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Studies of multichannel rotational predissociation of Ar-H2 
van der Waals molecule by the complex-coordinate 
coupled-channel formalism 

Shih-I Chua) and Krishna K. Datta 

Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 
(Received 23 June 1981; accepted 3 February 1982) 

The complex-coordinate coupled-channel (CCCC) formalism previously developed [J. Chern. Phys. 72, 4772 
(1980)) is applied to the accurate determination of the level widths (lifetimes) and energies of rotationally 
predissociating metastable Ar .. ·H, van der Waals molecules. Calculations are performed using several realistic 
anisotropic potentials obtained recently by experiments, including Lennard-Jones (LJ), Buckingham-Comer 
(BC) type potentials, as well as the semiempirical potential of Tang-Toennies (TT). New numerical methods 
are introduced here to deal with the complex rotations of piecewise inhomogeneous potentials such as those of 
BC and TT. It is found that the CCCC method is capable of providing reliable results for any given potential 
surface. Furthermore, the CCCC results are sensitive to the potential surfaces used. For example, the 
linewidths predicted for different LJ potential surfaces considered here vary by a factor as large as 4. 
However, the agreement among more recent potentials, namely, the BC potential of Zandee and Reuss and 
that of Le Roy and Carley as well as the potential of Tang and Toennies, is much closer: the resonance 
energies agree to within I cm- I and the linewidths to within 30%. 

I. INTRODUCTION 

Recently accurate determination of anisotropiC inter­
molecular potentials between atoms and molecules is 
becoming possible due to the rapid development of the 
spectroscopy of van der Waals molecules,l the molecular 
beam measurements of orientation dependence of total 
cross sections for polarized molecules, 2, 3 and the de­
tailed theoretical analysis of pressure-induced infrared 
spectra. M Reliable potential surfaces (both isotropic 
and anisotropic) for several systems, particularly the 
rare gas-H2 systems, are now available. In this paper 
we are concerned with the accurate determination of the 
resonance energies and widths (lifetimes) of metastable 
states of van der Waals complexes based on the realistic 
potential surfaces recently obtained from experiments. 
Such data, besides providing useful additional informa­
tion on well depths and anisotropy of the intermolecular 
interactions, is important to the elucidation of the gen­
eral features of bond breaking processes in chemical 
systems where the predissociation occurs by converting 
the internal vibration-rotation energies of the complexes 
into relative kinetic energies of the fragments. In ad­
dition, a knowledge of the lifetimes of such levels is 
relevant to the detectability of the complexes by the 
supersonic beam experiments and to the feasibility of 
isotope separation using the technique of photoinduced 
predissociation of selectively excited van der Waals 
molecules. 6 

Previous theoretical works of this problem have been 
summarized by Grabenstetter and Le Roy, 7 and Beswick 
and Requena. 8 Recently, one of the present authors9 

has proposed a complex-coordinate coupled-channel 
formalism employing only L2 (square-integrable)-basis 
functions and the use of complex coordinate transforma­
tion. 10

,14 Besides its practical simplicity, in that only 
bound state functions are involved and no asymptotic 
boundary conditions need to be enforced, the method is 

a) Alfred p. Sloan Foundation Fellow. 

also readily extendable to many-channel problems in­
volving multiple coupling continua. 24 We note that re­
lated approaches along this line have also recently ap­
peared in the literature. 11 

In the present work we focus on the application of the 
complex-coordinate coupled-channel formalism9 to the 
rotational predissociation of Ar-H2 van der Waals mole­
cules. In Sec. II, we discuss the model Hamiltonian 
used for the Ar-H2 van der Waals complex. The com­
plex-coordinate coupled-channel formalism is briefly 
sketched in Sec. III. In Sec. IV, the method is applied 
to several Ar-H2 potential surfaces recently obtained by 
experiments, including Lennard-Jones (LJ) and Buck­
ingham-Corner (BC) type potentials, as well as the 
semiempirical potential of Tang-Toennies (TT). New 
numerical methods are introduced here to deal with the 
complex rotation of inhomogeneous piecewise potentials 
such as those of BC and TT. Finally, we present the 
detailed converged results for the various Ar-H2 sur­
faces in Sec. V. 

