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Multiphoton above-threshold detachment of Li~: Exterior-complex-scaling—
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We extend the exterior-complex-scaling—generalized-pseudospde@&8GP$ method[D. A. Telnov and
S. I. Chu, Phys. Rev. A9, 2864 (1999] to the nonperturbative calculations of complex-quasienergy reso-
nances of many-electron quantum systems within the Floquet formulation of time-dependent density-functional
theory (TDDFT) [D. A. Telnov and S. I. Chu, Chem. Phys. Le264, 466 (1997 ]. The ECSGPS technique
appears very useful in TDDFT-Floquet calculations where the exchange-correlation potentials may exhibit
quite complicated behavior as functions of the electron coordinates and cannot be easily treated by means of
the uniform-complex-scaling techniques. We have applied this procedure to the study of one-photon detach-
ment and two-photon dominant above-threshold detachment ohégative ions. In the one-photon case, the
photodetachment cross section has been calculated as a function of the photon energy with results in good
agreement with the experimental data. In the two-photon case, both the partial detachment rates and electron
angular distributions for the dominant and above-threshold channels are presented for a range of laser field
frequencies and intensities. Dramatic transformations of the angular distributions in the vicinity of the two-
photon threshold are observed and analyzed.
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[. INTRODUCTION contained in the explicit xc energy functionals in the time
domain[11-16. Another major effort is to develop more
Density-functional theoryDFT) for stationary properties efficient and accurate numerical procedures such as the time-
of many-electron systems, based on the earlier fundamentdependent generalized-pseudospectral methtdsl4—16
works of Hohenberg and Kohi] and Kohn and Sharf2],  for the solution of self-interaction-free TDDFT equations.
is now a well established and is a practical tool in various Recently, an alternative nonperturbative and time-
branches of chemistry and physi&. It is a formalism of independent formulation of the TDDFT and time-dependent
many-body theory in terms of the electron dengify). DFT  current DFT[17], based on the extension of the generalized
proves to be accurate and computationally much less expefdoquet formalism[18], was developed, allowing exact
sive than theab initio wave-functional methods and this ac- transformation of the TDKS-like equations into an equiva-
counts for its great success in the time-independent electroitent time-independent non-Hermitian Floquet matrix eigen-
structure calculations of the ground states of many-electromalue problem[19—-22. Such a TDDFT-Floquet formalism
systems. provides a general time-independent approach for nonpertur-
To study the more interesting dynamical processes, onbative treatment of multiphoton processes of many-electron
needs the time-dependent DFTDDFT) [4—7]. The central quantum systems in periodic, quasiperiodic, or multicolor
theme of TDDFT is a set of time-dependent Kohn-Shamlaser fields.
(TDKS)-like equations that are structurally similar to the = The motivations of this paper are twofold. First, we apply
time-dependent Hartree-Fock equations but include, in printhe TDDFT-Floguet formalism introduced in our previous
ciple, exactly all many-body effects, through a local time-studies|19—22 to multiphoton and above-threshold detach-
dependent exchange-correlatiorc) potential. Most of the ment of Li” negative ion. Second, we extend our recent
applications of TDDFT before mid-1990s fall in the regime exterior-complex-scaling—generalized-pseudospectral tech-
of linear or nonlinear response in weak fields for which thenique (ECSGP$ [23] to TDDFT-Floquet formulation. The
perturbation theory is applicabld—10]. More recently, the ECSGPS method allows for accurate and efficient treatment
TDDFT has been generalized to the intense field regime foof resonance states such as complex-quasienergy resonances
the study of multiphoton processes of atoriild—14 and  associated with multiphoton above-threshold detachment of
molecular[15,16 systems. One of the major efforts is to Li~. The ECSGPS technigue not only provides a simplified
develop procedures for removing the self-interaction energyprocedure for the calculation of partial rates and electron
angular distributiong23], as compared with the uniform-
complex-scaling methods, but also allows treatment of com-
*Permanent address: Institute of Physics, St. Petersburg Stapdicated potentials with singularities in the complex coordi-
University, 198904 St. Petersburg, Russia. Electronic addresiate plane, which may cause problems when used in the
telnov@pcqntl.phys.spbu.ru uniform-complex-scaling procedures. The latter circum-
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stance is especially important for DFT and TDDFT applica-The operatof{ defined in Eq(5) is a self-adjoint operator in
tions where the modern exchange-correlation potentials havue Hilbert spaceS. Its eigenstates that are the solutions of

quite sophisticated expressions.  Eq. (4) constitute a complete set i Note that the follow-
The paper is organized as follows. In Sec. II, we outlinejng transformation:

the basic equations of the Floquet formulation of TDDFT.

Section Il briefly describes the ECSGPS technique. In Sec. g =g+ Mo, (7)
IV, we apply Floguet formulation of TDDFT and ECSGPS
procedure to the study of multiphoton above-threshold de- @'(Rt)=expimot)P(R,1), (8)

tachment of Li. _ . . :
wherem is an arbitrary integer number, converts any eigen-

state in Eq(4) into another eigenstate. Thus for any Floquet
state®(R,t) there is an infinite set of other Floquet states,
and the quasienergies for those states differ by an integer

Recently, we developed the Floquet formulation of time-number ofa. . . _
dependent density-functional and current density-functional In the Floquet formulation of TDDFT, the main role is
theories[19—24. The TDDFT-Floquet theory can be applied Played by thequasienergy functionalcompare with theac-
to the nonperturbative study of multiphoton processes ofion functionalin the general time-dependent formulation
many-electron atoms and molecules in intense periodic dr7)):
quasiperiodic(multicolor) time-dependent fields, allowing

II. NON-HERMITIAN FLOQUET FORMULATION OF
TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

the reduction of time-dependent Kohn-Sham equations to FL®]=(P|H|D)). ©)
lequivalentime—independerﬁloquet matrix eigenvalue prob- The variation of the functional9) under the normalization
ems. o

Consider the time-dependent Sctliryer equation condition
(atomic units are used throughout the paper (@|oy=1 (10)

leads to the Eq(4) for the time-periodic multielectron wave
function ®(r,t). The solution brings the stationary value
(equal to the quasienergy) to the functional(9).

HereW(R,t) is a wave function of anany-electrorsystem For the time-dependent Schiinger equation(1), one
(notation R stands for all coordinates of the system underormally has an initial-state problem: once the initial state is

consideration We assume the Hamiltonia@h(t) is periodic speqflgd att=to, .thef‘ thg solution of the t|me-d¢pendent
in time: Schralinger equation is unique and the wave function can be

constructed at any time It is well known that the action
functional in TDDFT[ 7] is a unique functional of the density
provided theinitial state is fixed. For the Floquet states,

] ) ) however, one does not have an initial-state problem. Instead,
(T is the period; one can introduce also the fundamentahne has amigenvalugproblem in the extended Hilbert space
frequency w defined asw=27/T). The Floquet theorem s That means, instead of specifying the initial state, one
(see Refs[18,24,29) allows one to search for a solution of jmposes thésoundaryconditions on the solution of the equa-

i%\If(R,t)=I:|(t)\P(R,t). (1)

Ht+T)=H(t) 2)

Ed. (1) in the following form: tion, so there is no concept of the initial state for the eigen-
) value problem. Accordingly, there is no concept of the initial
V(R t)=exp—iet)®(R1), (3)  state in the Floquet formulation of TDDFT. The Floquet

