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Nearly 100 low-, moderately high-, and high-lying singly and doubly excited states of He, Li, and Be have
been calculated using a nonvariationalork-functionbased exchange potential within the nonrelativistic
Hohenberg-Kohn-Sham density-functional the@yT). The nonlinear gradient included in the Lee-Yang-Parr
correlation functional is used to incorporate the correlation potential.géneralized pseudospectnalethod
is used fornonuniformand optimal spatial grid discretization and solution of the Kohn-Sham equation to
obtain accurate eigenvalues, expectation values, and radial densities for both ground and excited states. The
results are compared with the available theoretical and experimental data. The discrepancy in the calculated
singly excited state energies is within about 0.01% for(fée other atoms, it is less than 0.2%while that for
the doubly excited states of He is well within 3.6%. The deviations in the calculated single- and double-
excitation energies for 31 selected states are in the error ranges 0.009-0.632 % and 0.085—1.600 %, respec-
tively. The overall agreement of the present results is quite gratifying, especially in the light of DFT’s diffi-
culties in dealing with excited states. The exchange-only results are practically of Hartree-Fock quality, and the
correlation-included results are usually slightly overestimated. The present method offers a simple, computa-
tionally efficient and general scheme for accurate calculation of multiply excited Rydberg states within DFT.
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[. INTRODUCTION Recently, an exchange potential based on the work-
function approachl7,18 was proposed for excited state cal-

In the past decades density-functional the@T) [1,2]  culation in many-electron atomic systems. The method is
has found wide applications in many areas in theoreticaimple, computationally efficient, and has shown consider-
physics and chemistry, especially in the electronic structur@ble success for some singly, doubly, and triply excited
calculations of atoms, molecules, and solidsi]. However, ~ states, low and moderately high states, and valence and core
the majority of the applications are restricted to the grouncpxcitations, as well as th.e autoionizing and _satellite states
states. There are several problems associated with the caldi19—-23; see[6] for a review. The work-function formal-
lation of excited states within DFT, viz., the complete abanS™ iS not derived from the usual variational principle for

doning of the state-function concept, the unavailability of the®NEergy In the sense that the exchange potential is not ex-

Hohenberg-Kohn theorem for a general excited state parall ressible asﬁEx[p]/5p [as in the u_sua_l Kohn-Sh.arﬁKS)
to the grgund state. and the ?ack of accurate excﬁlangg':ﬂ; rather, it is based on thghysicalinterpretation that

correlation(XC) energy density functionals, etc. Moreover., he electron moves in the electrostatic potential arising from

. : . . the Fermi hole charge distribution. Further, it has been
while the highest-occupied orbital energy corresponds to thghown [24] that the spin-polarized version of the work-

negative of the ionization potentidor well-behaved poten- ¢ ntion exchange potential can be obtained as an approxi-
tials vanishing at infinity, energies of other occupied and mation to the accurate spin-polarized X-only KS potential,
unoccupied orbitals have no rigorous correspondence to ﬂ\ﬁz_, the approximate optimized effective potenti@EP.
excitation energies. Nevertheless, it has been shown recentiy,ig approximate OEP is an accurate representation of the
[5] that the unoccupied true Kohn-Sham eigenvalues cagyact numerically derived X-only OEP, obtained analytically
also provide good excitation energi@ghich the commonly  pased on the Green's function analysis of the OEP integral
used approximate density functionals usually do not satisfy equation. It satisfies many key analytic features of the exact
of course, not to mention the cumbersome wave function an&S potential, viz., it reduces to the exact KS result in the
Hamiltonian orthogonality requirements met in any quanturminhomogeneous electron-gas limit, approaches/r as r
mechanical calculations of excited states. Nevertheless, ngoes to infinity, obeys Koopman’s theorem, etc.