II. THE MODEL HAMILTONIAN FOR Ar-H2 VAN 
DER WAALS COMPLEX 

The system under consideration consists of a diatomic 
rigid rotor H2 with orientation r and an Ar atom with 
position R relative to the center of mass of the diatom. 
The Hamiltonian for the Ar-H2 complex, within the 
Born-Oppenheimer approximation, can be represented 
br,7 

In th~s equation, jJ. = reduced mass of Ar-H2, cos e 
=r.R, B rot = rotational constant of H2(=60. 853 cm-1),H 
j = rotational angular momentum of H2, 1 = orbital angular 
momentum of H2 and Ar about each other, and V(R, e) 
= interaction potential of Ar and H2. For the (weakly 
anisotropic) Ar-H2 system, the interaction potential can 
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be satisfactorily described by a two-term Legendre 
expansion3- 5 : 

(2.2) 

where Vo(R) describes the radial dependence of the 
spherically symmetric (isotropic) part and V2(R) that 
of the anisotropic part. Accurate determination of Vo 
and V2 has been achieved recently due to both experi­
mental and theoretical efforts. 3-5,21 In particular, Vo 
can now be considered to be known experimentally in the 
well region to better than about 1%. The precision of 
V2(R), in general, depends to some extent on the as­
sumed potential model for Vo and its parameter. Among 
the most sensitive and accurate measurements of poten­
tial anisotropies to date are those provided by the ex­
periments of Zandee and Reuss, 3 and of Waaijer. 21 
Tang and Toennies12 have also recently proposed a sim­
ple semiempirical theory of the van der Waals potential 
which appears to provide accurate anisotropic potentials 
for rare-gas-H2 systems. A detailed discussion on the 
potential models used in this study will be postponed 
until Sec. IV. 

The predissociation resonances associated with the 
atom-rigid rotor diatom complex can be qualitatively 
understood as follows. During a low (subexcitation) 
energy molecular colliSion, the kinetic energy of rela­
tive motion can be converted into internal (rotational) 
excitation and the attractive mutual interaction between 
the excited molecules can then lead to temporary for­
mation of a metastable van der Waals complex. The 
width of the resonance is associated with the dissocia­
tion of the van der Waals molecule which occurs when 
the internal energy is reconverted into the relative 
translational energy along the atom-diatom van der 
Waals bond and the fragments separate. In the present 
case of the atom-rigid rotor diatom, the predissocia­
tion width is induced by the potlfntial anisotropy. In 
the next section we outline a method for determining 
the energies and widths of such metastable levels. 

III. COMPLEX-COORDINATE COUPLED-CHANNEL 
FORMALISM FOR ROTATIONAL PREDISSOCIATION 
OF VAN DER WAALS MOLECULES 

As details of the complex-coordinate coupled-channel 
formalism have been discussed in the previous paper, 9 

only an outline of the method will be presented here to 
serve the definition of notations. 

In the total angular momentum (J, M) representation, 
J=l+j, a convenient angular basis for wave function ex­
panSion is the total angular momentum eigenfunction de­
fined by13 

Y~,iR, 1') = L L (ljm,mJlljJM) Y,m,(R)YJmP') , m, mi 

(3.1) 
where ( ... I .•• ) is the Clebsch-Gordan coefficient and 
Ykmk are the spherical harmonics. It is expedient to 
define a scheme5 for labeling of the eigenstates of the 
complex uniquely. In the isotropic limit, the potential 
energy is independent of e and only Vo(R) is retained 
in the Hamiltonian. Each isotropic state is then an 
eigenfunction of j2, 12, J2, and J., and may be labeled 
by IjlJM). The latter may be decomposed into a radial 
and an angular function: 

(3.2) 

Due to the spherical harmonic properties of the angular 
function, the isotropic state has a definite parity of 
(-1)1+1. (If the diatom is a homonuclear molecule, there 
is an additional symmetry of inversion of r.) When the 
potential anisotropy is turned on, the state will be only 
an eigenfunction of ~ and J. and of the same inversion 
parity (_1)1+1. Nevertheless, the noncrossing rule en­
sures that the energy level for fixed J and M values and 
(j + l) parity will not cross. Thus the isotropic function 
I jlJM) forms a convenient unperturbed basis for our 
present study. 

According to the theory of dilatation transformation, 14 

the energy (ER ) and the width (r) associated with a 
metastable predissociating state of an Ar ... H2(j) com­
plex may be determined by the solution of the complex 
eigenvalue of a non-Hermitian Hamiltonian Ha(R, e), ob­
tained by applying the dilatation or complex-coordinate 
transformation14 R - R exp(i a) to the real Hamil tonian 
H(R, e), where a is usually taken to be a positive num­
ber. In the coupled-channel formalism, 9 the total wave 
function of the Hamiltonian Ha(R, e) for a given J and 
M is expanded in terms of the complete set of the iso­
tropic state functions IjlJM) allowed by the symmetry. 
In order to discretize the vibrational continua, we fur­
ther expand the radial function cf>JliR) of I jlJM) in 
terms of an orthonormalized L2 (square-integrable)­
basis function [Xn(R)]: 

Ny 

cf>m(R) = L an(Y)Xn(R) , (3.3) 
,..1 

where Y specifies the channel quantum number, Y 
= (jlJM), Ny is the size of the truncated radial basiS, 
and <Xnl Xm> = 0nm. For convenience, let us define the 
basis function 

(3.4) 

and arrange the order of the matrix elements of H",(R, 
e) in such a way that n is allowed to vary from 1 to Ny 
within each channel Y = (jlJM). The matrix element in 
the I an) representation is 

(3.5) 

J. Chem. Phys., Vol. 76, No. 11, 1 June 1982 
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TABLE I. LJ(12, 6) potential parametersd characterizing the Ar-H2 van der Waals complex studied in 
the present work. 

