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Studies of rotational predissociation of van der Waals 
molecule by the method of complex coordinate 

Shih-I Chua) 

Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 
(Received 10 December 1979; accepted 7 January 1980) 

A practical method is presented for calculating resonance energies and widths (lifetimes) of metastable 
states of van der Waals molecules, incorporating the use of complex coordinate transformation and 
square-integrable basis functions. The utility of the method is illustrated through a study of the level 
widths and energies of rotationally predissociating atom-diatom model systems. Satisfactory agreement 
with previous works was found. Besides involving only bound state calculations and being free from 
imposement of boundary conditions, the method can be readily extendable to multichannel coupling 
problems. 

I. INTRODUCTION 

Recently the experimental investigation of structural 
features of van der Waals molecules, prepared by the 
supersonic free expansion method, has become increas­
ingly important as a mean for, accurately probing the 
nature of intermolecular forces. Detailed references 
in this field can be found in the review papers by Ewing1 

and a recent paper by Beswick et al. 2 

In the van der Waals molecules, the colliSional or 
optical excitation process is well defined and can be well 
controlled, and the resulting dynamiC intramolecular 
relaxation provides an interesting and unique example for 
vibrational or rotational predissociation in a single po­
tential energy surface. In the present paper we are 
concerned with the prediction of resonance energies and 
widths (intrinsic lifetimes) of metastable states of van 
der Waals molecules. Such information is important to 
the elUCidation of the general features of bond breaking 
processes in chemical systems where the predissocia­
tions occur by converting the internal vibration-rota­
tion energies of the complexes into relative kinetic en­
ergies of the fragments. In addition, a knowledge of the 
lifetimes of such levels is relevant to the detectability 
of the complexes by the molecular beam experiments and 
to the feasibility of isotope separation using the technique 
of photoinduced predissociation of selectively excited 
van der Waals molecules. 3 

Previous theoretical works of this problem have been 
summarized by Grabenstetter and Le Roy4 and will not 
be elaborated here. The latter authors also proposed 
an "infinite wall" secular equation method which uses 
only L2 (square-integrable) basis functions and the Fano 
theory for the mixing of a discrete state with a contin­
uum. 4 In this paper we advance a method employing al­
so only L2 basis functions and the use of complex co­
ordinate transformation. 5 BeSides its practical sim­
pliCity in that only bound state functions are involved 
and no asymptotic boundary conditions need to be en­
forced, the method is also readily extendable to many 
channel problems involving multiple coupling continua 
and is free from the uncertainties and sophistication 
associated with the estimation of level denstty in the 
secular equation method. 4 The complex coordinate 

alAlfred P. Sloan Foundation Fellow. 

method, 5 which allows one to describe the resonance 
features in the continuous spectrum by employing only 
bound state techniques, is an active field of current re­
search itself. It has been applied successfully to atomic 
resonances,6 to dc Stark broadenings of atoms, 7 to ac 
Stark shifts and multiphoton ionizations of atoms, 8 to 
field ionization of atoms in crossed electric and mag­
netic fields,9 to quasi-Landau resonances9

,10 and photo­
ionization of atoms in a magnetic field, 10 and to molec­
ular electronic resonances within the framework of the 
Born-Oppenheimer approximation. 11 

In the present work we focus on the application of the 
method of complex coordinate to the rotational predis­
sociation of atom-diatom van der Waals molecules. 
The extension of the method to the aspect of vibrational 
predissociation will be treated in a subsequent paper. 
In Sec. II we present an outline of the proposed method. 
The utility of the method is then illustrated in Sec. III 
through quantitative comparisons with results obtained 
previously using other treatments. Finally, a brief 
summary of the merits of the current method is pre­
sented. 

II. METHOD 

A. Model Hamiltonian 

The system under consideration consists of a diatomic 
rigid rotor Be with orientation of' and a structureless 
atom A with position R relative to the center of mass of 
the diatom. The Hamiltonian for the atom-diatom com­
plex, within the Born-Oppenheimer apprOximation, can 
be represented by4,12 

a2 2 ~ 

H(R, 0)=t-(-n2 8R z+
1tz») +Brot ,j2(of')+V(R, 0). 

j.L (2.1) 

In thip equation j.L =mA(ma +md/(mA +mB +mc), cosO 
=1'. R, Brot=rotational constant of the diatom, j =ro­
tational angular momentum of Be, 1 = orbital angular 
momentum of Be and A about each other, and V(R, 0) 
= interaction potential of A and Be. The potential en­
ergy can be expanded in terms of the Legendre poly­
nomials P,,(cosO), .. 

