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Recent development of self-interaction-free time-dependent
density-functional theory for nonperturbative treatment of atomic
and molecular multiphoton processes in intense laser fields
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In this paper, we present a short account of some recent developments of self-interaction-free
density-functional theory �DFT� and time-dependent density-functional theory �TDDFT� for
accurate and efficient treatment of the electronic structure, and time-dependent quantum dynamics
of many-electron atomic and molecular systems. The conventional DFT calculations using
approximate and explicit exchange-correlation energy functional contain spurious self-interaction
energy and improper long-range asymptotic potential, preventing reliable treatment of the excited,
resonance, and continuum states. We survey some recent developments of DFT/TDDFT with
optimized effective potential �OEP� and self-interaction correction �SIC� for both atomic and
molecular systems for overcoming some of the above mentioned difficulties. These DFT �TDDFT�/
OEP-SIC approaches allow the use of orbital-independent single-particle local potential which is
self-interaction free. In addition we discuss several numerical techniques recently developed for
efficient and high-precision treatment of the self-interaction-free DFT/TDDFT equations. The
usefulness of these procedures is illustrated by a few case studies of atomic, molecular, and
condensed matter processes of current interests, including �a� autoionizing resonances, �b�
relativistic OEP-SIC treatment of atomic structure �Z=2–106�, �c� shell-filling electronic structure
in quantum dots, �d� atomic and molecular processes in intense laser fields, including multiphoton
ionization, and very-high-order harmonic generation, etc. For the time-dependent processes, an
alternative Floquet formulation of TDDFT is introduced for time-independent treatment of
multiphoton processes in intense periodic or quasiperiodic fields. We conclude this paper with some
open questions and perspectives of TDDFT.
© 2005 American Institute of Physics. �DOI: 10.1063/1.1904587�

I. INTRODUCTION

In recent years, the density-functional theory �DFT� has
become a widely used formalism for electron structure cal-
culations of atoms, molecules, and solids.1–6 The DFT is
based on the earlier fundamental work of Hohenberg and
Kohn7 and Kohn and Sham.8 In the Kohn–Sham DFT
formalism,8 the electron density is decomposed into a set of
orbitals, leading to a set of one-electron Schrödinger-type
equations to be solved self-consistently. The Kohn–Sham
equations are structurally similar to the Hartree–Fock equa-
tions but include, in principle, exactly the many-body effects
through a local exchange-correlation �xc� potential. Thus
DFT is computationally much less expensive than the tradi-
tional ab initio many-electron wave-function approaches and
this accounts for its great success for large systems. How-
ever, the DFT is well developed mainly for the ground-state
properties only. The treatment of the excited states within the
DFT is a more recent development.9–15

The essential element of DFT is the input of the
exchange-correlation energy functional whose exact form is
unknown. The simplest approximation for the xc-energy

functional is through the local spin-density approximation1,16

�LSDA� of homogeneous electronic gas. A deficiency of the
LSDA is that the xc potential decays exponentially and does
not follow the correct long-range asymptotic Coulombic
�−1/r� behavior. As a result, the LSDA electrons are too
weakly bound and for negative ions even unbound. More
accurate forms of the xc-energy functionals are available
from the generalized gradient approximation �GGA�,17–20

which takes into account the gradient of electron density.
However, the xc potentials derived from these GGA energy
functionals suffer similar problems like in LSDA and do not
have the proper long-range asymptotic potential behavior ei-
ther. Thus while the total energies of the ground states pre-
dicted by these GGA density functionals17–20 are reasonably
accurate, the excited-state energies and the ionization poten-
tials obtained from the highest occupied orbital energies of
atoms and molecules are not satisfactory, typically 30%–50%
too low.1,21 The problem of the incorrect long-range behavior
of the LSDA and GGA energy functionals can be attributed
to the existence of the self-interaction energy.1,4,5,21,22 For
proper treatment of atomic and molecular dynamics such as
collisions or multiphoton ionization processes, etc., it is nec-
essary that both the ionization potential and the excited-state
properties be described more accurately. In addition, thea�Electronic mail: sichu@ku.edu
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treatment of time-dependent processes will require the use of
time-dependent density-functional theory �TDDFT�.

The TDDFT extends the concept of stationary DFT to
time-dependent domain. For any interacting many-particle
quantum system subject to a given time-dependent potential,
all physical observables are uniquely determined by knowl-
edge of the time-dependent density and the state of the sys-
tem at any instant in time.23,24 In particular, if the time-
dependent potential is turned on at some time t0 and the
system has been in its ground state until t0, all observables
are unique functionals of the density only. In this case the
initial state of the system at time t0 will be a unique func-
tional of the ground-state density itself, i.e., of the density at
t0. This unique relationship allows one to derive a computa-
tional scheme in which the effect of the particle-particle in-
teraction is represented by a density-dependent single-
particle potential, so that the time evolution of an interacting
system can be investigated by solving a time-dependent aux-
iliary single-particle problem. Additional simplifications can
be obtained in the linear response regime.23–26 In the last
several years there is considerable effort and success in the
extension of the �weak-field� TDDFT and the use of linear
response theory to the study of excitation energies,27–31

frequency-dependent multipole polarizabilities,26,32,33 optical
spectra of molecules, clusters, and nanocrystals,34,35 and au-
toionizing resonances,21 etc.

The primary focus of this paper is to discuss some of the
recent developments and applications of self-interaction-free
TDDFT for the study of atomic and molecular multiphoton
processes in intense laser fields. The strong-field atomic and
molecular physics is one of the most active fields of forefront
research in science and technology. The rapid advent of high-
power and short-pulse laser technology in the last decade has
facilitated the experimental exploration of multiphoton and
very high-order ��300th order� nonlinear optical processes,
leading to the discovery of a host of novel strong-field phe-
nomena, such as multiphoton and above-threshold ionization
of atoms, multiphoton and above-threshold dissociation of
molecules, multiple high-order harmonic generation �HHG�,
chemical bond softening and hardening, Coulomb explosion,
and coherent control of chemical and physical processes, etc.
For the treatment of these strong-field processes, the conven-
tional high-order perturbation approach is generally not ad-
equate. On the other hand, nonperturbative approach using
ab initio wave functions requires the solution of
�3N+1�th-order time-dependent Schrödinger equation in
space and time, where N is the number of electrons. But this
is well beyond the capability of current computer technology
for N�2. Even for the case of N=2, fully ab initio time-
dependent study is still at the beginning stage. The single-
active-electron �SAE� model36,37 with frozen core is thus
commonly used for describing the strong-field processes.
However, within the SAE model, important physical phe-
nomena such as excited-state resonances, dynamical re-
sponse from individual valence spin orbital, inner core exci-
tation, nonsequential ionization, and dynamical electron
correlations, etc., cannot be treated. Clearly, a more complete
formalism beyond the SAE and other phenomenological
models is very desirable at this time for more comprehensive

and accurate treatment of atomic and molecular physics and
chemical physics in strong fields.

We note, however, that the conventional �weak-field�
TDDFT is not adequate for the treatment of strong-field pro-
cesses. Similar to the stationary DFT case, due to the exis-
tence of the self-interaction energy, TDDFT calculations us-
ing adiabatic LDA or GGA energy functionals do not have
the correct long-range asymptotic Coulombic �−1/r� poten-
tial. Moreover, nonperturbative framework for TDDFT will
be required for the treatment of strong field processes. The
recent development of self-interaction-free DFT and TDDFT
removes some of these problems and provides powerful and
practical nonperturbative frameworks for quantitative treat-
ment of highly excited states and strong-field processes of
many-electron quantum systems. A short account of these
new developments and their applications will be discussed
and examined in this paper.

In the following, we first briefly describe the self-
interaction-free DFT for more accurate treatment of the elec-
tronic structure of atomic, molecular, and quantum dot sys-
tems. This is followed by a discussion of the self-interaction-
free TDDFTs and associated computational techniques for
nonperturbative treatment of multiphoton dynamics and
very-high-order nonlinear optical processes in intense laser
fields.