merous attempt{ 3]; see[6] for a review have been made All the previous DFT calculation$6,19—23 using the

in this direction over the years; e.g., the ensemble densitywork-function approach, however, have employed a
functional method 7—11], the method based on partitioning Numerov-type finite-differencé~D) scheme for the discreti-

of the wave function[12], the time-dependenfTD) DFT  zation of the spatial coordinates and the solution of the
approach13-1§, etc. Although good results have been re-Kohn-Sham equation. Due to the existence of the Coulomb
ported for singly excited states of low-lying states, to oursingularity at the origin and the long range nature of the
knowledge, few results exist for multiply excited states, e.g.Coulomb potential, the FD method requires a large number
the doubly, and triply excited states, particularly those in-of grid points to achieve reasonable accuracy even for
volving Rydberg excitation of many-electron systems, usingground state calculations. In this article, we employ a differ-
these methods. ent numerical method, namely, the generalized pseudospec-
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tral (GP9 procedure]25-27, to achieve high accuracy as Herey(r,r’) is the single-particle density matrix spherically
well as to facilitate the Rydberg state calculations. The GP%weraged over electronic coordinates for a given orbital an-
method allowsnonuniform spatial grid discretization and gular quantum numbegp;(r) =Ry (r)Y,m(L) is the single-
considerably more accurate calculations of eigenvalues anghrticle orbital, andp(r) is the total electron density ex-
wave functions using only a modest number of grid pointspressed in terms of the occupied orbitals,

The GPS method and its time-dependent exter€8hhave
been applied successfully to the study of electronic structure
[29], and multiphoton dynamics of many-electron atoms and
molecules in intense laser field80,31], as well as to the
study of high resolution spectroscopy of Rydberg H atoms irfFor spherically symmetric systems, Ef) can be simplified
external fieldd32]. The main motivation of this article is to as[18]

explore the feasibility of extending the GPS method and the

p<r>=2 | (r)]2.

work-function formalism for accurate DFT calculation of 1 o001 ,

singly and doubly excited states, especially those highly ex- Exr(r)=- Ef Pl )E Ir—r'| dr'dQ,. (5
cited Rydberg states that have not been achieved before

within DFT. While in the present work we report results only Using the expansion

for singly and doubly excited states, there are reasons to

hope that this procedure should be equally accurate and ap- 1 1 . r!
plicable for other excitations, e.g., the triply and quadruply —————=4m > Y ()Y iy () =77, (6)
excited states, satellites, etc., as well. r=r'| "o 21741 r>

The layout of the paper is as follows. Section Il gives an

. ) ) . we obtain
outline of the formalism along with the numerical method
employed. Section lll presents a discussion on the results 1
while Sec. IV makes a few concluding remarks. Ei(r)= > Rni(M Ry (r")Rpr(r)
2’7Tp(|’) n,I,m,n’,I’,m',I”
Il. METHODOLOGY r'” (21+1)
X X . ) X XRn/|/(r,) - |"+l 12 I"—
In this section, we first outline the work-function method- or r- 21'"+1)

ology for the excited states. Then we present the generalized S ) R
pseudospectral method for the solution of the KS equation. XCA s mm" =m,m")C(11"17;000,  (7)
Assuming that a unique local exchange potential exists for

. . ; . where R, (r) denotes the radial part of the single-particle
a particular exmted_ state, one can physically mte_rbtétlS] orbitals and the&C's are the Clebsch-Gordan coefficiefi38].
it as the work required to move an electron against the ele

tric field €,(r) arising out of the Fermi hole charge distribu—q\IOW th? mtegra! In Bq(2) can be written as an integral over
. o S : : the radial coordinate only,
tion. The electric field, as such, is given Bgtomic units

employed unless otherwise mentioned r
vx(r)=—f Er(r')dr”. ®
px(r,r)(r=r’)
Ex(r)=f Ir—r'[3 dr. @) While the exchange potential(r) can be accurately calcu-

lated, the correlation potential(r) is unknown and must be
épproximated. In the present calculation, we have used the
generalized gradient-corrected correlation energy functional
of Lee, Yang, and PaiiLYP) [34]. With this choice ofv,(r)

and v.(r), the following KS-type differential equation is

The exchange potential with which the electrons move i
then given by the line integral

r
Ux(r):_J E(r)-dl. 2) solved:
1v2 —
The worku,(r) against the force field due to the Fermi hole ~ 3Vt vedD vkl i) =8 iln), ©)
charge can be determined exactly since the Fermi hole is
known explicitly in terms of orbitals as wherev(r) is the usual Hartree electrostatic potential in-
cluding electron-nuclear attraction and inter-electronic Cou-
[y(r,r")|? lomb repulsion, and,(r)=uv,(r) +uv(r).
px(r,r')=— W' 3 In this work, we extend the generalized pseudospectral

