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Density-functional theory with optimized effective potential and self-interaction correction
for ground states and autoionizing resonances

Xiao-Min Tong* and Shih-I Chu
Department of Chemistry, University of Kansas, Lawrence, Kansas 66045

~Received 29 August 1996!

We present a self-interaction-free density-functional theory~DFT! for the treatment of both the static prop-
erties of the ground states and the photoionization processes of many-electron systems. The method is based on
the Krieger-Li-Iafrate~KLI ! treatment of the optimized effective potential~OEP! theory and the incorporation
of an explicit self-interaction correction~SIC! term. Such an extended OEP–KLI-SIC method uses only
orbital-independentsingle-particlelocal potentials and is thus computationally more efficient and yet main-
tains good accuracy. The usefulness of the procedure is examined by the studies of the static properties of the
ground states of atoms (Z<18) and the dynamical photoionization processes involving autoionizing reso-
nances. Both the energy functionals of the local spin-density approximation~LSDA! and Becke’s exchange
energy functional and the correlation energy functional of Lee-Yang-Parr~BLYP! are used as the input to the
KLI-SIC calculations. It is found that the implementation of the KLI-SIC procedure gives rise to optimized
effective potentials that possess the correct behavior in both short-range and long-range regimes. As a conse-
quence, the LSDA and BLYP ionization potentials are significantly improved. For higher-Z atoms, the im-
provement of the LSDA total energies and the ionization potentials are particularly remarkable, approaching
the experimental or exact values. As another test of the KLI-SIC method, we have performed the calculation
of the photoionization cross sections of the Ne atom using both the time-independent and time-dependent
LSDA ~TDLSDA! methods. We found that the TDLSDA results agree closely with the experimental data in
the broad peak region, followed by a series of sharp resonances due to the 2s→np resonant transitions. The
calculated linewidths and resonance line profile parameters are in reasonable agreement with both the experi-
mental and the configuration-interaction (R-matrix! results, demonstrating the usefulness of the KLI-SIC
procedure for achieving accurate DFT calculations in both static properties and dynamical processes.
@S1050-2947~97!05504-2#

PACS number~s!: 31.15.Ew, 32.80.Fb, 32.80.Dz
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I. INTRODUCTION

Since the fundamental work of Hohenberg and Kohn@1#
and Kohn and Sham@2#, the density-functional theory~DFT!
has undergone significant theoretical and computational
vances in recent years. DFT has become a widely used
malism for electronic-structure calculations of the groun
state properties of atoms, molecules, and solids@3–7#. In the
Kohn-Sham DFT formalism@2#, the electron density is de
composed into a set of orbitals, leading to a set of o
electron Schro¨dinger-like equations to be solved se
consistently. The Kohn-Sham equations are structur
similar to the Hartree-Fock equations, but include, in pr
ciple, exactly the many-body effects through alocal
exchange-correlation~xc! potential. Thus DFT is computa
tional much less expensive than the traditionalab initio
many-electron wave-function approaches and this acco
for its great success for large systems. However, the DF
well developed mainly for the ground-state properties. T
treatment of excited states and time-dependent proce
within the DFT is much less developed.

As the exact xc-energy functional is unknown, one ne
to use approximations in actual computations. The simp

*Permanent address: Institute of Physics, P.O. Box, Chin
Academy of Science, Beijing 100080, People’s Republic of Chi
551050-2947/97/55~5!/3406~11!/$10.00
d-
r-
-

-

ly
-

ts
is
e
es

s
st

approximation for the xc-energy functional is through t
local-density approximation~LDA ! or local spin-density ap-
proximation~LSDA! ~the LDA and LSDA are equivalent fo
closed-shell atoms! @3,8# of homogeneous electronic gas.
deficiency of the LDA~LSDA! is that the xc potential decay
exponentially and does not have the correct long-range
havior. As a result, the electrons are too weakly bound
for negative ions even unbound. Further, previous LDA c
culations of the photoionization of rare-gas atoms@9# did not
exhibit the autoionizing resonances. More accurate exp
forms of xc-energy functionals using generalized gradi
corrections are available@10–13#. However, the xc potentials
derived from these explicit xc functionals suffer the simil
problem and do not have the proper long-range Coulomb
21/r . Thus, while the total energies of the ground states
atoms predicted by these xc density functionals@10–13# are
rather accurate, the ionization potentials obtained from
highest occupied orbital energies of neutral atoms are
satisfactory@14#. For the proper treatment of photoionizatio
and multiphoton ionization processes, it is important th
both the ionization potentials and the excited-state proper
be described more accurately.

In this paper we present an extension of the DFT for m
accurate treatment of both the ionization potentials of
ground states as well as for the photoabsorption spectrum
autoionizing resonances. The method is based on an ex
sion of the optimized effective potential formalism alon
with a self-interaction-correction procedure for vario
se
.

3406 © 1997 The American Physical Society
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55 3407DENSITY-FUNCTIONAL THEORY WITH OPTIMIZED . . .
exchange-correlation energy functionals to be describe
the next section~Sec. II!. The usefulness of the propose
procedure is demonstrated by a study of the total ener
and ionization potentials of atoms (Z<18) in Sec. III and the
photoionization of the Ne atom in Sec. IV. This is followe
by a conclusion in Sec. V.

II. THE OPTIMIZED EFFECTIVE POTENTIAL METHOD
WITH SELF-INTERACTION CORRECTION

In the Kohn-Sham~KS! DFT formulation@2#, one solves
the following set of one-electron Schro¨dinger-like equation
for N-electron systems~in atomic units!:

ĤKSc is~r !5F2
1

2
¹21veff,s~r !Gc is~r !5« isc is~r !,

i51,2, . . . ,Ns , ~1!

whereveff,s(r ) is the effective KS potential ands is the spin
index. The total density is given by

r~r !5(
s

(
i51

Ns

uc is~r !u25(
i51

N↑

uc i↑~r !u21(
i51

N↓

uc i↓~r !u2

5r
↑
~r !1r

↓
~r ! ~2!

and the ground-state wave function is determined by

C5
1

AN!
det@c1c2•••cN#. ~3!

The total energy of the ground state is obtained by the m
mization of the Hohenberg-Kohn energy functional@1,3#

E@r↑ ,r↓#5Ts@r#1J@r#1Exc@r↑ ,r↓#1E vext~r !r~r !d3r .