) ] ) o ) states are theigenstate®f the Hermitian operato’ﬁ[ in the
wheree is thequasienergyand®(R,t) is a periodic function  extended Hilbert spacé. In this respect, Floguet formula-
of time, ®(R,t)=®(R,t+T). Equation(1) can be recastin {jon of TDDFT resembles the time-independent DFT. The
the form of the quasienergy eigenvalue equafib®,24,23:  4yasienergy functional in the Floquet formulation of TDDFT
R depends on the particular Floquet state, like it holds in the
HO(Rt)=ed(R,1), (4)  time-independent DFT: the traditional time-independent DFT
based on the Hohenberg-Kohn theorem is applicable to the
o 9 ground states only. However, unlike the time-independent
H=HU)—i—. (5  atomic and molecular Hamiltonians, the Floquet Hamiltonian
does not possess a ground state: for any quasienetiggre
is also an infinite set of quasienergies- mw, m being an
arbitrary integer numbdiEqgs.(7) and(8)]. Nevertheless, the
time-independent DFT can be reformulated in the way that
all the eigenstateot just the ground statere treated on
1T the same footind26]. That provides a rigorous basis for
(@2 )= _f dt(®| ). (6) treatment of the excited states by _densny-lfunctlonal meth—
TJo ods. The dependence on the particular eigenstate still re-

Consider theextendedHilbert spaceS containing all square-
integrable time-periodic functiord (R,t) [18,25. The inner
product in this space is defined as
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mains in the theonyf26] since the density functionals are spin densities. The simplest approximation for this functional
different for different eigenstates. We apply the Floquet for-is the adiabatic local-density approximatidALDA) [4],
mulation of TDDFT to the Floquet states that originate fromstraightforward extension of steady-state LDA to the time-

the field-freeground states of atomigdmoleculaj systems

dependent domain, preserving locality in both coordinate

upon adiabatic switch on the external time-periodic field.space and time.

With this choice of the state, the quasienergy functiq@al
becomes a unique functional of the electron dengsiyin
densities in the spin-polarized case

The quasienergy Kohn-Sham equations for the time-
periodic spin orbitals¢; are obtained from the stationary
principle for the quasienergy functionél3):

Consider the corresponding Kohn-Sham system of nonin-

teracting particles with the same electron spin densities. As
the spin densities are periodic in time, the quasienergy solu-

tions of the corresponding time-dependent Sdhrger equa-

tions may be sought, and one can introduce the time-periodic

Kohn-Sham spin orbitalgs/(r,t) (the superscriptr stands
for the spin projection, it can take valuesand B for the
spin-up and spin-down, respectively; the subsdtiphumer-
ates the orbitals with the same spiBenotingp? as the spin
density corresponding to the spin andp is the total den-
sity:

p“(r,t>=§ lpg(r,b)?, (11)

p(r,t>=§ p?(r,1), (12)

one can rewrite the quasienergy functiot@lin the follow-
ing form [22]:

1T
F[p® p"1= ;fo dt [To(t)+I(t)+U(t)

+Vext(t) + Ds(t) + Exc()]. 13

The time-dependent quantities under the integia) are
defined as follows:

1
Ts(t)=k2 < k(r,t) ‘ —§V2 Pi(r,t) > (14
_1( s 5, P(rHp(r',t)
J(t)—zf d rfd r T (15
U(t)=f d3rp(r,t)u(r), (16)
Vel = [ o, 00eur0), 17

d

Dy(t)= 2, < #(r.1) ‘ —io

dp(r,t) > (19
HereT4(t) is a noninteracting kinetic energy(t) is a clas-
sical electron-electron repulsidriartreg energy,U(t) is an
expectation value of a single-particle potentiadteraction

with the nucleul Vg, (t) is an expectation value of the ex-

1
— §V2+ u(l’)+vH(I’,t)+ch(r.t)

J
+Uext(rat)_iﬁ D= € by - (19
Here vy(r,t) is the Hartree potentialp,(r,t) is the
exchange-correlation potentiale,(r,t) is the external field
potential, ande is the orbital quasienergy. The normaliza-
tion condition

(o | ¢ )=1

is assumed. The solution of the set of TDKS equatidr®s
can be greatly facilitated by recasting it into tane-
independenimatrix equation by means of the Fourier expan-
sion of the periodic functiongy (r,t) [19]:

(20

AE(D Gy =€l (21)

where%ﬁ is the vector consisting of the Fourier components
brm(r) of the functiong|(r,t),

[

d)‘k’(r,t):mzw expl—imwt) ¢gp(r),

(22

and Hg is the Floquet Hamiltonian matrix obtained upon
substitution of the expansiof22) into the TDKS(19) [19].

The Floguet Hamiltonian matrix eigenvalue problé?i) is

to be solved through the self-consistent procedure until con-
vergence is reached.

In the presence of intense external electromagnetic fields,
atoms (molecule$ can be ionizeddissociated by the ab-
sorption of multiple photons, and all the bound states be-
come shifted and broadenedresonance states possessing
complex quasienergies=¢,—il'/2. The real parts of the
complex quasienergies provide the ac Stark shifted energy
levels, whilel” are equal to the total ionizatidissociation
rates of the corresponding atoniimoleculay states. To de-
termine these complex quasienergy states, the previously de-
veloped non-Hermitian Floquet Hamiltonian formalisms
[18,27, which employ the use of the complex-scaling trans-
formation methodg28], can be extended to TDDF[19—

22]. The use of the complex-scaling transformations
—R(r), allows the analytical continuation of the Hermitian

Floquet HamiltoniarH Z(r) [Eg. (21)], into anon-Hermitian
Floquet HamiltoniarH Z(R(r)), reducing the problem of the

ternal field, andE,(t) is the exchange-correlation energy. determination of the complex-quasienergy eigenvalegs
The latter is an unknown functional of the time-dependeniand eigenvectorgy; to the solution of a non-Hermitian ei-
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genvalue problem. The complex-scaling transformaR¢n) ll. EXTERIOR-COMPLEX-SCALING = —
can be a uniform complex scaling;—r exp{a), wherea is GENERALIZED-PSEUDOSPECTRAL METHOD
a complex-rotation angle; or an exterior complex sca(seg FOR ATOMIC AND MOLECULAR RESONANCES

Sec. Il)). Note that in the spherical coordinates, the complex-
scaling transformation is applied only to the radial coordi-

nater. . . . .
. resonances in the Born-Oppenheimer approximation. It has
. The tOt?" quasienergy can be expressed through .the " heen subsequently extendzg to the studgpof atomic and mo-
b!tal quasienergies, Hartree and exchange—correlatmn enecular resonances, particularly, for potentials which behave
gies, as well as.through .the exp('ectatlon values of th(?"wnanalytically(or defined only numerically or piecewise
exchange-correlation potentigt9—-22. analytically in the interior region of the coordinates. The
principal idea of ECS is to perform the analytical continua-
tion (complex scaling of the coordinates beyond some dis-

The exterior-complex-scalingeCS transformation was
first proposed by Simof35] for the treatment of molecular

