three- and eight-photon detach-
ment are presented in Tables IV and V, where it will be
observed that the relative changes on replacing the dipole
operator D, by D=D,+D, are small and are approxi-
mately the same in both cases.

V. RESULTS AND DISCUSSIONS

Several authors have calculated the generalized cross
sections 0'¥(w) and 0 (@) for H™; work on o™ (w) for
n >3 is much more limited. We do not discuss all the
available calculations but limit ourselves in the main to
the more recent results. Also, we concentrate on cross
sections U(L")(w) for multiphoton detachment by linearly
polarized light since circular-polarization cross sections

o0'"(w) diminish rapidly relative to o{"(w) as n increases.

A. Generalized cross sections

Figures 1-7 show that the discrepancies between
model-potential and ZRPW generalized multiphoton de-
tachment cross sections o}") are greatest for even values
of n, where interference effects in the ZRPW cross sec-
tions are clearly evident. This is due to the fact that the
phase shifts are largest for / =0, but are taken to the zero
in the ZRPW model, and final continuum states with
[;=0 are accessible only when n is even. When the
correct s-wave phase shifts are incorporated into the
model then the accuracy of the cross sections improves
dramatically [4].

It may also be noted that, for » odd, ZRPW and
model-potential o"”s would generally be in better agree-
ment if the initial-state wave function ¥, given by Eq.
(13) was used in the ZRPW calculations, rather than the
wave function 6, of (14) together with the factor of 2 (to
account for the two equivalent electrons) mentioned
above. Since the normalization of (13) is (,|¢,)
=2.655, this prescription would increase the ZRPW gen-
eralized cross sections by approximately 30% and bring
them closer to the model-potential U(L’”’s, in agreement
with the observations of Geltman [4] and Liu, Gao, and
Starace [17] for n =2 and 3.

We compare our generalized cross sections for two-
and three-photon detachment of H™ by linearly polarized
light with Geltman’s “model” and ‘‘best-phase” results
[4] and with the semi-empirical adiabatic hyperspherical
results of Liu, Gao, and Starace [17] in Figs. 8 and 9. It
is evident that our model-potential results are in closer
accord with Geltman’s best phase than with his model re-
sults; the former results of Geltman are expected to be
more accurate [4]. We note a slight difference in
behavior at the top end of the photon-energy range. As
the laser-photon energy is increased, the final function
Xn—1> Eq. (5c), becomes more diffuse and the upper limit
R of the integration range needs to become quite large in
order to meet the condition |P#(7‘)[ <€ for r>R intro-
duced earlier. Thus, the region close to the (n —1)-
photon threshold is the most difficult to deal with numer-

TABLE IV. Generalized cross sections o’ (in units of 1077 cm®sec?) for three-photon detachment
of H™ by linearly polarized light. ¢’(0) is calculated with the dipole operator Do=r and o(3) with
the dipole operator D corrected for polarization effects [Eq. (15)]. p=0'*' /0’ is the ratio of detach-
ment rates for circularly and linearly polarized light. The number in brackets indicates the power of 10

by which the entry is to be multiplied.

Photon energy o'2(0) o'P(3) p(0) p(3)
(cm™')
2076 1.908 1.896 1.79[ —3] 1.80[ — 3]
2173 5.604 5.565 1.90[ —2] 1.90[ —2]
2269 6.867 6.813 6.26[—2] 6.28[ —2]
2366 6.525 6.467 147[—1] 1.48] —1]
2462 5.505 5.450 2.93[—1] 2.94[—1]
2559 4.360 4312 5.28[—1] 5.31[—1]
2655 3.358 3.317 8.82[—1] 8.86[ —1]
2752 2.595 2.563 1.37 1.37
2848 2.089 2.063 1.93 1.93

2945 1.835

1.815 2.40 2.40




4660

CECIL LAUGHLIN AND SHIH-I CHU

TABLE V. As Table IV, but for o (in units of 1072*° cm'®sec”). The number in brackets indicates
the power of 10 by which the entry is to be multiplied.

