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Density-functional calculations on singly and doubly excited Rydberg states
of many-electron atoms
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Nearly 100 low-, moderately high-, and high-lying singly and doubly excited states of He, Li, and Be have
been calculated using a nonvariational,work-function-based exchange potential within the nonrelativistic
Hohenberg-Kohn-Sham density-functional theory~DFT!. The nonlinear gradient included in the Lee-Yang-Parr
correlation functional is used to incorporate the correlation potential. Thegeneralized pseudospectralmethod
is used fornonuniformand optimal spatial grid discretization and solution of the Kohn-Sham equation to
obtain accurate eigenvalues, expectation values, and radial densities for both ground and excited states. The
results are compared with the available theoretical and experimental data. The discrepancy in the calculated
singly excited state energies is within about 0.01% for He~for other atoms, it is less than 0.2%!, while that for
the doubly excited states of He is well within 3.6%. The deviations in the calculated single- and double-
excitation energies for 31 selected states are in the error ranges 0.009–0.632 % and 0.085–1.600 %, respec-
tively. The overall agreement of the present results is quite gratifying, especially in the light of DFT’s diffi-
culties in dealing with excited states. The exchange-only results are practically of Hartree-Fock quality, and the
correlation-included results are usually slightly overestimated. The present method offers a simple, computa-
tionally efficient and general scheme for accurate calculation of multiply excited Rydberg states within DFT.

DOI: 10.1103/PhysRevA.65.052508 PACS number~s!: 31.15.Ew, 32.80.Rm, 32.80.Wr
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I. INTRODUCTION

In the past decades density-functional theory~DFT! @1,2#
has found wide applications in many areas in theoret
physics and chemistry, especially in the electronic struct
calculations of atoms, molecules, and solids@3,4#. However,
the majority of the applications are restricted to the grou
states. There are several problems associated with the c
lation of excited states within DFT, viz., the complete aba
doning of the state-function concept, the unavailability of t
Hohenberg-Kohn theorem for a general excited state par
to the ground state, and the lack of accurate exchan
correlation~XC! energy density functionals, etc. Moreove
while the highest-occupied orbital energy corresponds to
negative of the ionization potential~for well-behaved poten-
tials vanishing at infinity!, energies of other occupied an
unoccupied orbitals have no rigorous correspondence to
excitation energies. Nevertheless, it has been shown rec
@5# that the unoccupied true Kohn-Sham eigenvalues
also provide good excitation energies~which the commonly
used approximate density functionals usually do not satis!,
of course, not to mention the cumbersome wave function
Hamiltonian orthogonality requirements met in any quant
mechanical calculations of excited states. Nevertheless,
merous attempts~@3#; see@6# for a review! have been made
in this direction over the years; e.g., the ensemble dens
functional method@7–11#, the method based on partitionin
of the wave function@12#, the time-dependent~TD! DFT
approach@13–16#, etc. Although good results have been r
ported for singly excited states of low-lying states, to o
knowledge, few results exist for multiply excited states, e
the doubly, and triply excited states, particularly those
volving Rydberg excitation of many-electron systems, us
these methods.
1050-2947/2002/65~5!/052508~9!/$20.00 65 0525
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Recently, an exchange potential based on the wo
function approach@17,18# was proposed for excited state ca
culation in many-electron atomic systems. The method
simple, computationally efficient, and has shown consid
able success for some singly, doubly, and triply exci
states, low and moderately high states, and valence and
excitations, as well as the autoionizing and satellite sta
~@19–23#; see@6# for a review!. The work-function formal-
ism is not derived from the usual variational principle f
energy in the sense that the exchange potential is not
pressible asdEx@r#/dr @as in the usual Kohn-Sham~KS!
DFT#; rather, it is based on thephysical interpretation that
the electron moves in the electrostatic potential arising fr
the Fermi hole charge distribution. Further, it has be
shown @24# that the spin-polarized version of the work
function exchange potential can be obtained as an appr
mation to the accurate spin-polarized X-only KS potenti
viz., the approximate optimized effective potential~OEP!.
This approximate OEP is an accurate representation of
exact numerically derived X-only OEP, obtained analytica
based on the Green’s function analysis of the OEP inte
equation. It satisfies many key analytic features of the ex
KS potential, viz., it reduces to the exact KS result in t
inhomogeneous electron-gas limit, approaches21/r as r
goes to infinity, obeys Koopman’s theorem, etc.