1(T
e=> e+ $f dt| Exc(t)—J(t) tanceR,, only. Thus for the one-particle system, the contour
ko 0 R(r) in the complex plane of the coordinate can be defined
as follows:
-> f d3rv>‘fc(r,t)p”(r,t)}. (23)
7 R(r)=r, 0=r=<R,,
The analytical continuation in the complex plane of the ra- R(r)=Ry+(r —Rp)expia), r>Ry. (26)

dial coordinate corresponding to the complex-scaling trans-
formation preserves that the spin densities remain real qua
tities for the real values of [20]. That is why all the
contributions to the right-hand side of E@3) are real, ex-
cept the eigenvaluesg, . Thus thetotal ionization rate can be
expressed as a sum gpin-orbital ionization rate§20]:

"Merer is assumed to be real valued whi{r) becomes
complex valued beyond the radi&g . For many-body sys-
tems, the same transformation is performed for each interpar-
ticle coordinate. A number of applications of the exterior-
complex-scaling procedure has been developed in the time-
independent calculations of atomic and molecular resonances
[836—-40, cross sections in electron-atom collisigdd], as
r=> r¢, (24 well as in time-dependent calculatiof42].
ko In our recent papef23], we introduced an implementa-
tion of the exterior-scaling method by means of the
generalized-pseudospectr@dbPS technique[43—45, pro-
viding a simple yet highly accurate and efficient procedure.
The uniform complex scaling within this GPS method was
successfully applied for atomic and molecular resonance cal-
Ii=-2Imey. (25)  culations(see, e.g., Ref443,44,46-49. According to this
CSGPS approach, the complex-rotated coordinate is dis-
cretized on a set of collocation grid points, the potential ma-
In the present TDDFT calculations, we make use of thetrix elements being diagonal and equal to the values of the
(spin-polarizedl Becke exchangd29] and Lee-Yang-Parr potential at the grid points. The kinetic-energy matrix ele-
correlation [30] functionals (BLYP exchange correlation  ments have simple explicit analytical expressions. As dis-
For the self-interaction correction, we extend the Krieger-Li-cussed elsewhef@3,45, this uniform CSGPS procedure is
lafrate (KLI) procedure[31,32 with the implementation of found to be highly accurate and computationally more effi-
an explicit self-interaction-correction terf83]. The combi-  cient than the traditional basis-set expansion method. For the
nation of BLYP exchange-correlation and KLI self- exterior scaling, the whole range of the coordinate is split
interaction correctioBLYP-KLI/SIC) has proved its accu- into two domains, the pseudospectral discretization being
racy in extensive atomic structure calculatid®8,34. For  performed separately in each domain. The complex scaling is
TDDFT, as a conventional choice, we adopt the adiabati@pplied in the exterior domain only. The boundary conditions
approximation that employs the same exchange-correlatioat the boundary poinR, can be incorporated in the dis-
functionals as in the time-independent theory, but calculatesretized Hamiltonian, modifying the matrix elements. The
them with the time-dependent spin densities. new matrix elements also have simple explicit expressions,
When applying a complex-scaling transformation, a deli-and the calculation of the Hamiltonian matrix in the
cate task is to perform the analytical continuation of thegeneralized-pseudospectral method with the exterior com-
exchange-correlation potential which depends on the spiplex scaling is as simple as with the uniform complex scal-
densitiesp?, to the complex plane. Usually this potential ing. The ECSGPS method for atomic and molecular reso-
exhibits very complicated functional form that may or may nances has proven its accuracy and efficiency in treatment of
not allow to obtain accurate results with the uniform- multiphoton quasienergy resonand&8] (within the non-
complex-scaling technique. The exterior-complex-scalingHermitian Floquet Hamiltonian formalisfii8,27). The de-
procedurgSec. lll) allows the overcome of these difficulties. tails of the method have been presented elsew[ZSE In

where the spin-orbital ratds, are related to the imaginary
parts of the orbital quasienergies as usual,
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this section, we review the basic equations that are required B e (r)=Eu(r 0)= -0 30
for the computational algorithm. (NHN=EY(r).  ¢(0)=y(=)=0. (30
The complex-scaling—generalized-pseudospecti@is-

GP3S method for discretization and solution of eigenvalueWhere

problems[43,45 employs orthogonal polynomialsuch as 1 d2

Legendre or Chebychev polynomiaknd allows fomonuni- A(r)=—= —+V(r). (31)
form grid spacing. For problems involving singularity and/or 2 dr?

long-range potentialg§such as the Coulomb potentiathe
CSGPS method with appropriate coordinate mapp#3345  One can define the coefficienss” and A related to the
is a natural and effective approach. Applying the complexyave-function values at the grid points in the interior and
scaling allows for successful treatment of bound as well agxterior domains, respectivel23],
resonance states.
The exterior complex scaling assumes that only the exte- _ r o Y2 _ _
rior part of the radial coordinate semiaxis is complex rotated. A}n=[ ax (X,-n)} Prin(x"NPN, G617,
That means the total semiaXifc] is divided in two do-
mains[0,R,] and[Ry,>] with the pseudospectral discreti-
zation applied separately in each domain. In our discretiza- Aex:{
tion, we employ the Legendre polynomials that are !
orthogonal on the intervdgl—1,1]. The appropriate transfor-
mations are used to map the domains on the radial coordinafy(x) being the Legendre polynomials. Then the eigenvalue
semiaxis to this interval. problem for the wave functiogi(r) is reduced to the matrix
For the exterior domain, one can use the following non-eigenvalue problem for the coefficiems’ and A7™:
linear mapping transformation, (x) [23]:

1/2
Y OENPy, (XN, (32)

dr
T 6

Njp—1 1
1+x {Hm__H”'I Din .:|Ai.r|
lex™ Rb""ReXmquia)u (27) =1 1y 0N Nin 3
Nex—1
a being the complex-rotation angle. Unlike our previous pa- +(— 1)Nexﬁ H}'? N > Dg;ﬁ fx
per[23], in the interior domain we also will apply the non- v j=1
linear mapr;,(x), —EA", =1, Nj—1,

j
1+X

=R T 3T 2R TR, (28)

Fin Nex—1 1
ex - ex e)_( _e)(
ga[HH+yHVDOJN

Using the nonlinear map28) in the interior domain can

provide a better description of the Coulomb singularity and oL e Nin -1 - .
long-range tail for inner-shell orbitals of a multielectron —(=1 eXMVHj/,o ‘21 Dn,,, A
atom. The boundary poiriR,, as well asR;,,, Reyx, and« =

are the parameters of the transformations. For mathemati- =EAY,
cally exact implementation of the ECS and mapping trans- !
formations, the resulting elgenvalues. do nqt sensitively deHere the constanta and v are defined as follows:
pend on these parameters and remain stationary for a range
of the complex-rotation angle. For any approximaténu-

i'=1,... Ng—1. (33)

, 1/2) -1/2
merica) method, such dependence may appear. However, w= %(1) %‘(_1)} ,
ECSGPS method is highly accurate, and no dependence on dx dx
the parameters has been detected in the vicinity of the values
used in the calculationsee below in Sec. IV 1 dri, -t
Let {x"}, j=0,... Nj, and {x°}, j=0,... Ngy be the =2 Nin(Nin+1) dx (1)
sets of the grid points in the interior and exterior domains, q .
respectively. The subscriptvalues 0 and\;,, Ng, corre- Fex,
spond to the end points of the intenjat 1,1]: *Nex(Next 1) dx (=D ' (34
Xg =Xo'=—1, andH}')]. andH/; are the matrix elements of the Hamiltonian
. as defined by the GPS methpéi3,45:
x'{,‘inzxﬁ’;le. (29 Y beB.43
Now consider the eigenvalue problem for the radial Sehro e
dinger equation defined on the semi-infinite gXs<] with
the Dirichlet boundary conditions: HE =T+ 65 V(I ed5) (35
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ex