II. DFT WITH OPTIMIZED EFFECTIVE POTENTIAL
AND SELF-INTERACTION CORRECTION

In the Kohn–Sham �KS� DFT formulation,8 one solves
the following set of one-electron Schrödinger-type equations
for N-electron systems �in atomic units�:

ĤKS�i��r� = �−
1

2
�2 + veff,��r���i��r� = �i��i��r�,

�i = 1,2,…,N�� , �1�

where veff,��r� is the effective KS potential and � is the spin
index. The total density is given by

��r� = �
�

�
i=1

N�

��i��r��2 = �↑�r� + �↓�r� , �2�

and the ground-state wave function is determined by

� =
1

	N!
det��1�2¯�N� . �3�

The total energy of the ground state is obtained by the mini-
mization of the Hohenberg–Kohn energy functional7

E��↑,�↓� = Ts��� + J��� + Exc��↑,�↓� +
 vext�r���r�dr .

�4�

Here Ts is the noninteracting KS kinetic energy,
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Ts = �
�

�
i=1

N�

��i�� −
1

2
�2��i�� , �5�

vext�r� is the “external” potential due to the electron-nucleus
interaction, J��� is the classical electron-electron repulsive
energy,

J��� =
1

2

 
 ��r���r��

�r − r��
dr dr�, �6�

and Exc��↑ ,�↓� is the xc-energy functional. Minimization of
the total energy functional, Eq. �4�, subject to the constraint


 ���r�dr = N�, �7�

gives rise to the KS equations �1� with the effective potential

veff,��r� = vext�r� +
�J���
����r�

+
�Exc��↑,�↓�

����r�

= vext�r� +
 ��r��
�r − r��

dr� + vxc,��r� , �8�

where vxc,��r� is the exchange-correlation potential,

vxc,��r� =
�Exc��↑,�↓�

����r�
. �9�

The KS equations are to be solved self-consistently, starting
from some initial estimate of the density ���r�, until conver-
gence is reached. In actual calculations, the KS Hamiltonian
in Eq. �4� must be fixed by a particular choice of the xc-
energy functional, Exc��↑ ,�↓�. However, both LSDA and
GGA energy functional forms contain spurious self-
interaction contributions. Such self-interaction contribution
can be seen from Eq. �4�, where the two terms J��� and
Exc��↑ ,�↓� should, in principle, cancel each other exactly in
the limit of one-electron system, if the exact form for
Exc��↑ ,�↓� is used. In practice, Exc��↑ ,�↓� needs to be ap-
proximated, leading to the self-interaction energy. The exis-
tence of such self-interaction energy is the main source of
error responsible for the incorrect long-range behavior of the
exchange-correlation potential vxc,��r�. Thus the elimination
of the self-interaction contribution is essential for the proper
treatment of the ionization potentials and excited-state prop-
erties.

In the last several years, considerable attention has been
paid to the methodology for the removing of self-interaction
energy. One approach for improving Exc��↑ ,�↓� is based on
the generalization of the so-called optimized effective poten-
tial �OEP� formalism.38,39 In this approach, one solves a set
of one-electron equations, similar to the KS equations in Eq.
�1�,

ĤOEP�i��r� = �−
1

2
�2 + V�

OEP�r���i��r� = �i��i��r�,

�i = 1,2,…,N�� . �10�

The optimized effective potential V�
OEP�r� is obtained by the

requirement that the spin orbitals 
�i�� in Eq. �10� are those
that minimize the total energy functional E�
�i↑ ,� j↓��,

�EOEP�
�i↑,� j↓��
�V�

OEP�r�
= 0, �11�

where

EOEP�
�i↑,� j↓�� = Ts�
�i↑,� j↓�� + J�
�i↑,� j↓��

+ Exc�
�i↑,� j↓�� +
 vext�r���r�dr .

�12�

Equation �11� can be written as, using the chain rule for
functional derivative,

�
j

 dr�

�EOEP�

�i↑,�i�↓��

�� j��r��
·

�� j��r��
�V�

OEP�r�
+ c.c. = 0. �13�

While the physical idea of the OEP method is simple and
appealing, Eq. �13� leads to an integral equation which is
computationally impractical to solve. Recently, Krieger, Li,
and Iafrate40 �KLI� have worked out an approximate, albeit
accurate, procedure to circumvent this difficulty, reducing
the determination of V�

OEP to the solution of simple linear
equations. In all the earlier KLI calculations so far,5,40 how-
ever, the exchange part of the density functional contains
Hartree–Fock-type potential. While such a procedure pro-
vides accurate results for the exchange part of Exc it is com-
putationally more expensive than the traditional DFT calcu-
lations where only single-particle local potential is used.
Thus it is desirable to explore an approximate and yet accu-
rate procedure within the KLI framework involving only the
use of local potentials. This would greatly speed up the com-
putations of the static and dynamical properties of many-
electron systems. As will be shown below, the self-
interaction-correction �SIC� procedure, similar to the original
KLI method, allows also the construction of self-interaction-
free effective potential which is local and orbital independent
Further, the OEP so constructed, denoted by VKLI,�

SIC �r� below,
has the proper long-range asymptotic �−1/r� behavior and
thus is suitable for the determination of both ground- and
excited-state properties of many-electron systems.

We shall adopt the following total energy functional with
explicit SIC form21,22,41

ESIC
OEP�
�i↑,� j↓�� = EOEP�
�i↑,� j↓��

− �
�

�
i


J��i�� + Exc��i�,0�� , �14�

where EOEP�
�i↑ ,� j↓�� is given in Eq. �12�. Extending the
OEP-KLI procedure, we arrive at

VSIC,�
OEP �r� = vex�r� +
 ��r��

�r − r��
dr� +

�Exc��↑,�↓�
����r�

+ VSIC,��r� , �15�

where

VSIC,��r� = �
i

�i��r�
���r�


vi��r��V̄SIC,�
i − v̄i��� , �16�
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vi��r� = −
 �i��r��
�r − r��

dr� −
�Exc��i�,0�

��i��r�
, �17�

and

V̄SIC,�
i = ��i��VSIC,��r���i�� , �18�

v̄i� = ��i��vi��r���i�� . �19�

The set of OEP equations in Eq. �10�, with V�
OEP�r� re-

placed by local potential VSIC,�
OEP �r� in Eq. �15�, is to be solved

self-consistently. Finally, one can choose V̄SIC,�
i=N� = v̄N� for the

highest occupied orbital as suggested by the KLI procedure.
The energy of the highest occupied orbital provides an ap-
proximate value for the first ionization potential.42 In the
following we discuss some recent applications of the OEP/
KLI-SIC procedure to the atomic and quantum dot electronic
structure calculations.

A. Nonrelativistic atomic structure calculations

The OEP/KLI-SIC method described above has been
recently applied to the calculation of total energies and
ionization potentials for neutral atoms and negative ions
�Z=2–18�.21 Table I shows some representative results
of the OEP/KLI-SIC calculations for the ionization potentials
of neutral atoms. It is seen that while the ionization
potentials from the DFT calculations using the LSDA and
Becke-Lee-Yang-Parr �BLYP� functionals have 30%–50%
discrepancy from the exact results, the corresponding results
after the KLI-SIC procedure are markedly improved to
within 1%–5% of the exact values. To understand the physi-
cal origin of such an improvement, we show in Fig. 1 the
effective potential rVeff�r� of LSDA and BLYP with and
without KLI-SIC for the Ne atom. Notice that both LSDA
and BLYP potentials �without KLI-SIC� give rise to wrong

long-range behavior � rVeff�r�→0 asymptotically�. On the
other hand, the corresponding potentials with KLI-SIC re-
produce the correct asymptotic behavior, namely, rVeff�r�→
−1. This correct long-range behavior is crucial for proper
DFT treatment of excited and continuum states as well as the
autoionizing resonances to be described next.