All the previous DFT calculations@6,19–23# using the
work-function approach, however, have employed
Numerov-type finite-difference~FD! scheme for the discreti
zation of the spatial coordinates and the solution of
Kohn-Sham equation. Due to the existence of the Coulo
singularity at the origin and the long range nature of t
Coulomb potential, the FD method requires a large num
of grid points to achieve reasonable accuracy even
ground state calculations. In this article, we employ a diff
ent numerical method, namely, the generalized pseudos
©2002 The American Physical Society08-1
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AMLAN K. ROY AND SHIH-I CHU PHYSICAL REVIEW A 65 052508
tral ~GPS! procedure@25–27#, to achieve high accuracy a
well as to facilitate the Rydberg state calculations. The G
method allowsnonuniform spatial grid discretization and
considerably more accurate calculations of eigenvalues
wave functions using only a modest number of grid poin
The GPS method and its time-dependent extension@28# have
been applied successfully to the study of electronic struc
@29#, and multiphoton dynamics of many-electron atoms a
molecules in intense laser fields@30,31#, as well as to the
study of high resolution spectroscopy of Rydberg H atoms
external fields@32#. The main motivation of this article is to
explore the feasibility of extending the GPS method and
work-function formalism for accurate DFT calculation
singly and doubly excited states, especially those highly
cited Rydberg states that have not been achieved be
within DFT. While in the present work we report results on
for singly and doubly excited states, there are reason
hope that this procedure should be equally accurate and
plicable for other excitations, e.g., the triply and quadru
excited states, satellites, etc., as well.

The layout of the paper is as follows. Section II gives
outline of the formalism along with the numerical meth
employed. Section III presents a discussion on the res
while Sec. IV makes a few concluding remarks.

II. METHODOLOGY

In this section, we first outline the work-function metho
ology for the excited states. Then we present the general
pseudospectral method for the solution of the KS equatio

Assuming that a unique local exchange potential exists
a particular excited state, one can physically interpret@17,18#
it as the work required to move an electron against the e
tric field Ex(r ) arising out of the Fermi hole charge distrib
tion. The electric field, as such, is given by~atomic units
employed unless otherwise mentioned!

Ex~r !5E rx~r ,r 8!~r2r 8!

ur2r 8u3
dr . ~1!

The exchange potential with which the electrons move
then given by the line integral

vx~r !52 È r

Ex~r !•dl. ~2!

The workvx(r ) against the force field due to the Fermi ho
charge can be determined exactly since the Fermi hol
known explicitly in terms of orbitals as

rx~r ,r 8!52
ug~r ,r 8!u2

2r~r !
, ~3!

where

g~r ,r 8!5(
i

f i* ~r !f i~r 8!. ~4!
05250
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Hereg(r ,r 8) is the single-particle density matrix spherical
averaged over electronic coordinates for a given orbital
gular quantum number,f i(r )5Rnl(r )Ylm(V) is the single-
particle orbital, andr(r ) is the total electron density ex
pressed in terms of the occupied orbitals,

r~r !5(
i

uf i~r !u2.

For spherically symmetric systems, Eq.~1! can be simplified
as @18#

Ex,r~r !52
1

4pE rx~r ,r 8!
]

]r

1

ur2r 8u
dr 8dV r . ~5!

Using the expansion

1

ur2r 8u
54p (

l 9,m9

1

2l 911
Yl 9m9

* ~V!Yl 9m9~V8!
r ,

l 9

r .
l 911

, ~6!

we obtain

Ex,r~r !5
1

2pr~r !
E (

n,l ,m,n8,l 8,m8,l 9
Rnl~r !Rnl~r 8!Rn8 l 8~r !

3Rn8 l 8~r 8!F ]

]r

r ,
l 9

r .
l 911G r 82dr8

~2l 11!

~2l 811!

3C2~ l l 9l 8;m,m82m,m8!C2~ l l 9l 8;000!, ~7!

where Rnl(r ) denotes the radial part of the single-partic
orbitals and theC’s are the Clebsch-Gordan coefficients@33#.
Now the integral in Eq.~2! can be written as an integral ove
the radial coordinate only,

vx~r !52 È r

Ex,r~r 8!dr8. ~8!

While the exchange potentialvx(r ) can be accurately calcu
lated, the correlation potentialvc(r ) is unknown and must be
approximated. In the present calculation, we have used
generalized gradient-corrected correlation energy functio
of Lee, Yang, and Parr~LYP! @34#. With this choice ofvx(r )
and vc(r ), the following KS-type differential equation is
solved:

F2
1

2
¹21ves~r !1vxc~r !Gf i~r !5« if i~r !, ~9!

whereves(r ) is the usual Hartree electrostatic potential i
cluding electron-nuclear attraction and inter-electronic C
lomb repulsion, andvxc(r )5vx(r )1vc(r ).