~4!

HereTs is thenoninteractingKS kinetic energy,

Ts5(
s

(
i51

Ns

^c isu2 1
2 ¹2uc is&, ~5!

vext(r ) is the ‘‘external’’ potential due to the electron
nucleus interaction,J@r# is the classical electron-electron r
pulsive energy

J@r#5
1

2E E r~r !r~r 8!

ur2r 8u
d3rd3r 8, ~6!

andExc@r
↑
,r
↓
# is the exchange-correlation energy. Minim

zation of the total-energy functional~4! subject to the con-
straint

E rs~r !d3r5Ns ~7!

gives rise to the KS equations~1! with the effective potential
in

es

i-

veff,s~r !5vext~r !1
dJ@r#

drs~r !
1

dExc@r
↑
,r
↓
#

drs~r !
5vext~r !

1E r~r 8!

ur2r 8u
d3r 81vxc,s~r !, ~8!

wherevxc,s(r ) is the exchange-correlation potential

vxc,s~r !5
dExc@r

↑
,r
↓
#

drs~r !
. ~9!

The KS equations are to be solved self-consistently, star
from some initial estimate of the densityrs(r ), until conver-
gence is reached. In actual calculations, the KS Hamilton
in Eq. ~1! must be fixed by a particular choice of the x
energy functionalExc@r

↑
,r
↓
#. However, mostExc@r

↑
,r
↓
#

forms, such as the LSDA form as well as the more rec
ones using gradient corrections@10–13#, contain spurious
self-interactioncontributions. Such a self-interaction contr
bution can be seen from Eq.~4!, where the last two terms
J@r# andExc@r

↑
,r
↓
# should, in principle, cancel each othe

exactly in the limit of one-electron system, if the exact for
for Exc@r

↑
,r
↓
# is used. In practice,Exc@r

↑
,r
↓
# needs to be

approximated, leading to the self-interaction energy. The
istence of such self-interaction energy is the main source
error responsible for the incorrect long-range behavior of
exchange-correlation potentialvxc,s(r ). Thus the elimination
of the self-interaction contribution is essential for the prop
treatment of the ionization potentials and excited-state pr
erties.

Various approaches have been suggested to remove
self-interaction problem@3#. Perdew and Zunger@15# pro-
posed the self-interaction correction~SIC! version of a given
approximate exchange-correlation energy functio
Exc@r

↑
,r
↓
#,

Exc
SIC@r

↑
,r
↓
#5Exc@r

↑
,r
↓
#2(

s
(
i51

Ns

$J@r is#1Exc@r is,0#%,

~10!

wherer is is the single-particle density of thei th KS spin
orbital. In the limit that exactExc@r

↑
,r
↓
# is used, the SIC

term $J@r is#1Exc@r is,0#% vanishes. Thus this SIC correc
tion term can be also considered as a measure of the de
tion of a given approximateExc@r

↑
,r
↓
# from the exact result.

The use of the SIC energy functionalExc
SIC@r

↑
,r
↓
# @Eq. ~10!#,

however, leads todifferent potentials fordifferent orbitals.
Such an orbital dependence of the one-electron poten
causes the orbitals to be nonorthogonal. Additional eff
must be taken to achieve orthogonal SIC spin orbitals.

Another promising approach for improvingExc@r
↑
,r
↓
# is

provided by the so-calledoptimized effective potential~OEP!
method@16,17#. In this approach, one solves a set of on
electron equations, similar to the KS equations in Eq.~1!,
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ĤOEPf is~r !5F2
1

2
¹21Vs

OEP~r !Gf is~r !5« isf is~r !,

i51,2, . . . ,Ns . ~11!

The optimized effective potentialVs
OEP(r ) is obtained by the

requirement that the spin orbitals$f is% in Eq. ~11! are those
that minimize the total-energy functionalE@$f i↑,f j↓%#,

dEOEP@$f i↑,f j↓%#

dVs
OEP~r !

50, ~12!

where

EOEP@$f i↑,f j↓%#5Ts@$f i↑,f j↓%#1J@$f i↑,f j↓%#

1Exc@$f i↑,f j↓%#1E vext~r !r~r !d3r .

~13!

Equation~13! for the energy functionalEOEP@$f i↑,f j↓%# has
the same form as that of Hohenberg-Kohn energy functio
given in Eq.~4!, since the total energy is a functional of th
densityr, and the density is determined by the spin orbit
$f i↑,f j↓%.

Equation~12! can be written as, using the chain rule f
functional derivative,

(
j
E d3r 8

dEOEP@$f i↑,f i 8↓%#

df js~r 8!
•

df js~r 8!

dVs
OEP~r !

1c.c.50.

~14!

While the physical idea of the OEP method is simple a
appealing, Eq.~14! leads to an integral equation that is com
putionally impractical to solve. Recently, Krieger, Li, an
Iafrate @18–22# have worked out an approximate, albeit a
curate, procedure to circumvent this difficulty, reducing t
determination ofVs

OEP to the solution of simple linear equa
tions. As will be shown below, the Krieger-Li-Iafrate~KLI !
method provides also a convenient procedure to ob
orbital-independentoptimized effective potential that isself-
interaction-free. The KLI method has been used mainly
the exchange-only limit@20–22# and the results are nearl
identical to those obtained from the exact OEP meth
More recently, Grabo and Gross@14# have further employed
the KLI method to include the correlation energy function
and found that both the total energies and the ionization
tentials of neutral atoms can be well represented.