Photon energy o#(0) o®(3) p(0) p(3)

(cm™1)

765.5 2.643 2.634 8.96[ —13] 8.98[—13]
775.9 3.032 3.021 6.45[ —9] 6.46[ —9]
786.2 4.100 4.086 2.68[—7] 2.68[—7]
796.6 4.890 4.873 2.88] —6] 2.88[—6]
806.9 4.992 4.975 1.76[ — 5] 1.76[—5]
817.3 4.593 4.577 7.75[ —5] 7.77—5]
827.6 4.023 4.008 2.72[—4] 2.72[—4]
838.0 3.531 3.516 7.77[—4] 7.78[ — 4]
848.3 3.233 3.218 1.84[ —3] 1.84[ —3]
858.7 3.140 3.126 3.64[—3] 3.65[ —3]

ically. To ensure that we obtained numerical conver-
gence in our calculations we varied both € and the step
length in the numerical integration routine.

There is quite reasonable agreement between our
model-potential generalized multiphoton detachment
cross sections and the semiempirical adiabatic hypersper-
ical predictions of Liu, Gao, and Starace [17]. These au-
thors introduced a semiempirical adjustment to bring
their predicted attachment energy of H™ into exact
agreement with the accurate nonrelativistic value of Pek-
eris [30], and they discovered that this adjustment sub-
stantially reduced (by up to 40%) the two- and three-
photon detachment cross sections. Nevertheless, their
final cross sections are still 10—-15 % larger than ours.

Our two-photon cross sections are in close agreement
with those obtained by Adelman [21] (corrected, as point-
ed out by Geltman [4], by a factor of 2) from an asymp-
totic model. When we compare with ab initio two-
electron calculations some significant discrepancies ap-
pear. Thus, agreement of our multiphoton detachment

cross sections o" with those obtained very recently by

Proulx and Shakeshaft [31] is reasonable (n =2,3), but it
is not so good, especially near threshold, when we com-
pare with the results of Mercouris and Nicolaides [32]
(n =2,3,4), and the generalized cross sections calculated
by Crance [33] are factors of up to 2 to 3 smaller than
ours for n =2 and 3, with even larger discrepancies for
n =4 and 5. For the sake of clarity we do not display all
these results in Figs. 8 and 9 (see Ref. [17] for additional
comparisons). An explicit two-electron treatment of mul-
tiphoton detachment of H~ presents formidable
difficulties, especially for processes involving absorption
of more than two or three photons, and the results of the
calculations mentioned above are in substantial disagree-
ment. On the other hand, there is now reasonably good
agreement between the results of recent model calcula-
tions for two- and three-photon detachment and, since
our model potential accurately captures initial-,
intermediate-, and final-state correlations, we feel that the
resulting generalized multiphoton cross sections are
currently the best available. We mention again the large
discrepancy between the adiabatic hyperspherical and the
semiempirical adiabatic hyperspherical results of Liu,
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FIG. 8. Comparison of calculated o’ for linear polarization.
Solid curve: present model potential results. Dashed curve: 0055 540
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dotted curve: Geltman’s “model” approximation results [4].
Dotted curve: semiempirical adiabatic hyperspherical results
[17].
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FIG. 9. Comparison of calculated o>’ for linear polarization.
Curve notation same as Fig. 8.
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these authors considered their latter calculations, with
which we are in much better agreement, to be much more
reliable.

We observed earlier that for linear polarization of the
laser the angular momentum of the ejected photoelectron
will be even or odd depending on whether the number of
laser photons absorbed is, respectively, even or odd. It
therefore follows from the Wigner threshold law [34]

oW (E,+na)° ', @1

where [, is the smallest of the final-state angular-
momentum quantum numbers / g (i.e., either O or 1), that
the shape of cross sections at threshold will be qualita-
tively different for even- and odd-photon detachment [4].
Our calculations reveal that the cross sections near
threshold are dominated by the lowest-/ partial waves
and, hence, we should expect to observe obvious
differences in cross-section behavior near threshold. That
such differences are not immediately apparent from Figs.
1-7 is due to the fact that the Wigner law holds only
very close to threshold. We illustrate the threshold
behavior of the four- and five-photon cross sections in
Figs. 10 and 11 in a much expanded (photon) energy
range. In common with Geltman [4], we note that our
threshold behavior is not quite in perfect accord with ex-
periment [1,3]. This is partly due to the fact that the ac
Stark shift of the ground state and the laser intensity-
dependent effects are not included in these perturbative
calculations.