In this work, we extend the generalized pseudospec
method for thenonuniformand optimal spatial discretizatio
and solution of the KS equation, Eq.~9!. The procedure has
been demonstrated to be capable of providing high precis
solutions for the eigenvalues and wave functions for
study of electronic structure@29#, multiphoton processes in
strong fields@27,28,30,31#, and Rydberg atom spectroscop
8-2
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DENSITY-FUNCTIONAL CALCULATIONS ON SINGLY. . . PHYSICAL REVIEW A65 052508
and dynamics@32#. In addition, the GPS method is comp
tationally orders of magnitude faster than the equal-spac
FD methods. In the following, we briefly outline the GP
procedure appropriate for the present DFT study.

The main feature of the pseudospectral method is to
proximate anexact function f (x) defined on the interva
@21,1# by theNth-order polynomialf N(x),

f ~x!> f N~x!5(
j 50

N

f ~xj !gj~x!, ~10!

and ensure the approximation to beexactat thecollocation
points xj ,

f N~xj !5 f ~xj !. ~11!

The present work employs the Legendre pseudospe
method wherex0521, xN51, andxj ( j 51, . . . ,N21) are
determined by the roots of the first derivative of the Le
endre polynomialPN(x) with respect tox, namely,

PN8 ~xj !50. ~12!

In Eq. ~10!, gj (x) are the cardinal functions defined by

gj~x!52
1

N~N11!PN~xj !

~12x2!PN8 ~x!

x2xj
, ~13!

and they satisfy the unique propertygj (xj 8)5d j 8 j .
The eigenvalue problem for the radial KS-type equatio

Ĥ~r !c~r !5Ec~r !, ~14!

with

Ĥ~r !52
1

2

d2

dr2
1V~r !, ~15!

for the structure and dynamics calculations involving a C
lomb potential typically has a singularity problem atr 50,
and long-range21/r behavior. This usually requires a larg
number of grid points in theequal-spacingfinite-difference
methods, which are not feasible to extend to Rydberg s
calculations. This can be overcome by first mapping
semi-infinite domainr P@0,̀ # into the finite domainx
P@21,1# by the mapping transformationr 5r (x) and then
using the Legendre pseudospectral discretization techni
We use the following algebraic nonlinear mapping@25,26#:

r 5r ~x!5L
11x

12x1a
, ~16!

where L anda52L/r max are the mapping parameters. Intr
ducing

c„r ~x!…5Ar 8~x! f ~x! ~17!

and following the symmetrization procedure@25,26#, we ob-
tain the transformed Hamiltonian as
05250
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Ĥ~x!52
1

2

1

r 8~x!

d2

dx2

1

r 8~x!
1V„r ~x!…1Vm~x!, ~18!

where

Vm~x!5
3~r 9!222r-r 8

8~r 8!4
. ~19!

This leads to a symmetric matrix eigenvalue problem. N
that for the mapping used in Eq.~16! Vm(x)50. Therefore
discretizing the Hamiltonian by the generalized pseudosp
tral method leads to the following set of coupled equatio

(
j 50

N F2
1

2
D j 8 j

(2)
1d j 8 jV„r ~xj !…1d j 8 jVm„r ~xj !…GAj5EAj 8 ,

j 51, . . . ,N21, ~20!

Aj5r 8~xj ! f ~xj !@PN~xj !#
21

5@r 8~xj !#
1/2c„r ~xj !…@PN~xj !#

21. ~21!

Here D j 8 j
(2) represents the symmetrized second derivative

the cardinal function with respect tor,

D j 8 j
(2)

5@r 8~xj 8!#
21dj 8 j

(2)
@r 8~xj !#

21, ~22!

and

dj 8, j
(2)

55
1

r 8~x!

~N11!~N12!

6~12xj !
2

1

r 8~x!
, j 5 j 8,

1

r 8~xj 8!

1

~xj2xj 8!
2

1

r 8~xj !
, j Þ j 8.

~23!

Equations~1! and ~2! dictate the exchange potential for
particular atomic electronic configuration. Equation~9! is
then numerically solved to achieve a self-consistent se
orbitals, using the GPS method. These orbitals are use
construct various Slater determinants arising out of that p
ticular electronic configuration and its energies computed
the usual manner. IfE(Di) andE(Mi) denote the energies o

TABLE I. Comparison of the computed negative total energ
and highest-occupied orbital energies of He, Be, Ne, Mg, and Ar~in
a.u.! as obtained from the present X-only calculation with the
erature data. Numbers in parentheses denote the absolute pe
age deviations relative to the literature values. HF and IE stand
Hartree-Fock and ionization energy, respectively.