B. Autoionizing resonances

Because of the lack of proper long-range interaction be-
havior, previous photoionization calculations of complex at-
oms using LSDA or GGA energy functionals fail to exhibit
the excited-state structure such as the prominent autoionizing
resonances.25,26 Using the OEP/KLI-SIC procedure,21 we
have recently performed a calculation of the photoionization
spectrum of Ne using time-dependent LSDA �within linear
response theory�. It is seen that the time-dependent LSDA
�with KLI-SIC� results agree well with the experimental data
in the broad peak region �Fig. 2�, followed by a series of
sharp resonances due to 2s→np resonance transitions21 �Fig.
3�. The calculated linewidths and resonance line profile pa-
rameters are also in good agreement with both

TABLE I. The ionization potentials �in atomic units� of ground states of neutral atoms �Z	18� calculated from
the highest occupied orbital energies by various exchange-correlation energy functionals.

Non-KLI-SIC KLI-SIC

Atom xLSDA BLYP xLSDA BLYP Expt.a

He 0.517 0.585 0.918 0.950 0.904
Li 0.100 0.111 0.196 0.194 0.198
Be 0.170 0.201 0.308 0.323 0.343
B 0.120 0.143 0.290 0.304 0.305
C 0.196 0.218 0.412 0.422 0.414
N 0.276 0.297 0.536 0.543 0.534
O 0.210 0.266 0.479 0.523 0.501
F 0.326 0.377 0.645 0.680 0.640
Ne 0.443 0.492 0.808 0.837 0.793
Na 0.097 0.107 0.187 0.184 0.189
Mg 0.142 0.168 0.256 0.267 0.281
Al 0.086 0.102 0.192 0.198 0.217
Si 0.144 0.160 0.275 0.279 0.300
P 0.203 0.219 0.358 0.361 0.385
S 0.174 0.219 0.344 0.375 0.381
Cl 0.254 0.295 0.447 0.472 0.477
Ar 0.334 0.373 0.549 0.571 0.579

aReference 104.

FIG. 1. The one-electron effective potentials r ·Veff�r� of LSDA and BLYP
with and without the KLI-SIC for Ne atom.

062207-4 Shih-I Chu J. Chem. Phys. 123, 062207 �2005�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.45.148 On: Tue, 25 Nov 2014 17:49:49



experimental43 and configuration-interaction �R-matrix� �Ref.
44� results. �We note that in the photoionizations,21 two val-
ues of the 2s orbital energy are used in the linear response
calculations, one taken directly from the OEP/KLI-SIC data
and the other from the experimental value. Both calculations
give rise to nearly identical autoionizing spectrum except the
resonance positions are slightly shifted.� To our knowledge
this is the first successful DFT calculation which produces
the fine structure of autoionizing resonances of complex at-
oms.

C. Relativistic DFT calculations of atomic structure
„Z=2–106…

The relativistic density-functional theory �RDFT� is the
generalization of the nonrelativistic Hohenberg–Kohn–Sham
density-functional formalism7,8 to the relativistic regime.45,46

When the many-body effects are approximated locally as be-
ing those of a relativistic homogeneous electron gas, the rela-
tivistic local density approximation is obtained.45,46

In the RDFT, one solves the following single-particle
Dirac–Fock-type equation for N-electron atomic systems �in
atomic units�

�c
 · p + �c2 + �eff,��r���i� = 
i��i��r�, i = 1,2,…,N�

�20�

where �eff,� is the effective one-particle local potential, � is
the spin index, and 
�i�� are the four-component spinors. The
total electron density is given by

� = �
�

�
i=1

N�

�i�
+ �r��i��r� = �

�
�
i=1

N�

�i��r� , �21�

and the total energy of the ground state is expressed as

E��� = Ts��� + J��� + Exc��↑,�↓� +
 �ext�r���r�dr . �22�

Here Ts is the kinetic energy of the noninteracting N-electron
systems including the rest-mass energy,

Ts = �
�

�
i=1

N�

��i��c
 · p + �c2��i�� , �23�

Exc is the relativistic counterpart of the exchange-correlation
energy, and vext is the external potential including the
electron-nucleus interaction. The effective potential in Eq.
�20� is given by

�eff,��r� = vext�r� +
 ��r��
�r − r��

dr� + vxc,��r� , �24�

where �xc,� is the relativistic exchange-correlation �xc� po-
tential,

vxc,��r� =
�Exc��↑,�↓�

����r�
. �25�

Similar to the nonrelativistic case, the RDFT described
above contains the undesirable self-interaction energy. Thus
the relativistic xc potential45–47 does not have the proper
long-range behavior either. To overcome such problems, a
self-interaction-free relativistic DFT has been developed,
based on the extension of the nonrelativistic OEP/KLI-SIC
formalism to the relativistic domain.48

Using the relativistic OEP/KLI-SIC formalism, a de-
tailed atomic structure calculation of the orbital binding en-
ergies and ionization potentials �obtained from the highest
occupied orbital energies� is performed for the ground states
of atoms with nuclear charge Z=2–106.48 The results are in
good agreement with the experimental data to within a few
percent �Fig. 4� across the periodic table �Z=2–106�. Figure
4 shows that the inclusion of the relativistic correlation en-
ergy functional48 leads to significant improvement of the re-
sults, particularly for the high-Z atoms. We note that Eq. �1�
or Eq. �20� can be solved accurately and efficiently by means
of the generalized pseudospectral �GPS� technique49,50

which allows nonuniform and optimal spatial discretization
of the Kohn–Sham Hamiltonian with the use of only a mod-
est number of grid points.21,48

D. Electronic structure of quantum dots

Recent advances in semiconductor technology have led
to the fabrication of zero-dimensional structure called quan-
tum dots.51,52 A recent measurement by Tarucha et al.53 has
probed the electronic structure of quantum dots through
single-electron tunneling spectroscopy. An instructive finding
is the existence of shell structure of addition energies. The
addition energy ��N� is defined to be the energy needed to
add an electron into �N−1� electron system, namely, ��N�
=Etot�N�−Etot�N−1�, where, Etot�N� is the total energy of the

FIG. 2. The total photoionization cross sections of time-independent and
time-dependent calculations with LSDA/KLI-SIC potential.

FIG. 3. The photoionization cross sections near the 2s→np resonant tran-
sitions, showing the autoionizing resonance profiles. The results are ob-
tained by the TDLSDA with KLI-SIC potential. The experimental value of
the 2s orbital energy is used in the calculation.
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N-electron quantum dot. Several recent theoretical studies
have explored the shell-filling behavior of a few-electron
�less than 20� quantum dots using the conventional LSDA or
GGA energy functional,54–56 but no detailed exploration has
been performed on the general shell-filling behavior of
many-electron quantum dots. In a recent study, we extended
the OEP/KLI-SIC formalism to the study of the electronic
structure and shell-filling behavior of quantum dots with N
=2–60.57

Figure 5 shows the capacitive energy, ��N�−��N−1�,
as a function of the electronic number N calculated by the
BLYP �solid line� and BLYP/KLI-SIC �dashed line� proce-

dures, exhibiting the detailed shell and subshell electronic
structure of many-electron quantum dots. We note that al-
though numerical values of the capacitive energies differ by
a few percent, all the methods �LSDA, LSDA/KLI-SIC,
BLYP, BLYP/KLI-SIC� used in the calculations57 lead to the
same shell and subshell structure patterns. To understand the
origin of the shell-filling structure, we first examine the en-
ergy order of individual electron orbital. Using this energy
ordering, one can identify all the shell structures in Fig. 5.
For example, those peak positions marked ↑↓ correspond to
the quantum dots with filled shells or subshells. The most
prominent shell structure occurs at the following “magic”
numbers N=2�1s2�, 8�1s2sp6�, 20�1s22p63d102s2�,
40�1s22p63d102s24f143p6�, etc., corresponding to the fully
occupied shells. The smaller peaks marked ↓ in Fig. 5 can
also be identified as those quantum dots with half-filled sub-
shells. It is instructive to see that the Hund’s rule is also
applicable to the quantum dot systems here.57

III. RECENT DEVELOPMENT OF SELF-INTERACTION-
FREE TDDFT FOR NONPERTURBATIVE
TREATMENT OF ATOMIC MULTIPHOTON
PROCESSES IN INTENSE LASER FIELDS