Designation Vo 

LJ(I) Le Roy and 
van Kranendonka 

LJ(II) Le Roy and 
van Kranendo~ 

LJ(III) Helbing et al. b 

aReference 4(a). 
bReference 17. 
cReference 3(b). 

e: (mey) R. (A) 

6.473a 3. 557a 

6.473a 3. 557a 

6.305b 3.34b 

Aipl Aip2 qa q12 DSD 

1.52a 0.095a 0.198a 0.301a 3.5c 

1.35c 0.10c 0.154" 0.208c 1.lc 

1.15c 0.10c 0.12c 0.14c 0.9c 

dLJ(m, 6) potential has the following form: Vo(R) = [e:/(m -6)][6(R./R)m- m(R./R)a], V2(R) = [e:/(m -6)] 
x [6qm(R./ R)m - mqs(R./ R)a], where qm' qs are related to the AlP (anisotropic intermolecular potential) 
parameters Aip1 and Aip2 in the following manner [Refs. 3(a) and 3(b)]: Aip1 = qm/ qa and Aip2 = mqa/6 

-qm' 

where fk is the Percival-Seaton coefficient. 15 The 
resulting matrix of Ha is a symmetric complex matrix 
whose complex eigenvalues can be determined via the 
secular determinant 

(3.6) 

The desired metastable states are then identified by the 
stationary pointsl0.14.Z0 of the C\! trajectories of complex 
eigenvalues. 

IV. POTENTIAL SURFACES AND NUMERICAL 
METHODS 

Zandee and Reuss3 (b) have obtained anisotropic po­
tentials Vz(R) for the Ar-Hz system based on their 
measurements of the orientationally dependent total col­
lision cross sections and several isotropic potentials 
Vo(R) taken from other independent investigations. They 
have considered two different types of potential forms, 
namely, Lennard-Jones (m, 6) potentials and Bucking­
ham-Corner (BC) potentials. Several of the potentials 
obtained by Zandee and Reuss3 (b) will be considered 
here. 

Table I lists the three LJ(12, 6) potentials3(b) con­
sidered in the present study. The first LJ potential 
(both Vo and Vz) is that obtained by Le Roy and van 

Kranendonk. 4( a) In the second LJ potential, Vo is that 
of Le Roy and van Kranendonk, 4Ial whereas V2 is deter­
mined by Zandee and Reuss. 3(bl In the third LJ poten­
tial, Vo is that obtained by Helbing et al. 17 and V2 is 
again determined by Zandee and Reuss. 3(b) From the 
DSD (dimensionless standard deviation)3(b) values, it 
is clear that potentials LJ (II) and LJ (III) provide better 
fits to the anisotropy experiments of Zandee and 
Reuss. 3(b) The three LJ potentials are also depicted in 
Figs. l(a)-l(c). 

Table IT lists the two BC(6, 8) potentials considered 
in the present study. In the first BC potential, Vo is 
that obtained by Le Roy et al. 4(b) It has been found1 that 
this spherical potential provides excellent fits of the dif­
ferential scattering cross sections of Rulis et al. zz and 
the low-energy integral scattering cross sections of 
Toennies et al. 16 The Vz part of the BC(I) potential is 
determined by Zandee and Reuss3(b) from their cross­
section anisotropy experiments. In the second BC 
potential, both Vo and Vz are determined by Le Roy 
and Carley from the spectroscopic data. 4

(d) It is now 
generally believed1 that the Buckingham-Corner po­
tentials, BC(I) and BC(n), provide a more realistic 
description of the Ar ••• H2 system than the LJ potentials 
describes in Table 1. The two BC potentials are de­
picted in Fig. l(d). 

TABLE II. BC(6, 8) potential parametersc characterizing the Ar-H2 van der Waals complex studied in the 
present work. 