V(R, 0)= l: V,,(R)P,,(cosO). (2.2) 
".0 

In the total angular momentum (J, M) representation, 
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J =1 +j, a convenient angular basis for wave function 
expansion is the total angular momentum eigenfunction 
defined by13 

'HIli (ii, ~) = L L (ljm,mjlljJM) 
"" "'j , 

X Y ,m, (il) Yjmj(r) , (2.3) 

where ( •.• I ••• ) is the Clebsch-Gordan coefficient and 
Y kmk is the spherical harmonics. It is expedient to de­
fine a scheme12 for labeling of the eigenstates of the com­
plex uniquely. In the isotropic limit, the potential energy 
is independent of 9 and only Vo(R) is retained in the 
Hamiltonian. Each isotropic state is then an eigenfunc­
tion of j2, 12, J2, and JII and may be labeled by IjlJM). 
The latter may be decomposed into a radial and an angu­
lar functions 

(2.4) 

Owing to the spherical harmonic properties of the angu­
lar function, the isotropic state has a definite parity of 
(_1)i<'1 (If the diatom is a homonuclear molecule, there 
is an additional symmetry of inversion of r). When the 
potential anisotropy is turned on, the state will be only 
an eigenfunction of J2 and JII and of the same inversion 
parity (_l)i+l. Nevertheless the noncrossing rule en­
sures that the energy level for a fixed J and M value 
and (j +1) parity will not cross. At any value of the an­
isotropic parameter the energy ordering of the states is 
the same as the ordering in the isotropic limit. Thus 
the isotropic function IjlJM) forms a convenient un­
perturbed basis for our present study. 

The predissociation resonances associated with the 
atom-rigid-rotor diatom complex can be qualitatively 
understood as follOWS. During a low (subexcitation) en­
ergy molecular collisions, the kinetic energy of relative 
motion can be converted into internal (rotational) excita­
tion and the attractive mutual interaction between the 
excited molecules can then lead to a temporary forma­
tion of a "quasibound" van der Waals complex. The 
width of the complex is associated with the dissociation 
of the van der Waals molecule which occurs when the 
internal energy is reconverted into the relative transla­
tional energy along the atom-diatom van der Waals bond 
and the fragments separate. In the present case of atom-· 

where fk is the Percival-Seaton coefficient. 14 The re­
sulting matrix of HOI. is a symmetric comple~ matrix 
whose complex eigenvalues can be determined via the 
secular determinant 

Detl (HOI.)Y'n',rn -Ell =0 . (2.9) 

The desired metastable states are then identified by the 
stationary points6,7 of the a trajectories 'of complex 
eigenvalues. 

I 

rigid-rotor diatom, the predissociation width is induced 
by the potential anisotropy. In Sec. IT B we present a 
method for determining the energies and widths of such 
metastable levels. 

B. Method of complex coordinates and L 2 basis 
function expansion 

According to the theory of dilatation transformation,5-11 
the energy (Ell) and the width (r) associated with a 
metastable state may be determined by the solution of 
the complex eigenvalue of a non-Hermitian Hamiltonian 
HOI.lfl, 9), obtained by applying the dilatation or Com­
plex-coordinate transformation, 5 R - R exp(i a), to the 
real Hamiltonian H(R, 9). That is, 

H(R, 9) ~ HOI.(R, 9) 

=e-ZiOI. 1- (_liZ ff 
2iJ. c)R2 

lZ) B ·2 
+ if! + rod 

(2.5) 

where a is usually taken to be a positive number. In 
the present study, the total wave function of the Hamil­
tonian HOI.(R, 9), for a given J and M, will be expanded 
in terms of the complete set of the isotropic state func­
tions IjlJM) allowed by the symmetry, We further ex­
pand the radial function ¢,mlfl ) of IjlJM) in terms of an 
orthonormalized L2 (square-integrable) basis function 
[x,,(R»), 

Ny 

¢J/j(R) = L an(y) x,,(R) , 
n=l 

(2.6) 

where y specifies the channel quantum number, y 
= (jlJM), Ny is the size of the truncated radial baSis, 
and < x" I Xm) = linm • For convenience, let us define the 
basiS function 