The kinetic-energy matrix elemenﬂ%r)j, T and the first

derivative matrix eIement@}r,'j , D[, are calculated as fol-
lows:
T drin( T)} Zdﬁé)"“-drm(x‘.“)}llzi
P pdx i dx
= Do | oo o) o
ot S| el Geon|
ot -|Sro] e{Sron] L @

Finally, the fundamental matrix elemeni%j an d},lj)'ex and
df{zj)'ex, dj(%j)’ex depend on the pseudospectral grid point set
{x}”} and{xjex} only, and have the following expressions for
the subscript range appearing in £g§3):

(1),in _ AR (1),in_
dj’j _Xi-n—X}n ('), djj =0,
]/
(1).ex_ o (1).ex_
dir = e e U'FD dTT=0. (39
S X
A= s (i"#])
I n 2 !
(Xjr_X}n)
@i NON+D)
! 3(1-[x"%)’
dif) = - (' #1)
I ex 2 !
(xj,—x}EX
e NNTD (39)

! 31X
Note that the coefficiental] andAg*, corresponding to
n

the boundary poinR,, do not appear in the matrix eigen-
value problem(33). The boundary conditions at the poRj

PHYSICAL REVIEW A 66, 043417 (2002

1 Nin—1 Nex—1
in _ in in Neyx—1 expe
%f~ﬂgvmm+vnengoﬁm
(40)
Nex—1 g Nl _
ex__— expex _1\Nex—1 in Ain
A== ]2:‘,1 DGAT +(~ et 2‘,1 DR A"
(41)

The application of ECSGPS method to calculation of
atomic or molecular resonances in TDDFT is similar to that
of the uniform-CSGPS methofdt3,46,47 in our previous
work [19-21], except the radial distanceis partitioned into
the interior and exterior regiof&q. (26)]. The optimal dis-
tanceR, to partition the two regions can be chosen in such a
way that the most complicated but short-range interaction
(such as exchange-correlation potential included in the
interior region, while the exterior region includes only the

dong-range part of the interactiqauch as Coulomb and cen-

trifugal potential$. For sufficiently larger,,, the calculation

of the partial rates and angular distributions can be basically
accomplished within the interior regid23], resulting in a
significant simplification of the overall procedure.

IV. CALCULATIONS OF PARTIAL RATES
AND ELECTRON ANGULAR DISTRIBUTIONS
FOR MULTIPHOTON ABOVE-THRESHOLD

DETACHMENT OF Li ~

In this section, we apply the ECSGPS method to the self-
consistent solution of the non-Hermitian Floquet Hamil-
tonian associated with multiphoton detachment of Lin
monochromatic linearly polarized laser field.

With no external field, the electron affinity of Li as calcu-
lated by DFT with BLYP exchange correlation and KLI self-
interaction correction is 0.022 94 a.u. which is in good agree-
ment with the experimental value of 0.022 71 gsee Ref.
[50] and references thereirilo determine the electron affin-
ity, we used the energy of the highest occupied spin orbital.
In the exact Kohn-Sham theory, the energy of the highest
occupied spin orbital is equal to the negative ionization po-
tential (electron affinity of the system(ionization theorem
[51]). In the optimized effective potential meth¢82—54
and its simplified version—KLI proceduf&1,32—the ion-
ization theoren{51] is approximately satisfied with a good
accuracy whenE,. includes self-interaction corrections
[33,55, and it is the case for the BLYP-KLI/SIC functional.
Note that an accurate description of the highest occupied

are incorporated into the Hamiltonian matrix modifying its spin orbital is extremely important in the ionization or de-
matrix elements in the interior and exterior domains as weltagchment problems.

as adding coupling matrix elements between the two do- The procedure for the calculation of electron energy and
mains. The total matrix of the eigenvalue probled3) has  angular distributions within the Floquet formalism has been
the dimensions Nin+Nex—2) by (Nin+Nex—2). The di-  described elsewhefd7]. Here we outline the basic formulas
agonalization of this matrix yields the eigenvalues and theor the description of multiphoton detachment of LiThe
eigenvectordAj"} and{A™} inside the interior and exterior expression for the electron angular distributions after absorp-
domains. Then the coefficients; andAg*, corresponding tion of n linearly polarized photons can be written [&S]

to the boundary poinR, (and the wave function at the
boundary poinR;), can be calculated through the other co-
efficientsA" andAS™:

Iy

dQ

:(277)_2kn|An|2- (42)
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Here, drn_ . i 8
40~ 4a| 1T & BaPalcoso) . (48)

k,=V2(Ree—(2w) *F?>+nw) (43

The coefficients3,, are the anisotropy parameters since they
determine the deviation of the electron angular distribution
from the isotropic one. When analyzing the behavior of the
” coefficientsB, for weak and medium-strong external fields,
An=(2w)*lf drexdint—i(2w) 3F2sin(27) a comparison with the results of the lowest-order perturba-
-7 tion theory (LOPT) is valuable. For the one-photon detach-
ment, the prediction of the perturbation theory 8s=2,
+ikn(F~F)w*ZCOST]J' d3r"expd —ik(r-r') B2=0 (I>1). The situation is more complicated if the
number of absorbed photons=2. According to LOPT, the
+i(r - Fo Ssint]W(r', rlw) ¢(r',mlw), (44  emitted electrons in this case may possess the angular mo-
mentum O or 2. For the emitted electron in the pdrstate,

F andw being the laser field strength and frequency, respecPn€ hasg,=10/7, 8,=18/7, andB; =0 (I>2), whereas
tively. Equation (44) is an exact result of the Green’s- for t.he pures state the distribution is isotropic, B, =0. In
function approach to the solution of the one-electron timeJ€ality, howevers andd waves are mixed in the wave func-
dependent Schidinger equation with the external field being tion of the emitted electron. According to LOPT, the depen-
monochromatic and described in the dipole approximationdence of the detachment amplitude on the detection ahgle
The form of the amplitudg44) assumes that théength  between the vectors andr reduces to a linear combination
gauge is used to solve for tlexactwave functiong(r,t). In  of s- andd-partial waves,
the present consideration, we apply this single-electron 1 :
theory to the highest occupiedgRspin orbital of Li” which \/7 \[
is responsible for the detachment process in the laser fre- 0 EPO(COSGH EPZ(COSG)' (49)
guency and intensity range under consideration. Thus the
time-dependent potentialV(r,t) in Eq. (44) is a self- The factors\1/2 and\/5/2 are added as normalization coef-
consistent potential including the interaction with the ficients for the Legendre polynomials. The mixing coefficient
nucleus, the Hartree and exchange-correlation potentials: & is a complex number; in general, it depends not only on the
angular algebra, but also on the radial wave functions. Squar-
W(r,t)=u(r)tovy(r,t) to,(rt), (45) ing the absolute value of the amplitude written above and
expanding it over the even-order Legendre polynomials, one
and ¢(r,t) is the wave function of the highest occupieds)2 obtains for the coefficientg, and 8.,
spin orbital of Li". The expressioi4) is suitable for prac-
tical computations since the integration over the angles in the 10+ 145 Res
spatial integral can be performed analytically, and the inte- ﬂ2:7—2
. . . (1+]4]%)
gral over ther variable can be computed effectively using
the fast-Fourier-transform routines. The quantitl/,,/dQ 18
represents the number of electrons per unit time detached Ba= ,
with absorption ofn photons and emitted within the unit 7(1+16/?)
solid angle under direction of the unit vectorThe integra-

tion of the angular distribution$42) with respect to the other coefficients being zero within LOPT. Given the mixing
coefficients, one can calculate the anisotropy paramegars

and B,. For example, if one puté=0 (pured wave in the

dr final state, the results 10/7 and 18/7 mentioned above are
pn:f do—" (46)  obtained. On the other hand, if we take fBgand g, coef-

dQ ficients from our calculations, we can find the real part and
the absolute value of the mixing coefficiefit

is the electron drift momentum, and thgghoton detachment
amplitudeA,, is defined as follow$47,56:

