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Density-functional theory with optimized effective potential and self-interaction correction
for ground states and autoionizing resonances
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(Received 29 August 1996

We present a self-interaction-free density-functional thé®yT) for the treatment of both the static prop-
erties of the ground states and the photoionization processes of many-electron systems. The method is based on
the Krieger-Li-lafrate(KLI ) treatment of the optimized effective poten{@EP theory and the incorporation
of an explicit self-interaction correctiofSIC) term. Such an extended OEP-KLI-SIC method uses only
orbital-independensingle-particlelocal potentials and is thus computationally more efficient and yet main-
tains good accuracy. The usefulness of the procedure is examined by the studies of the static properties of the
ground states of atomsZ&18) and the dynamical photoionization processes involving autoionizing reso-
nances. Both the energy functionals of the local spin-density approxim@dtillA) and Becke's exchange
energy functional and the correlation energy functional of Lee-Yang{B&YP) are used as the input to the
KLI-SIC calculations. It is found that the implementation of the KLI-SIC procedure gives rise to optimized
effective potentials that possess the correct behavior in both short-range and long-range regimes. As a conse-
quence, the LSDA and BLYP ionization potentials are significantly improved. For higlsoms, the im-
provement of the LSDA total energies and the ionization potentials are particularly remarkable, approaching
the experimental or exact values. As another test of the KLI-SIC method, we have performed the calculation
of the photoionization cross sections of the Ne atom using both the time-independent and time-dependent
LSDA (TDLSDA) methods. We found that the TDLSDA results agree closely with the experimental data in
the broad peak region, followed by a series of sharp resonances due te-thep2resonant transitions. The
calculated linewidths and resonance line profile parameters are in reasonable agreement with both the experi-
mental and the configuration-interactioR-(atrix) results, demonstrating the usefulness of the KLI-SIC
procedure for achieving accurate DFT calculations in both static properties and dynamical processes.
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PACS numbgs): 31.15.Ew, 32.80.Fb, 32.80.Dz

[. INTRODUCTION approximation for the xc-energy functional is through the
local-density approximatiotLDA) or local spin-density ap-
Since the fundamental work of Hohenberg and K¢hh  proximation(LSDA) (the LDA and LSDA are equivalent for
and Kohn and Sharf®], the density-functional theoDFT)  closed-shell atomd 3,8] of homogeneous electronic gas. A
has undergone significant theoretical and computational adleficiency of the LDALLSDA) is that the xc potential decays
vances in recent years. DFT has become a widely used fopxponentially and does not have the correct long-range be-
malism for electronic-structure calculations of the ground-havior. As a result, the electrons are too weakly bound and

state properties of atoms, molecules, and sgBds7]. In the for negative ions even unbound. Further, previous LDA cal-
Kohn-Sham DFT formalisni2], the electron density is de- culations of the photoionization of rare-gas atdmfkdid not

composed into a set of orbitals, leading to a set of or]e_exhibit the autoionizing resonances. More accurate explicit

electron Schidinger-like equations to be solved self- forms of xc-energy functionals using generalized gradient

consistently. The Kohn-Sham equations are structurall)?orreCt'ons aré avallab[QQ—la. Hovv_ever, the xc potent_|al_s
- . . . . “derived from these explicit xc functionals suffer the similar
similar to the Hartree-Fock equations, but include, in prin-

ciple, exactly the many-body effects through lacal problem and do not have the proper long-range Coulomb tail

h lati tential. Thus DFT i ¢ —1/r. Thus, while the total energies of the ground states of
exchange-correla iofc) potential. Thus | IS computa atoms predicted by these xc density functioddB—13 are
tional much less expensive than the traditiomdl initio

_ ) rather accurate, the ionization potentials obtained from the
many-electron wave-function approaches and this accounignest occupied orbital energies of neutral atoms are less
for its great success for large systems. However, the DFT igatisfactory{14]. For the proper treatment of photoionization
well developed mainly for the ground-state properties. Thesnd multiphoton ionization processes, it is important that
treatment of excited states and time-dependent processggth the ionization potentials and the excited-state properties
within the DFT is much less developed. be described more accurately.
As the exact xc-energy functional is unknown, one needs In this paper we present an extension of the DFT for more
to use approximations in actual computations. The simplesiiccurate treatment of both the ionization potentials of the
ground states as well as for the photoabsorption spectrum of
autoionizing resonances. The method is based on an exten-
*Permanent address: Institute of Physics, P.O. Box, Chinession of the optimized effective potential formalism along
Academy of Science, Beijing 100080, People’s Republic of Chinawith a self-interaction-correction procedure for various
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exchange-correlation energy functionals to be described in 53[p] SEdp..p ]
the next sectionSec. 1). The usefulness of the proposed v e o() = vex(r) + + L = pe(T)
procedure is demonstrated by a study of the total energies ' ops(r) ops(r)
and ionization potentials of atomZ £ 18) in Sec. lll and the p(r')
photoionization of the Ne atom in Sec. IV. This is followed +J' - d3r’+vxc,(,(r), (8
by a conclusion in Sec. V. r=r’|
Il. THE OPTIMIZED EFFECTIVE POTENTIAL METHOD wherev,, ,(r) is the exchange-correlation potential
WITH SELF-INTERACTION CORRECTION

In the Kohn-Sham{(KS) DFT formulation[2], one solves SE,dp..p ]
the following set of one-electron Schlinger-like equation Vseoll)= L (9)
for N-electron system&n atomic unitg: ' Opy(r)

ﬂKS,/,i(r(r):[_ £V2+Ueﬁ oD [ Wios(D)=€inthin(r), The KS equations are to be solved self-consistently, starting

2 ' from some initial estimate of the densipy,(r), until conver-

_ gence is reached. In actual calculations, the KS Hamiltonian
i=12,....N;, (1) in Eq. (1) must be fixed by a particular choice of the xc
energy functionaIExc[pT,pl]. However, mostExc[pT,pl]
forms, such as the LSDA form as well as the more recent
ones using gradient correctiof$0—13, contain spurious

wherev g ,(r) is the effective KS potential and is the spin
index. The total density is given by