BC(I)a 50.84 5.034 3.5735 3.72 
BC(II)b 50.87 5.72 3.5727 3.743 

aReference 3(b). 
bReference 4(d). 
"This potential has the following form (n = 0, 2): 

and 

V"(R) =A"exp(- f3R) - (Ca"R"a + Cs"R-S)D(R) , 

D(R)=exp[-4(R.m/R-1)3]. R~Ren' 

=1 

A"= (8e:"- 2Ca"~) exp(f3Ren)/(f3Ren- 8) • 

Ca" = [R!./(f3R.m - 8)] • [(6 - f3Ren)Cs,,~+€"f3R.,.l • 

136400 
134500 

14590 
13500 

J. Chern. Phys., Vol. 76, No. 11, 1 June 1982 

3.692 
3.610 

0.170 
0.248 
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The last potential we consider here is the semi­
empirical potential proposed recently by Tang and 
Toennies. 12

(c) They found that the cross section aniso­
tropy factors derived from this potential are in very 
good agreement with the experimental data measured by 
Zandee and Reuss. SIb) The potential of Tang and 
Toennies (TT) consists of repulsive potential, deter­
mined by application of Gilbert-Smith combining 
rules,12(C) and of attractive potential with dispersion 
terms estimated using precise combining rules. IZ(b) 

The expression for the TT potential is (n = 0, 2) 

(4.1) 

where VSCF is the SCF repulsive energy, Vd •• » is the 
dispersion energy, and Vcorr is the coupling correction. 
The individual terms in Eq. (4.1) are modeled by the 
analytic formsI2 (c),ZI described in the Appendix. The 
molecular parameters of the TT potential for the 
Ar' .. H2 system are listed in Table m, and the potential 
curves are shown in Fig. l(e). 

For all the six potentials discussed above, we con­
sider the excitation of Ar and Hz such that the collision 
energy E<Etb(=6Brot), the threshold for the first al-

FIG. 1. (Continued) 

lowed rotational transition (j = 0 - 2). In particular, we 
focus on the metastable state which correlates with the 
isotropic channel Ij=2, [=2,J=0, M=O}. Because of 
the symmetry of Hz, only the following angular basis 
need be considered: (j=0, [=0), (j=2, [=2), (j=4, 

TABLE III. TT potential parameters",b 
for the Ar-H2 van der Waals complex. 

A" 
A.L 

b" 
b.L 
M(Ar) 
M(H2)" 

M(H2h 
rs 
rs 
rio 
Cs 
C8 
CIO 

aIn atomic units. 
bReference 12(c). 

46.4 
45.0 
1.752 
1. 804 
0.0318 
0.0903 
0.0956 
0.102 
0.248 
0.30 

28.4 
576.0 
14600 

J. Chern. Phys., Vol. 76, No. ", 1 June 1982 
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<j=L=o.n IHI j'=l'=o,n) < j = L = 0, n I v2 P2 1 j' = l' = 2, n) 0 

< j = 1 = 2, n I V2 P21 j' = l' = 0, no) < j = l = 2 , niH I j' = l' = 2 , n) < j = 1 = 2 , n I V 2 P 21 j' = l' = 4 , no) 

0 < j = 1 = 4, n I V2 P2 1 j' = L' = 2, n) < j = 1 = 4 ,n I H I j' = l' = 4 , no) 

( n , n' = 1 , 2 , ...... , N ) 

FIG. 2. Matrix structure of the predissociation Hamiltonian H in the I rn) representation. Here r= (jl, J= M = 0), specifies the 
channel quantum numbers, n is the index number for the harmonic oscillator radial basis, n = 1, 2, ... , N, and V2P 2 is the aniso­
tropic potential. 

l = 4), ..• , etc. For the Ar-H2 system, we found that 
the resonance energy and width (lifetime) of the meta­
stable state can be determined satisfactorily by includ­
ing the only open channel (j = 0, 1 = O,J = 0, M. = 0) and 
one closed channel (j=2, 1=2, J=O, M=O). Very high 
precision can be achieved by including one additional 
closed channel (j = 4, l = 4, J = 0, M = 0) in the basis set. 

The matrix structure in the I yn) representation is of 
three by three block form (fo,r the three-channel case), 
as depicted in Fig. 2. Within each diagonal block speci­
fied by the channel quantum number y = (jLJM), we use 
the orthonormal harmonic oscillator L 2 basis 

n = 1, 2, ... ,N y (4.2) 

to expand the radial wave function ¢ ,fli(r) defined in 
Eq. (3.2). It is well known9,18 that the harmonic oscil­
lator basis provides a compact analytic representation 
for the complete set of bound and continuum states of 
an anharmonic oscillator in the inner radial region. 
In Eq. (4.2), H n is a Hermite polynomial, x = R - Ro, 
and {3 is an adjustable nonlinear parameter. 

As far as the complex coordinate transformation is 
concerned, the LJ (m, 6) potentials have the advantage 
in that they are homogeneous in the radial distance R. 
Thus, the potential matrix elements need be computed 
only once. This is not the case for the inhomogeneous 
piecewise Be and TT potentials, where the potential 
matrix elements have to be recomputed for each new 
rotational angle a. The Be and especially the TT po­
tentials, however, pose new challenges to the utility of 
the complex coordinate transformation. It has not been 
shown previously that the dilatation analyticity can be 
preserved in the whole range of R for piecewise po­
tentials which have different analytic forms in different 
radial ranges. Indeed, as will be shown below, the 
direct computation of the complex rotated potential 
matrix elements <Xn' I V.(R e l "') I Xn) using the procedure 
suggested in Ref. 9 and discussed immediately below 
works best only for the LJ(m,6) type potentials. Ap-

propriate new numerical techniques have had to be in­
troduced to deal with the Be and TT potentials. 