Atom 2E(X only) 2E~HF!a IE~X only! IE~HF!a

He 2.8616~0.0035! 2.8617 0.9180~0.0000! 0.9180
Be 14.5726~0.0023! 14.5730 0.3105~0.3880! 0.3093
Ne 128.5434~0.0028! 128.5471 0.8548~0.5127! 0.8504
Mg 199.6096~0.0025! 199.6146 0.2565~1.3830! 0.2530
Ar 526.8062~0.0021! 526.8174 0.5896~0.2369! 0.5910

aReference@35#.
8-3
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AMLAN K. ROY AND SHIH-I CHU PHYSICAL REVIEW A 65 052508
different determinants and multiplets, respectively, cor
sponding to a given configuration, then multiplet energies
calculated by following the diagonal sum rule@8,19–23#

E~M j !5(
i

Aji E~Di !. ~24!

As an example, consider the calculation of individual m
tiplets corresponding to thensnp configuration, which has
associated with it 12 different determinants for the three
ferent values (11,0,21) of (ml and(ms . Of these, there is
a single determinant corresponding to(ml5(ms51; this is
the 3P term. There are two determinants for(ml51 and
(ms50. The sum of these two determinants’ energy equ
the sum of the3P and 1P terms. Hence the energy of the1P
term can be obtained by simply subtracting the3P term en-
ergy from the above sum.

Two sets of calculations are performed for the singly e
cited states; the solution of Eq.~9! with vxc5vx and vxc
5vx1vc(vLY P). For the doubly excited states we prese
only the second set. The convergence criteria for the po
tial and energy are 1026 and 1028 a.u., respectively. In ou
calculations, up to 500 radial grid points are used to achi
convergence.

III. RESULTS AND DISCUSSION

First we make a comparison of our ground sta
exchange- ~X-!only results with the Hartree-Fock~HF!
theory. Nonrelativistic ground state energies and high
occupied orbital energies are presented for He, Be, Ne,
and Ar along with the HF data@35# in Table I. The numbers

TABLE II. Calculated singly excited triplet state energies of H
~in a.u.! along with literature data for comparison. Numbers in p
rentheses denote the absolute percentage errors with respect
literature data.

State 2E(X only) 2E(XC) 2E(literature)a

1s2s 3S 2.174 20 2.175 45~0.0101! 2.175 23
2.174 25b

1s3s 3S 2.067 93 2.068 90~0.0102! 2.068 69
1s4s 3S 2.036 06 2.036 71~0.0098! 2.036 51
1s5s 3S 2.022 42 2.022 64~0.0010! 2.022 62
1s6s 3S 2.015 30 2.015 39~0.0010! 2.015 37
1s7s 3S 2.011 07 2.011 15~0.0010! 2.011 13
1s8s 3S 2.008 40 2.008 45~0.0010! 2.008 43
1s9s 3S 2.006 58 2.006 60~0.0000! 2.006 60
1s10s 3S 2.005 30 2.005 31~0.0000! 2.005 31
1s11s 3S 2.004 31 2.004 31~0.0000! 2.004 31
1s12s 3S 2.003 65 2.003 65~0.0000! 2.003 65
1s13s 3S 2.003 10 2.003 10~0.0000! 2.003 10
1s14s 3S 2.002 66 2.002 66~0.0000! 2.002 66
1s15s 3S 2.002 31 2.002 31~0.0000! 2.002 31
1s16s 3S 2.002 03 2.002 03

aReference@36#.
bHF result, Ref.@37#.
05250
-
re

-

-

ls

-

t
n-

e

t-
g,

in parentheses denote the absolute percentage devia
with respect to the HF results. While the total ground st
energies have never fallen below the HF results, the ion
tion potentials show both positive and negative deviatio
The agreement of the calculated results with the HF value
generally excellent. The deviations in energy range fr
0.0021% to 0.0035%, whereas those for the ionization po
tials go from 0.000% to 1.383%.