method for thenonuniformand optimal spatial discretization
and solution of the KS equation, E). The procedure has
been demonstrated to be capable of providing high precision
solutions for the eigenvalues and wave functions for the
rr’)= * (Y bi(r'). 4 study of electronic structurf29], multiphoton processes in
yr.r) Z ST @ strong fields[27,28,30,3], and Rydberg atom spectroscopy

where
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and dynamicg32]. In addition, the GPS method is compu-  TABLE I. Comparison of the computed negative total energies

tationally orders of magnitude faster than the equal-spacingnd highest-occupied orbital energies of He, Be, Ne, Mg, an@Ar

FD methods. In the following, we briefly outline the GPS a.u) as obtained from the present X-only calculation with the lit-

procedure appropriate for the present DFT study. erature data. Numbers in parentheses denote the absolute percent-
The main feature of the pseudospectral method is to ap?9¢ deviations rele_ltivg to the literature value_s. HF and IE stand for

proximate anexact function f(x) defined on the interval Hartree-Fock and ionization energy, respectively.

[ —1,1] by the Nth-order polynomialf y(x),

Atom —E(X only) —EMHP?*  1E(X only) IE(HF)?

He 2.86160.0035 2.8617 0.918®.0000 0.9180
Be 14.572€0.0023 14.5730 0.3108©.3880 0.3093
Ne  128.54340.00289 128.5471 0.854®.5127 0.8504
and ensure the approximation to eeactat thecollocation Mg 199.60960.0025 199.6146 0.2568.3830 0.2530

N
f(x)sz<x>=j§0 f(x)g;(x), (10)

points %, Ar  526.80620.002) 526.8174 0.589©.2369 0.5910
fn(x) =1(x;). (1) aReferencd3s.
The present work employs the Legendre pseudospectral 11 @ 1
method wherexo=—1, xy=1, andx;(j=1,... N—1) are I:|(x)= _ = Il FV(I(x)+ Vo (x), (18
determined by the roots of the first derivative of the Leg- 217 (x) dx? r'(x)
endre polynomiaPy(x) with respect tax, namely,
where
Pu(xj)=0. (12
3(r//)2_2r///r/
In Eq. (10), g;(x) are the cardinal functions defined by Vin(X)= 8(r')* : (19)
2 ’
9i(x)=— 1 (1=x9)Pn(x) (13) This leads to a symmetric matrix eigenvalue problem. Note
! N(N+1)Pn(Xj) X=X ' that for the mapping used in E¢L6) V,(x)=0. Therefore
. . discretizing the Hamiltonian by the generalized pseudospec-
and they satisfy the unique propedy(x;)= 9;/; . tral method leads to the following set of coupled equations:
The eigenvalue problem for the radial KS-type equation \
1
N (2) —
with i=1,...N-1, (20
. d? =1 (x; : N1-1
H(r):_id__}_V(r)’ (15) A] r (Xj)f(xj)[PN(X])]
;

=[r" ()12 (x))[PN(x)] (21
for the structure and dynamics calculations involving a Cou- @ ) o
lomb potential typically has a singularity problemrat 0, Here Dj,_j represe_nts the symmetrized second derivative of
and long-range- 1/r behavior. This usually requires a large the cardinal function with respect to
number of grid points in thequal-spacindinite-difference @) ) @) .
methods, which are not feasible to extend to Rydberg state Dy =Ir ()1 diilr ()1 (22
calculations. This can be overcome by first mapping the
semi-infinite domainr e[0°] into the finite domainx
e[ —1,1] by the mapping transformation=r(x) and then
using the Legendre pseudospectral discretization technique. 1 (N+D(N+2) 1 i=i,
We use the following algebraic nonlinear mapp[25,26: @ r'(x)  6(1—x;)? r'(x)’ 23