(2.7) 

and arrange the order of the matrix elements of HOI.(R, 
9) in such a way that n is allowed to vary from 1 to Ny 
within each channel y= (jlJM). The matrix element in 
the I an) representation is 

(2.8) 

III. CALCULATIONS AND DISCUSSIONS 

To assess the usefulness of the outlined procedure in 
Sec. II, we discuss below the application of this tech­
nique to the determination of energies and widths of two 
A-BC model systems for which previous data are avail­
able for comparison. The systems under consideration 
have the following potential energy form 

(3.0 

J. Chem. Phys., Vol. 72, No.9, 1 May 1980 
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T ABLE I. Parameters characterizing the 
van der Waals model systems studied in 
the present work. 

System Aa System Bb 

/l(amu) 1. 340 15 1. 340 15 

8 mt (cm-I ) 60.967 60.967 

E(cm-1) 384.097 384.097 

a(A) 3.00 3.00 

a 0.15 -0.4 

"See also Ref. 4. 
bsee also Refs. 4 and 15. 

with 

and 

V2 {R) =4Ea(o/R)12 , 

(3.2) 

(3.3) 

where a is the anisotropic parameter. The values of 
the parameter used are listed in Table I. 

For both systems we consider the subexcitation of A 
and Be such that the collision energy E<Eth' the thresh­
old for the first allowed rotational excitation. As in 
previous works4

,15 we limit the angular basis with j ~ 2, 
and J =M =0. Thus only a single closed channel (j =2, 
1 =2, J =0, M =0) and a single open channel (j =0, 1 =0, 
J =0, M =0) are allowed by the symmetry. The meta­
stable state in this case correlates with the isotropic 
channel Ij=2, 1=2, J=O, M=O). 

The matrix of interest in the I yn) representation is 
thus of two by two block form (Fig. 1). Within each 
diagonal block specified by the channel quantum number 
y = (jLJM), we use the orthonormal harmonic oscillator 
L2 basis 

(3.4) 

to expand the radial wave function CPJlj{R) defined in Eq. 
(2.6). It is well known17 that the harmonic oscillator 
basis provides a compact analytic representation for the 
complete set of bound and continuum states of an an­
harmonic oscillator in the inner radial region. In Eq. 
(3.4), Hn is a Hermite polynomial, x=R -Ro, and {3 is a 
disposable nonlinear parameter. To avoid the singulari-

(n. n' ~1.2 •...• N) 

FIG. 1. Matrix structure of the predissociation Hamiltonian 
H in the 1 1'n> representation. Here l' = (jl, J = M = 0) specifies 
the channel quantum number. n is the index number for the 
harmonic oscillator radial basis. n = 1, 2, ...• N. and V 2P 2 is 
the anisotropic potential. 

0.iI3.4 113.6 113.8 114.0 114.2 114.4 114.6 114.8 115.0 115.2 

0.135 

0.4 0.01 

0.6 

0.8 

1.0 

1.2 

0;-
~ 1.4 

0.12 

'-
1.6 

0.11 

1.8 

2.0 

2.2 

2.4 

2.6 

FIG. 2. a-trajectory for the complex eigenvalue associated 
with the rotational predissociation of the metastable level (j = I 
=2, J=M=O) of the atom-diatom van der Waals model system 
A. The numbers shown in the figure indicate the rotational 
angles a (in radians) used. 

ty of the R -m (m = 2, 6, 12) potential at R = 0, we adopt an 
accurate procedure devised by Harris et al. 18 to evaluate 
the matrix elements of < Xn' IR -m I Xn)' Thus 

N 

< X n,l R -m 1 X n) "" ~ Tn's T ns (~ ~s) + Ro rm. (3. 5) 

Here T = (Tpq) is the orthogonal matrix which diagonalizes 
the matrix (~pq) of the operator ~ = {3x = (3(R - Ro) in the 
harmonic OSCillator basis of truncated size N, and 
~(s) is the corresponding sth eigenvalue. Dickinson and 
Certain19 showed that such a procedure is equivalent 
to a Gaussian quadrature. 