The TDDFT as a rigorous formalism is a more recent
development in DFT, although the historical roots date back
to the time-dependent Thomas–Fermi model proposed by
Bloch in 1933.58 The central result of modern TDDFT is a
set of time-dependent Kohn–Sham �TDKS� equations which
are structurally similar to the time-dependent Hartree–Fock
�TDHF� equations but include �in principle, exactly� all
many-body effects through a local time-dependent xc
potential.23,24 To date, most applications of TDDFT fall in
the regime of weak-field linear or nonlinear response and the
adiabatic LSDA energy functional is often used.23,25,26,59 Ap-
plications of the time-dependent LSDA approach have been
made to the photoresponse of atoms, molecules, clusters,
nanocrystals, semiconductor surfaces, and bulk semiconduc-
tor in the weak-field perturbative regime.25,26,34,35,59

As indicated in the Introduction, the conventional �weak-
field� TDKS formalism cannot be directly applied to the
study of multiphoton processes in intense laser fields. In this
section, we discuss a TDDFT with OEP and SIC for nonper-
turbative treatment of many-electron quantum systems in in-
tense laser fields,60 based on the extension of the steady-state
OEP/KLI-SIC procedure21 to the time domain. We note that
a related TDOEP-KLI method without the use of SIC was
proposed by Ullrich and Gross.61 The latter method provides
an accurate procedure for the calculation of the exchange
part of the time-dependent potential. But computationally it
can be more time consuming than the conventional TDKS
approach since the TDOEP-KLI procedure requires the con-
struction of Hartree–Fock-type potential at each time step.
The advantage of the TDOEP/KLI-SIC approach60 is that it
allows the construction of self-interaction-free time-
dependent local OEP which is also orbital independent. This
greatly facilitates the study of time-dependent processes of
many-electron quantum systems in strong fields.

FIG. 4. Ionization potentials calculated by �a� nonrelativistic OEP/KLI-SIC
and �b� relativistic OEP/KLI-SIC with exchange only �dashed line� and xc
�solid line�-energy functionals for neutral atoms with 2	Z	106. The ex-
perimental ionization potentials are also presented �open circle� for
comparison.

FIG. 5. Capacitive energies ���N�−��N−1�� of N-electron quantum dots
confined by a spherical harmonic potential ��=0.75�, exhibiting the shell-
filling structure. Both BLYP and BLYP/KLI-SIC procedures are used in
the DFT calculation. Solid line corresponds to the BLYP results where
��N�=Etot�N�−Etot�N−1� is adopted. The dashed line shows the BLYP/KLI-
SIC results where ��N� is taken directly from the highest occupied
orbital energy.
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A. TDDFT with OEP/KLI-SIC for atomic multiphoton
processes in intense pulsed laser fields

The quantum mechanical action of a many-electron sys-
tem interacting with an external field can be expressed as60,61

A�
�i��� = �
�

�
i

N� 

−�

t1

dt
 �i�
* �r,t��i

�

�t
+

�2

2
�

� �i��r,t�dr − �
�



−�

t1

dt
 ���r,t�vext�r,t�dr

−
1

2



−�

t1

dt
 
 ���r,t����r�,t�
�r − r��

dr dr�

− Axc�
�i��� , �26�

where 
�i��r , t�� are the time-dependent spin orbitals, N
=��N� is the total number of electrons, vext�r , t� is the ex-
ternal potential which includes the electron-nucleus Cou-
lomb interaction and the coupling of the electron to the ex-
ternal laser fields, ��r , t�=�����r , t� is the total electron
density with the spin density

���r,t� = �
i

N�

�i�
* �r,t��i��r,t� , �27�

and Axc�
�i��� is the xc action functional. The spin orbitals
satisfy the one-electron Schrödinger-type equation,

i
�

�t
�i��r,t� = �−

1

2
�2 + V��r,t���i��r,t� , �28�

where V��r , t� will be the TDOEP if we choose the set of
spin orbitals 
�i�� which render the total action functional
A�
�i��� stationary:

�A�
�i���
�V��r,t�

= 0. �29�

Following a procedure similar to the TDOEP/KLI
scheme,61 one obtains the following general expression for
the time-dependent xc potential:

Vxc,��r,t� = �
i

�i��r,t�
���r,t�

1

2

vi��r,t� + vi�

* �r,t��

+ �
i

�i��r,t�
���r,t� �V̄xc,i� −

1

2
�v̄i� + v̄i�

* ��
+

i

4���r,t��i

�2�i��r,t�

�

−�

t

dt��v̄i��t�� − v̄i�
* �t��� , �30�

where the last term contains the memory effect and

vi��r,t� =
�Axc

�i�
* ��i�

, vi�
* �r,t� =

�Axc

�i���i�
* . �31�

If we use the following explicit SIC expression for the
xc action functional,60

Axc�
�i��� = 

−�

t1

dtExc��↑�r,t�,�↓�r,t��

− �
�

�
i=1

N� 

−�

t1

dt
J��i�� + Exc��i�,0�� , �32�

where Exc is the adiabatic time-dependent xc energy func-
tional, we obtain

vi��r,t� = vi�
* �r,t� =

�Exc
SIC

��i�
. �33�

Note that vi� is now a real function of r and t. Thus the
memory term in Eq. �30� vanishes identically. Similar results
are obtained as long as one uses an explicit Exc form �such as
that in LSDA or GGA� of energy functional and the adiabatic
approximation.

The use of the SIC form in Eq. �32� removes the spuri-
ous self-interaction terms in conventional TDDFT and results
in a proper long-range asymptotic potential. Another major
advantage of this procedure is that only local potential is
required to construct the orbital-independent OEP. This fa-
cilitates considerably the numerical computation.

By extending the steady-state OEP/KLI-SIC procedure21

to the time-dependent domain, we obtain the time-dependent
�TD� OEP as

V��r,t� = vext�r,t� +
�J���

����r,t�
+ VSIC,��r,t� , �34�

where

VSIC,��r,t� = �
i

�i��r,t�
���r,t�


vi��r,t� + �V̄SIC,�
i �t� − v̄i��t��� ,

�35�

vi��r,t� =
�Exc��↑�r,t�,�↓�r,t��

����r,t�
−

�J��i��r,t��
��i��r,t�

−
�Exc��i��r,t�,0�

��i��r,t�
, �36�

and

V̄SIC,�
i �t� = ��i��VSIC,��r,t���i�� , �37�

v̄i��t� = ��i��vi��r,t���i�� . �38�

Equations �28� and �34� are to be solved self-consistently.
Note that since the exact form of vxc��r , t� is unknown, the
adiabatic approximation is often used in the TDDFT calcu-
lations:

vxc��r,t� = �vxc��������=���r,t�. �39�

Finally Eq. �28� is an initial value problem and the initial
wave function can be determined by

�i��r,t�t=0 = ��i��r� · e−i
i�t�t=0, �40�

where �i��r� and 
i� are the eigenfunction and eigenvalue of
the time-independent Kohn–Sham equation �with OEP/KLI-
SIC� for the static case.21
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B. Time-dependent generalized pseudospectral
method for numerical solution of self-interaction-free
TDDFT equations

In this section we briefly describe a numerical procedure
recently developed for accurate and efficient solution of the
time-dependent OEP/SIC equation, Eq. �28�. The commonly
used procedures for the time propagation of the Schrödinger
or TDDFT equation employ equal-spacing spatial grid
discretization.62–65 For processes such as HHG, accurate
time-dependent wave functions are required to achieve con-
vergence since the intensity of various harmonic peaks can
span a range of many �10–20� orders of magnitude. High-
precision wave functions are, however, more difficult to
achieve by the conventional equal-spacing spatial-grid-
discretization time-dependent techniques, due to the Cou-
lomb singularity at the origin and the long-range behavior of
the Coulomb potential. To achieve more accurate wave-
function propagation, a numerical procedure, the time-
dependent generalized pseudospectral �TDGPS� method66

has been recently introduced. The TDGPS procedure consists
of the following two basic elements: �i� The GPS
technique49,50 is used for nonuniform optimal grid discretiza-
tion of the radial coordinates and the Hamiltonian. It has
been shown that the number of grid points required in the
GPS procedure can be orders of magnitude smaller than
those used by the conventional equal-spacing discretization
methods. Yet considerably higher accuracy in wave functions
and therefore HHG spectra can be achieved since the physi-
cally more important short-range regime is more accurately
treated by the TDGPS method.66 �ii� A split-operator tech-
nique in the energy representation is introduced for efficient
time propagation of the wave functions. More detailed dis-
cussion of the TDGPS method is given in a later molecular
section.