1+x " 1 1 1

EI
(16) F(x0) (=% 1/ (%)) i

==l e

where L ande=2L/r ,,, are the mapping parameters. Intro- Equations(1) and (2) dictate the exchange potential for a

ducing particular atomic electronic configuration. Equatit®) is
then numerically solved to achieve a self-consistent set of
Y(r(x))=+r’ (x)f(x) (17)  orbitals, using the GPS method. These orbitals are used to

construct various Slater determinants arising out of that par-
and following the symmetrization procedUi25,26], we ob- ticular electronic configuration and its energies computed in
tain the transformed Hamiltonian as the usual manner. E(D;) andE(M;) denote the energies of
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TABLE II. Calculated singly excited triplet state energies of He TABLE Ill. Calculated singly excited state energies of Li and
(in a.u) along with literature data for comparison. Numbers in pa-Be (in a.u) along with the literature data for comparison. Numbers
rentheses denote the absolute percentage errors with respect to theparentheses denote the absolute percentage deviations with re-

literature data. spect to the literature data.
State —E(X only) —E(XC) —E(literature State —E(X only) —E(XC) —E(literature)
1s2s3S 217420  2.1754%0.0101 2.17523 Li
2.17428 1s?3s2S 7.30966  7.357 730.0515 7.35392
1s3s3S 2.06793  2.068900.0102 2.068 69 7.310 2%
1s4s3s 2.03606  2.036 710.0099 2.03651 1s?4s?S 7.27466  7.319780.0193 7.31837P
1s5s3s 2.02242  2.022640.0010 2.02262 1s?5s2S 7.25996  7.304660.0130 7.30339
1s6s3S 2.01530  2.0153%0.0010 2.01537 1s22p 2P 7.36486  7.412040.0259 7.410 16
1s7s°S 2.011 07 2.011 1%0.0010 2.01113 7.36507
1s8s3s 2.00840  2.008 4%0.0010 2.008 43 1s?3p 2P 7.29295  7.338620.0199  7.33716
1s9s3S 2.006 58 2.006 600.0000 2.006 60 7.29319
1s10s3S 2.005 30 2.005 310.0000 2.00531 1s?4p 2P 7.268 59 7.312620.0098 7.311 96
1s11s°S 2.004 31 2.004 310.0000Q 2.004 31 1s°5p 2P 7.257 56 7.300530.0031 7.300 36
1s12s3S 2.00365  2.0036%0.0000 2.003 65 Be
1sl3s zs 200310 2.003100.0000 2.00310 1s?2s3s3S  14.37798 14.429170.1996 14.42629
1s14s3s 2.00266  2.002660.0000 2.002 66 5 3
1s1563S  2.00231  2.002310.0000  2.00231 ls'2s4s’S  14.32506 14.37090
1516835 500203 500203 1s22s5s3S  14.305 62 14.349 96
1s?2s2p3P 1451068 14.566 6(0.0300 14.562 28
3Referencd 36]. 5 5 1451150
bHE result, Ref[37]. 1s?2s3p P 14.34826 14.397 90.0199  14.39516
14.348 86
different determinants and multiplets, respectively, corre- 1s°2s4p°P  14.31462 14.35910
sponding to a given configuration, then multiplet energies are 14.314 64
calculated by following the diagonal sum ryi&,19—-23 1s?2s5p®P  14.30073 14.339 34
8HF result, Ref[38].
E(Mj)= Z AjE(D). (24 bReferencd39).

‘Referencd 40].

As an example, consider the calculation of individual muI-:HF result, Ref[41].
tiplets corresponding to thasnp configuration, which has “Referencd42].

associated with it 12 different determinants for the three dif- -
~“in parentheses denote the absolute percentage deviations
ferent values ¢ 1,0,— 1) of Xm; and=mg. Of these, there is P y g

- : ! =1 C with respect to the HF results. While the total ground state
a sw;gle determinant correspondingen=2ms=1; thisis  gnergies have never fallen below the HF results, the ioniza-
the °P term. There are two determinants fim;=1 and  tjon potentials show both positive and negative deviations.
2ms=0. The sum of these two determinants’ energy equalshe agreement of the calculated results with the HF values is
the sum of the’P and 'P terms. Hence the energy of tH®  generally excellent. The deviations in energy range from
term can be obtained by simply subtracting e term en-  0.0021% to 0.0035%, whereas those for the ionization poten-
ergy from the above sum. tials go from 0.000% to 1.383%.