(50

angles specifying the directiangives the partial rateE,, :

The sum of all partial rates with=n,;,, wheren,,;, is the

minimum number of photons required for detachment, is 98,/8,—5

equal to the total raté’: Ref= ———,
7\5

— 1
r=2 T “n |a|=\/7—;—1. 51)

One can expandlI',/d(} as a function of the anglé  The imaginary part Ind of the mixing coefficient can be
between the detectianand fieldF directions on the basis of calculated as
the Legendre polynomials. Due to parity restrictions, only
even Legendre polynomials are present in the expansion Imé=+ \/|6|7—(Re5)7. (52
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The sign of Imé cannot be determined from this analysis 160

since the angular distributions do not depend on this sign.

The coefficients calculated in this way is intensity depen-

dent. In the limit of the weak external field, this result should — 120}

converge to the intensity-independent value that can be de§

termined within LOPT. =
A similar analysis can be performed for the case of three-u?) sob

photon detachment. According to LOPT, the detached elec-2

n

tron can be either imp or in f state, with the detachment 2
amplitude depending on the angleas S aok
3 7
) §P1(c030)+ §P3(cose). (53
L | L | L 1 L | L
0.02 0.03 0.04 0.05 0.06 0.07

The expression of the anisotropy paramej@jsthrough the Photon energy (a.u.)

mixing coefficients now appears as follows: FIG. 1. Cross section of one-photon detachment of Oihe full

curve is for the present calculation; the dashed curve is for the

_ 18y3/7Res—-2 multichannelR-matrix calculation[58]; diamonds are for experi-
2 3(1+]8» ment[59].
tical computations, the parameters of the ECSGPS procedure
Bu= 264 Re5+18 were chosen as follows to achieve convergence:
4 2\ !
111+[a R,=40 a.u.,
o= 100 (54) R,=5 a.u.,
2 L
31+]4%) Rex=100 a.u.,
other coefficients3, being zero within LOPT. For the emit- =06 rad. (56)

ted electron in the pur@ state, one ha®,=2, B,=fs

=0; whereas in the purkstate the values of the anisotropy Up to 100 radial grid points were used in each interior and
parameters are as followg8,=4/3, B8,=18/11, andBs exterior domain. The selected eigenvalue and eigenvector of
=100/33. Using any two of the Eq$54), one can invert the non-Hermitian Floquet Hamiltonian matrix can be ob-
them and obtain expressions of the mixing parameier tained efficiently by means of the implicitly restarted Arnoldi
through the coefficientg,, . For example, the following re- algorithm[57] with spectral transformation. The interior do-

lations hold: main appears large enough to get the inte¢td) fully con-
verged within it. That means we do not need to perform the
Res— \/Z_J.[ 25B4 _ i} integration in the complex-rotated exterior domain using the
19865 44) backrotation procedure as in the uniform-complex-scaling
cas€[46]. This simplifies considerably the calculation of par-
100 tial rates and angular distributions.

A. One-photon detachment of Li-

Again, the imaginary part I of the mixing coefficient can First, we have performed the calculations of the weak-
be calculated according to E¢G2), and its sign cannot be field one-photon detachment cross section. The results are
determined from the angular distributions. The intensity-presented in Fig. 1. For comparison, also shown are the re-
dependent mixing parametércalculated by Eq(55) in the  sults of multichanneR-matrix calculation[58] and experi-
weak-field limit should converge to the intensity-independenimental data by Kaiseet al. [59]. Surprisingly, this early
value provided by LOPT. The remaining third equation ofnonlaser experiment remains the only one where the data
the set(54) can be used to check if the LOPT picture, as-were obtained for the wide photon energy range between the
sumed by Eq.(593), is really applicable, and to check the first and second thresholds. The newer experiments seem to
consistency of the calculations in this sense. Certainly, foconcentrate on narrow energy intervals in the vicinity of
intense external fields the mixing coefficiefitcan be used higher thresholds. The present single-determinant calcula-
only for approximate analysis of the angular distributions,tions cannot reproduce the cusp structure in the vicinity of
the accurate analysis being provided by the anisotropy pahe second (B) threshold. With this exception, our results
rametersB,, . are in fair agreement with the more sophisticated multichan-
We have performed the calculations of the total and parnel calculationg58] and with the experimen69]. Our cal-
tial (above-thresholdmultiphoton detachment rates as well culated cross section reaches the maximum of 149.6 Mb at
as the angular distributions of the emitted electrons. In practhe photon
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TABLE I. Partial and total rates for the multiphoton above-threshold detachment ofTlhie numbers in
brackets indicate the powers of 10.

Laser field Partial rate&@.u) Total
frequency Number of photons absorbed rates

(a.u) 2 3 4 (a.u) Ree (a.u)
Laser field intensity (X 10° W/cn?)

0.012 3.90-8] 6.70 —10] 3.97-8] —2.296 - 2]

0.014 4.81-8] 2.77-10] 4.84 8] —-2.296 - 2]

0.016 4.38—8] 1.0 —10] 4.34 8] —2.297-2]

0.018 3.08-8] 3.63 —11] 3.09 —-8] —2.297-2]

0.020 1.90-8] 1.20-11] 1.90 - 8] ~2.29 2]
Laser field intensity (X 10'° W/cn?)

0.012 2.40—6] 7.97-7] 4.39-8] 3.2§-6] —2.341-2]

0.014 4.08—6] 2.14-7] 6.84 —9] 4.30-6] —2.327-2]

0.016 3.82—-6] 9.21 8] 1.40-9] 3.91-6] -2.321-2]

0.018 2.87—6] 3.11-8] 4.07 —-10] 2.90-6] —2.323-2]

0.020 1.86—6] 1.0q - 8] 1.67—10] 1.87-6] —2.330—-2]
3 aser field intensity (X 10** W/cn?)