Encouraged by these recent advancements, we presen
low an extension of the KLI procedure to explicitly incorp
rate the SIC term given in Eq.~10!. The motivations of such
a development are as follows.~a! In all the KLI calculations
so far@14,20–22#, the exchange part of the density function
contains a Hartree-Fock-likenonlocalpotential. While such
a procedure provides accurate results for the exchange
of Exc , it is computationally more expensive than the tra
tional DFT calculations where onlylocal single-particle po-
tential are used. Thus we are interested in exploring an
proximate and yet accurate procedure within the K
framework involving only the use oflocal potentials. This
would greatly speed up the computations of the static
al
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dynamical properties of many-electron systems. Such a s
plified procedure is particularly desirable when the tim
dependent processes are considered@23#. In the latter case,
one needs to reconstruct the optimized effective potential
each small time step.~b! As will be shown below, the pro-
posed KLI-SIC procedure, similar to the original KL
method, allows also the construction of aself-interaction-
free effective potential that isorbital independent. This
avoids the problems associated with the conventional
procedure@15# discussed earlier. Further, the optimized e
fective potential so constructed, denoted byVKLI, s

SIC (r ) below,
has the proper long-range (21/r ) behavior and thus is suit
able for the determination of both ground- and excited-st
properties of many-electron systems.~Recently, we became
aware that a similar KLI-SIC procedure has been used
Krieger and his co-workers@24,25# in conjunction with the
LSDA energy functional. In our present work, in addition
the LSDA energy functional, we have also considered ot
more refined exchanged-correlation energy functionals.! We
now outline the key equations in the extended procedure

Define the total energy functional with SIC to be@26#

ESIC
OEP@$f i↑,f j↓%#5EOEP@$f i↑,f j↓%#2(

s
(
i

$J@r is#

1Exc@r is,0#%, ~15!

whereEOEP@$f i↑,f j↓%# is given in Eq.~13!. Following the
OEP-KLI procedure, one finds that

VSIC,s
OEP ~r !5vext~r !1E r~r 8!

ur2r 8u
d3r 81

dExc@r
↑ ,
r
↓
#

drs~r !

1VSIC,s~r !, ~16!

where

VSIC,s~r !5(
i

r is~r !

rs~r !
$v is~r !1@V̄SIC,s

i 2 v̄ is#%, ~17!

v is~r !52E r is~r 8!

ur2r 8u
d3r 82

dExc@r is,0#

dr is~r !
~18!

and

V̄SIC,s
i 5^f isuVSIC,s~r !uf is&, ~19!

v̄ is5^f isuv is~r !uf is&. ~20!

In Eq. ~17!, the last two termsV̄SIC,s
i and v̄ is are constants,

though the value ofV̄SIC,s
i is unknown. The KLI method

suggests a way to calculate (V̄SIC,s
i 2 v̄ is) through a solution

of the linear equations

(
i51

Ns21

~d j i ,s2M ji ,s!~V̄SIC,s
i 2 v̄ is!5V̄js

s 2 v̄ js ,

j51,2, . . . ,Ns21, ~21!

where
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TABLE I. Total energies~in a.u.! of ground states of neutral atoms (Z<18) calculated by various
exchange-correlation energy functionals.

Non-KLI-SIC KLI-SIC KLI
Atom HFa LSDA BLYP LSDA BLYP GGb Exactc

He -2.862 -2.724 -2.907 -2.862 -2.905 -2.903 -2.904
Li -7.433 -7.193 -7.483 -7.434 -7.481 -7.483 -7.478
Be -14.573 -14.223 -14.663 -14.578 -14.651 -14.665 -14.66
B -24.529 -24.064 -24.647 -24.549 -24.634 -24.656 -24.65
C -37.689 -37.112 -37.845 -37.745 -37.832 -37.849 -37.84
N -54.401 -53.709 -54.595 -54.506 -54.584 -54.591 -54.58
O -74.810 -73.992 -75.081 -74.962 -75.069 -75.072 -75.06
F -99.409 -98.474 -99.761 -99.635 -99.749 -99.730 -99.73
Ne -128.547 -127.491 -128.976 -128.859 -128.966 -128.920 -128.9
Na -161.859 -160.644 -162.297 -162.217 -162.290 -162.256 -162.2
Mg -199.615 -198.249 -200.097 -200.027 -200.080 -200.062 -200.0
Al -241.877 -240.356 -242.385 -242.341 -242.354 -242.362 -242.35
Si -288.854 -287.182 -289.394 -289.378 -289.340 -289.375 -289.3
P -340.719 -338.889 -341.284 -341.299 -341.202 -341.272 -341.2
S -397.505 -395.519 -398.134 -398.148 -398.018 -398.128 -398.1
Cl -459.482 -457.344 -460.172 -460.197 -460.016 -460.164 -460.1
Ar -526.818 -524.518 -527.558 -527.599 -527.358 -527.553 -527.6

aReference@30#.
bReference@14#.
cThe data forZ<10 are from Ref.@28# and data forZ>11 are from Ref.@29#.
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M ji ,s5E r js~r !r is~r !

rs~r !
d3r ~22!

and

V̄is
s 5K f isU(

j51

Ns r js~r !•v js~r !

rs~r ! Uf isL . ~23!

In an actual computation, we found that the use of E
~21! for the solution ofV̄SIC,s

i may be avoided. Since the s
of OEP-KLI equations in Eq.~11!, with Vs

OEP(r ) replaced by
VSIC,s
OEP (r ), is to be solved self-consistently along with E

~16!, it is sufficient to use the value ofV̄SIC,s
i from the pre-

vious iteration in Eq.~17! without needing to calculate
Mi j ,s and V̄is

s . This simplified procedure leads to the sam
final converged results. Finally, we chooseV̄SIC,s

i5Ns5 v̄Ns for
the highest occupied orbital as suggested by the KLI pro
dure. The energy of the highest occupied orbital provides
approximate value for the first ionization potential as prov
by Perdewet al. @27#.

III. CALCULATION OF TOTAL ENERGIES
AND IONIZATION POTENTIALS OF NEUTRAL ATOMS

AND NEGATIVE IONS: THE KLI-SIC METHOD

In this section we present the calculated results for
total ground-state energies and ionization potentials of n
tral atoms and some negative ions (Z<18) using the KLI-
SIC procedure discussed in the preceding section. For c
parison, we also performed calculations of the Kohn-Sh
total energies and ionization potentials without the use of
KLI-SIC. Several xc energy functionals were used, but o
.

e-
n
d

e
u-

m-
m
e
y

the results of the following two energy functionals are p
sented, which illustrated the main features of the KLI-S
procedure.~a! First is the Xa exchange functional with
a52/3, referred to as the LSDA in this section and Sec.

Vxc,s
LSDA~r !5

dExc@r
↑ ,
r
↓
#

drs~r !
52

3

2
aS 6p rs~r ! D 1/3. ~24!