Two sets of calculations are performed for the singly ex- Considerable attention has been paid by both experimen-
cited states; the solution of E¢9) with v,.=v, and v, talists and theoretician@ising ab initio multiconfiguration
=v,+vc(vLyp). For the doubly excited states we presentinteraction methodsto the study of the excited states of
only the second set. The convergence criteria for the poterfnany-electron systems, especially for I@atomic systems.
tial and energy are I6 and 108 a.u., respectively. In our Some of these literature data will be used to calibrate the
calculations, up to 500 radial grid points are used to achiev@ccuracy of our results. As the present X-only results are
convergence. quite accurate an.d should be compar_able to th(_e HF resu!ts, to

put our results in proper perspective, for singly excited
states, we have presented the individual state energies com-
puted from two sets of calculations, namely, the X-only and
with both exchange and correlation included, with the aim of

First we make a comparison of our ground stateisolating the errors generated by the approximation in the
exchange-(X-)only results with the Hartree-FockHF) correlation functional. However, for the doubly excited states
theory. Nonrelativistic ground state energies and higheststudied in this work, we could not find suitable literature data
occupied orbital energies are presented for He, Be, Ne, Mdpr direct comparison with the X-only results; accordingly
and Ar along with the HF datg85] in Table I. The numbers they are

IIl. RESULTS AND DISCUSSION
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TABLE IV. Calculated doubly excited staten¢?,nsn'p) ener- TABLE V. Comparison of the calculated doubly excited state
gies of He(in a.u) along with literature data for comparison. Num- (np?) energies of Hein a.u) along with literature data. Numbers in
bers in parentheses denote the absolute percentage errors with parentheses denote the absolute percentage errors with respect to

spect to the literature data. the literature data.
State —E(XC) —E(literature) State —E(XC) —E(literature)