C. Multiphoton quantum dynamics of atomic systems
in intense laser fields

In this section we discuss several recent applications of
the TDOEP/KLI-SIC formalism to the nonperturbative study
of multiphoton processes of many-electron atomic systems in
intense laser fields, focused particularly on the phenomenon
of multiple HHG in intense laser fields. The study of the
HHG phenomena is one of the most rapidly developing top-
ics in strong-field atomic and molecular physics.36,67–73 The
generation of harmonic orders well in excess of 100 from
noble gas, diatomic and polyatomic molecules, and cluster
targets has been demonstrated by several recent
experiments.68–72 For example, in a recent experiment,71

ultrashort laser pulses �with 26 fs pulse duration� from a
Ti:sapphire laser have been used to generate coherent radia-
tion at wavelengths as short as 2.7 nm �460 eV�. These
wavelengths are well within the “water window” region of
x-ray transmission. Thus the HHG mechanism provides a
simple and powerful new route to generate coherent x-ray
laser source which is technically much less demanding and
less energy intensive than current plasma based x-ray
schemes. The availability of such a compact laboratory
�table-top� system for the generation of coherent x rays holds

promise as a source for biological holography and nonlinear
optics in the x-ray regime. Another potential new application
of HHG processes is the possibility of generating laser pulses
of ultrashort duration �tens of attoseconds� in the near future,
leading a way to perform attosecond spectroscopy and study
new dynamical phenomena with attosecond time resolution.

To study HHG, we start from the calculation of the total
induced dipole moment and dipole acceleration of N-electron
systems which can be expressed in terms of electron density
� as follows:

d�t� =
 ��r,t�zdr = �
i�

��i��r,t��z��i��r,t�� , �41�

dA�t� =
 ��r,t�
d2z

dt2 dr

= − �
i�

��i��r,t��
�Veff,�����;r,t�

�z
��i��r,t��

+ �
i�

��i��r,t��
E�t� · r sin��t�

z
��i��r,t�� . �42�

The corresponding HHG power spectrum can now be ob-
tained by the Fourier transformation of the respective time-
dependent dipole moment or dipole acceleration:

P��� = � 1

tf − ti



ti

tf

d�t�e−i�t dt�2

� �d����2 �43�

and

PA��� = � 1

tf − ti

1

�2

ti

tf

dA�t�e−i�t dt�2

� �dA����2. �44�

We note that an important measure of the accuracy of HHG
results is that the power spectrum P��� should be equal to
PA��� if the time-dependent wave function calculation is
fully converged.

1. The effect of dynamical electron correlation on the
HHG of rare gas atoms

One recent application of the TDOEP/KLI-SIC formal-
ism is to study the role of dynamical electron correlation on
HHG of He atoms in intense linearly polarized �LP� laser
pulses.60 Of particular interest is the study of the mechanism
responsible for the production of the “higher” harmonics ob-
served in the experiment74 which cannot be explained by the
SAE model.36,37 Figure 6 shows that while the SAE model
fails to produce the higher harmonics, the TDDFT/KLI-SIC
results agree well with the experimental data in both lower
and higher HHG regimes, indicating the important role
played by the dynamical electron correlation.60 More de-
tailed study of the HHG processes of rare gas �He, Ne, Ar�
atoms has been recently reported.75

2. Coherent control of HHG of rare gas atoms in two-
color mixed fields

The TDOEP/KLI-SIC formalism was recently extended
to the study of coherent control of the production of HHG of
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He atoms by means of the use of two laser fields with dif-
ferent frequencies and polarization directions.76 It is shown
that by mixing a weak fundamental field �1053 nm� with a
strong second-harmonic field �527 nm�, one can produce
high-order sum and difference frequency radiation and
“even” harmonics with an efficiency similar to that of odd
harmonics. Further the relative efficiency of the HHG can be
controlled by manipulating the relative polarization direction
of the two fields. These predictions are in accord with the
recent experimental data.77 As a case study, Fig. 7 shows the
results �solid lines� of the HHG of He atoms in the mixed
fields with the �o-field intensity I1=2�1012 W/cm2 and the
2�o-field intensity I2=4�1014 W/cm2. The fields are paral-
lel to each other with the relative phase �=0. Also shown in
Fig. 7 for comparison are the single-field data, �o field alone
�open circle� and 2�o field alone �filled circle�, both with
laser intensity 4�1014 W/cm2. First recall that the single-
color 2�o field produces �4n+2� harmonics, n=0,1 ,2 ,… .
By mixing the 2�o field with a weak �200 times weaker� �o

field, three additional ��4n−1�th, 4nth, �4n+1�th� harmonics
appear in between two adjacent harmonics of the single-2�o

field case. The remarkable feature is that the intensities of
these extra harmonics are of similar orders of magnitude of

the harmonics produced by the single-color 2�o field �filled
circle� and are much higher than those produced by the
single-color �o field �open circle�. Further these 4nth har-
monics are the even harmonics which cannot be produced by
either the single-color 2�o or the single-color �o field alone.
The generation of these extra harmonics can be explained by
the high-order wave mixing mechanism. Thus the leading
channel for producing the �4n+1�th harmonic is due to the
absorption of 2n photons from the 2�o field and one photon
from the �o field. Similarly, the �4n−1�th harmonic is pro-
duced by the absorption of 2n photons from the 2�o field and
the emission of one photon to the �o field. Likewise, the
even �4nth� harmonics can be produced by the absorption of
�2n−1� photons from the 2�o field and the absorption of two
photons from the �o field. Thus the combination of a strong
2�o field with a weak �o field can produce both odd and
even harmonics with relatively high yields.76

3. Generation of circularly polarized HHG

In all the theoretical and experimental investigations up
to 1998, only LP HHG has been studied. This is because the
dipole selection rule excludes the possibility of producing
circularly polarized �CP� harmonics by multiphoton mecha-
nism. Recently a feasible scheme has been proposed for the
generation of purely CP high harmonics, using two-color la-
ser fields.78 The proposed setup consists of a CP fundamental
laser field � and a LP second-harmonic laser field 2� in
crossed-beam configuration. The feasibility of such a scheme
is confirmed by a three-dimensional TDOEP/KLI-SIC calcu-
lation of the He system.78

IV. SELF-INTERACTION-FREE TDDFT FOR
MOLECULAR MULTIPHOTON PROCESSES IN
INTENSE LASER FIELDS

A. TDDFT with OEP/KLI-SIC for molecular processes
in intense laser fields

The TDOEP/KLI-SIC formalism described in the last
section for atomic systems can be extended to the molecular
systems. Consider the solution of the time-dependent Kohn–
Sham-tpye �TDKS� equation for N-electron molecular sys-
tems �under fixed nuclei approximation� in LP laser fields, in
atomic units,

i
�

�t
�i��r,t� = Ĥ�r,t��i��r,t�

= �−
1

2
�2 + veff,��r,t���i��r,t�,

i = 1,2,…,N� �45�

where veff,��r , t� is the time-dependent effective potential de-
pending upon the total electron density ��t� and � is the spin
index. Following the TDOEP/KLI-SIC procedure, we obtain
the time-dependent OEP as60,79

FIG. 6. The HHG spectrum of He obtained from the all-electron calculation
�open circle� and from the SAE model �filled triangle�. The experimental
data �with error bar� are also shown for comparison. The HHG yields are
normalized to the 13th harmonic peak. The laser peak intensity used in the
calculation is I=3.5�1015 W/cm2 and wavelength �=248.6 nm.