0.012 7.09—5] 2.04 —-5] 9.9q4 —5] —2.601-2]

0.014 3.80-5] 1.49 - 5] 5.6 —5] ~2.659 2]

0.016 8.0p—5] 459 -5] 8.74 - 6] 1.3 —4] —2.76§ — 2]

0.018 1.41—-4] 2.63-5] 3.47-6] 1.70—4] —2.690 —2]

0.020 1.40—4] 1.13-5] 1.33-6] 1.53 - 4] —2.649—2]

aAt the intensity 1xX 10** W/cn?, the two-photon detachment channel is closed for the frequencies 0.012 and
0.014 a.u. due to ac Stark shift of the quasienergy level and ponderomotive shift of the continuum.

energy 0.036 a.u.; the corresponding results of R&f] are  0.016, 0.018, and 0.020 a\lucorresponding to the two-
139.9 Mb and 0.035 a.u., respectively. photon dominant detachment. For this range of photon ener-
gies, the second threshold region of Lis not approached
even for four-photon above-threshold detachment, so the
limitations of the current single-configuration calculations do
The main part of the present calculations was performedhot affect the results. The calculations have been performed
for the two-photon dominant, above-threshold detachment ofor the following values of the laser field intensities 1
Li~. We have selected a set of photon ener¢e812, 0.014, x10°, 1x10%, and 1x 10" W/cn?. We have computed the

B. Two-photon dominant, above-threshold detachment of Li

~ 06 ~ 1.0 ~ 05 ~ 1.0
S i 3 E = L 3 L
< 0.3 4 0.8 < 04
"o o4l o o b
S % 206 203
g 03 2 o
g r 204 202
E 2 i B 0.2 i g 0.1
soF ! £ ook £ of
| | | I I | I | I 1 1 I
0'00 45 920 135 180 0'00 45 2 135 180 0'00 45 90 135 180 0'00 45 90 135 180
Angle (deg) Angle (deg) Angle (deg) Angle (deg)
16 -
3 3
< <
5 12 “
= =)
5038 =
L 3
S04 z Eo
& ol ! ! ! A ool ! ! ! E I
0'00 45 920 135 180 0'00 45 90 135 180 0'00 45 90 135 180 0 00 45 90 135 180
Angle (deg) Angle (deg) Angle (deg) Angle (deg)

FIG. 2. Angular distributions for two-photon detachment FIG. 3. Angular distributions for two-photon detachment of
of Li~. The laser field intensity is 3t 10° W/cn?. The laser field Li~. The laser field intensity is %t 10'° W/cm?. The laser field
frequency is(a) 0.012 a.u.(b) 0.014 a.u.,(c) 0.016 a.u., andd) frequency is(a) 0.012 a.u.,(b) 0.014 a.u.,(c) 0.016 a.u., andd)
0.020 a.u. 0.020 a.u.
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frequency range, decreasing towards the two-photon thresh-
old on the side of low frequencies and towards the higher
frequencies. With increasing intensity, the contribution of the
above-threshold channels to the total rate becomes more sig-
nificant. For the photon energy 0.012 a.u., which lies close to
the two-photon threshold, is in part due to the ac Stark shift
of the quasienergy level and ponderomotive shift of the con-
tinuum. As the intensity increases tox10* W/cn?, the
level is shifted even more to the threshold, the two-photon
channel begins closing, and the contribution of the three-
photon detachment becomes very import@atiout 33% of

the dominant two-photon channel compared to 1.7% at the
intensity 1x 10° W/cn?). When the intensity increases to
1x 10 W/cn?, the two-photon detachment channel is
closed not only at the frequency 0.012 a.u., but also at 0.014
a.u.

The influence of the threshold causes dramatic changes in
the electron angular distributions of the two-photon detach-
ment. The distributions are presented in Figs. 2—4 for the
intensities X 10°, 1x10'° and 1x 10" W/cn?, respec-

partial rates for the dominant and above-threshold channelsvely. The angular distribution pattern shown in Fig. 2 re-
(electron energy distributionss well as the angular distri- sembles closely that found in the recent experiment on mul-

butions of the outgoing electrons.

tiphoton detachment of H[60Q]. This is not surprising since

The partial and total rates along with the real parts of theboth H™ and Li~ represent a negative ion with a short-range
2s orbital quasienergy are presented in Table |. Generallyinteraction between the loosely bound electron and the core.
for all intensities used in the calculations, the total detachSuch atomic systems exhibit similar behavior under the in-
ment rates reach the maximum values in the middle of théluence of the external electromagnetic fields. Our previous

TABLE Il. Anisotropy parameter®,, and the mixing coefficien$ for the two-photon detachment of
Li~. The numbers in brackets indicate the powers of 10.

Laser field frequencya.u)

0.012 0.014 0.016 0.018 0.020
Laser field intensity (X 10° W/cn?)
B, 7.3 -1] —4.9§-1] 6.64—1] 1.28 1.63
Bs 9.14-2] 1.28 1.80 2.01 2.14
Be ~1.81-5] ~1.17-3] ~1.27-3] ~1.3§-3] ~4.64-3]
Bs 2.37-8] 1.39-7] ~1.8-6] ~6.01-6] —1.45-5]
6] 5.21 1.01 6.55— 1] 5.29-1] 450 1]
Res —4.93 —5.43-1] —1.07-1] 4.79-2] 1.20-1]
Laser field intensity (X 10'° W/cn?)
B, ~6.14-2] —6.57—1] 5.97—1] 1.26 1.65
Ba 4.99 - 4] 1.20 173 1.99 2.14
Be 6.81 8] —4.76-3] 1.97-2] 5.69 2] 9.04-2]
Bs 3.13-7] 2.10—4] 3.69—4] 1.09-3] 3.79-3]
B 7.19+1] 1.07 6.99—1] 5.43—1] 4.47-1]
Res —7.19+1] ~6.35-1] —1.21-1] 457 -2] 1.24 1]
3 _aser field intensity (X 10™ W/cn?)
B, ~1.33 3.18-1] 1.18
Ba 4.01-1] 1.71 1.97
Be 1.49 — 4] —15g-3] 6.66 —2]
Ba 5.04 —6] 8.59 —4] ~7.90-3]
B 2.33 7.10-1] 550 —1]
Res —2.22 —2.14-1] 2.41-2]

aAt the intensity 1x 10 W/cn?, the two-photon detachment channel is closed for the frequencies 0.012 and
0.014 a.u. due to ac Stark shift of the quasienergy level and ponderomotive shift of the continuum.
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FIG. 5. Angular distributions for three-photon above-threshold

detachment of Li. The laser field intensity is 10° W/cn?. The
laser field frequency i¢a) 0.012 a.u.{b) 0.014 a.u.{c) 0.016 a.u.,

and(d) 0.020 a.u.

FIG. 7. Angular distributions for three-photon above-threshold
detachment of Li. The laser field intensity is % 10'* W/cn?. The

laser field frequency i¢a) 0.012 a.u.(b) 0.014 a.u.{c) 0.016 a.u.,
and(d) 0.020 a.u.

model-potential studies of above-threshold multiphoton de- .
tachme%t of H [23,47 revealed the same featufes of the duency 0.020 a.u., only 17% of the electrons are detached in

angular distributions and were in good agreement with th
experiments at Los Alamd$1] and DenmarK62]. The an-
gular distributions show the interferencessdndd waves in
the detachment amplitude. For sufficiently high frequencie
(0.016, 0.018, and 0.020 a.u. in our calculatiptise d wave
dominates the amplitude, and the angular distributions sho
the pattern as in Fig. Zc) or in Fig. 2 (d). For smaller
frequencieg0.014 and 0.012 a.y.the quasienergy level is

hes state; 83% being in the state; whereas at the frequency

.012 a.u., the picture is completely reversed, 96% elec-
trons and 4% ofd electrons. For the intensity 1

10 W/en? (Fig. 3), the angular distributions depend on
he laser field frequency in a similar manner. At the fre-
uency 0.012 a.u., the distribution becomes nearly isotropic
ecause larger ac Stark and ponderomotive shifts bring the
two-photon detachment channel even closer to the threshold.

brought closer to the threshold and the relative weight of thfnly 0.02% of electrons are detached in thetate at this

s wave increases, in accordance with the Wigner threshol

equency, others being in trestate. For even higher inten-

1
law [63]. One can see it also in Table Il where we present thé:'Ity (1x 10" W/en¥), the two-photon detachment channel
anisotropy parameteiB, and the mixing coefficiens. For : . .
smaller frequencies, 2tlhe anisotropy parameters beconi@rge ac Stark and ponderomotive shift of the quasienergy

smaller and the mixing coefficient increases. Thus at the f

- 0.6

Zo0s
LS0T
S 04
203

=

o

08

1
45 90 135
Angle (deg)

-6

Partial rate (10 ~a.u.)