In the case of LJ( m, 6) type homogeneous potentials, 
the best procedure to compute the potential matrix 
elements is to adopt the orthonormal harmonic oscilla­
tor basis described in Eq. (4.2) and to use the quadra­
ture procedure devised by Harris et al. 9,28 Thus, 

Here T = (T pQ) is the orthogonal matrix which dia­
gonalizes the matrix (~PQ) of the ope rator ~ = {3x 

(4,3) 

= (3(R - R 0) in the harmonic oscillator basis of truncated 
size N, and ~(s) is the corresponding sth eigenvalue. 9 

Once the potential matrix elements have been computed, 
the symmetric complex matrix as depicted in Fig. 2 can 
be set up and the complex eigenvalue of the metastable 
state correlates with the isotropic channel I j = 1 = 2, 
J = M = 0) can be found. 19 To fa('ilitate the location of 
the optimum a trajectory, the parameters R 0 and {3 

can be adjusted in such a way that the spurious widths23 

associated with the unperturbed diagonal complex eigen­
values (i. e., the imaginary parts of the eigenvalues of 
the diagonal block (j = l = 2, nl Hal j' = l' = 2, n') that are 
correlated with the predissociation resonances) be kept 
as small as possible. As a practical guide for multi­
channel problems, it is important that these (unper­
turbed) spurious widths be smaller in magnitude than 
the genuine (perturbed) predissociation widths of physi­
cal interest. In the case of LJ(m, 6) potentials, the 
spurious widths decrease rapidly with increaSing N, 
and one can easily find a wide range of Ro and f3 pa­
rameters such that the spurious widths are many orders 
of magnitude smaller than the physical Widths. 

Typical examples of the a trajectories are shown in 
Figs. 3-5 for LJ(I)-LJ(III). It is seen that the reso­
nance positions are clearly identified by the sharp sta­
tionary points [where d(E R+ir /2)/da :>:0J in the a tra­
jectories. Table IV shows a typical example of the con­
vergence of the resonance pOSitions with respect to the 
basis size Ny [potential LJ(III)J. We note that ER (=real 
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I 

E 
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P=I.5 

FIG. 3. A typical a trajectory 
for the complex eigenvalue asso­
ciated with the rotational predis­
sociation of the metastable level 
(j=l= 2, J=M= 0) of the Ar'" H2 
van der Waals molecule [with po­
tential LJ(III)]. The numbers on 
the dots shown in the figure indi­
cate the rotational angles (in ra­
dians) used. These are three­
channel-block calculations with N 
= 50 for each block. 
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part of the complex eigenvalue) converges to within 
10-3 cm-1 with N,,> 30, and to within 10-4 cm-1 with Ny 
> 40. The convergence of the half-width (r /2 or imagin­
ary part of the complex eigenvalue) is somewhat 
slower: Ny = 35 is needed to converge r /2 to within 
10-3 cm-1 and Ny = 45 to within 10-4 cm-1• 

We next consider the predissociation calculations of 
the BC(6, 8) type potentials. The complex potential 
matrix elements can be evaluated USing a formula simi­
lar to Eq. (4.3), namely, 

N 

(X ... I V(ReiCX)IXn>=L Tn'sTns[V(R(s)eiCX)], (4.4) 
&=1 

where R(s)= ~(s)/{3+Ro and V[R(s)e icx ] can be computed 
analytically for BC potentials. Using matrix elements 
generated by this R-rotation method [Eq. (4.4)], we 
found that the unperturbed spurious widths are sub­
stantially larger than the corresponding ones in LJ po­
tentials (though they are still. somewhat smaller than 
the phYSical widths). Furthermore, these BC spurious 
widths do not decrease (or even not decrease at all) 
with increasing N as rapidly as those of LJ potentials. 31 

This poses some difficulty for the R-rotation method to 
achieve high accurate results for the BC potentials. 

Recently we found, however, an alternative proce-

dure24 which is capable of decreaSing the spurious widths 
by orders of magnitude and rapidly improves the con­
vergence of lifetime calculations. In this procedure, we 
rewrite the potential V(R) as V(X +Ro), where V is 
either Vo or V2 , X=R -Ro, and Ro is an adjustable pa­
rameter which is usually taken to be somewhat greater 
than the equilibrium distance of Vo' The appropriate 

TABLE IV. Convergence study of the 
position of the resonance state (l = j = 2, 
J = M = 0) of the Ar ••• H2 van der Waals 
molecule [potential LJ(III)] with respect 
to basis size Ny. Shown here are calcu­
lations with two channel blocks (with the 
same basis size Ny), and Ro = 9. Oao, ~ 

= 1. SaO
I (ao = Bohr radius), and rotational 

angle a = O. 07 rad. 