FIG. 7. HHG spectra of He atoms in the two-color mixed fields ��1

=�o ,�2=2�o� with parallel polarization and laser intensities I1=2
�1012 W/cm2, I2=4�1014 W/cm2 �solid line�. Also shown are the results
of HHG spectra in single-color �o �1053 nm� field �open circle� and single-
color 2�0 �527 nm� field �filled circle�, both with intensity at
4�1014 W/cm2.
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Veff,�
OEP�r,t� = vext�r,t� +

�J���
����r,t�

+ VSIC,��r,t� . �46�

Here vext�r , t� is the external potential due to the interaction
of the electron with the external laser field and the nuclei and
VSIC,��r , t� is given in Eq. �35�. For the special case of homo-
nuclear diatomic molecules, the time-dependent OEP poten-
tial, Eq. �46�, has the following explicit form:

Veff,�
OEP�r,t� = −

Z1

�R1 − r�
−

Z2

�R2 − r�
+
 d3r�

��r�,t�
�r − r��

+ E�t� · r sin �t + VSIC,��r,t� . �47�

Here r is the electronic coordinate, E�t� the electric field
amplitude, and R1= �0,0 ,a� and R2= �0,0 ,−a� are the coor-
dinates of the two nuclei in Cartesian coordinates with
nuclear charges Z1 and Z2, respectively. The internuclear
separation R is equal to 2a.

B. Generalized pseudospectral method for spatial
discretization of two-center systems

In this section, we discuss a new procedure for the opti-
mal spatial discretization and high-precision solution of
field-free two-center �diatomic molecular� systems. We shall
use the prolate spheroidal coordinates �� ,� ,��, 0����,
0����, and 0���2� for the description of the system:

x = a sinh � sin � cos � ,

y = a sinh � sin � sin � ,

z = a cosh � cos � .

Due to the axial symmetry of the diatomic systems, the field-
free solution takes the form

�m�r� = eim����,��, m = 0, ± 1, ± 2,… .

In order to symmetrize the Hamiltonian matrix, we
transform the Kohn–Sham differential equation, Eq. �1�, into
a variational problem that minimizes the functional

Fs =
1

2

 ����2dr +
 �veff − 
����2dr . �48�

The Coulomb repulsive potential Vc=�dr����r�� / �r−r��� sat-
isfying the Poisson equation, �2Vc=−4��, can also be recast
into the following variational form seeking the minimization
of

Fc =
1

2

 ��Vc�2dr − 4�
 �Vcdr . �49�

The GPS technique for one-center �atomic� system49,50

can be extended to discretize the integral representation in
two-center systems.79,80 In the two-center GPS procedure,
one expands any spatial wave function ��� ,�� by
�N�,N�

�� ,��, the polynomials of order N� and N� in � and �,
respectively,

���,�� � �N�,N�
��,�� = �

i=0,j=0

N�,N�

���i,� j�gi�x����gj�y���� ,

�50�

and further require the approximation to be exact at the col-
location points, i.e., �N�,N�

��i ,� j�=���i ,� j���ij, where

x��i�� and 
y�� j�� are the two sets of collocation points to be
described below. In Eq. �50�, gi�x� and gj�y� are the cardinal
functions49,50,81 defined as

gi�x� = −
1

N��N� + 1�PN�
�xi�

�1 − x2�PN�
� �x�

x − xi
, �51�

gj�y� = −
1

N��N� + 1�PN�
�yj�

�1 − y2�PN�
� �y�

y − yj
. �52�

In the case of the Legendre pseudospectral method,49,79–81

the collocation points are determined, respectively, by the
roots of the first derivative of the Legendre polynomial PN�

with respect to x and the first derivative of PN�
with respect

to y, namely,

PN�
� �xi� = 0, PN�

� �yj� = 0. �53�

It follows that the cardinal functions possess the following
unique and desirable properties

gi�xi�� = �i,i�, gj�yj�� = � j,j�. �54�

The mapping relationships between � and x and between �
and y can be chosen as79,80

� = L
1 + x

1 − x
, � =

�

2
�1 + y� , �55�

where x� �−1,1�, y� �−1,1�, �� �0,��, �� �0,��, and L is
a mapping parameter.

A more detailed discussion of the construction of the
differentiation matrix and the symmetrization of the Hamil-
tonian matrix can be found elsewhere.79,80 A major advantage
of the outlined generalized pseudospectral method is that it
allows for nonuniform optimal spatial grid discretization:
denser mesh near the nuclei and sparser mesh for long-range
part of the Coulombic potential. With the use of only a mod-
est number of grid points, high precision eigenvalues and
eigenfunctions can be obtained. Figure 8 shows a typical grid
structure for two-center diatomic systems.79,80 As a measure
of the accuracy of the GPS procedure, we have first tested

FIG. 8. The grid structure of the spatial coordinates of H2 obtained by the
generalized pseudospectral discretization technique.
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the method for the H2
+ molecule, where exact results are

available for comparison. Using only a modest number of
grid points �20 for the � coordinate and 9 for the � coordi-
nate�, we obtain the ground-state energy to be
�1.102 634 214 494 9 a.u., in complete agreement with the
exact value of �1.102 634 214 494 9 a.u.82

C. Time-dependent generalized pseudospectral
method for numerical solution of self-interaction-free
TDDFT equations in two-center systems

In the following, we extend the TDGPS procedure to the
numerical solution of the time-dependent OEP/SIC equations
in two-center systems. Consider the solution of time-
dependent Kohn–Sham-type equation with OEP/SIC for
N-electron diatomic molecular systems in LP laser fields,

i
�

�t
�i��r,t� = Ĥ�i��r,t� = �Ĥ0�r� + V̂�r,t���i��r,t�,

i = 1,2,…,N�. �56�

Here Ĥ0 is the time-independent Hamiltonian with OEP/SIC

at t=0 and V̂ includes the electron-laser field interaction and
the residual time-dependent OEP/SIC:

Ĥ0�r� = −
1

2a2� 1

�sinh2 � + sin2 ��sinh �

�

��
�sinh �

�

��
�

+
1

�sinh2 � + sin2 ��sin �

�

��
�sin �

�

��
��

+ VSIC,�
OEP �r,0� , �57�

V̂�r,t� = − E�t� · r sin �t + VSIC,�
OEP �r,t� − VSIC,�

OEP �r,0� , �58�

where E�t� is the electric field, assumed to be parallel to the
internuclear �ẑ� axis, and E�t�=Ff�t�, where f�t� is the enve-
lope function of the laser pulse. The second- �or higher� or-
der split-operator technique in prolate spheroidal coordinates
and in the energy representation can be extended for accurate
and efficient propagation of the time-dependent OEP/SIC
equations:66,79,80

�i��r,t + �t� � e−iV̂�r,t��t/2e−iĤ0�r��t

�e−iV̂�r,t��t/2�i��r,t� + O��t3� . �59�

Note that such an expression is different from the conven-

tional split-operator techniques,62,63,83 where Ĥ0 is usually

chosen to be the kinetic energy operator and V̂ the remaining
Hamiltonian depending on the spatial coordinates only. The
use of the energy representation in Eq. �59� allows the ex-
plicit elimination of the undesirable fast-oscillating high-
energy components and speeds up considerably the time
propagation.66,79,80 In addition, the symmetry properties pos-

sessed by Ĥ0 can be used to simplify and facilitate the cal-
culations.

D. Exploration of the underlying mechanisms for high
harmonic generation H2 in intense laser fields

In this section we show an application of the TDOEP/
KLI-SIC procedure to the study of HHG of H2 in intense
pulsed laser fields. First we discuss the field-free electronic
structure calculations using the steady-state OEP/KLI-SIC
procedure,21,79 and the GPS procedure79,80 is extended to dis-
cretize the molecular Hamiltonian in the prolate spheroidal
coordinates. For H2, the calculated ground-state energy is
�1.1336 a.u. �using LSDA exchange energy functional only�
and �1.1828 a.u. �including both LSDA exchange and cor-
relation energy functionals�; the latter is within 1% of the
exact value of �1.174 448 a.u. If the GGA energy functional
such as that of BLYP �Ref. 1� is used, the calculated ground-
state energy is improved to �1.174 44 a.u.