N, N, N, self-interactioncontributions. Such a self-interaction contri-
_ . 2_ , 2., _ 2 bution can be seen from Eq4), v_vhgre the last two terms
p(r) ; ;1 [i0(r)] ;1 |43 (1) izl |1, Jlp] and Exc[pT,pi] should, in principle, cancel each other

exactly in the limit of one-electron system, if the exact form
for EXC[pT,pl] is used. In practiceExc[pT,pl] needs to be

approximated, leading to the self-interaction energy. The ex-
istence of such self-interaction energy is the main source of
1 error responsible for the incorrect long-range behavior of the
_ = o exchange-correlation potentia). ,(r). Thus the elimination
v \/mde( Yz - il @ of the self-interaction contribution is essential for the proper
treatment of the ionization potentials and excited-state prop-
The total energy of the ground state is obtained by the minierties.
mization of the Hohenberg-Kohn energy functiofis)3] Various approaches have been suggested to remove the
self-interaction probleni3]. Perdew and Zungdrl5] pro-
5 posed the self-interaction correcti¢®IC) version of a given
Elpy.p J=Tdp]+Ilp]+Exdp; ,Pl]+f Vex(1)p(r)d-r. approximate  exchange-correlation energy  functional

4) Exc[PT’Pl]r

=p,(N+p (1) (2

and the ground-state wave function is determined by

HereT, is the noninteractingkS kinetic energy,

NU‘
Ny Exlep 1=Edpp 1= 2 2 {pis]+Ed pia O,
Te=2 2 (Yol = 3 V0o, (5) 7 10

vex{r) is the “external” potential due to the electron- . . . . ) .
nucleus interaction][ p] is the classical electron-electron re- WNere pi, is the single-particle density of thieh KS spin

pulsive energy orbital. In the limit that exacEXC[pT,pl] is used, the SIC
term {J[ p; ]+ E,d pis0]} vanishes. Thus this SIC correc-
1 p(Np(r') o o, tion term can be also considered as a measure of the devia-
Jpl= EJ f Wd rdr’, 6  tionofa given approximatExc[pT,pl] from the exact result.

The use of the SIC energy functiorlﬁféc[pwpl] [Eq.(10)],

andE,dp ,p ] is the exchange-correlation energy. Minimi- however, leads talifferent potentials fordifferent orbitals.
zation of the total-energy functioné) subject to the con- Such an orbital dependence of the one-electron potentials
straint causes the orbitals to be nonorthogonal. Additional effort
must be taken to achieve orthogonal SIC spin orbitals.

Another promising approach for improvir@c[pw,pl] is
provided by the so-calledptimized effective potentiéDEP
method[16,17]. In this approach, one solves a set of one-
gives rise to the KS equatioii$) with the effective potential electron equations, similar to the KS equations in &gj.

f po(Ndr=N, (@)
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. 1 dynamical properties of many-electron systems. Such a sim-
HOEF‘ﬁia—(r):[_§V2+V2Ep(r)}¢io(r):8ia¢io(r)a plified procedure is particularly desirable when the time-
dependent processes are considg¢&3]. In the latter case,
i=12,...N,. (11 one needs to reconstruct the optimized effective potential for

each small time stefb) As will be shown below, the pro-
posed KLI-SIC procedure, similar to the original KLI
method, allows also the construction ofsalf-interaction-
free effective potential that isorbital independent This

The optimized effective potentidd?="(r) is obtained by the
requirement that the spin orbitdlg;,} in Eqg. (11) are those
that minimize the total-energy functiong[{¢;; ¢; }1,

SECE (b, ¢} procedureg] 15] discussed earlier. Further, the optimized ef-
5V°EP(}) =0, (120 fective potential so constructed, denoted(S ,(r) below,
v has the proper long-range-(/r) behavior and thus is suit-

where
properties of many-electron systentRecently, we became

ECFR{ i+ i M=T[{bir b1 M1+ I[{dir bi ] aware that a similar KLI-SIC procedure has been used by
L S HL A Krieger and his co-workerf24,25 in conjunction with the
YEJ{d b }]+f D1 p(1)d%r LSDA energy functional. In our present work, in addition to
Xcl i1, %l ex .
(13) more refined exchanged-correlation energy functionsli&e
now outline the key equations in the extended procedure.

Equation(13) for the energy functionaE®={¢;; ¢;,}] has Define the total energy functional with SIC to [26]
the same form as that of Hohenberg-Kohn energy functional
given in Eq.(4), since the total energy is a functional of the EOEF[{‘f’iT,‘ﬁu}]: EOEF[{(;SH'QSN}]_E Z (I pis]

densityp, and the density is determined by the spin orbitals sic
{di1. &)1}
Equation(12) can be written as, using the chain rule for +Exd pio:0l}, (19
functional derivative, where E9¥{¢i; ¢;,}] is given in Eq.(13). Following the
SECE b S (1" OEP-KLI procedure, one finds that
E f d3r, F[{¢|T,,¢| L}] . ¢é)E(p ) +e.c=0.
i 5¢J(r(r ) oV (r) (14) p(r") 5Exc[PTPL]
OEP /.y _ 3
VSlC,o’(r) Uext(r)+ |r_rr|d r+ 5p(r(r)

While the physical idea of the OEP method is simple and
appealing, Eq(14) leads to an integral equation that is com- +Vsico(r), (16)

putionally impractical to solve. Recently, Krieger, Li, and
lafrate[18—27 have worked out an approximate, albeit ac-Where
curate, procedure to circumvent this difficulty, reducing the

determination o95 to the solution of simple linear equa- _s P, VI

tions. As will be shown below, the Krieger-Li-lafrat&LI) Vsico(r) EI po(r) i+ Vsico—violh - (17
method provides also a convenient procedure to obtain

orbital-independenbptimized effective potential that iself- Pio(r') 5, OEdpis0]
interaction-free The KLI method has been used mainly in vig(r)=— =] d°r’— 3pi(1) (18)

the exchange-only limif20—-223 and the results are nearly
identical to those obtained from the exact OEP methodand
More recently, Grabo and Grog$4] have further employed

the KLI method to include the correlation energy functional Viico=(diolVsico()] io), (19
and found that both the total energies and the ionization po- '
tentials of neutral atoms can be well represented. Vig={PiolVie()] dis). (20)