For both systems, we use Ro = 21/6
0", and {3 = 2. 0 ao1 

(ao = Bohr radius). To compare with secular equation 
method of Grabenstetler and Le Roy4 who used 20 box­
normalized radial basis functions, we also set N = 20 
for both channel blocks of Fig. 1. The symmetric 
complex matrix of Fig. 1 was diagonalized and the com­
plex eigenvalue correlated with the closed channel (j = 1 
=2, J=M=O) was found. In Figs. 2 and 3, the a tra­
jectories of the desired complex eigenvalue are plotted 
for system A and B, respectively. For system A (Fig. 
2), the resonance location is clearly identified by the 
sharp turning point of the a trajectory nearby a'" 0.09 
radian. We estimate the resonance energy and width to 

J. Chem. Phys., Vol. 72, No.9, 1 May 1980 
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be ER (cm- 1)""114.47 and r(cm-1) ""1. 79. For system B 
(Fig. 3)f the turning point, though less sharp than sys­
tem A, occurs nearby a'" O. 124 radian where I ar / aa I 
reaches the minimum and we obtain ER (cm-1

)"" 90. 0 and 
r(cm-1) "" 28.2. The somewhat slower convergence for 
system B can be attributed to its larger anisotropy. 
This implies larger basis set is required for system B 
to achieve the same accuracy of system A. In Table II, 
the results of the present work are compared with pre­
vious theoretical data. 4,15,16 The overall agreement 
seems satisfactory, expeciaUy with the close coupling 
results. 4,15 This justifies the reliability of the present 
method. 

In the present study, the intermolecular potential 
was chosen15 to be the Simplest realistic form exhibiting 
atom-homonuclear diatomic molecule. The rotational 
constant B rot was chosen to be that of Hz and the reduced 
maSS corresponds to He-Hz collisions. 15 We point out, 
however, that the applicability of the present method is 
independent of the mass, rotational constant, anisotropy 
and energy parameters used and should be equally ap­
plicable to atom-heteronuclear diatomic molecule. Ex­
tension of the method to the rotational predissociation 
of atom-polyatom and diatom-diatom van der Waals 
molecules would be interesting and involves only dif­
ferent angular momentum coupling algebra. 

! 
c... 

In comparing with other theoretical treatments of the 

10 8r4 ~--,8_6 ~-1-88:.-.~;:90_~9T2------.-..:.9T-4 ~.--::9r--6 ~~9::...8 ~_1::;.0::...0 ~-..:.:;1 02 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

0.03 

0.04 

0.115' , 0:130 

0.120/ / \ ~.1~i.128 
0.122 0 . 124 

0.135 

FIG. 3. As in Fig. 2, for the strongly anisotropic model sys­
tem B. 

TABLE II. Comparison of resonance energies and widths de­
termined by various methods. 

System A System B 

Method ER(em-') r(cm-') ER(cm-1) 

CC' 114 2.09 88.2 

SE b 114.46[±0.04] 2.40[ + 0.08] 86.5[±0.5] 

A' 114[± 1]' 1. 8[+ O. 7[' 81.6[+ O. 5[' 

Dd 114' 1. 8[+ O. 7]' GO.7f 

CR' 114.47 1. 79 90.0 

aNumerical solution of coupled equation of Ref. 15. 
Ilsecular equation method of Ref. 4. 

r(cm-') 

27 

28. O[± O. 9] 

35[± 2]' 

45[+ 2[' 

28.2 

cA diabatic decoupling approximation of Refs. 15 and 16. 
dDistortion decoupling approximation of Refs. 15 and 16. 
·Complex coordinate rotation method; present work. 
fData quoted in Ref. 4. 

same problem, several advantages of the current method 
may be realized. 

(i) It is an ab initio method (given a defined Hamil­
tonian). 

(ii) Only bound state and finite matrix calculations are 
involved. 

(iii) No asymptotic boundary conditions need to be 
enforced. 

(iv) Extension to multichannel problem (i. e., higher 
collisional energy regimes where more than one open 
and one Closed channels are involved) is readily obtained 
by Simply including more symmetry-allowed channel 
"blocks" in Fig. 1. This is a distinct advantage over, 
for example, the secular equation method4 where so­
phisticated estimation of the level density is required. 

In summary, we have shown in this paper that the method 
of complex coordinate, when coupled with the use of ap­
propriate symmetry allowed L2 basis expansion, provides 
a simple, efficient, and reliable method for studying the 
rotational predissociation of van der Waals complex. 
Extension of the present approach to the problem of 
vibrational predissociation is underway. 
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