Consider now the interaction of H2 molecules with an
intense LP laser field with wavelength 1064 nm, sin2 pulse
shape, and 20 optical cycles in pulse length. The time-
dependent xc potential is constructed by means of the time-
dependent OEP/KLI-SIC procedure using the adiabatic
LSDA exchange and correlation energy functional. We shall
assume the electric field polarization is aligned along the
internuclear-axis �ẑ� direction. This approximation is justi-
fied by the experimental observation that the laser-molecular
interaction tends to force the molecule to align along the
polarization axis. In the following, we shall focus our discus-
sion on the HHG process of H2 molecules from the ground
vibrational state with the internuclear separation R fixed at
the equilibrium distance �R=Re=1.4a0�. The fixed nuclei ap-
proximation is justifiable since the zero-point vibration of H2

in the ground state is rather small �within 0.25a0 of Re� and
the inclusion of the vibrational degree of freedom is not ex-
pected to alter the main features of the HHG phenomenon,
particularly when the time duration of the laser pulse is short.

The solution of the TDOEP/KLI-SIC equation is per-
formed by means of the TDGPS method described above. As
an example of the numerical accuracy of the TDGPS tech-
nique, Fig. 9 shows the comparison of the HHG power spec-
trum of H2 for the case of laser intensity I=1014 W/cm2

FIG. 9. The HHG power spectrum of H2 �at R=1.4a0� in a 20 optical cycle,
1064 nm, sin2 pulse shape laser fields with peak intensity 1014 W/cm2. Both
the length form �solid line� and acceleration form �dotted line� power spectra
are shown for comparison.
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obtained by the Fourier transform of the induced dipole and
dipole acceleration, respectively. Excellent agreement of the
two spectra is obtained from the lowest harmonics all the
way to the cutoff regime, indicating the the full convergence
of the time-dependent wave functions.

Figure 9 shows that those harmonic peaks near the cutoff
regime are structureless. However, for harmonics in the pla-
teau and well below the cutoff, they possess some multiple-
peak fine structures. To explore the detailed spectral and tem-
poral structure of HHG and the underlying mechanisms in
different energy regimes, one can perform the time-
frequency analysis by means of the wavelet transform84,85 of
the induced dipole �or dipole acceleration�,

AW�t0,�� =
 d�t�Wt0,��t�dt � d��t� , �60�

with the wavelet kernel Wt0,��t�=	�W���t− t0��. For the har-
monic emission, a natural choice of the mother wavelet is
given by the Morlet wavelet85

W�x� = �1/	��eixe−x2/2�2
. �61�

Figure 10 shows the modulus of the time-frequency pro-
files of H2 �at R=1.4a0� in �1064 nm, 20 optical cycle, sin2

pulse shape, and 1014 W/cm2� laser fields, revealing striking
and vivid details of the spectral and temporal structures. Sev-
eral salient features are noticed. First, for the lowest few
harmonics, the time profile �at a given frequency� shows a
smooth function of the driving laser pulse. This is an indica-
tion that the multiphoton mechanism dominates this lower
harmonic regime. In this regime, the probability of absorbing
N photons is roughly proportional to IN, and I �laser inten-
sity� is proportional to E�t�2. Second, the smooth time profile
is getting shorter �in time duration� and broadened �in fre-

quency� as the harmonic order is increased, as is evident in
Fig. 10 from the first to the seventh harmonics. As the har-
monic order is further increased, the time profiles �see par-
ticularly the 11th harmonic in Fig. 10� develop extended fine
structures. This can be attributed to the effect of excited
states and the onset of the ionization threshold. Third, for
those high harmonics in the plateau regime well above the
ionization threshold, the most prominent feature is the devel-
opment of fast burst time profiles. At a given time, we see
that such bursts actually form a continuous frequency profile
in Fig. 10. This is clear evidence of the existence of the
bremsstrahlung radiation emitted by each recollision of the
electron wave packet with the parent ionic core�s�. In con-
trast, we find that the �multiphoton-dominant� lowest-order
harmonics form a continuous time profile at a given fre-
quency. In the intermediate energy regime where both mul-
tiphoton and tunneling mechanisms contribute, the time-
frequency profiles show a netlike structure. More detailed
analysis of the origin of the power spectrum patterns near
and below the cutoff can be pursued by performing the cross
section of the time-frequency profile of Fig. 10 at a given
harmonic frequency.79

Finally it will be instructive to explore the origin of the
fine-structure peak splitting of harmonics in the plateau re-
gime below the cutoff, see for example, the 23rd harmonic in
Fig. 9. Figure 11 shows the time profiles at the three subpeak
positions �denoted by 1, 2, and 3� within the 23rd harmonic.
Strikingly, their time profiles nearly coincide. This is evi-
dence that all the harmonic subpeaks within a given har-
monic are produced by the same mechanism, namely, they
are produced by the interference in time of all the brems-
strahlung radiation emitted from all the returning electronic
wavepackets within the incident laser pulse duration. To our
knowledge, this is the first ab initio calculation exhibiting the

FIG. 10. �Color�. The time-frequency
spectra �modulus� of H2 �at R=1.4a0�
in �1064 nm, 20 optical cycle, sin2

pulse shape� laser fields with peak in-
tensity 1014 W/cm2. The colors shown
are in logarithmic scale �in the powers
of 10�.
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details of the time profiles of the subpeak harmonics for a
molecular system.

E. Multiphoton ionization and high harmonic
generation of N2 in intense laser fields

In the last section, we describe the TDOEP/KLI-SIC
method for the study of multiphoton processes of molecular
systems in intense laser fields, taking into account the correct
long-range Coulombic �−1/r� potential. Here we consider an
alternative and simpler procedure by adopting the improved
Leeuwen–Baerends �LB�
 type potential,86 vxc�

LB
, for the
static xc potential. The corresponding time-dependent xc po-
tential in the adiabatic approximation consists of two empiri-
cal parameters 
 and � and possesses the following explicit
form,87

vxc�
LB
�r,t� = 
vx�

LSDA�r,t� + vc�
LSDA�r,t�

−
�x�

2�r,t���
1/3�r,t�

1 + 3�x��r,t�ln
x��r,t� + �x�
2�r,t� + 1�1/2�

.

�62�

The first two terms in Eq. �62�, vx�
LSDA and vc�

LSDA are the
LSDA exchange and correlation potentials which do not
have the correct asymptotic behavior. The last term in Eq.
�62� is the nonlocal gradient correction with x��r�
= �����r�����r�4/3, which ensures the proper long-range
asymptotic behavior vxc�

LB
→−1/r as r→�. For the time-
independent case, this exchange-correlation LB
 potential
has been found to be reliable for the electronic structure and
frequency-dependent �hyper� polarizability calculations of a
number of atomic and molecular systems.86

Figure 12 presents an example of the time-dependent
single-electron populations of different spin orbitals of N2

molecule.87 The slope of the decay of the electron population
in time describes the ionization rate. The laser �electric� field
�with intensity 1014 W/cm2 and wavelength 1064 nm� is as-
sumed to be parallel to the internuclear axis and the internu-
clear distance of N2 is fixed at its equilibrium position, Re

=2.072a0. In this case, the order of ionization probability is

found to be 1�u�2�g�2�u�3�g. On the other hand, for
the 3�1014 W/cm2 and 1064 nm pulses �not shown�, the
order of ionization probability is 2�g�1�u�2�u�3�g.
Thus within the � electrons, the lower the electron orbital
binding energy �ionization potential� is, the more will be the
electron ionization probability. However, although the ion-
ization potential of 1�u electrons is lower than that of 2�u

electrons, the ionization probability of 1�u electrons turns
out to be less than that of 2�u electrons in all the cases. This
can be attributed to the fact that 2�u orbital is along the

electric field direction Ê, while that of 1�u is perpendicular

to Ê. We thus see two different effects that can contribute to
the ionization: the ionization potential �electron binding en-
ergy� effect and the orbital orientation effect. The ionization
potential effect makes the electrons with lower ionization
potentials easier to ionize. The orientation effect makes the
ionization easier for those electrons whose orbital orienta-
tions are parallel to the electric field. These two effects are
clearly competing.