Encouraged by these recent advancements, we present be- o
low arr: extlensmn of the KLEPEOCG_?EFG to explicitly |rf1corpho- In Eq. (17), the last two term#/g,c , andv;,, are constants,
rate the SIC term given in E¢10). The motivations of suc though the value oW/, is unknown. The KLI method

a development are as follow&) In all the KLI calculations N ¢ leulatedl . —o-) th h luti
so far[14,20—22, the exchange part of the density functional S499€s's a way fo calcula dics Vo) through a solution
of the linear equations

contains a Hartree-Fock-likeonlocal potential. While such
a procedure provides accurate results for the exchange part N,—1
of E,., it is computationally more expensive than the tradi- 2 (80— Mji,a)(VISIC,U_Ea):V;‘sa —

. . . . “UVjgs

tional DFT calculations where onlpcal single-particle po- i=1 !

tential are used. Thus we are interested in exploring an ap-

proximate and yet accurate procedure within the KLI i=1,2,...,N,—1, (21)

framework involving only the use dbcal potentials. This
would greatly speed up the computations of the static anevhere

avoids the problems associated with the conventional SIC

able for the determination of both ground- and excited-state

the LSDA energy functional, we have also considered other
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TABLE I. Total energies(in a.u) of ground states of neutral atom&<£18) calculated by various
exchange-correlation energy functionals.

Non-KLI-SIC KLI-SIC KLI
Atom HF?2 LSDA BLYP LSDA BLYP GGP Exact®
He -2.862 -2.724 -2.907 -2.862 -2.905 -2.903 -2.904
Li -7.433 -7.193 -7.483 -7.434 -7.481 -7.483 -7.478
Be -14.573 -14.223 -14.663 -14.578 -14.651 -14.665 -14.667
B -24.529 -24.064 -24.647 -24.549 -24.634 -24.656 -24.654
C -37.689 -37.112 -37.845 -37.745 -37.832 -37.849 -37.845
N -54.401 -53.709 -54.595 -54.506 -54.584 -54.591 -54.589
O -74.810 -73.992 -75.081 -74.962 -75.069 -75.072 -75.067
F -99.409 -98.474 -99.761 -99.635 -99.749 -99.730 -99.734
Ne -128.547 -127.491 -128.976 -128.859 -128.966 -128.920 -128.939
Na -161.859 -160.644 -162.297 -162.217 -162.290 -162.256 -162.257
Mg -199.615 -198.249 -200.097 -200.027 -200.080 -200.062 -200.059
Al -241.877 -240.356 -242.385 -242.341 -242.354 -242.362 -242.356
Si -288.854 -287.182 -289.394 -289.378 -289.340 -289.375 -289.374
P -340.719 -338.889 -341.284 -341.299 -341.202 -341.272 -341.272
S -397.505 -395.519 -398.134 -398.148 -398.018 -398.128 -398.139
Cl -459.482 -457.344 -460.172 -460.197 -460.016 -460.164 -460.196
Ar -526.818 -524.518 -527.558 -527.599 -527.358 -527.553 -527.604
8Referencd 30].
bReferencd14].
“The data forZ<10 are from Ref[28] and data foiZ=11 are from Ref[29].
Pia(Npio(r) 4 the results 'of the following two energy functionals are pre-
Mji,(r:f (1) dr (22)  sented, which illustrated the main features of the KLI-SIC
7 procedure.(a) First is the X, exchange functional with
and a=2/3, referred to as the LSDA in this section and Sec. IV:
N OExdp.p ] 13
— T pig(r)-vir) LSDA, .\ _ s 36
V;sa:< ¢io’ 121 W ¢io—> (23) ch,o' (r)_ 5pu_(r) - 2 a( ng(r) (24)

In an actual computation, we found that the use of Eq.The LSDA. form is the simplest energy functional form and
. — . ) is the leading term of more sophisticated xc energy function-

(21) for the SOIUt'O.n ONS'Q” may b_e a"g'E‘fled- Since the set als[10,11]. (b) Then there is the exchange energy functional

OfO(E)PEP'KL_' equations in Eq(11), with V= (r) replaced by ¢ gecke[10] and the correlation energy functional of Lee,

Vsicq(), is to be solved self-consistently along with Eq. yang, and Parf11], which is referred to as BLYP xc energy

(16), it is sufficient to use the value &fgc,, from the pre-  functional. This is one of the most commonly used function-

vious iteration in Eq.(17) without needing to calculate als including the gradient corrections. Within the KLI-SIC

M;; » andV;, . This simplified procedure leads to the sameprocedure, we can define the exchange energy as

final converged results. Finally, we choo‘s!'gTC’\L‘;:v_Ng for N,

the highest occupied orbit_al as suggesjed by'the KLI. proce- Ef'c= Edpi.p ]_2 2 (I pis]+Epis.Olt (25

dure. The energy of the highest occupied orbital provides an |

approximate value for the first ionization potential as proved .

by Perdewet al.[27]. and the correlation energy as

N

Ill. CALCULATION OF TOTAL ENERGIES ESC=Edp;.p1-> >, {Edpi,.0}. (26)
AND IONIZATION POTENTIALS OF NEUTRAL ATOMS e =31 ’
AND NEGATIVE IONS: THE KLI-SIC METHOD