The LSDA form is the simplest energy functional form an
is the leading term of more sophisticated xc energy functi
als @10,11#. ~b! Then there is the exchange energy function
of Becke@10# and the correlation energy functional of Le
Yang, and Parr@11#, which is referred to as BLYP xc energ
functional. This is one of the most commonly used functio
als including the gradient corrections. Within the KLI-SI
procedure, we can define the exchange energy as

Ex
SIC5Ex@r↑ ,r↓#2(

s
(
i51

Ns

$J@r is#1Ex@r is,0#% ~25!

and the correlation energy as

Ec
SIC5Ec@r↑ ,r↓#2(

s
(
i51

Ns

$Ec@r is,0#%. ~26!

A. Total ground-state energies of neutral atoms withZ<18

In Table I we listed the calculated total energies of neu
atoms (Z<18) using various methods. The results both w
and without the KLI-SIC procedure are presented. A
shown in Table I are the exact data@28,29# and the recent
calculated results of Grabo and Gross@14#. In Ref. @14# the
calculations were performed using also the KLI procedu
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but the exchange part was carried out using the exactnonlo-
calHartree-Fock~HF! like potentials and the correlation pa
performed using the Colle-Salvetti functional@31,32#. Thus
it is expected that the exchange energies will be more a
rately represented by this method@14#. However, the presen
KLI-SIC procedure uses completelylocal potentials and is
computationally much less expensive.

Table I shows that the LSDA~without the KLI-SIC! se-
verely underestimates the total energies and the discrep
with the exact values increases with the atomic numbeZ.
With the implementation of the KLI-SIC procedure, th
LSDA shows a dramatic improvement of the total energi
particularly for higher-Z atoms. In fact, for larger-Z atoms,
the LSDA–KLI-SIC results are considerably better th
those of the HF method and surprisingly also are somew
better than those of the BLYP with KLI-SIC. Finally, w
note that our LSDA–KLI-SIC results are essentially identic
to the recent calculation by Chenet al. @25#, who employed a
similar procedure.

The total energies of the BLYP~without the KLI SIC! are
in very good agreement with the exact values. The imp
mentation of the the KLI-SIC procedure in general does
show improvement over those without the KLI-SIC. Th
seems somewhat contradictory to the expectation that a
ter xc-energy functional should give better results. To
plore the reasons responsible for such an unexpected be
ior, we plot the effective one-particle potentialsVeff(r ) @Eq.

FIG. 1. Short-range one-electron effective potentialsrVeff(r ) of
the LSDA and BLYP with and without the KLI-SIC near th
nucleus for~a! a Ne atom and~b! an Ar atom. Note that except th
BLYP potential, all the other~LSDA, LSDA–KLI-SIC, and
BLYP–KLI-SIC! potentials have the proper behavior near the o
gin.
u-

cy

,

at

l

-
t

et-
-
av-

~8!# in Figs. 1 and 2. Figures 1~a! and 1~b! show the short-
range behavior ofrVeff(r ) near the origin for Ne and Ar,
respectively. As can be seen, the BLYP short-range poten
shows some deviation from the exact result and an ab
change near the origin. This may be attributed to the la
density derivative of the Becke exchange energy functio
@10#. After the implementation of the KLI-SIC procedure
the irregular short-range behavior of the BLYP~Becke! po-
tential is corrected as shown in Figs. 1~a! and 1~b!. This
explains the difference of the results of the BLYP with a
without the KLI-SIC. However, since the BLYP~and Becke!
energy functional expression~without the KLI SIC! contains
semiempirical parameters that fit the total energies to
exact values, the BLYP total energies~after the KLI-SIC!
show an ‘‘overcorrection,’’ resulting in seemingly contradi
tory behavior. In reality, the BLYP effective one-particle p
tential after the KLI-SIC is much improved in both the sho
range~Fig. 1! and the long-range~Fig. 2! regimes. This leads
to marked improvement of the BLYP ionization potentia
~to be discussed below!. Finally, we note that the deviation
of the BLYP ~Becke! short-range potential from the exa
result increases with the nuclear chargeZ, as can be clearly
seen in Fig. 1~Ne vs Ar!. As a consequence, the differenc
of the BLYP total energies~Table I! @and exchange energie
~Table II!# before and after the KLI-SIC increases with in
creasingZ.

To further understand the KLI-SIC results, we present
Table II the exchange energies calculated by various m

-

FIG. 2. One-electron effective potentialsrVeff(r ) of the LSDA
and BLYP with and without the KLI SIC in a larger scale for~a! a
Ne atom and~b! an Ar atom. Note that with the KLI-SIC, both
LSDA and BLYP potentials have the correct long-range asympt
behavior, namely,rVeff(r )→21.
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55 3411DENSITY-FUNCTIONAL THEORY WITH OPTIMIZED . . .
ods. The HF results can be considered as the ‘‘exact’’ val
for the exchange energies. The LSDA results~without the
KLI-SIC! are significantly smaller than the HF values. Ho
ever, the LSDA exchange energies are markedly impro
after the KLI-SIC. This is mainly due to the fact that th
long-range potential is now implemented into the LSDA; s
Figs. 2~a! and 2~b!. For the BLYP, the exchange energi
before the KLI-SIC are quite close to the HF values mai
because the Becke exchange functional@10# was designed to
fit the HF limit. After the KLI-SIC, the BLYP exchange
energies, although still in good agreement with the ex
values, show some deviation from the HF values for larg
Z atoms. This is due to the problem of Becke’s energy fu
tional near the nucleus as discussed above. The exch
and total energies of Ref.@14# show closer agreement wit
the exact values since the exchange part was performed
ing nonlocal Hartree-Fock-like potentials as indicated b
fore. In Table III we list the calculated values of BLYP co
relation energies with and without the KLI-SIC. The over
agreement with the exact values and the KLI results of R
@14# is quite good. Except for the largest-Z atoms, the BLYP
results with the KLI-SIC are generally slightly better tha
those without the KLI-SIC.

Also shown in Table III are the SIC energies calculat
from the expressionDESIC52(s( i$J@r is#1Exc@r is,0#%.
This SIC term is mainly responsible for the difference of t
total energies of the LSDA~and BLYP! calculations with
and without the KLI-SIC. In the limit that exact xc energ
functionals are used, the SIC term should vanish. Thus
magnitude of the SIC energy reflects the deviation of a gi
xc energy functional from the exact result. Table III sho
that the SIC energies for the LSDA are much larger th
those of the BLYP, reflecting the well-known fact that th
BLYP form is a more refined functional. However, our r

TABLE II. Exchange energies~in a.u.! of ground states of neu
tral atoms (Z<18) calculated by various exchange-correlation e
ergy functionals.