We also note that because of the observed dominance
of low-! partial waves, cross sections for circular polariza-
tion become progressively smaller relative to linear-
polarization cross sections as the number of photons re-
quired for detachment is increased, i.e., the ratio
p=0® /" of n-photon detachment rates for circularly
and linearly polarized light decreases as n increases.
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FIG. 10. Threshold behavior of four-photon detachment par-
tial cross sections of H™ by linearly polarized light. Solid curve:
1 =0. Dashed curve: [=2. Dashed-dotted curve ! =4. The
partial cross sections o{* are multiplied by a factor of 10 for

/=2 and by 10° for / =4.
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tial cross sections of H™ by linearly polarized light. Solid curve:
I =1. Dashed curve: /=3. Dashed-dotted curve: [/ =5. The
partial cross sections o’ are multiplied by a factor of 10? for
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However, p increases quite rapidly with photon energy o
(see, for example, Tables IV and V).

B. Multiphoton detachment rates

We now use our calculated generalized cross sections
to obtain H™ multiphoton detachment rates to compare
with experimental measurements [3] which give averaged

rates I'(w) versus photon energy o for various peak laser
intensities /. Straightforward application of the formula

Tw= 3 o"(w)F", (22)
n(Zn)
P

where n, is the minimum number of photons needed for

detachment at (monochromatic) laser frequency o and
the photon flux F =I,/w, results in detachment rates
substantially larger than those observed experimentally.
It is therefore necessary to average our theoretical rates
to bring them into quantitative agreement with measured
rates. We achieve this by following the prescription of
Geltman [4]: that is, we assume a Gaussian laser pulse
whose intensity at distance R from the beam axis is given
by

2
R

Y

I(R)=1I,exp|— (23)

and average over displacements R of H™ ions from the
beam axis from R =0to R =R,,. This results in

2 n
Nw)=-L- o"(@)—2
R2 ,,g',, ® no"
R, |
X il—exp|—n 7 . (24)

Note that the factor {1— exp[—n(R,,/y)*]} in the
numerator of this equation would appear to be in the
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denominator in Eq. (32) of Ref. [4]. The ratio ¥ /R,, is
an effective scale factor and choosing its value to be 0.7
gives best agreement with observed rates.

Multiphoton detachment rates I'(w) have been mea-
sured by Tang et al. [3] for peak (laboratory) laser inten-
sities of 4, 6, and 12 GW/cm?. Results derived from our
model-potential multiphoton detachment cross sections
for 4 GW/cm?® are presented in Fig. 12 in comparison
with the experimental data for photon energies in the
range 0.18-0.39 eV. It is not clear for what range of in-
tensities the perturbation theory is valid in the present
application, so here we concentrate on the lowest intensi-
ty (.e., 4 GW/cm?) for which experimental measure-
ments are currently available. Our results for laser inten-
sities of 6 and 12 GW/cm? do not differ appreciably from
those presented by Geltman [4].

Figure 12 shows that while the theoretical results for
the absolute rates I agree with the measurement well
within the estimated experimental uncertainty [3] of a
factor of 5, there is one major discrepancy, namely, the
experimental data do not show the sharpness of the onset
of n-photon thresholds indicated in the theoretical curve.
As also pointed out by Geltman [4], this could be an indi-
cation that nonperturbative treatments of this process are
needed in this laser intensity region (I >4 GW/cm?). In
our view, discrepancies between theoretical and current
experimental data will not be removed by more refined
(ab initio) calculations of generalized cross sections
within a perturbation-theory regime; there is now
sufficient agreement between various theoretical calcula-
tions to rule out this possibility.

VI. CONCLUSION

In this paper, we have (i) constructed an accurate one-
electron model potential for H™, taking into account ac-
curately the binding energy and the low-energy e-H(ls)
elastic-scattering phase shifts for the detached electron;
(ii) developed efficient and stable numerical procedures
for the accurate solution of the set of inhomogeneous
differential equations; (iii) determined for the first time n-
photon detachment cross sections of H™ (for n =2-8) in
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FIG. 12. Comparison of experimental [3] and presently cal-
culated average multiphoton-detachment rates for linearly po-
larized Gaussian pulses with peak laboratory-frame intensity of
4 GW/cm?.

an accurate and consistent manner for all orders being
considered; and (iv) made comparisons with available ex-
perimental and theoretical data.

We found that the nonperturbative treatment of multi-
photon detachment of H™ is likely to be important. Ex-
tension of the non-Hermitian Floquet formalism [35] for
nonperturbative study is currently underway. Intensity-
dependent generalized cross sections o™ and intensity-
dependent threshold behavior will be explored in detail.
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