. . ) . o
In this section we present the calculated results for the A. Total ground-state energies of neutral atoms withz <18

total ground-state energies and ionization potentials of neu- In Table | we listed the calculated total energies of neutral
tral atoms and some negative iond<(18) using the KLI- atoms £=18) using various methods. The results both with
SIC procedure discussed in the preceding section. For conand without the KLI-SIC procedure are presented. Also
parison, we also performed calculations of the Kohn-Shanshown in Table | are the exact ddt28,29 and the recent
total energies and ionization potentials without the use of thealculated results of Grabo and Grd4d]. In Ref.[14] the
KLI-SIC. Several xc energy functionals were used, but onlycalculations were performed using also the KLI procedure,
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FIG. 1. Short-range one-electron effective potentiadgy(r) of FIG. 2. One-electron effective potential¥ .«(r) of the LSDA

the LSDA and BLYP with and without the KLI-SIC near the and BLYP with and without the KLI SIC in a larger scale i@ a
nucleus for(a) a Ne atom andb) an Ar atom. Note that except the Ne atom and(b) an Ar atom. Note that with the KLI-SIC, both
BLYP potential, all the other(LSDA, LSDA-KLI-SIC, and  LSDA and BLYP potentials have the correct long-range asymptotic
BLYP—KLI-SIC) potentials have the proper behavior near the ori-pbehavior, namelyrV (r)— — 1.

gin.

(8)] in Figs. 1 and 2. Figures(d) and Xb) show the short-
but the exchange part was carried out using the exaelo-  range behavior of V4(r) near the origin for Ne and Ar,
cal Hartree-FockKHF) like potentials and the correlation part respectively. As can be seen, the BLYP short-range potential
performed using the Colle-Salvetti functior&@1,32. Thus shows some deviation from the exact result and an abrupt
it is expected that the exchange energies will be more acciwshange near the origin. This may be attributed to the large
rately represented by this methpth]. However, the present density derivative of the Becke exchange energy functional
KLI-SIC procedure uses completelgcal potentials and is [10]. After the implementation of the KLI-SIC procedure,
computationally much less expensive. the irregular short-range behavior of the BLYBecke po-

Table | shows that the LSDAwithout the KLI-SIQ se-  tential is corrected as shown in Figs(al and Xb). This
verely underestimates the total energies and the discrepanexplains the difference of the results of the BLYP with and
with the exact values increases with the atomic nunther without the KLI-SIC. However, since the BLYfnd Becke
With the implementation of the KLI-SIC procedure, the energy functional expressidwithout the KLI SIOQ contains
LSDA shows a dramatic improvement of the total energiessemiempirical parameters that fit the total energies to the
particularly for higherZ atoms. In fact, for largeZ- atoms, exact values, the BLYP total energiésfter the KLI-SIQ
the LSDA-KLI-SIC results are considerably better thanshow an “overcorrection,” resulting in seemingly contradic-
those of the HF method and surprisingly also are somewhdory behavior. In reality, the BLYP effective one-particle po-
better than those of the BLYP with KLI-SIC. Finally, we tential after the KLI-SIC is much improved in both the short-
note that our LSDA—KLI-SIC results are essentially identicalrange(Fig. 1) and the long-rangé~ig. 2) regimes. This leads
to the recent calculation by Chet al.[25], who employed a  to marked improvement of the BLYP ionization potentials
similar procedure. (to be discussed belgwFinally, we note that the deviation

The total energies of the BLY®vithout the KLI SIQ are  of the BLYP (Becke short-range potential from the exact
in very good agreement with the exact values. The implefesult increases with the nuclear cha@yeas can be clearly
mentation of the the KLI-SIC procedure in general does noseen in Fig. 1(Ne vs Apn. As a consequence, the difference
show improvement over those without the KLI-SIC. This of the BLYP total energie¢Table ) [and exchange energies
seems somewhat contradictory to the expectation that a beffable I)] before and after the KLI-SIC increases with in-
ter xc-energy functional should give better results. To ex<reasingZ.
plore the reasons responsible for such an unexpected behav-To further understand the KLI-SIC results, we present in
ior, we plot the effective one-particle potentidfsyz(r) [Eq.  Table Il the exchange energies calculated by various meth-
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TABLE Il. Exchange energie§n a.u) of ground states of neu- TABLE IIl. Correlation energies(in a.u) of neutral atoms
tral atoms Z=<18) calculated by various exchange-correlation en-(Z<18) calculated by various exchange-correlation energy func-
ergy functionals. tionals. Also shown are the SIC energi@s a.u,).

Non-KLI-SIC KLI SIC KLI Correlation energy AEgc
Atom LSDA BLYP LSDA BLYP GG? HF P Atom BLYP? BLYP® GG° Exact! KLI-LSDA KLI-BLYP
He -0.853 -1.019 -1.026 -1.028 -1.028 -1.026 He -0.044 -0.044 -0.042 -0.042 -0.142 0.000
Li -1.505 -1.772 -1.777 -1.769 -1.784 -1.781 Li -0.054 -0.053 -0.051 -0.046 -0.244 0.000
Be -2.278 -2.659 -2.658 -2.633 -2.674 -2.667 Be -0.096 -0.095 -0.093 -0.094  -0.357 0.009
B -3.230 -3.728 -3.749 -3.701 -3.760 -3.744 B -0.129 -0.128 -0.129 -0.125  -0.488 0.011
C -4412 -5.029 -5.089 -5.007 -5.064 -5.045 C -0.162 -0.161 -0.161 -0.157  -0.636 0.010
N -5.837 -6580 -6.691 -6.564 -6.610 -6.596 N -0.193 -0.192 -0.188 -0.189  -0.801 0.008
0] -7.276  -8.156 -8.314 -8.143 -8.200 -8.175 O -0.264 -0.264 -0.261 -0.258  -0.975 0.009
F -8.972 -9.992 -10.212 -9.984 -10.025 -10.00 F -0.326 -0.326 -0.322 -0.322  -1.166 0.008
Ne -10.937 -12.102 -12.398 -12.102 -12.110 -12.11 Ne -0.383 -0.383 -0.376 -0.390 -1.374 0.005
Na -12.702 -14.009 -14.355 -13.992 -14.017 -14.02 Na -0.410 -0.409 -0.401 -0.398 -1.577 0.004
Mg -14.535 -15.990 -16.383 -15.945 -15.997 -15.99 Mg -0.462 -0.460 -0.452 -0.444  -1.782 0.014
Al -16.455 -18.057 -18.504 -17.983 -18.081 -18.07 Al -0.498 -0.497 -0.491 -0.479  -1.987 0.028
Si -18.513 -20.264 -20.768 -20.154 -20.295 -20.28 Si -0.534 -0.532 -0.527 -0.520 -2.198 0.050
P -20.711 -22.614 -23.177 -22.463 -22.649 -22.64P -0.568 -0.567 -0.559 -0.553 -2.412 0.078
S -22.915 -24.971 -25.597 -24.777 -25.021 -25.00 S -0.636 -0.635 -0.629 -0.634  -2.631 0.110
Cl -25.270 -27.481 -28.173 -27.237 -27.530 -27.51 CI -0.696 -0.695 -0.689 -0.714  -2.855 0.149
Ar -27.775 -30.144 -30.905 -29.845 -30.192 -30.19 Ar -0.752 -0.751 -0.744 -0.787  -3.084 0.193
3Referencd 14]. 3BLYP without the KLI-SIC.
bReferencd 33]. PBLYP with the KLI-SIC.