Non-KLI-SIC KLI SIC KLI
Atom LSDA BLYP LSDA BLYP GGa HF b

He -0.853 -1.019 -1.026 -1.028 -1.028 -1.02
Li -1.505 -1.772 -1.777 -1.769 -1.784 -1.78
Be -2.278 -2.659 -2.658 -2.633 -2.674 -2.66
B -3.230 -3.728 -3.749 -3.701 -3.760 -3.74
C -4.412 -5.029 -5.089 -5.007 -5.064 -5.04
N -5.837 -6.580 -6.691 -6.564 -6.610 -6.59
O -7.276 -8.156 -8.314 -8.143 -8.200 -8.17
F -8.972 -9.992 -10.212 -9.984 -10.025 -10.0
Ne -10.937 -12.102 -12.398 -12.102 -12.110 -12.
Na -12.702 -14.009 -14.355 -13.992 -14.017 -14.
Mg -14.535 -15.990 -16.383 -15.945 -15.997 -15.9
Al -16.455 -18.057 -18.504 -17.983 -18.081 -18.0
Si -18.513 -20.264 -20.768 -20.154 -20.295 -20.2
P -20.711 -22.614 -23.177 -22.463 -22.649 -22.
S -22.915 -24.971 -25.597 -24.777 -25.021 -25.
Cl -25.270 -27.481 -28.173 -27.237 -27.530 -27.5
Ar -27.775 -30.144 -30.905 -29.845 -30.192 -30.1

aReference@14#.
bReference@33#.
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sults shown in Tables I and II clearly indicate that the K
SIC is an excellent procedure for improving the LSDA e
ergy functional.

B. Ionization potentials for neutral atoms with Z<18

The ionization potential~IP! is defined as the differenc
of the total energy of a parent neutral atom and its cor
sponding singly ionized atom. In the independent-parti
approximation such as the KS approach, the energy of
highest occupied orbital can be also taken as the IP acc
ing to the work of Perdewet al. @27#. For the study of dy-
namical processes such as photoionization and multipho
ionization, it is essential that the orbital energy be describ
correctly. In Table IV we list the calculated IPs of neutr
atoms (Z<18) based on the energy of the highest occup
orbital for individual atom. Since both LSDA and BLYP
energy functionals~without the KLI-SIC! do not have the
correct long-range behavior, their IPs are significan
smaller than the experimental values by 40–50 % with
LSDA results uniformly worse. With the implementation o
the KLI-SIC, the ionization potentials of both the LSDA an
BLYP are much improved. Except for a few cases, t
BLYP ionization potentials are generally better than those
the LSDA. In a comparison with the IPs of Ref.@14#, our
BLYP–KLI-SIC values are comparable in accuracy, better
some cases, but worse in other cases. Finally, we note
our LSDA–KLI-SIC results coincide with the recent calc
lations by Chenet al. @25# using a similar procedure.

C. Electron affinities

Another more crucial test of the quality of energy fun
tionals is the prediction of the IPs or the electron affinities

-
TABLE III. Correlation energies~in a.u.! of neutral atoms

(Z<18) calculated by various exchange-correlation energy fu
tionals. Also shown are the SIC energies~in a.u.!.

Correlation energy DESIC

Atom BLYP a BLYP b GGc Exactd KLI-LSDA KLI-BLYP

He -0.044 -0.044 -0.042 -0.042 -0.142 0.000
Li -0.054 -0.053 -0.051 -0.046 -0.244 0.000
Be -0.096 -0.095 -0.093 -0.094 -0.357 0.009
B -0.129 -0.128 -0.129 -0.125 -0.488 0.011
C -0.162 -0.161 -0.161 -0.157 -0.636 0.010
N -0.193 -0.192 -0.188 -0.189 -0.801 0.008
O -0.264 -0.264 -0.261 -0.258 -0.975 0.009
F -0.326 -0.326 -0.322 -0.322 -1.166 0.008
Ne -0.383 -0.383 -0.376 -0.390 -1.374 0.005
Na -0.410 -0.409 -0.401 -0.398 -1.577 0.004
Mg -0.462 -0.460 -0.452 -0.444 -1.782 0.014
Al -0.498 -0.497 -0.491 -0.479 -1.987 0.028
Si -0.534 -0.532 -0.527 -0.520 -2.198 0.050
P -0.568 -0.567 -0.559 -0.553 -2.412 0.078
S -0.636 -0.635 -0.629 -0.634 -2.631 0.110
Cl -0.696 -0.695 -0.689 -0.714 -2.855 0.149
Ar -0.752 -0.751 -0.744 -0.787 -3.084 0.193

aBLYP without the KLI-SIC.
bBLYP with the KLI-SIC.
cReference@14#.
dReference@33#.
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negative ions. It is known that within the standard K
scheme using local energy functionals~such as the LSDA
and BLYP forms!, the electrons are too weakly bound a
there is no convergence for negative ions. With the use of
KLI-SIC procedure; however, we are able to calculate
electron affinities for most negative ions. The results
shown in Table V. Here we present the electron affinit
obtained both from the energy of the highest occupied orb
@shown in column~a!# as well as from the energy differenc
between the negative ions and their corresponding neu
atoms@shown in column~b!#. For closed-shell negative ions
our results are in reasonable agreement with the experime
values. The predicted electron affinities for open-shell ne
tive ions are less satisfactory as we use a spherical sym
trized density without polarization. One noticeable tre
coming out from our KLI-SIC studies is that the two diffe
ent estimations of the electron affinities@column~a! and col-
umn ~b! in both the LSDA and BLYP with the KLI-SIC#
merge to each other as the atomic numberZ increases, indi-
cating that the Koopmans theorem is more valid for heav
atoms. However, the results of columns~a! and~b! are quite
different for the KLI calculations in Ref.@14#.