Ny ER (em-I) r/2 (em-i) 

20 347.2774 0.0327 
30 347.1553 0.0105 
35 347.1541 0.0090 
40 347.1539 0.0087 
45 347.1539 0.0085 
50 347.1539 0.0083 
60 347.1539 0.0083 

J. Chern. Phys., Vol. 76, No. 11, 1 June 1982 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.45.148 On: Tue, 25 Nov 2014 18:01:05



S.-I Chu and K. K. Datta: Rotational predissociation of Ar-H2 5315 
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FIG. 4. A typical two-channel block (with N = 50 for each 
block) 01 trajectory for the Ar ••• H2 metastable state (j = l = 2, 
J=M=O) with potential LJ(II). 

complex rotation in the X coordinate29 is now 

V(X+Ro)- V(Xel"+Ro) , (4.5) 

and the complex potential matrix elements can be com­
puted by the formula 

N 

(Xn.IV(Xel"+Ro)lx,>""L Tn'sTns[V(Xsel"+Ro)] , 
s=l 

(4.6) 
where Xs = ~(s)/{:3 and V(Xse l" +Ro) can be calculated 
completely analytically for BC potentials. We note that 
in this X-rotation method, the basis function Xn(X) has 
the same form as Eq. (4.2) except with only one dis­
posable parameter (:3. The other parameter, Ro, has 
now been absorbed into the potential function itself. 
Formally speaking, the potential V(X + Ro) with Ro a 
constant is just an alternative representation of the ori­
ginal potential V(R). Thus the X- and R-rotation meth­
ods should give rise to the same physical results. In­
deed, we have tested this idea in several examples, 
including tunneling in the anharmonic oscillator, 25 or­
biting resonances of rare gas-H2 van der Waals sys­
tems,26 and multichannel predissociation of Ar" 'N2 
van der Waals molecules. 24 Clearly, the X-rotation 
method has no practical advantage for homogeneous 
type potentials such as LJ's. However, for simple 
inhomogeneous type such as BC potentials, it could be 
very fruitful. 

Using the X-rotation procedure and the formula (4.6), 
we have carried out the predissociation calculations for 
the two BC(6, 8) potentials listed in Table II. The un-

perturbed spurious widths (typically 10-10 a. u. ) are 
now comparable in magnitude to those of LJ's and de­
crease rapidly with increasing N. Typical examples 
of the Q trajectories are shown in Figs. 6 and 7 for 
BC(I) and BC(II), respectively. Examination of the 
convergence of the resonance positions with respect to 
the basis size Ny indicates that the quality of the BC re­
sults using the X-rotation method is about as good as 
that of the LJ results using the R-rotation method. The 
reason why the X-rotation method works better for BC 
potentials is not completely clear. However, one ten­
tative explanation is that for physical problems involv­
ing harmonic oscillator type potential wells, X is per­
haps the more and natural coordinate for describing the 
vibrational stretching of the van der Waals bond. 

The last potential we consider is the highly inhomo­
geneous Tang-Toennies (TT) potential. As shown ear­
lier, the TT potential consists of many radial intervals 
each of which has a different analytic potential functional 
form. There exists no previous demonstration that the 
complex coordinate transformation can be applied suc­
cessfully to a complicated piecewise analytical potential 
such as TT's. Direct computation of the potential matrix 
elements using the R-rotation method [Eq. (4.4)] gives 
unperturbed spurious widths hopelessly too large (ty­
pically about one to two orders of magnitude larger than 
the physical widths). The X-rotation method [Eq. 
(4.6)] improves the results substantially but is still not 
fine enough to give high accurate results as quoted for 
LJ and BC potentials. This indicates some numerical 
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FIG. 5. A typical two-channel block (with N = 50 for each 
block) 01 trajectory for the Ar ••• H2 metastable state (j = l = 2, 
J = M = 0) with potential LJ(I). 
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instabilities associated with the direct computation of 
the potential matrix elements. 

The best procedure to deal with a complicated piece­
wise analytic potential is perhaps not to compute the 
matrix elements of the complex rotated potential V(Re1a

) 

or V(Xe1a + Ro) directly but to use an indirect way, as 
described below. Recently we have developed a com­
putational scheme2f for dealing with the complex co­
ordinate transformation of numerical potentials (i. e. , 
potentials are given in tabulated numerical forms rather 
than in specified analytic forms). This method has been 
applied successfully to the multichannel predissociation 
of the Ar' •. N2 system24 involving four closed and four 
open channels. A suitable extension of this new proce­
dure, described below, provides stable algorithms for 
solving the TT potential problem. This method, which 
takes advantage of several well established transforma­
tion theories and quadrature algorithms, consists of the 
following three steps. 