‘Referencd 14].

ods. The HF results can .be considered as the ‘.‘exact” value%eferencd%].

for the exchange energies. The LSDA resultsthout the

KLI-SIC) are significantly smaller than the HF values. How- sults shown in Tables | and Il clearly indicate that the KLI
ever, the LSDA exchange energies are markedly improve®IC is an excellent procedure for improving the LSDA en-
after the KLI-SIC. This is mainly due to the fact that the €rgy functional.

long-range potential is now implemented into the LSDA; see

Figs. 2a) and 2Zb). For the BLYP, the exchange energies B. lonization potentials for neutral atoms with Z<18

before the KLI-SIC are quite close to the HF values mainly  Thg jonization potentiallP) is defined as the difference
because the Becke exchange functidnl] was designed to  of the total energy of a parent neutral atom and its corre-
fit the HF limit. After the KLI-SIC, the BLYP exchange sponding singly ionized atom. In the independent-particle
energies, although still in good agreement with the exachpproximation such as the KS approach, the energy of the
values, show some deviation from the HF values for largernhighest occupied orbital can be also taken as the IP accord-
Z atoms. This is due to the problem of Becke’'s energy funcing to the work of Perdevet al. [27]. For the study of dy-
tional near the nucleus as discussed above. The exchangamical processes such as photoionization and multiphoton
and total energies of Ref14] show closer agreement with ionization, it is essential that the orbital energy be described
the exact values since the exchange part was performed userrectly. In Table IV we list the calculated IPs of neutral
ing nonlocal Hartree-Fock-like potentials as indicated be-atoms Z=18) based on the energy of the highest occupied
fore. In Table IIl we list the calculated values of BLYP cor- orbital for individual atom. Since both LSDA and BLYP
relation energies with and without the KLI-SIC. The overall energy functionalgwithout the KLI-SIQ do not have the
agreement with the exact values and the KLI results of Refcorrect long-range behavior, their IPs are significantly
[14] is quite good. Except for the largeZtatoms, the BLYP smaller than the experimental values by 40-50 % with the

results with the KLI-SIC are generally slightly better than LSPA results uniformly worse. With the implementation of
those without the KLI-SIC. the KLI-SIC, the ionization potentials of both the LSDA and

Also shown in Table Il are the SIC energies calculatedgtig igr:‘iaz;ggﬁhp(')rtgﬁrt%girelzggﬁgaf@r bzttfe?r\l\ih;ﬁst?%séh;
T SIC torm s mainly scsponsible fo the cifisrence of thell€, LSDA. In 2 comparison with the IPs of ReL4], our
total energies of the LSDAand BLYP calculations with BLYP—-KLI-SIC values are comparable in accuracy, better in
and without the KLI-SIC. In the limit that exact xc energy some cases, but worse in oth_er cases. Finally, we note that
functionals are used, thé SIC term should vanish. Thus th%u-r LSDA-KLI-SIC results _commd_e Wlth the recent calcu-
magnitude of the SIC energy reflects the deviation of a given tions by Cheret al.[25] using a similar procedure.
xc energy functional from the exact result. Table Il shows
that the SIC energies for the LSDA are much larger than
those of the BLYP, reflecting the well-known fact that the  Another more crucial test of the quality of energy func-
BLYP form is a more refined functional. However, our re- tionals is the prediction of the IPs or the electron affinities of

C. Electron affinities
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TABLE IV. lonization potentials(in a.u) of ground states of TABLE V. Electron affinities (in a.u) of negative ions
neutral atomsZ<18) calculated from the highest occupied orbital (Z<18) calculated by various exchange-correlation energy func-
energies by various exchange-correlation energy functionals. tionals: (a) electron affinity calculated from the highest occupied
orbital energy andb) electron affinity calculated from the differ-

Non-KLI-SIC KLI-SIC KLI ence of the total energies between the negative ion and the corre-
Atom HF?® LSDA BLYP LSDA BLYP GGP Expt.°  sponding neutral atom.