Considerable attention has been paid by both experim
talists and theoreticians~using ab initio multiconfiguration
interaction methods! to the study of the excited states o
many-electron systems, especially for low-Z atomic systems.
Some of these literature data will be used to calibrate
accuracy of our results. As the present X-only results
quite accurate and should be comparable to the HF result
put our results in proper perspective, for singly excit
states, we have presented the individual state energies c
puted from two sets of calculations, namely, the X-only a
with both exchange and correlation included, with the aim
isolating the errors generated by the approximation in
correlation functional. However, for the doubly excited sta
studied in this work, we could not find suitable literature da
for direct comparison with the X-only results; according
they are

-
the

TABLE III. Calculated singly excited state energies of Li an
Be ~in a.u.! along with the literature data for comparison. Numbe
in parentheses denote the absolute percentage deviations wit
spect to the literature data.

State 2E(X only) 2E(XC) 2E(literature)

Li
1s23s 2S 7.309 66 7.357 73~0.0515! 7.353 94b

7.310 21a

1s24s 2S 7.274 66 7.319 78~0.0193! 7.318 37b

1s25s 2S 7.259 96 7.304 66~0.0130! 7.303 39b

1s22p 2P 7.364 86 7.412 04~0.0254! 7.410 16c

7.365 07a

1s23p 2P 7.292 95 7.338 62~0.0199! 7.337 16c

7.293 19a

1s24p 2P 7.268 59 7.312 62~0.0098! 7.311 90c

1s25p 2P 7.257 56 7.300 53~0.0031! 7.300 30c

Be
1s22s3s 3S 14.377 98 14.429 17~0.1996! 14.426 29e

1s22s4s 3S 14.325 06 14.370 90
1s22s5s 3S 14.305 62 14.349 96
1s22s2p 3P 14.510 68 14.566 60~0.0300! 14.562 23e

14.511 50d

1s22s3p 3P 14.348 26 14.397 97~0.0199! 14.395 10e

14.348 86d

1s22s4p 3P 14.314 62 14.359 10
14.314 64d

1s22s5p 3P 14.300 73 14.339 34

aHF result, Ref.@38#.
bReference@39#.
cReference@40#.
dHF result, Ref.@41#.
eReference@42#.
8-4
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DENSITY-FUNCTIONAL CALCULATIONS ON SINGLY. . . PHYSICAL REVIEW A65 052508
omitted, and only the XC results will be presented. Comp
sons have been made with the best available experime
and theoretical results, as well as with the HF data, where
possible.

Table II reports the results for the 1sns(n52216) triplet
S states of He. For 1s2s 3S state, the X-only result is
22.174 20 a.u., only 0.0023% above the HF value
22.174 25 a.u.@37#, indicating the accuracy of our calcula
tions. For all the states, the present results with both
change and correlation included match very closely the m
sophisticated complex rotation calculations@36#. We note

TABLE IV. Calculated doubly excited state (ns2,nsn8p) ener-
gies of He~in a.u.! along with literature data for comparison. Num
bers in parentheses denote the absolute percentage errors wi
spect to the literature data.

State 2E(XC) 2E(literature)

2s2 1S 0.766 37~1.48! 0.777 87a

3s2 1S 0.345 78~2.19! 0.353 54a

4s2 1S 0.196 59~2.19! 0.200 99a

5s2 1S 0.127 54~2.12! 0.130 30b

6s2 1S 0.088 08~3.05! 0.090 85b

7s2 1S 0.065 24~3.35! 0.06 75b

8s2 1S 0.048 55
9s2 1S 0.038 89
10s2 1S 0.030 84
11s2 1S 0.025 03
12s2 1S 0.021 21
13s2 1S 0.018 11
14s2 1S 0.015 55
15s2 1S 0.013 48
16s2 1S 0.011 76
17s2 1S 0.011 32
2s3s 3S 0.600 56~0.34! 0.602 58a, c