2s?1s 0.766 37(1.48 0.777 8% 2p?'D 0.692 72(1.31) 0.701 9%

3s?1s 0.34578(2.19 0.35354 2p23p 0.706 26(0.60 0.71056

4s%1s 0.196 59(2.19 0.200 99 3p?'D 0.315 40(0.04 0.31554

55?13 0.127 54(2.12 0.13030 3p?3p 0.33086(1.56 0.336 09

6s?1s 0.088 08(3.05 0.090 88 4p?'D 0.18095

7s?1s 0.065 24(3.35 0.06 7% 4p?3p 0.18353

8s?1s 0.04855 5p2 1D 0.116 10

9s?1s 0.03889 5p23p 0.117 64

10s? 1S 0.03084 6p% D 0.081 15

11s?1s 0.02503 6p? 3P 0.08231

125?13 0.02121 7p?'D 0.059 80

135?13 0.01811 7p? 3P 0.060 40

14s?1s 0.01555 8p? D 0.045 65

1552 1S 0.01348 8p?3p 0.046 20

1652 1S 0.01176 9p? D 0.036 04

17s%1s 0.01132 9p?3p 0.036 50

2s3s3s 0.60056(0.39 0.60258 © 10p? D 0.029 20

2s3ss 0.58328(1.12 0.589 89 10p2 3P 0.029 67

3s4s3S 0.28282(1.59 0.287 28 11p% D 0.024 14

3s4s'S 0.27302(2.86 0.281 07 11p? P 0.02454

4s5s3S 0.163 24(3.59 0.169 3£ 12p2 D 0.020 28

4s5s'S 0.160 07(3.41) 0.16573 12p2 3P 0.02067

5s6s 3S 0.10721 13p2 D 0.01728

5s6s 1S 0.102 77 13p2 3P 0.01764

2s2p 3P 0.767 70(0.95 0.760 49 14p? D 0.014 90

2s3p 3P 0.58253 0.58467()%0.579 03—)¢ 14p23p 0.01523

2s4p 3P 0.54558 0.542 83¢)%0.539 56( )¢ 15p2 1D 0.01297

2s5p 3P 0.53121 0.52571¢)%,0.523 94()¢ 15p2 3p 0.01329

2s6p 3P 0.52367 0.51211¢)%0.516 08¢ )¢ 16p% 1D 0.011 40

2s7p 3P 0.51924 0.51219¢)90.511 55¢ )¢ 16p23p 0.01170

3s3p P 0.34918(0.39 0.350 38 17p2 D 0.01010

3s4p 3P 0.27365 0.279 48¢)%,0.260 23¢)¢ 17p2 3P 0.01039

4s4p 3P 0.197 87(1.11) 0.200F

4s5p 3P 0.159 33 *Referencd 43].
*Referencd 36]. that for the high-lying Rydberg statea 10), the_ result_s of
bReferencd42]. the three columngéX _only,_ XC,_and thg b_est avgllable I|_tera-
‘Referencd43]. ture data are essentially identical. This is consistent with the
dReferencd44]. fact that for_ Rydpe_rg states the asymptotic Iong_—range .Cou—
*Referencd45]. lomb potential(arising solely from the exchange interaction

is the dominant factor for electronic structure determination,

omitted, and only the XC results will be presented. Compari-and the electron correlation plays little role here. Asle-
sons have been made with the best available experimentateases, the deviations between the three results increase,
and theoretical results, as well as with the HF data, wherevesince the electron correlation now plays an increasingly im-
possible. portant role. For lown, our XC results fall slightly below the

Table Il reports the results for theshgn=2—16) triplet literature data, presumably because of the overestimation
S states of He. For 42s3S state, the X-only result is caused by the LYP correlation energy functional. However,
—2.17420 a.u., only 0.0023% above the HF value ofin all cases, the discrepancy is no more than 0.0102%. It is
—2.174 25 a.u[37], indicating the accuracy of our calcula- gratifying that the present single-determinantal results are
tions. For all the states, the present results with both exeomparable to other more sophisticatald initio calcula-
change and correlation included match very closely the mor&ons. Also, asn increases, the spacings between the states
sophisticated complex rotation calculatiof35]. We note  decrease and the present method reproduces that very well, a
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TABLE VI. Comparison of the calculated single- and double-excitation energies of He afid Bei)

along with the literature data. Numbers in parentheses denote the absolute percentage errors with respect to

the best theoretical data.

State Present Aegs Other Experiment
work theory
Single excitation of He and Be
He 1s2s°S 0.72839(0.015 0.7466 0.728 50 0.7283%
He 1s2s'S 0.757 59(0.021) 0.757 78 0.75759
He 1s2p°P 0.77041(0.019 0.777% 0.77058 0.77039
He 1s2p'P 0.77971(0.022 0.77988 0.7797%
He 1s3s3S 0.83494(0.012 0.839% 0.835 02 0.83486
He 1s3s'S 0.84231(0.017 0.842 48 0.84228
He 1s3p 3P 0.845 48(0.020 0.8476 0.84564 0.84547
He 1s3p ‘P 0.848 41(0.020 0.84 858 0.8484%
He 1s4s3S 0.867 13(0.009 0.8688 0.867 2% 0.86704
He 1s4s'S 0.87003(0.013 0.87014 0.86997
Be 1s?2s2p 3P 0.100 89 0.132% 0.100158
Be 1s%2s3s°S 0.238320.632 0.2444 0.236828 0.237304
Be 1s?2s3p°3P 0.26952 0.269% 0.267877
Be 1s?2s4s3S 0.296 59 0.295% 0.29392%
Be 1s?2s4p 3P 0.308 39 0.304% 0.300487
Be 1s?2s5s°S 0.31753 0.3153 0.314429
Double excitation of He

He 2s?1S 2.137 470.544 2.1259,2.1285%
He 3s?1S 2.558 060.612 2.5429,2.5496
He 4s?1S 2.707 250.484 2.694282.7017
He 5s%1S 2.776 300.101) 2.773%
He 6s%1S 2.815760.102 2.8129
He 7s%1S 2.838600.085 2.8362
He 2p2'D 2.211 2@0.684 2.1961,2.208%
He 3p2'D 2.588 441.600 2.5477,2.559%
He 4p?'D 2.722 891.080 2.6938
He 2s3s°3S 2.303 280.095 2.3011
He 2s3s1S 2.320560.292 2.3138,2.3194 2.3130
He 3s4s3S 2.621020.177 2.6164
He 3s4s'S 2.630820.310 2.6227,2.6249
He 4s5s°3S 2.740 600.227 2.7344
He 4s5s'S 2.743770.211) 2.7380,2.738%
aReferencd5]. fReferencd54].
bReference$49,50. 9Referencd42].
°Referencd51]. PReferencd55].
dreferencd52]. 'Referencd 36].
®Referencd53]. IReferencd56].