He 0.918 0.517 0.585 0.918 0.950 0.945 0.904 LSDA—KLI-SIC BLYP—KLI-SIC GG?2
Li 0.196 0.100 0.111 0.196 0.194 0.200 0.198 |gn ) (b) (@ (b) (@ (b) Expt.”
Be 0.309 0.170 0.201 0.308 0.323 0.329 0.343

0.310 0.120 0.143 0290 0.304 0328 0305 H 0046 -0.012 0.063 0.019 0.028
0433 0196 0218 0412 0422 0448 0414 Li~ 0015 -0003 0023 0017 0024 0016 0.023

B
C

o) 0.632 0210 0266 0479 0523 0559 0501 C 0064 0049 0068 0051 0.083 0.028 0.046
F 0.730 0.326 0377 0645 0680 0.714 0640 O 0064 0026 0.09 0.053 0.110 0.017 0.054
N
N

e 0850 0443 0492 0808 0837 0884 0793 F 0160 0102 0185 0124 0208 0.082 0.125
a 0182 0097 0107 0.187 0.184 0189 o0.89 Na 0014 -0.001 0022 0018 0022 0.015 0.020

Mg 0253 0142 0.168 0.256 0.267 0273 0281 Al 0016 0015 0017 0015 0.024 0.007 0.016
Al 0210 0086 0102 0192 0198 0222 0217 Si- 0047 0048 0049 0047 0.065 0.040 0.051

Si 0.297 0.144 0.160 0275 0.279 0.304 0.300 P~ 0.001 -0.001 0.037 0.029 0.048 0.022 0.027
P 0.392 0.203 0.219 0358 0.361 0.399 0.385 S 0067 0.057 0.090 0.080 0.106 0.065 0.076
S 0437 0174 0219 0344 0375 0404 0381 € 0126 0115 0146 0133 0174 0122 0.133

Cl 0506 0254 0295 0447 0472 0506 0.477 Fpgrorcncaroy
Al 0591 0334 0373 0549 0571 0619 0579 breferencd3d]

*Referencd 30].
bReferenciM%. based on the Iowes_t-order perturbation theory. The first ap-
‘Referencd 34]. proach is the direct extension of the Kohn-Sham

independent-particle self-consistent-fie §CPH approach

negative ions. It is known that within the standard KSWith the use of the LDA for the density functiong85]. In
scheme using local energy functiondiich as the LSDA  this approaciioften referred to as théime-independeritDA

and BLYP forms, the electrons are too weakly bound and (LSDA) method, the screening effect or the electron polar-
there is no convergence for negative ions. With the use of thi#ation effect induced by the external field is not considered.
KLI-SIC procedure; however, we are able to calculate theAnother more rigorous approach, taking into account the
electron affinities for most negative ions. The results ardime-dependent perturbation and the screening effects, is
shown in Table V. Here we present the electron affinities?@sed on the time-dependent linear density response theory
obtained both from the energy of the highest occupied orbitai35—37. The LDA or LSDA is often used along with this
[shown in column(@)] as well as from the energy difference a@PProach[This procedure is usually referred to as thee-
between the negative ions and their corresponding neutr&lependentDA (LSDA) method] Both time-dependent and
atoms[shown in columr(b)]. For closed-shell negative ions, time-independent LDALSDA) methods have been applied
our results are in reasonable agreement with the experimenttd the study of dynamical polarizability and photoionization
values. The predicted electron affinities for open-shell negaC’0ss sections of atoms and molecul8S]. The results of
tive ions are less satisfactory as we use a spherical symméme-dependent LDA calculations are found to be generally
trized density without polarization. One noticeable trendMore accurate than those of time-independent LDA calcula-
coming out from our KLI-SIC studies is that the two differ- tions[35], indicating the importance of including the screen-
ent estimations of the electron affinitiEmlumn(a) and col- NG effects in the study of dynamical properties. However,
umn (b) in both the LSDA and BLYP with the KLI-SIC ~ Since both the LDA(LSDA) and more accurate forms of
merge to each other as the atomic numbencreases, indi- density functionals such as the BLYP functional do not sup-
cating that the Koopmans theorem is more valid for heaviePOrt the correct long-range Coulombic behavior as shown in

atoms. However, the results of columfas and (b) are quite Figs. 4a) and Zb), the electrons are too weakly bound. Pre-
different for the KLI calculations in Ref.14]. vious time-dependent LDA studi¢8,35] of the photoioniza-

tion of rare gas atoms, for example, did not exhibit the au-
toionizing resonances. Proper treatment of the long-range
potential in DFT is essential to the study of Rydberg series,
autoionizing resonances as well as the bound-free photoion-
ization and multi-photon ionization processes. Recently,
Steneret al.[38] have used the model potential of van Leeu-
wen and Baerendg39] for the study of photoionization of
We now consider the extension of the OEP-KLI methodrare gas atoms. Since the Van Leeuwen—BaergWds)

with SIC procedure to the dynamical process of photoionizapotential implements the—<{1/r) long-range Coulomb talil,
tion of rare gas atoms. In the context of DFT, there are twahey were able to study the singly excited autoionizing reso-
general approaches for the study of photoresponse; both amances. However, the VLB-type model potential is not ob-

IV. TIME-DEPENDENT LINEAR DENSITY RESPONSE
THEORY WITH OPTIMIZED EFFECTIVE
POTENTIAL AND SELF-INTERACTION CORRECTION:
APPLICATION TO PHOTOIONIZATION

OF NEON ATOMS
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tained from the functional derivative of some xc-energy F (NN i(r ) (r')
functional and thus is not completely compatible with DFT.  xogdr,r', @)= 2 (ni—n;) !
In this section we present the extension of the OEP—KLI-SIC

procedure to the time-dependent linear density response

theory, allowing for a DFT approach for the study of photo-
ionization and autoionizing resonances.