Step (0. The identity 

(Xl( y) I V( ye 1a ) I XJ( y) 

= e-I"'(XI( ye- la ) I V( y) I XJ( ye- la ) (4.7) 

is used to transform the complex rotated potential 
V(ye1a ) back to the real potential V(y). In Eq. (4.7), 
the coordinate y can be either R or X. 

Step (ii). The inner projection technique24 •27 is 
adopted such that 

ER(Cm-l ) 

_oD~~rI4~0~~~~34~6r·14~5~~~~~~6.~I~~~~~3~4~6.~I~~~~ 

-0.009 
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~ 
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-0.013 

-0.014 

./ 

Ro =9.0 

P = 1.5 

FIG. 8. A typical two-channel block (with N=40, M=60 for 
each block) Ci trajectory for the Ar'" H2 metastable state 
(j = l = 2, J = M = 0) with potential TT. 

TABLE V. Summary of the converged resonance positions of 
the metastable Ar ••• H2 complex (with l = j = 2, J = M = 0) ob-
tained in the present study. All channel blocks have the same 
basis size Ny = 50. 

Potential No. of channel 
designation blocks ER (cm-I ) r/2 (cm-I ) 

LJ(I) 2 344.3814 0.0369 
LJ(I) 3 344.3726 0.0371 

LJ(II) 2 344.3887 0.0179 
LJ(II) 3 344.3837 0.0179 

LJ(III) 2 347.1539 0.0083 
LJ(III) 3 347.1510 0.0083 

BC(I) 2 345.9374 0.0118 
BC(I) 3 345.9341 0.0118 

BC(II) 2 345.3916 0.0158 
BC(II) 3 345.3871 0.0158 

TT 2 346.1467 0.0127 
TT 3 346.1433 0.0127 

M 

(Xl(ye- la ) I V( y) I XJ( ye- la ) = L: (Xl( ye-l ",) I ¢a(Y) 
ail 

(4.8) 

where {¢a(Y)} are real, L2-orthonormal basis functions, 
such as those of Eq. (4.2), and M is the number of inner 
basis functions used. The simplifying feature here is 
that the evaluation of the complex rotated-potential ma­
trix is now replaced by the much simpler calculations 
of the complex overlap matrix as well as the matrix 
elements of real potentials. The complex overlap ma­
trix elements <Xl(ye- la ) \ ¢a(y) can be written in closed 
analytiC forms and evaluated exactly for the harmonic 
oscillator baSis. 30 Thus the uncertainty associated 
with the direct computation of the matrix elements of 
complex rotated potentials can be removed. 

Step (iii). The matrix elements of the real potential 
(in numerical or sophisticated analytic forms such as 
TT's), (¢",(y)\ V(y)\ ¢a(y) can also be evaluated ac­
curately using either formula (4.4) or (4.6) with the 
rotational angle a setting equal to zero. 

With this three-step procedure, we have performed 
the predissociation calculations for the TT potential 
listed in Table III and shown in Fig. l(e). The unper­
turbed spurious widths (typically 10-10 a. u. ) are now 
comparable in magnitude to those of LJ's and Be's and 
decrease uniformly with increasing N. A sufficient 
number of inner basis functions, i. e., M, must be in­
cluded to ensure the complete convergence of potential 
matrix elements. In the case of the TT potential, we 
found that the choice M;;. N + 20 is adequate for high pre­
cision calculations. Shown in Fig. 8 is a typical example 
of the a trajectory for the TT potential for the case 
N = 40 and M = 60. The desired resonance position is 
clearly indicated by the sharp kink point. We thus see 
that this alternative procedure is capable of providing 
stable numerical algorithms for the accurate computa­
tion of the resonance energies for sophisticated analytic 
potentials. 
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V. RESULTS AND DISCUSSION 

Finally, we summarize the converged results of the 
resonance positions obtained in this study in Table V. 
We note that the two-channel block [one open channel 
(j = 1 = 0) and one closed channel (j = 1 = 2)] calculations 
for the Ar ... H2 system are sufficient to achieve the 
accuracy of the resonance energies (for a given poten­
tial surface) to within 0.01 cm-I. The inclusion of an 
additional (j = 1 = 4) closed channel block (i. e., the 
three-channel-block case) mainly affects the E R values 
and is appreciable only when the anisotropy is strong32 
[such as LJ(I)]. Calculations with more than three­
channel blocks for the Ar· .. H2 system appear unneces­
sary. 

FIG. 9. Summary of the predicted resonance positions for the 
six potential surfaces considered: LJ(ij-LJ(III). BC(ij. BC(II). 
and TT. 