feature that was noticed earlier for core excitations and sat- Now we present results for more than two-electron atoms.
ellites[21,27 as well. It may be mentioned that for highly Table Ill presents results for the singly excitesfds?S and
excited state calculations with large many quantum me- 1s’np?P states of Li as well as the st2sns®S and
chanical calculations encounter a common problem of selfis?2s2p P states of Be. Again, the X-only results are fairly
consistent convergence. However, in our calculations, we gatlose to the HF results, errors ranging from 0.0057% to as
converged results for all the states with the same set of gritbw as 0.0001% for Be $22s4p 3P. The Li doubletS states
parameters, including the number of points, reflecting theare quoted from the full-core-plus-correlation method with
accuracy in the exchange potential and the GPS proceduraulticonfiguration interaction wave functiop9], while the
employed. Also although we presented here resultsnfor doublet P states are quoted from the combined
=16, it is straightforward to extend to even higher statesconfiguration-interaction-Hylleraas methpéD]. For Be, the
Finally, even though the method is nonvariational, there is nditerature data are quite scanty and the density-functional re-
anomaly in the ordering of the closely spaced energy levelssults compare quite satisfactorily with the multiconfiguration
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calculationg42]. As earlier, there is some overestimation in ~ TABLE VII. Calculated single-particle expectation valués

the total energy caused by the LYP correlation potential. Th@.u) for some of the excited states of He and Be along with the

errors range from 0.0515% to 0.0031%. Several states afserature data for comparison. In the last four columns, the first and

reported here for the first time to our knowledge. second entries for a particular state correspond to the X-only and
Next we present results for the doubly excited states fofhe XC results, respectively.

He. Table IV displays results for the doubly excites? 1S°

(n:2—16), nsn/s3se'lse (n:2_5’ n/:3—6, n;&n/)' State <1/I'2> (1/r> <I’> <|’2>
nsn'p®P°(n=2,n'=2-7;n=3,4,n"=n, n+1) states of e 15253 41725 11573 25066  11.0469
He, while Table V presents results f(fli'l‘p2 3pe lpe (n 4.2197 1.1668 2.4502 10.4777
=2-17) states of He. Many of these states have been iden- 11544 25598 11.561%
tified as autoionizing in the literature, e.g., the” 'S° states. 4 15165 %S 40077  1.0031 174190 6747145
Except for the case of2p 2P°, the calculated energies for 4.0453 1.0087 168.872 63581.07
the doubly excited states never fall below the quoted resultg,, ,c3 35 056104 0.32538 5.9366 495937