IV. TIME-DEPENDENT LINEAR DENSITY RESPONSE
THEORY WITH OPTIMIZED EFFECTIVE

POTENTIAL AND SELF-INTERACTION CORRECTION:
APPLICATION TO PHOTOIONIZATION

OF NEON ATOMS

We now consider the extension of the OEP-KLI meth
with SIC procedure to the dynamical process of photoioni
tion of rare gas atoms. In the context of DFT, there are t
general approaches for the study of photoresponse; both

TABLE IV. Ionization potentials~in a.u.! of ground states of
neutral atoms (Z<18) calculated from the highest occupied orbi
energies by various exchange-correlation energy functionals.

Non-KLI-SIC KLI-SIC KLI
Atom HFa LSDA BLYP LSDA BLYP GGb Expt.c

He 0.918 0.517 0.585 0.918 0.950 0.945 0.90
Li 0.196 0.100 0.111 0.196 0.194 0.200 0.19
Be 0.309 0.170 0.201 0.308 0.323 0.329 0.34
B 0.310 0.120 0.143 0.290 0.304 0.328 0.30
C 0.433 0.196 0.218 0.412 0.422 0.448 0.41
N 0.568 0.276 0.297 0.536 0.543 0.579 0.53
O 0.632 0.210 0.266 0.479 0.523 0.559 0.50
F 0.730 0.326 0.377 0.645 0.680 0.714 0.64
Ne 0.850 0.443 0.492 0.808 0.837 0.884 0.79
Na 0.182 0.097 0.107 0.187 0.184 0.189 0.18
Mg 0.253 0.142 0.168 0.256 0.267 0.273 0.28
Al 0.210 0.086 0.102 0.192 0.198 0.222 0.21
Si 0.297 0.144 0.160 0.275 0.279 0.304 0.30
P 0.392 0.203 0.219 0.358 0.361 0.399 0.38
S 0.437 0.174 0.219 0.344 0.375 0.404 0.38
Cl 0.506 0.254 0.295 0.447 0.472 0.506 0.47
Ar 0.591 0.334 0.373 0.549 0.571 0.619 0.57

aReference@30#.
bReference@14#.
cReference@34#.
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based on the lowest-order perturbation theory. The first
proach is the direct extension of the Kohn-Sha
independent-particle self-consistent-field~SCF! approach
with the use of the LDA for the density functional@35#. In
this approach@often referred to as thetime-independentLDA
~LSDA! method#, the screening effect or the electron pola
ization effect induced by the external field is not consider
Another more rigorous approach, taking into account
time-dependent perturbation and the screening effects
based on the time-dependent linear density response th
@35–37#. The LDA or LSDA is often used along with this
approach.@This procedure is usually referred to as thetime-
dependentLDA ~LSDA! method.# Both time-dependent and
time-independent LDA~LSDA! methods have been applie
to the study of dynamical polarizability and photoionizatio
cross sections of atoms and molecules@35#. The results of
time-dependent LDA calculations are found to be genera
more accurate than those of time-independent LDA calcu
tions @35#, indicating the importance of including the scree
ing effects in the study of dynamical properties. Howev
since both the LDA~LSDA! and more accurate forms o
density functionals such as the BLYP functional do not su
port the correct long-range Coulombic behavior as shown
Figs. 2~a! and 2~b!, the electrons are too weakly bound. Pr
vious time-dependent LDA studies@9,35# of the photoioniza-
tion of rare gas atoms, for example, did not exhibit the a
toionizing resonances. Proper treatment of the long-ra
potential in DFT is essential to the study of Rydberg seri
autoionizing resonances as well as the bound-free photo
ization and multi-photon ionization processes. Recen
Steneret al. @38# have used the model potential of van Lee
wen and Baerends@39# for the study of photoionization o
rare gas atoms. Since the Van Leeuwen–Baerends~VLB !
potential implements the (21/r ) long-range Coulomb tail,
they were able to study the singly excited autoionizing re
nances. However, the VLB-type model potential is not o

TABLE V. Electron affinities ~in a.u.! of negative ions
(Z<18) calculated by various exchange-correlation energy fu
tionals: ~a! electron affinity calculated from the highest occupi
orbital energy and~b! electron affinity calculated from the differ
ence of the total energies between the negative ion and the c
sponding neutral atom.

LSDA–KLI-SIC BLYP–KLI-SIC GGa

Ion ~a! ~b! ~a! ~b! ~a! ~b! Expt.b

H2 0.046 -0.012 0.063 0.019 0.028
Li 2 0.015 -0.003 0.023 0.017 0.024 0.016 0.02
B2 0.021 0.013 0.025 0.017 0.033 -0.002 0.01
C2 0.064 0.049 0.068 0.051 0.083 0.028 0.04
O2 0.064 0.026 0.096 0.053 0.110 0.017 0.05
F2 0.160 0.102 0.185 0.124 0.208 0.082 0.12
Na2 0.014 -0.001 0.022 0.018 0.022 0.015 0.02
Al 2 0.016 0.015 0.017 0.015 0.024 0.007 0.01
Si2 0.047 0.048 0.049 0.047 0.065 0.040 0.05
P2 0.001 -0.001 0.037 0.029 0.048 0.022 0.02
S2 0.067 0.057 0.090 0.080 0.106 0.065 0.07
Cl2 0.126 0.115 0.146 0.133 0.174 0.122 0.13

aReference@14#.
bReference@34#.
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55 3413DENSITY-FUNCTIONAL THEORY WITH OPTIMIZED . . .
tained from the functional derivative of some xc-ener
functional and thus is not completely compatible with DF
In this section we present the extension of the OEP–KLI-S
procedure to the time-dependent linear density respo
theory, allowing for a DFT approach for the study of phot
ionization and autoionizing resonances.

We start from the independent-particle approximation a
consider the photoexcitation from an initial stateu i & to a final
state u j &, where u i & and u j & are the solutions of the one
electron OEP equations

F2
1

2
¹21VOEP~rW !Gf i~rW !5« if i~rW !. ~27!

HereVOEP(r ) is the optimized effective potential obtained b
the KLI-SIC procedure outlined in Sec. II. For photoioniz
tion processes, the final states are unbound solutions of
~27! with e i replaced by12 k

2, wherek is the photoelectron
momentum. The partial cross section is given by the us
expression

s i~v!5
2v

3

2p2

c
ni(

j
~12nj !z^ j ur u i & z2d~v2« j1« i !,

~28!

whereni andnj are the occupation numbers of the initial a
final states, respectively. The total cross section is obta
by summing over all the initial states,

s~v!5(
i

s i~v!. ~29!