2s3s 1S 0.583 28~1.12! 0.589 89a

3s4s 3S 0.282 82~1.55! 0.287 28a

3s4s 1S 0.273 02~2.86! 0.281 07a

4s5s 3S 0.163 24~3.59! 0.169 31a

4s5s 1S 0.160 07~3.41! 0.165 73a

5s6s 3S 0.107 21
5s6s 1S 0.102 77
2s2p 3P 0.767 70~0.95! 0.760 49d

2s3p 3P 0.582 53 0.584 67(1)d,0.579 03~2!d

2s4p 3P 0.545 58 0.542 83(1)d,0.539 56(2)d

2s5p 3P 0.531 21 0.525 71(1)d,0.523 94(2)d

2s6p 3P 0.523 67 0.512 11(1)d,0.516 08(2)d

2s7p 3P 0.519 24 0.512 19(1)d,0.511 55(2)d

3s3p 3P 0.349 18~0.34! 0.350 38d

3s4p 3P 0.273 65 0.279 48(1)d,0.260 23(2)d

4s4p 3P 0.197 87~1.11! 0.2001e

4s5p 3P 0.159 33

aReference@36#.
bReference@42#.
cReference@43#.
dReference@44#.
eReference@45#.
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that for the high-lying Rydberg states (n.10), the results of
the three columns~X only, XC, and the best available litera
ture data! are essentially identical. This is consistent with t
fact that for Rydberg states the asymptotic long-range C
lomb potential~arising solely from the exchange interactio!
is the dominant factor for electronic structure determinati
and the electron correlation plays little role here. Asn de-
creases, the deviations between the three results incre
since the electron correlation now plays an increasingly
portant role. For lown, our XC results fall slightly below the
literature data, presumably because of the overestima
caused by the LYP correlation energy functional. Howev
in all cases, the discrepancy is no more than 0.0102%.
gratifying that the present single-determinantal results
comparable to other more sophisticatedab initio calcula-
tions. Also, asn increases, the spacings between the sta
decrease and the present method reproduces that very w

re-

TABLE V. Comparison of the calculated doubly excited sta
(np2) energies of He~in a.u.! along with literature data. Numbers i
parentheses denote the absolute percentage errors with resp
the literature data.

State 2E(XC) 2E(literature)

2p2 1D 0.692 72~1.31! 0.701 95a

2p2 3P 0.706 26~0.60! 0.710 50a

3p2 1D 0.315 40~0.04! 0.315 54a

3p2 3P 0.330 86~1.56! 0.336 09a

4p2 1D 0.180 95
4p2 3P 0.183 53
5p2 1D 0.116 10
5p2 3P 0.117 64
6p2 1D 0.081 15
6p2 3P 0.082 31
7p2 1D 0.059 80
7p2 3P 0.060 40
8p2 1D 0.045 65
8p2 3P 0.046 20
9p2 1D 0.036 04
9p2 3P 0.036 50
10p2 1D 0.029 20
10p2 3P 0.029 67
11p2 1D 0.024 14
11p2 3P 0.024 54
12p2 1D 0.020 28
12p2 3P 0.020 67
13p2 1D 0.017 28
13p2 3P 0.017 64
14p2 1D 0.014 90
14p2 3P 0.015 23
15p2 1D 0.012 97
15p2 3P 0.013 29
16p2 1D 0.011 40
16p2 3P 0.011 70
17p2 1D 0.010 10
17p2 3P 0.010 39

aReference@43#.
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TABLE VI. Comparison of the calculated single- and double-excitation energies of He and Be~in a.u.!
along with the literature data. Numbers in parentheses denote the absolute percentage errors with re
the best theoretical data.

State Present
work

DeKS Other
theory

Experiment

Single excitation of He and Be
He 1s2s 3S 0.728 39~0.015! 0.7460a 0.728 50b 0.72833c