In contrast to the singly excited Rydberg states for He, the
results for the doubly exciteds? states are comparable to
the literature data for smallerand the discrepancy tends to
increase as increases. This may occur because of the errorg 1.
in the long-range behavior of the correlation potential or the
work-function formalism itself. For thexsn's3s®1S® and
nsn' p 3P° states, our density-functional rfsults are seen to
be satisfactory. It may be noted thasn's*S® states with
n#n’ cannot be represented by a single Slater determinarfllf": result, Ref[37].
and these states have been calculated by following a procground state energies ef2.903 84 and-14.667 49 a.u., for
dure similar to Slater’s diagonal sum rul&9-23; see Eq. He and Be, respectively. Experimental results are quite
(24)]. For the odd-paritynsn'p triplet states withn#n’,  scarce for double excitations. It is noticed that, for some
literature results are available in the form of &,(—) clas- cases, the calculated excitation energies fall below the ex-
sification [46], signifying the relative(in or out of phasg  perimental result. The present method is nonvariational, and
radial motion of the two electrons. However, the presentonsequently the variational restriction on the excited state
scheme does not separately identify the)(and (—) states being the lowest state of a given space-spin symmetry does
and the reported results for these states may be consideredm@st apply. The table also shows the single-electron Kohn-
an arithmetic mean of the two. For the even-pafify and  Sham energie®btained from the differences of Kohn-Sham
3p states arising from thap? configuration, literature data eigenvaluek for single excitations for He and BE5]. Of
are quite scarce, and no results are available for hidhrom  course, the single-electron Kohn-Sham energies do not dis-
Tables IV and V, we see that, while the accuracy of ourtinguish the multiplets. As observed, the excitation energies
doubly excited state calculations is not as good as that dirom the true Kohn-Sham potential for He and Be are quite
singly excited states, the error for the former is still well good. However, it may be mentioned that the excitation en-
within 3.6% overall. ergies obtained from other commonly used approximate den-
Table VI presents results for the single- and doublesity functionals[such as the local density approximation
excitation energies for 31 selected states along with the littLDA)] have produced large errofg5]; note that both the
erature data. These are calculated with respect to the presdriDA and Becke[47] exchange potentials produced large er-

0.57400 0.33026  5.7952 46.8985
Li 1s?3s2S 9.9772 1.8393 3.6141 36.0944
10.0323 1.8466 3.5232 34.0835
2s2p 3P 14.2006 2.0933 1.5222 4.3390
14.2442 2.1006 1.4940 4.1436
2.0882  1.5626 4.5884

0.03 T T T T T T

0.025 He 16p2 ('D%)

0.02
z
2
§ 0.015 | FIG. 1. Radial densityin a.u) plot for He
: 16s? 1S° state.
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rors in excitation energy for Ne satellite®2], making them the radial densities. Also, all the attempts so far have been
quite unsuitable for excited state calculatiprisis also to be  restricted tosingleexcitations. To the best of our knowledge,
noted that the present calculation is nonrelativistic and théo results have been reported for multiple excitations so far
experimental results, of course, include relativistic effectsexcept using the work-function formalism. The present meth-
Good agreement is observed for the single-excitation enefdology provides reasonably good results for the excited
gies of He with both theoretical and experimental results. Foptate energy, excitation energy, and radial densities for both
Be, the discrepancies are usually higher than those for H&ingle and multiple atomic excitations including the high-
But nevertheless there is satisfactory agreement between théng states.

present results and the literature data. A part of this error may, About 1dOO low- dagd Eilgh—lyirjg dsingly excf:ited rs]tatesbof
be attributed to the inefficiency of the present single-1€: Li. and Be and doubly excited states of He have been

determinantal approach in dealing with the electron correlapresented. b_y using the work-function form?"'sm W'thm the
tion using the LYP correlation functional. It could also be nonrelativistic DFT framework. The numerical solution of

rooted in the assumption of spherical symmetry in caIcuIat—the resulting KS equation by the accurate GPS method pro-
: ption Of-Sp -al sy Y . vides good results for the excited state energy, excitation
ing the exchange potential. Put differently, the solenoidal

component of the electric fiel,(r) may not be negligible energy, radial density, and expectation values for both single

in comparison to the irrotational component for these statesand multiple atomic excitations  including the high-lying
although this usually holds true for atorfs]. States. The single-determinantal approach offers nearly-HF-

Finallv. some representative expectation values are rq_uality results for the X-only case, and inclusion of the non-
Y, P P Prinear gradient-corrected correlation potential leads to results

sented along with the literature data in Table VII. As is seen,_ . e .
they match 9rjlicely with the other results. Also Figs. 1 and qUIt.e comparable tq °thef soph|§tlcated theoretical 'and ex-
: . erimental data available in the literature. In conclusion, the

. . g 2
igpécltDt?et ctalculﬁt_'ed Ar\adlal detn(sjltl';ehs for thef61’ESe %rr:g work-function approach coupled with the GPS numerical
P states of He. As expected, there are 16 max( technique is shown to be a simple and efficient scheme for

. e . 2
first peak can be seen after magnificajifor the 16° and the accurate calculation of multiply excited atomic Rydberg

. 2 . .
15 maxima for the 18 configurations. states within DET.
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