We next discuss the extension of the OEP–KLI-SIC meth
to the linear density response theory@9,36–38#, which con-
siders the effect of a weak time-dependent perturbation
tential on the electron density. The frequency-dependen
duced densitydr(r ,v) can be obtained by the Fourie
transformation of the time-dependent field-induced den
dr(r ,t),

dr~r ,v!5
1

2pE2`

`

dr~r ,t !eivtdt. ~30!

The induced density is related to the external potential by
relationship

dr~r ,v!5E x~r ,r 8,v!Vext~r 8,v!d3r 8, ~31!

where x(r ,r 8,v) is the frequency-dependent susceptibil
and

Vext~r ,v!5z ~32!

is the dipole external potential. The susceptibility can be
termined by means of the first-order time-dependent per
bation theory@40# and expressed in terms of the eigenfun
tions $f i(r )% and eigenvalues$e i% of the solutions of the
OEP equation~27!
.
C
se
-
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xOEP~r ,r 8,v!5(
i , j

~ni2nj !
f i* ~r !f j~r !f i~r 8!f j* ~r 8!

v2~« j2« i !1 ih
,

~33!

where ih is an imaginary infinitesimal used to ensure t
outgoing wave boundary conditions. The summation ovei
and j runs over all the bound and continuum states. With
the SCF approximation, we can replace Eq.~31! with

dr~r ,v!5E xOEP~r ,r 8,v!VSCF~r 8,v!d3r 8, ~34!

where

VSCF~r ,v!5Vext~r ,v!1E dr~r 8,v!

ur2r 8u
d3r 8

1
]Vxc~r !

]r~r ! U
r0~r !

•dr~r ,v!. ~35!

Herer0(r ) is the ground-state electron density, for examp
Vxc52(6/p)1/3r1/3(r ), for the LSDA. The normal procedur
is to solve Eqs.~34! and~35! iteratively until convergence is
reached. However, an alternative and simpler procedure
be obtained by substituting Eq.~34! into Eq. ~35! to get

VSCF~r ,v!5Vext~r ,v!1E K~r ,r 8,v!VSCF~r 8,v!d3r 8,

~36!

with

K~r ,r 8,v!5E xOEP~r 8,r 9,v!

ur2r 9u
d3r 9

1
]Vxc~r !

]r~rW !
ur0~r !•xOEP~r ,r 8,v!. ~37!

The integral equation~36! can now be recasted into the lin
ear equation form

E @d~r2r 8!2K~r ,r 8,v!#VSCF~r 8,v!5Vext~r ,v!,

~38!

from whichVSCF(r ,v) can be readily solved by discretizin
the r space. Substituting the results ofVSCF into Eq.~34!, we
obtain the desired induced densitydr(r ,v). Finally, the
cross section can be obtained by the well-known relations

s~v!5
4pv

c
Im@a~v!#, ~39!

wherea(v) is the dynamical polarizability given by

a~v!52E E Vext~r ,v!xOEP~r ,r 8,v!•VSCF~r 8,v!d3r .

~40!
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The key issue here is how to calculate the susceptib
based on the OEP. Since the susceptibility can be writte
a summation over all orbitals, we can calculate the contri
tions of the susceptibility by the Green’s-function method
discussed in@9#. First we rewrite Eq.~33! as

xOEP~r ,r 8,v!5(
i , j

ni
f i* ~r !f j~r !f i~r 8!f j* ~r 8!

v2~« j2« i !1 ih

2(
i , j

nj
f i* ~r !f j~r !f i~r 8!f j* ~r 8!

v2~« j2« i !1 ih

5(
i
nif i* ~r !f i~r 8!(

j

f j~r !f j* ~r 8!

v2~« j2« i !1 ih

1(
i
nif i~r !f i* ~r 8!

3(
j

f j* ~r !f j~r 8!

2v2~« j2« i !2 ih

[(
i
nif i* ~r !f i~r 8!G~r ,r 8;v1« i1 ih!

1(
i
nif i~r !f i* ~r 8!G* ~r ,r 8;« i2v1 ih!

~41!

and then expand the Green’s function in terms of spher
harmonics

G~r ,r 8;E!5(
L

YL* ~ r̂ !GL~r ,r 8;E!YL~ r̂ 8!, ~42!

whereL is a compact notation for the angular momentu
quantum numbersl ,m. The radial Greens’s function
GL(r ,r 8;E) can be determined by

GL~r ,r 8;E!5
j l~r,!hl~r.!

W@ j l ,hl #
, ~43!

where r, (r.) refers to the smaller~larger! distance ofr
and r 8. j l(r ) is the partial wave solution of Eq.~27! with
energyE and satisfies the proper boundary condition at
origin. Similarly, hl(r ) is the partial wave solution of Eq
~27! with energyE and satisfies the outgoing boundary co
dition asr→` for E.0 or the decaying behavior solution a
r→` for E<0. W@ j l ,hl # is the Wronskian ofj l(r ) and
hl(r ). With the calculated Green’s functions, we can co
struct the susceptibility from Eq.~41!. Once the susceptibil
ity is determined, the self-consistent fieldVSCFis obtained by
the solution of Eq.~38! and the cross section can be calc
lated by Eqs.~39! and ~40!. The linear response method
usually referred as atime-dependenttechnique. If we use
Vext instead ofVSCF in Eq. ~40! we reproduce the cross
section expression for the independent-particle approxi
tion. The independent-particle approximation@Eq. ~28!# will
be referred to as thetime-independentmethod since it does
not take into account time-dependent field-induced dens
y
as
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s

al

e
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-
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@To test the numerical accuracy of the Green’s-funct
method, we have calculated the photoionization cross s
tions from Eqs.~39! and~40! usingVext instead ofVSCF and
compared the results with those calculated directly from
~28!. The two sets of results are in agreement with ea
other. In the following discussions, all the time-independ
cross sections were obtained from Eqs.~39! and ~40! using
Vext instead ofVSCF.#