We start from the independent-particle approximation an
consider the photoexcitation from an initial stéiteto a final
state|j), where|i) and|j) are the solutions of the one-
electron OEP equations

(33

o—(gj—¢&)+in

wherein is an imaginary infinitesimal used to ensure the
utgoing wave boundary conditions. The summation aver
ndj runs over all the bound and continuum states. Within
the SCF approximation, we can replace E2fl) with

5p(r,w)=f)(OEF(F,I",w)VSCF(I”,w)dSI", (34)

{— Ev2+v0E'°(r‘>}<zsi(r‘>=ai¢>i<r*>. 27
2 where
HereV°E(r) is the optimized effective potential obtained by St @)
the KLI-SIC procedure outlined in Sec. Il. For photoioniza- VSCR(r, ) =Ve(r, ) + f p—’f" 3
tion processes, the final states are unbound solutions of Eq. Ir—r'|
(27) with ¢ replaced bys k2, wherek is the photoelectron V(1)
momentum. The partial cross section is given by the usual xe - 8p(r,w). (35)
expression () 1)
2w 272 Herepo(r) is the ground-state electron density, for example,
ai(w)=—3 Tni; (A=n)KilrliYPo(w—ej+ep), V.= — (6/7)Y3p(r), for the LSDA. The normal procedure

is to solve Eqgs(34) and(35) iteratively until convergence is
(289 ; )
reached. However, an alternative and simpler procedure can

wheren; andn; are the occupation numbers of the initial and be obtained by substituting E(34) into Eq. (35) to get

final states, respectively. The total cross section is obtained
by summing over all the initial states, VSCF(r,w):Vext(r,w)+f K(r,r',@)VSCRr’ w)d3r’,
(36)

o(w)=2 oi(w). 29
! with

We next discuss the extension of the OEP—KLI-SIC method
to the linear density response the¢8;36—3§, which con- K(r,r’,w)zf
siders the effect of a weak time-dependent perturbation po-
tential on the electron density. The frequency-dependent in-
duced densitySp(r,w) can be obtained by the Fourier ‘Nxc(r)
transformation of the time-dependent field-induced density ap(r r)

op(r,t),

XOEF(r/!rllrw)

|r_r" d3ru

|po(r)'XOEF(",l",w). (37)

The integral equatio36) can now be recasted into the lin-
1 (= . ear equation form
Sp(r,w)= Zf_ Sp(r,t)e'“tdt. (30

_ L _ f [S(r—r")—K(r,r'",0)]VSRr',w)=V(r,0),
The induced density is related to the external potential by the

relationship (38)

from which VSCH(r,») can be readily solved by discretizing
‘Sp(r"”):J X(r,r, @)V’ w)d3r ', (31)  ther space. Substituting the results\6¥“"into Eq.(34), we
obtain the desired induced densigp(r,). Finally, the

, . ... Cross section can be obtained by the well-known relationship
where x(r,r',w) is the frequency-dependent susceptibility

and
dw
‘ o(w)= Tlm[a(w)], (39
VeY(r,w)=z2 (32
is the dipole external potential. The susceptibility can be deWherea() is the dynamical polarizability given by
termined by means of the first-order time-dependent pertur-
bation theory{40] and expressed in terms of the eigenfunc- _ ex , SCF .
tions {¢(r)} and eigenvaluese,} of the solutions of the ~ (@)= VELr @) xoerT 1 @) V(T @)
OEP equation(27) (40)
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The key issue here is how to calculate the susceptibility 5 12 —r r . .
based on the OEP. Since the susceptibility can be written as 2 N (a) TDLSDA ~ —
a summation over all orbitals, we can calculate the contribu- § 101 { |t LSDA - 7
. o ! . = ; " Experiment +
tions of the susceptibility by the Green’s-function method as § sl
discussed if9]. First we rewrite Eq(33) as 8
(=]
o 61
c
=S n G (1) i) i(r)df (r') S a4t
: ,w = . -
XOE o w—(gj—g)+iny 2
2 2F
> (1) gi(r)i(r") i (r') g 0
- 5 n; w—(s;—8)+in 0 50 100 150 200 250
Photon Energy (eV )
¢y (r')
=D, nig(r)gi(r’ —_— 12
Ei |¢| ( )¢|( )2 w_(81_8i)+|77 g T T ITDLSDAn —
g ol {b) ELSDA o ]
2 ; . xperiment  +
+ 2 nigi(r) g (r') g ol
i w
2
&5 (N gy(r') s °r
XZ - c
T —o—(gj—e)—in I
N
. § 2t
=2 nigF (N1 G110+ +in) s |
i £ 0
- 0 50 100 150 200 250
+2 nigi(r) ¢ (r')G*(r,r';8i— w+in) Photon Energy ( eV )
I
(41) FIG. 3. Total photoionization cross sections of time-independent

, . . . and time-dependent calculations with the LSDA-KLI-SIC poten-
and then expand the Green’s function in terms of spherical,|: (5 presentab initio results andb) present results calculated

harmonics with the 2s orbital energy replaced by the experimental value.

G(r,r";E)=2, YX(O)GL(r,r";E)Y (F"), (420 [To test the numerical accuracy of the Green's-function
L method, we have calculated the photoionization cross sec-
_ _ tions from Eqs(39) and(40) usingV®instead ofvSF and
wherelL is a compact notation for the angular momentumcompared the results with those calculated directly from Eq.
quantum numbersl,m. The radial Greens's function (28). The two sets of results are in agreement with each

G (r,r’;E) can be determined by other. In the following discussions, all the time-independent
cross sections were obtained from E(39) and (40) using
ji(r=)hy(r=) V& instead Of\/SCF.]
GU(rrBE)y=—r—F7, (43 To illustrate the usefulness of the optimized effective po-
WL, hy] tential method with the KLI-SIC for dynamical processes,

. we have performed the calculation of photoionization cross
wherejr.< (r>.) refers tq the smalle(layger) distance ‘?ff sections of the Ne atom using both time-independent and
andr’. ji(r) is the_partlal wave solution of EC{27_)_ with time-dependent methods. Figure 3 shows the results of time-
energyE and satisfies the proper boundary condition at thQndependent LSDAdenoted LSDA in the figupeand time-
origin. Similarly, h(r) is the partial wave solution of Eq. dependent LSDAdenoted TDLSDA in the figudecalcula-