0.6

<
S

et
>

B
=)
oT—

45 90 135
Angle (deg)

180

6

Partial rate (10" a.u.)

7

Partial rate (10 a.u.)

4
=)
oT—

54
%

>

1
45 90 135
Angle (deg)

180

I
'S

e
[

2
=N
T v

45 90 135
Angle (deg)

180

is closed for the frequencies 0.012 and 0.014 a.u., due to

re_evel. The angular distributions patteffrig. 4) resembles
that of Fig. 2, but at different photon energies; now detach-
ment at the frequency 0.016 a.u apparently takes place in the
vicinity of the two-photon threshold.

For the three-photon above-threshold detachment, the an-
gular distributions do not show dramatic transformations
when the frequency is scanned in the range corresponding to
the two-photon dominant detachméfRigs. 5 and § except
for the highest intensity % 10'* W/cn? (Fig. 7). Since at the
lower intensities X 10° and 1x 10'° W/cn?, the threshold
for this channel is not approached for the frequency range
used in the calculations, only moderate changes can be seen
in the angular distributions pattern, with the distribution
maximum at 0° (180°), as expected. The anisotropy param-
eters for the three-photon detachménable 1ll) show sig-
nificant contributions to the detachment amplitude from the
angular momenta 1 and @oefficientsB,, B4, and Bg) as
can be expected for weak and medium-strong external fields.
The contribution of other coefficient8, (which are sup-

FIG. 6. Angular distributions for three-photon above-thresholdP0sed to vanish within LOPTincreases for higher intensi-
detachment of Li. The laser field intensity is % 10'° W/cnm?. The

laser field frequency i¢a) 0.012 a.u.{b) 0.014 a.u.{c) 0.016 a.u.,
and(d) 0.020 a.u.

ties. The absolute value of the mixing coefficighgenerally
increases as the photon energy decreases, again in accor-
dance with the Wigner threshold [ay63]. For example, at
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TABLE lll. Anisotropy parameterg,, and the mixing coefficiend for the three-photon above-threshold

PHYSICAL REVIEW A 66, 043417 (2002

detachment of Li. The numbers in brackets indicate the powers of 10.

Laser field frequencya.u)

0.012 0.014 0.016 0.018 0.020
Laser field intensity (X 10° W/cn?)
B> 2.97 2.78 2.73 2.44 2.00
Bs 2.03 1.96 1.85 1.54 1.24
Bs 8.84 1] 1.10 1.05 1.14 1.49
Ba ~2.24-3] ~3.99-3] ~7.19 4] 9.2§ —4] 3.40 - 3]
Bio 1.27-6] 1.97-6] ~5.48 7] —4.97-6] ~1.79-5]
|8 1.56 1.33 1.38 1.29 1.01
Res 1.01 7.17-1] 7.1q-1] 4.67-1] 1.7G-1]
Laser field intensity (X 10'° W/cn?)
B> 3.22 2.76 2.82 2.56 2.12
Ba 2.06 1.93 2.10 1.87 1.58
Be 5.14-1] 1.12 1.27 1.33 1.52
Bs —6.49 —3] 2.94-2] 7.29-2] —1.57-2] —2.00-1]
Bio 2.8 —5] 3.21 - 3] 7.80 —4] 5.76 — 4] 1.39-2]
|8 2.21 1.31 1.18 1.13 9.97 1]
Res 2.01 6.87—1] 6.41—1] 503 —1] 2.89—1]
Laser field intensity (X 10'* W/cn?)
B> 3.61-1] 3.32 2.51 2.60 2.62
Ba —1.67 3.44 1.55 1.90 2.14
Be 5.89 1] 1.94 1.11 1.33 1.59
Bs —2.89-2] —8.66 2] 4.49-2] 1.49 2] 8.49 —3]
Bio 5.61 —4] 4.3 4] ~3.0§-2] 217 -2] ~1.19-2]
| 8] 2.04 7.51-1] 1.32 1.13 9.501-1]
Res ~1.96 7.14-1] 4.9 -1] 5.17-1] 4.69-1]

the intensity x 10'° W/cn? the contributions ofp and f

In conclusion, we have presented a ECSGPS numerical

electrons to the detachment rate constitute, respectively, 83@rocedure within the Floquet formulation of TDDFT for gen-
and 17% for the photon energy 0.012 a.u.; for the photoreral and accurate calculations of complex-quasienergy reso-
energy 0.020 a.u., the corresponding contributions are apyances associated with multiphoton above-threshold detach-
proximately equal to each other, i.e., 50%. The picturement of negative ions. As compared with the uniform-
changes at the highest intensity10'* W/cn?). The clos-  complex-scaling methods, the ECSGPS technique provides
ing of the two-photon detachment channel for the frequenmore accurate and efficient procedure for the treatment of
cies 0.012 and 0.014 a.u. strongly affects the angular districomplicated potentials such as exchange-correlation poten-
butions in the three-photon channel. Just below the twotjals in TDDFT. Application is made to the study of one-
photon threshold, at the photon energy 0.014 a.u., th@hoton detachment and two-photon dominant above-
contribution off electrons significantly increasetey con-  threshold detachment of Liions for a range of laser
stitute 64% of the total detachment rate compared to 37% fofrequencies and intensities. Dramatic transformations of the
the same frequency and intensity 10'° W/cn?, where the  angular distributions in the vicinity of the two-photon thresh-

two-photon channel is still opgnWhen the frequency be- ¢|d are observed and analyzed in detail.
comes smallef0.012 a.u, the vicinity of the three-photon

threshold is approached, and the general tendency in the be-
havior of the angular distributiongbased on the Wigner
threshold law is reinstated. The contribution @f electrons
reaches 81%, approximately that can be observed for the This work is partially supported by the U.S. Department
same frequency and intensity<110'° W/cn?. However, the of Energy, Office of Science, Office of Basic Energy Sci-
real parts R& of the mixing coefficient in these two cases ence, Division of Chemical Sciences. We acknowledge the
have opposite signs, and the angular distributions look vergupport of the Origin2400 supercomputer time by the Kansas
different[see Figs. @) and 7a)]. Center for Advanced Scientific Computing.

ACKNOWLEDGMENTS

043417-12



MULTIPHOTON ABOVE-THRESHOLD DETACHMENT @ . ..

[1] P. Hohenberg and W. Kohn, Phys. R&36, B864 (1964).

[2] W. Kohn and L.J. Sham, Phys. ReM0, A1113(1965.