To illustrate the usefulness of the optimized effective p
tential method with the KLI-SIC for dynamical processe
we have performed the calculation of photoionization cro
sections of the Ne atom using both time-independent
time-dependent methods. Figure 3 shows the results of ti
independent LSDA~denoted LSDA in the figure! and time-
dependent LSDA~denoted TDLSDA in the figure! calcula-
tions, both with the KLI-SIC. Although our calculated 2s
orbital energy with the KLI-SIC has improved the LSD
value from 1.266 a.u. to 1.645 a.u., there is still some d
crepancy from the experimental value 1.782 a.u.@41#. @The
calculated 2p ~OEP–KLI-SIC! orbital energy 0.808 a.u. is
much closer to the experimental value 0.793 a.u.# To see the
influence of such a 2s energy shift to the photoionization
cross sections and the resonance profiles, we presente
Figs. 3~a! and 3~b! two sets of data, one from theab initio
OEP–KLI-SIC calculations@Fig. 3~a!# and the other from
using the experimental value of the 2s orbital energy in the
Green’s-function calculations@Fig. 3~b!#. Also shown in both
Figs. 3~a! and 3~b! are the recent experimental results@42#
for comparison.

FIG. 3. Total photoionization cross sections of time-independ
and time-dependent calculations with the LSDA–KLI-SIC pote
tial: ~a! presentab initio results and~b! present results calculate
with the 2s orbital energy replaced by the experimental value.



e
ha
m
e

as
n
nt
a

d
ex
lts
lo

o
ar

s

in
s

d
on
s
V

d

he

e
ts
o-
eri-

ions
t
ate
po-

FT
nal
ls,
the
are
ur-
s
for
se-
are

su
x-
.

-
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Figure 3~a! shows that the total cross sections of the tim
independent LSDA calculations are substantially larger t
the experimental values in the broad peak region and a s
bump appears near the 2s ionization threshold due to th
contribution from the photoionization of the 2s level. Above
the 2s ionization threshold, the cross sections decre
monotonically. The TDLSDA cross sections show significa
improvement and close agreement with the experime
data in the broad peak region followed by a series of sh
resonances due to 2s→np transitions near the 2s threshold.
Above the 2s ionization threshold, both the LSDA an
TDLSDA results have some small discrepancy with the
perimental data. However, the LSDA and TDLSDA resu
merge to each other in the higher-energy regime and fol
closely the experimental values. Figure 3~b! shows the effect
of implementing the experimental 2s orbital energy in the
calculations. Apart from the slight shift of the resonance p
sitions, the overall photoionization cross-section profiles
not significantly affected.

In Fig. 4 we show the details of the photoionization cro
sections in the 2s→np resonance region with the 2s orbital
energy corrected by the experimental value. To determ
the autoionization widths, we fit the resonance line shape
the Fano profile@43#

s~v!5s0S r2
~q1x!2

11x2
2r211D , ~44!

with

x5
v2Er

1
2 G

. ~45!

Heres0 is the cross section,q is a line profile index,Er is
the resonance position,G is the resonance half-width, an
r2 is the correlation coefficient, which gives the proporti
of the continuum that interacts with the autoionizing state

The fitted resonance parameters are listed in Table
Two sets of our results are presented: TDLSDAa refers to the
ab initio KLI-SIC calculations using the TDLSDA metho

FIG. 4. Photoionization cross sections near the 2s→np resonant
transitions, showing the autoionizing resonance profiles. The re
are obtained by the TDLSDA with the KLI-SIC potential. The e
perimental value of the 2s orbital energy is used in the calculation
-
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and TDLSDAb refers to the same calculation except that t
experimental value is used for the 2s orbital energy. Also
shown in Table VI are the experimental values@44#, the
configuration-interaction~CI! (R-matrix! results @45#, and
the VLB model potential results@38# for the comparison.
Except for the linewidth of 2s→3p transition, the
TDLSDA–KLI-SIC results are in closer agreement with th
experimental data@44# than those of model potential resul
@38#. The q values of the present TDLSDA and model p
tential @38# calculations are somewhat larger than the exp
mental and CI values. With the 2s orbital energy replaced by
the experimental value, our predicted resonance posit
Er for 2s→3p, 4p, and 5p are in very close agreemen
with the experimental values, indicating that the excited-st
properties are better described by the present KLI-SIC
tential than by the VLB model potential@38#.

V. CONCLUSION

In conclusion, we have presented in this paper a D
procedure for improving the accuracy of the conventio
density functionals for the treatment of ionization potentia
excited-state properties, and dynamical processes. Both
short- and long-range effective one-particle potentials
properly treated by the present OEP–KLI-SIC method. F
ther, only the local one-particle potential is used in thi
method, leading to a computationally efficient technique
DFT calculations of both ground and excited states. The u
fulness and accuracy of the proposed KLI-SIC procedure

lts

TABLE VI. Comparison of line profile parameters of autoion
izing resonances for Ne atom.

s0 ~Mb! G ~meV! Er ~eV! q r2

2s→3p
Ref. @38# 8.18 13.90 46.253 -3.69 0.514
TDLSDA a 8.37 16.49 41.714 -2.64 0.749
TDLSDA b 8.28 18.04 45.453 -2.40 0.764
Expt.c 8.660.6 1362 45.546 -1.660.3 0.760.07
CI d 11.7 -1.61 0.76

2s→4p
Ref. @38# 7.98 3.86 47.397 -3.95 0.505
TDLSDA a 8.20 4.73 43.361 -2.82 0.765
TDLSDA b 8.06 5.14 47.098 -2.62 0.783
Expt.c 8.060.6 4.561.5 47.121 -1.660.3 0.760.07
CI d 3.8 -1.75 0.76

2s→5p
Ref. @38# 7.91 1.62 47.814 -4.05 0.502
TDLSDA a 7.94 2.02 43.361 -2.96 0.765
TDLSDA b 7.91 2.20 47.683 -2.72 0.783
Expt.c 8.260.6 261 47.692 -1.660.5 0.760.14

aPresentab initio TDLSDA results.
bPresent TDLSDA results with the 2s orbital energy replaced by
the experimental value.
cReference@44#.
dReference@45#.
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demonstrated by a study of both the static properties~total
and ionization energies! of atoms (Z<18) and the photoion-
ization process of Ne involving singly excited autoionizin
resonances. We are currently extending the OEP–KLI-S
method to the time-dependent processes of multiphoton
above-threshold ionization of many-electron systems in
tense short-pulse laser fields.
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,
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.
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