(27) with energyE and satisfies the outgoing boundary con-tions, both with the KLI-SIC. Although our calculateds 2
dition asr — for E>0 or the decaying behavior solution as orbital energy with the KLI-SIC has improved the LSDA
r—oo for E<0. W[j,,h/] is the Wronskian ofj;(r) and value from 1.266 a.u. to 1.645 a.u., there is still some dis-
h,(r). With the calculated Green’s functions, we can con-crepancy from the experimental value 1.782 §4d]. [The
struct the susceptibility from Ed41). Once the susceptibil- calculated » (OEP—KLI-SIQ orbital energy 0.808 a.u. is

ity is determined, the self-consistent fiafd“"is obtained by much closer to the experimental value 0.793]alo. see the

the solution of Eq(38) and the cross section can be calcu-influence of such a ® energy shift to the photoionization
lated by Egs(39) and (40). The linear response method is cross sections and the resonance profiles, we presented in
usually referred as @ime-dependentechnique. If we use Figs. 3a) and 3b) two sets of data, one from theb initio

V& instead of VSCF in Eq. (40) we reproduce the cross- OEP—KLI-SIC calculationgFig. 3@)] and the other from
section expression for the independent-particle approximadsing the experimental value of the ®rbital energy in the
tion. The independent-particle approximatidtyg. (28)] will Green’s-function calculatiori$-ig. 3(b)]. Also shown in both

be referred to as théme-independeninethod since it does Figs. 3a) and 3b) are the recent experimental resyi]

not take into account time-dependent field-induced densityfor comparison.
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T T T T TABLE VI. Comparison of line profile parameters of autoion-

o) ..
S 600t i izing resonances for Ne atom.
< 2s->4p
g 25->3p oo (Mb) T (meV) E, (eV) g p?
[
g 400 1 2s—3p
8 Ref.[38] 8.18 13.90 46.253 -3.69 0.514
s 200 k i TDLSDA? 8.37 16.49 41.714 -2.64 0.749
§ ’ TDLSDA" 8.28 18.04 45.453 -2.40 0.764
S Expt.°© 8.6+0.6 13-2 45546 -1.60.3 0.7+0.07
S (/_J 1 4
2 0.0 1 1 L 1 Cl 11.7 -1.61 0.76
o 44.0 45.0 46.0 47.0 48.0 49.0

Photon Energy (eV ) 2s—4p

Ref. [38] 7.98 3.86 47.397 -3.95 0.505
FIG. 4. Photoionization cross sections near taeshp resonant TDLSDA?  8.20 4.73 43.361 -2.82 0.765

transitions, showing the autoionizing resonance profiles. The resultSDLSDA ° 8.06 5.14 47.098 -2.62 0.783

are obtained by the TDLSDA with the KLI-SIC potential. The ex- Expt.© 8.0+0.6 4515 47.121 -1.603 0.7-0.07

perimental value of the2orbital energy is used in the calculation. ¢ d 3.8 -1.75 0.76
2s—5p

Figure 3a) shows that the total cross sections of the time-Ref_ [38]

. . . 7.91 1.62 47.814 -4.05 0.502
independent LSDA calculations are substantially larger tha;p

DLSDA @ 7.94 2.02 43.361 -2.96 0.765
DLSDAP 7.91 2.20 47.683 -2.72 0.783
Expt.© 8.2+ 0.6 2+1 47692 -1.605 0.7+0.14

the experimental values in the broad peak region and a sm
bump appears near thes 2onization threshold due to the
contribution from the photoionization of thes2evel. Above
the 2s ionization threshold, the cross sections decreasepresentab initio TDLSDA results.

monotonically. The TDLSDA cross sections show significant®Present TDLSDA results with thes2orbital energy replaced by
improvement and close agreement with the experimentahe experimental value.

data in the broad peak region followed by a series of sharpreferencd44].
resonances due tes2»np transitions near the2threshold.  9Referencd45].
Above the 3 ionization threshold, both the LSDA and

TDLSDA results have some small discrepancy with the ex-

perimental data. However, the LSDA and TDLSDA results ;4 TpspaP
merge to each other in the higher-energy regime and follo
cIo;er the experimental va_lues. Figur(da)Bshows the_effect shown in Table VI are the experimental valugst], the
of implementing the experimentals2orbital energy in the .o ration-interaction(Cl) (R-matrix) results [45], and
calculations. Apart from the slight shift of the resonance POthe VLB model potential result38] for the comparison.
sitions, the overall photoionization cross-section profiles ar%xcept for the linewidth of &8-3p transition, the

notl sig_rliﬁzantly ﬁﬁeCtﬁd'd iis of the photoionizati TDLSDA—KLI-SIC results are in closer agreement with the
n Fig. 4 we show the detalls of the photoionization Crossg, e imental dat#d4] than those of model potential results
sections in the 8- np resonance region with thes2rbital 38]. The q values of the present TDLSDA and model po-
energy ‘FOfTeCt.ed bY the expgnmental value. TO determ'ngential[%] calculations are somewhat larger than the experi-
the autoionization widths, we fit the resonance line shapes thental and Cl values. With thesorbital energy replaced by
the Fano profilg43] the experimental value, our predicted resonance positions
E, for 2s—3p, 4p, and 5 are in very close agreement
(q+x)? with the experimental values, indicating that the excited-state
2 2
o(w)=00| p 1+x2 P +1], (44) properties are better described by the present KLI-SIC po-
tential than by the VLB model potentifB8].

refers to the same calculation except that the
V\éxperimental value is used for thes Drbital energy. Also

with
V. CONCLUSION
X= w_Er. (45) In conclusion, we have presented in this paper a DFT
iT procedure for improving the accuracy of the conventional

density functionals for the treatment of ionization potentials,
Here oy is the cross sectiory is a line profile indexE, is  excited-state properties, and dynamical processes. Both the
the resonance positiod; is the resonance half-width, and short- and long-range effective one-particle potentials are
p? is the correlation coefficient, which gives the proportion properly treated by the present OEP—KLI-SIC method. Fur-
of the continuum that interacts with the autoionizing states.ther, only thelocal one-particle potential is used in this
The fitted resonance parameters are listed in Table VImethod, leading to a computationally efficient technique for
Two sets of our results are presented: TDLSDéfers to the  DFT calculations of both ground and excited states. The use-
ab initio KLI-SIC calculations using the TDLSDA method fulness and accuracy of the proposed KLI-SIC procedure are
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