[3] See, e.g., R.G. Parr and W. Yarigensity-Functional Theory
of Atoms and MoleculegOxford University Press, Oxford,
1989; R.M. Dreizler and E.K.U. GrossDensity Functional

PHYSICAL REVIEW A 66, 043417 (2002

[31] J.B. Krieger, Y. Li, and G.J. lafrate, Phys. Rev.45, 101
(1992.

[32] Y. Li, J.B. Krieger, and G.J. lafrate, Phys. Rev.4¥, 165
(1993.

[33] X.M. Tong and S.I. Chu, Phys. Rev. %5, 3406(1997).

Theory, An Approach to the Quantum Many-Body Problem[34] X.M. Tong and S.I. Chu, Phys. Rev. 3V, 855(1998.

(Springer, Berlin, 1990 Density Functional TheorMol. 337
of NATO Advance Study Instityt8eries B: Physicsdited by
E.K.U. Gross and R.M. Dreizle(Plenum Press, New York,
1995; N. H. March, Electron Density Theory of Atoms and
Molecules(Academic Press, San Diego, 199Pensity Func-
tional Methods in Chemistryedited by J.K. Labanowski and
J.W. Andzelm(Springer, Berlin, 1991

[4] A. Zangwill and P. Soven, Phys. Rev.24, 1561(1980.

[5] B.M. Deb and S.K. Ghosh, J. Chem. Phyg, 342(1982.

[6] L.J. Bartolotti, Phys. Rev. 24, 1661(1981); 26, 2243(1982.

[7] E. Runge and E.K.U. Gross, Phys. Rev. L&®, 997 (1984);
E.K.U. Gross and W. Kohribid. 55, 2850(1985.

[8] G.D. Mahan and K.R. Subbaswantcal Density Theory of
Polarizability (Plenum Press, New York, 1990

[9] M. Stener, P. Decleva, and A. Lisini, J. Phys. 2B, 4973
(1995.

[35] B. Simon, Phys. Lett71A, 211(1979.

[36] J. Turner and C.W. McCurdy, Chem. Phyd, 127 (1982.

[37] N. Lipkin, N. Moiseyev, and E. Biradas, Phys. Rev. AQ, 549
(1989.

[38] A. Scrinzi and N. Elander, J. Chem. Phg8, 3866(1993.

[39] C.A. Nicolaides, H.J. Gotsis, M. Chrysos, and Y. Komninos,
Chem. Phys. Lettl68 570(1990.

[40] N. Rom, N. Moiseyev, and R. Levebvre, J. Chem. Pi85.
3562(1991).

[41] T.N. Rescigno, M. Baertschy, D. Byrum, and C.W. McCurdy,
Phys. Rev. A55, 4253(1997), and references therein.

[42] C.W. McCurdy, C.K. Stroud, and M.K. Wisinski, Phys. Rev. A
43, 5980(19917).

[43] J. Wang, S.I. Chu, and C. Laughlin, Phys. Rev5@, 3208
(1994).

[44] X. Chu and S.I. Chu, Phys. Rev. @8, 013414(2002).

[10] M. Petersilka, U.J. Gossmann, and E.K.U. Gross, Phys. Re\45] G. Yao and S.I. Chu, Chem. Phys. Le204, 381(1993.

Lett. 76, 1212(1996.

[46] D.A. Telnov and S.I. Chu, Phys. Rev. %0, 4099(1994).

[11] C.A. Ullrich, U.J. Gossmann, and E.K.U. Gross, Phys. Rev.[47] D.A. Telnov and S.I. Chu, J. Phys. 29, 4401(1996.

Lett. 74, 872(1995.
[12] X.M. Tong and S.I. Chu, Phys. Rev. %V, 452(1998.
[13] C.A. Ullrich and E.K.U. Gross, Comments At. Mol. Phyas,
211(1997.
[14] X.M. Tong and S.I. Chu, Phys. Rev. &4, 013417(2001).
[15] X. Chu and S.I. Chu, Phys. Rev.&8, 023411(2002.
[16] X. Chu and S.I. Chu, Phys. Rev. &4, 063404(2001).

[48] D.A. Telnov, J. Wang, and S.I. Chu, Phys. Rev523 3988
(1995.

[49] D.A. Telnov and S.I. Chu, Chem. Phys. Le265 223(1996.

[50] G. Haeffler, D. Hanstorp, |. Kiyan, A.E. Klinknfler, U.
Ljungblad, and D.J. Pegg, Phys. Revb3, 4127(1996.

[51] J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Jr., Phys.
Rev. Lett.49, 1691(1982.

[17] See, for example, G. Vignale, C. Ullrich, and S. Conti, Phys.[52] R.T. Sharp and G.K. Horton, Phys. R&®, 317 (1953.

Rev. Lett.79, 4878(1997), and references therein.

[53] J.D. Talman and W.F. Shadwick, Phys. ReviA 36 (1976.

[18] For reviews on generalized Floquet methods, see S.I. Chy54] M.R. Norman and D.D. Koelling, Phys. Rev. B0, 5530

Adv. At. Mol. Phys.21, 197(1985; Adv. Chem. Phys73, 739
(1989.
[19] D.A. Telnov and S.I. Chu, Chem. Phys. Le264, 466(1997).
[20] D.A. Telnov and S.I. Chu, Phys. Rev.#8, 4749(1998.
[21] D.A. Telnov and S.I. Chu, Int. J. Quantum Chef®, 305
(1998.
[22] D.A. Telnov and S.I. Chu, Phys. Rev.@8, 012514(2000.
[23] D.A. Telnov and S.I. Chu, Phys. Rev.29, 2864(1999.
[24] J.H. Shirley, Phys. Re\38 B979(1965.
[25] H. Sambe, Phys. Rev. A 2203(1973.
[26] A. Gorling, Phys. Rev. A69, 3359(1999.
[27] S.I. Chu and W.P. Reinhardt, Phys. Rev. L&, 1195(1977).
[28] E. Balslev and J.M. Combes, Commun. Math. P%.280
(1972); A. Aguilar and J.M. Combesbid. 22, 265 (1971).
[29] A.D. Becke, Phys. Rev. 88, 3098(1988; J. Chem. Phy<96,
2155(1992.
[30] C. Lee, W. Yang, and R.G. Parr, Phys. Rev3B 785 (1988.

(1984.

[55] J. Chen, J.B. Krieger, Y. Li, and G.J. lafrate, Phys. Re%4A
3939(1996.

[56] D.A. Telnov, J. Phys. B4, 2967 (199).

[57] D.C. Sorensen, SIAM J. Matrix Anal. Appl3, 357 (1992.

[58] C.A. Ramsbottom, K.L. Bell, and K.A. Berrington, J. Phys. B
27, 2905(1994.

[59] H.J. Kaiser, E. Heinicke, R. Rackwitz, and D. Feldmann, Z.
Phys.270, 259(1974).

[60] R. Reichle, H. Helm, and I.Yu. Kiyan, Phys. Rev. Le#f,
243001(2003).

[61] X.M. Zhao, M.S. Gulley, H.C. Bryant, C.E.M. Strauss, D.J.
Funk, A. Stintz, D.C. Rislove, G.A. Kyrala, W.B. Ingalls, and
W.A. Miller, Phys. Rev. Lett78, 1656(1997).

[62] L. Praestegaard, T. Andersen, and P. Balling, Phys. R&8,A
R3154(1999.

[63] E.P. Wigner, Phys. ReV.3, 1002(1948.

043417-13