The three-channel-block results with Ny = 50, listed 
in Table V, represent the best data obtained in this 
study. We conclude that for a given potential surface 
the complex-coordinate coupled-channel formalism9 

together with appropriate numerical computational 
schemes is capable of providing a reliable determina­
tion of the resonance energies as well as the linewidths 
(lifetimes) of the rotationally predissociating states of 
the Ar ... H2 system to within 10-3 em-I. Furthermore, 
the predicted linewidths (lifetimes) and energies are 
sensitive to the potential surfaces used. Shown in Fig. 
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FIG. 10. Comparison of the potential 
surfaces of BC(I) [dotted curves or (b) I 
and TT [solid curves or (a)l. 
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9 is the comparison of the predicted resonance positions 
(three-channel-block converged results)for the po­
tential surfaces considered in this study.33 We note that 
the linewidths predicted for the (less accurate) LJ po­
tentials vary by a factor as large as 4. However, the 
agreement among more recent potentials, namely, 
BC(I), BC(n), and TT, is much closer: the resonance 
energies (E R) agree to within 1 cm-l and the linewidths 
(r) to within 30%. In particular, the agreement be­
tween BC(I) and TT can be considered rather satisfac­
tory. 

Finally, it is instructive to compare the predicted re­
sults with the potential curves depicted in Figs. l(a)­
l(e), where the BC(n) curves Vo and V2 are used as 
references for comparison purposes. Close examina­
tion of the curves reveals that the results given in Table 
V and Fig. 9 are in harmony with the dynamics of rota­
tional predissociation, namely, stronger anisotropic 
potentials favor larger linewidths and vice versa. It 
is also interesting to see that the BC(I) and TT potential 
surfaces do show the closest agreement (Fig. 10) of all, 
in accordance with the predicted results. We note, 
however, that Waaijer21 has recently completed a very 
accurate determination of the hyperfine spectroscopy 
of Ar ... H2 van der Waals molecules. His results in­
dicate that, although the BC(n) and TT potentials are 
among the most accurate ones determined to date, they 
are still not completely consistent with the hyperfine 
structure data, suggesting that further refinement 
of the anisotropic potentials may be possible. 

ACKNOWLEDGMENTS 

This research was supported in part by the United 
states Department of Energy under contract No. DE­
AC02-80ERI0748, by the Research Corporation, and 
by the Alfred P. Sloan Foundation. Acknowledgment 
is also made to the Donors of the Petroleum Research 

Fund, administered by the American Chemical Society, 
for partial support of this work. 

APPENDIX 

The potential of Tang and Toennies (TT) consists of a 
repulsive potential, determined by the application of 
Gilbert-Smith combining rules,12(C) plus an attractive 
potential with disperSion terms estimated using pre­
cise combining rules. 12

(b) The expression for the TT 
potential is (n = 0,2) 

Vn = VSCFn - Vd,apn + V corrn , (Ai) 

where VSCF is the SCF repulsive energy, Vdl8P is the 
dispersion energy, and Vcorr is the coupling correction. 
The individual terms in Eq. (AI) are modeled by the 
following analytic forms I2IC ),21: 

and 

VSCFO=t(VSCF,,+2VSCF.L)' Vcorro=t(Vcorr,,+2Vcorr~)' 

VSCF",~ =A",~ exp(- b",~R) , 

Vcorr",~ = [M(H2 )",L +M(Ar)] 

x (b~,~ - 2b",L/R) . A",~ exp( - b",~R) , 

n'-l 

Vdl8PO = L C2~-2n+f2n,C2n'R-2n' , 
n=3 

11 

VdloPO = L C2nR-2n , R~Rll,12' 
n=3 

where n' in succession equals 4, 5, 6, 7, 8, 9, 10, and 
11, and 

f2n' = (R - Rn'-l,n' )/(Rn' ,n'.1 - Rn'-l,n') , 

VdlSP2 = rsCsR-s , 

VdISP2=raCaR-s+rsfscsR-B, 

Vdlsp2 = r sCsR-6 + rsCsR-s + rloflOClOR-IO , 

Vdlsp2 = r 6C6R-6 + r sCsR-s + rio 

R ~R3,. , 

R3,.~R~R4,5 , 

R.,5 ~R~R5,6 , 

"'-1 

X (L C2nR-2n+f2n'C2n'R-2n') , 
n=5 

Vd18p2 = r6CaR-6 + rsCsR-s 

11 

+ riO L C2~-2n , 
n=5 

R:;'Rll ,12, 

where n' in succession equals 6, 7, 8, 9, 10, and 11. 
The dispersion coefficients can be obtained with the 
recursion relation C2".a = (C2n,./C2n'2)3 C2n and the bound­
aries Rn,,,.1 are obtained from the ratios of disperSion 

coefficients Rn,,,.l = (C2".2/C2n)1 12. The molecular pa­
rameters of the TT potential for the Ar ... H2 system 
are listed in Table m and the potential curves are shown 
in Fig. l(e). 
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