He 1s2s 1S 0.757 59~0.021! 0.757 75b 0.75759c

He 1s2p 3P 0.770 41~0.019! 0.7772a 0.770 56b 0.77039c

He 1s2p 1P 0.779 71~0.022! 0.779 88b 0.77972c

He 1s3s 3S 0.834 94~0.012! 0.8392a 0.835 04b 0.83486c

He 1s3s 1S 0.842 31~0.017! 0.842 45b 0.84228c

He 1s3p 3P 0.845 48~0.020! 0.8476a 0.845 64b 0.84547c

He 1s3p 1P 0.848 41~0.020! 0.84 858b 0.84841c

He 1s4s 3S 0.867 13~0.009! 0.8688a 0.867 21b 0.86704c

He 1s4s 1S 0.870 03~0.013! 0.870 14b 0.86997c

Be 1s22s2p 3P 0.100 89 0.1327a 0.100153c

Be 1s22s3s 3S 0.238 32~0.632! 0.2444a 0.236823d 0.237304c

Be 1s22s3p 3P 0.269 52 0.2694a 0.267877c

Be 1s22s4s 3S 0.296 59 0.2959a 0.293921c

Be 1s22s4p 3P 0.308 39 0.3046a 0.300487c

Be 1s22s5s 3S 0.317 53 0.3153a 0.314429c

Double excitation of He
He 2s2 1S 2.137 47~0.544! 2.1259e,2.1285f

He 3s2 1S 2.558 06~0.612! 2.5425g,2.5496f

He 4s2 1S 2.707 25~0.484! 2.6942g,2.7017f

He 5s2 1S 2.776 30~0.101! 2.7735g

He 6s2 1S 2.815 76~0.102! 2.8129g

He 7s2 1S 2.838 60~0.085! 2.8362h

He 2p2 1D 2.211 20~0.684! 2.1961h,2.2082f

He 3p2 1D 2.588 44~1.600! 2.5477h,2.5595f

He 4p2 1D 2.722 89~1.080! 2.6938h

He 2s3s 3S 2.303 28~0.095! 2.3011i

He 2s3s 1S 2.320 56~0.292! 2.3138i,2.3194g 2.3130j

He 3s4s 3S 2.621 02~0.177! 2.6164i

He 3s4s 1S 2.630 82~0.310! 2.6227i,2.6249g

He 4s5s 3S 2.740 60~0.227! 2.7344i

He 4s5s 1S 2.743 77~0.211! 2.7380i,2.7385g

aReference@5#.
bReferences@49,50#.
cReference@51#.
dReference@52#.
eReference@53#.

fReference@54#.
gReference@42#.
hReference@55#.
iReference@36#.
jReference@56#.
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feature that was noticed earlier for core excitations and
ellites @21,22# as well. It may be mentioned that for highl
excited state calculations with largen, many quantum me-
chanical calculations encounter a common problem of s
consistent convergence. However, in our calculations, we
converged results for all the states with the same set of
parameters, including the number of points, reflecting
accuracy in the exchange potential and the GPS proce
employed. Also although we presented here results fon
516, it is straightforward to extend to even higher stat
Finally, even though the method is nonvariational, there is
anomaly in the ordering of the closely spaced energy lev
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Now we present results for more than two-electron atom
Table III presents results for the singly excited 1s2ns2S and
1s2np 2P states of Li as well as the 1s22sns3S and
1s22s2p 3P states of Be. Again, the X-only results are fair
close to the HF results, errors ranging from 0.0057% to
low as 0.0001% for Be 1s22s4p 3P. The Li doubletSstates
are quoted from the full-core-plus-correlation method w
multiconfiguration interaction wave functions@39#, while the
doublet P states are quoted from the combine
configuration-interaction-Hylleraas method@40#. For Be, the
literature data are quite scanty and the density-functional
sults compare quite satisfactorily with the multiconfigurati
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calculations@42#. As earlier, there is some overestimation
the total energy caused by the LYP correlation potential. T
errors range from 0.0515% to 0.0031%. Several states
reported here for the first time to our knowledge.

Next we present results for the doubly excited states
He. Table IV displays results for the doubly excitedns2 1Se

(n52 –16), nsn8s 3Se,1Se (n52 –5, n853 –6, nÞn8),
nsn8p 3Po(n52, n852 –7; n53,4, n85n, n11) states of
He, while Table V presents results fornp2 3Pe,1De (n
52–17) states of He. Many of these states have been i
tified as autoionizing in the literature, e.g., thens2 1Se states.
Except for the case of 2s2p 3Po, the calculated energies fo
the doubly excited states never fall below the quoted resu
In contrast to the singly excited Rydberg states for He,
results for the doubly excitedns2 states are comparable t
the literature data for smallern and the discrepancy tends
increase asn increases. This may occur because of the err
in the long-range behavior of the correlation potential or
work-function formalism itself. For thensn8s 3Se,1Se and
nsn8p 3Po states, our density-functional results are seen
be satisfactory. It may be noted thatnsn8s 1Se states with
nÞn8 cannot be represented by a single Slater determin
and these states have been calculated by following a pr
dure similar to Slater’s diagonal sum rule@19–23; see Eq.
~24!#. For the odd-paritynsn8p triplet states withnÞn8,
literature results are available in the form of a (1,2) clas-
sification @46#, signifying the relative~in or out of phase!
radial motion of the two electrons. However, the pres
scheme does not separately identify the (1) and (2) states
and the reported results for these states may be consider
an arithmetic mean of the two. For the even-parity1D and
3P states arising from thenp2 configuration, literature data
are quite scarce, and no results are available for highn. From
Tables IV and V, we see that, while the accuracy of o
doubly excited state calculations is not as good as tha
singly excited states, the error for the former is still w
within 3.6% overall.

Table VI presents results for the single- and doub
excitation energies for 31 selected states along with the
erature data. These are calculated with respect to the pre
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ground state energies of22.903 84 and214.667 49 a.u., for
He and Be, respectively. Experimental results are qu
scarce for double excitations. It is noticed that, for so
cases, the calculated excitation energies fall below the
perimental result. The present method is nonvariational,
consequently the variational restriction on the excited s
being the lowest state of a given space-spin symmetry d
not apply. The table also shows the single-electron Ko
Sham energies~obtained from the differences of Kohn-Sha
eigenvalues! for single excitations for He and Be@5#. Of
course, the single-electron Kohn-Sham energies do not
tinguish the multiplets. As observed, the excitation energ
from the true Kohn-Sham potential for He and Be are qu
good. However, it may be mentioned that the excitation
ergies obtained from other commonly used approximate d
sity functionals @such as the local density approximatio
~LDA !# have produced large errors~@5#; note that both the
LDA and Becke@47# exchange potentials produced large e

TABLE VII. Calculated single-particle expectation values~in
a.u.! for some of the excited states of He and Be along with
literature data for comparison. In the last four columns, the first
second entries for a particular state correspond to the X-only
the XC results, respectively.

State ^1/r 2& ^1/r & ^r & ^r 2&

He 1s2s 3S 4.1725 1.1573 2.5066 11.0469
4.2197 1.1668 2.4502 10.4777

1.1544a 2.5599a 11.5612a

He 1s16s 3S 4.0077 1.0031 174.190 67 471.45
4.0453 1.0087 168.872 63 581.07

He 2s3s 3S 0.561 04 0.325 38 5.9366 49.5937
0.574 00 0.330 26 5.7952 46.8985

Li 1s23s 2S 9.9772 1.8393 3.6141 36.0944
10.0323 1.8466 3.5232 34.0835

Be 1s22s2p 3P 14.2006 2.0933 1.5222 4.3390
14.2442 2.1006 1.4940 4.1436

2.0882a 1.5626a 4.5884a

aHF result, Ref.@37#.
FIG. 1. Radial density~in a.u.! plot for He
16s2 1Se state.
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FIG. 2. Radial density~in a.u.! plot for He
16p2 1De state.
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rors in excitation energy for Ne satellites@22#, making them
quite unsuitable for excited state calculations!. It is also to be
noted that the present calculation is nonrelativistic and
experimental results, of course, include relativistic effec
Good agreement is observed for the single-excitation e
gies of He with both theoretical and experimental results.
Be, the discrepancies are usually higher than those for
But nevertheless there is satisfactory agreement betwee
present results and the literature data. A part of this error m
be attributed to the inefficiency of the present sing
determinantal approach in dealing with the electron corre
tion using the LYP correlation functional. It could also b
rooted in the assumption of spherical symmetry in calcu
ing the exchange potential. Put differently, the solenoi
component of the electric fieldEx(r ) may not be negligible
in comparison to the irrotational component for these sta
although this usually holds true for atoms@48#.

Finally, some representative expectation values are
sented along with the literature data in Table VII. As is se
they match nicely with the other results. Also Figs. 1 and
depict the calculated radial densities for the 16s2 1Se and
16p2 1De states of He. As expected, there are 16 maxima~the
first peak can be seen after magnification! for the 16s2 and
15 maxima for the 16p2 configurations.

IV. CONCLUSION

There have been many attempts@3,6# to calculate excited
states of many-electron systems within DFT. Various attr
tive formalisms have been proposed; some of them are c
putationally difficult to implement and others produce lar
errors. In addition, it is not a straightforward task to extra
05250
e
.
r-
r
e.
the
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-
-

t-
l
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e-
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t

the radial densities. Also, all the attempts so far have b
restricted tosingleexcitations. To the best of our knowledg
no results have been reported for multiple excitations so
except using the work-function formalism. The present me
odology provides reasonably good results for the exci
state energy, excitation energy, and radial densities for b
single and multiple atomic excitations including the hig
lying states.

About 100 low- and high-lying singly excited states
He, Li, and Be and doubly excited states of He have b
presented by using the work-function formalism within t
nonrelativistic DFT framework. The numerical solution
the resulting KS equation by the accurate GPS method
vides good results for the excited state energy, excita
energy, radial density, and expectation values for both sin
and multiple atomic excitations including the high-lyin
states. The single-determinantal approach offers nearly-
quality results for the X-only case, and inclusion of the no
linear gradient-corrected correlation potential leads to res
quite comparable to other sophisticated theoretical and
perimental data available in the literature. In conclusion,
work-function approach coupled with the GPS numeri
technique is shown to be a simple and efficient scheme
the accurate calculation of multiply excited atomic Rydbe
states within DFT.
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