We now discuss briefly the results of the all-electron
HHG calculations of N2.87 The relative contribution of indi-
vidual spin orbital to HHG, di����, depends on the harmonic
frequency range but in general it follows roughly the same
trend as the order of time-dependent induced dipole
moment.87 The total HHG power spectrum is obtained by the
sum of individual spin-orbital HHG power spectrum di����
plus the interference terms. For the case of N2, we observe
interesting constructive and destructive interferences be-
tween the two highest occupied bond 3�g and anti-bonding
2�u orbitals: It is the interference between these two largest
induced dipoles �d3�g

and d2�u
� that contributes dominantly

to the overall HHG power spectrum of N2.87 Thus for many-
electron molecular systems such as N2, the conventional
single-active-electron �SAE� model is not valid, since there
is no single electron molecular orbital which dominates the
total HHG process.

V. GENERALIZED FLOQUET FORMULATION OF TIME-
DEPENDENT DENSITY-FUNCTIONAL THEORY
IN PERIODIC OR QUASIPERIODIC FIELDS

In the last few sections, the time-dependent equations in
the self-interaction-free TDDFT formulations are solved nu-

FIG. 11. The time profiles of the subpeaks of the 23rd harmonic of H2

�R=1.4a0� in intense pulsed laser fields. The laser parameters are the same
as those in Fig. 3.

FIG. 12. The time-dependent population of electrons in different spin orbit-
als of N2 in 1014 W/cm2, 1064 nm, sin2 pulse laser field with 20 optical
cycles in pulse duration.
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merically by propagating individual spin-orbital wave func-
tion in time in a self-consistent fashion. We call this proce-
dure the time-dependent approach to TDDFT. It is a natural
approach for problems involving short pulsed laser fields
where the atom �molecule�-field interaction Hamiltonian can
be an arbitrary function of time. There is, however, other
important class of problems that the Hamiltonian is either a
periodic function of time �such as the cases involving con-
tinuous wave, monochromatic, or long pulse laser fields� or a
quasiperiodic �nonperiodic� function of time �such as the
cases of polychromatic or multicolor fields where the light
frequencies are incommensurate�. In this case, it is advanta-
geous to employ the generalized Floquet theories88–91 which
allow the exact transformation of the periodic or quasiperi-
odic time-dependent Schrödinger equation into an equivalent
time-independent Floquet matrix eigenvalue problem. The
time-independent Floquet formulation and its various gener-
alized formalisms88–91 developed in the last two decades
have been extensively used for the nonperturbative treatment
of numerous atomic and molecular multiphoton and nonlin-
ear optical processes in intense one-color and multicolor la-
ser fields. The time-independent Floquet approaches, when
they are applicable, have several advantages over the time-
dependent approaches. First, the Floquet approach is numeri-
cally more accurate since it involves only the solution of a
�Hermitian or non-Hermitian� time-independent Floquet ma-
trix eigenvalue problem and does not suffer the time-
propagation errors as in the time-dependent methods. Sec-
ond, the Floquet-state or dressed-state picture provides
useful physical insights regarding the multiphoton dynamics
in terms of the avoided crossing pattern of involved quasien-
ergy levels. Third, for near-resonant multiphoton processes,
the nearly degenerate �high-order� perturbation theory can
be applied to the Floquet Hamiltonian, allowing the reduc-
tion of the infinite dimensional Floquet matrix into a N�N
effective Hamiltonian �where N is the number of atomic or
molecular states considered�. This leads to analytical expres-
sions and insights valuable for both theoretical and experi-
mental investigation of multiphoton and very high-order
nonlinear optical phenomena.89

The recent development of the generalized Floquet for-
mulation of TDDFT allows the combination of Floquet ap-
proach with TDDFT and opens up a powerful new nonper-
turbative time-independent theoretical framework for the
study of multiphoton and nonlinear optical processes of
many-electron quantum systems �atoms, molecules, solids,
condensed matter, etc.� in intense laser fields.92–96 In the Flo-
quet formulation of TDDFT,92it is shown that the time-
dependent� Kohn–Sham equation in periodic fields can be
exactly transformed into an equivalent time-independent Flo-
quet matrix eigenproblem whose eigenvalues �quasienergies�
are unique functionals of the electron spin density. Further
for the bound-free transitions, the notions of “complex” den-
sity, complex equation of continuity, and non-Hermitian Flo-
quet formalism can be introduced to facilitate the study of
multiphoton ionization �dissociation� processes.92 Initial ap-
plication to the study of multiphoton ionization of He
atoms92 yields results in good agreement of the experimental
data. More recent extensions of the generalized Floquet-

TDDFT formalism include the many-mode Floquet formula-
tion of the multicolor or quasiperiodic laser excitation case,93

Floquet formulation of time-dependent current density func-
tional theory94 �TDCDFT�, and exterior-complex-scaling-
generaiized-pseudospectral technique95 for the calculation of
the complex quasienergies of many-electron quantum sys-
tems.

Extension of the Floquet-TDDFT formalisms to the
study of multiphoton processes of atoms,93 negative ions,95

and molecules such as above-threshold multiphoton ioniza-
tion, molecular multiphoton dissociation, HHG, and high-
order nonlinear optical susceptibilities, etc., is in progress
and will be reported elsewhere.

VI. PERSPECTIVES

In this paper, we have surveyed several self-interaction-
free DFT and TDDFT approaches recently developed for
more accurate treatment of the electronic structure and time-
dependent dynamics of many-electron quantum systems.
They allow the construction of orbital-independent single-
particle local potential which is self-interaction free and pos-
sesses the correct long-range asymptotic Coulombic �−1/r�
potential behavior. Using such procedures, the autoionizing
resonances and excited states can now be treated more
adquately and the energy of the highest occupied spin orbital
provides a good approximation to the ionization potential.21

The generalized pseudospectral �GPS� technique allows the
construction of nonuniform and optimal spatial grids, denser
mesh near to each nucleus and sparser mesh at longer range,
leading to high-precision solution of both electronic structure
and time-dependent quantum dynamics with the use of only
a modest number of spatial grid points. The TDDFT/OEP-
SIC formalism along with the use of the time-dependent GPS
numerical technique allows nonperturbative in-depth explo-
ration of strong field processes, such as the study of the
underlying physical mechanisms of the multiple high-order
harmonic generation �HHG� phenomenon, at an unprec-
edented detail.

At this time, the TDDFT is the primary approach avail-
able for the treatment of time-dependent processes of many-
electron quantum systems in strong fields. Further extension
of the self-interaction-free TDDFT approaches to larger mo-
lecular systems will be valuable and can lead to significant
advancement in the understanding of strong-field chemical
physics and atomic and molecular physics in the future.

The alternative approach, the Floquet formulation of
TDDFT and TDCDFT, provides a complementary and pow-
erful time-independent framework for nonperturbative treat-
ment of many-electron quantum systems in periodic or qua-
siperiodic time-dependent fields. One important future
direction is the extension of the Floquet-TDDFT formulation
to the ab initio investigation of high-order nonlinear optical
processes of complex systems. More development is re-
quired for accurate treatment of molecular systems.

We note that another alternative approach, the quantum
fluid dynamics �QFD� approach of DFT �Refs. 59 and 97�,
seems to also be promising. A unique feature of the com-
bined QFD and DFT approach is that a single generalized
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nonlinear Schrödinger-type equation can be derived.98 Fur-
ther, the QFD formulation is conceptually appealing, since
the electron cloud can be treated as a “classical fluid” mov-
ing under the influence of classical Coulomb forces and an
additional quantum potential. The QFD-TDDFT approach
has been recently shown to be capable of providing good
description of strong-field processes of rare gas atoms, pro-
vided that the QFD nonlinear equations can be solved
accurately.99,100 Future extension of the QFD-TDDFT ap-
proach to larger systems, such as clusters, will be particularly
interesting and may lead to instructive fluid dynamics picture
and useful physical insights for the understanding of the
quantum dynamic behavior of many-particle systems.

Finally we would like to point out some of the open
questions that remain to be answered by future more com-
prehensive treatment. First, as mentioned in the TDDFT sec-
tions, most of the strong-field calculations so far have used
the adiabatic approximation. Although such an approxima-
tion is likely to be adequate for weak and intermediate field
strengths, its validity in very strong fields remains to be in-
vestigated. However, as pointed out in Eqs. �30� and �33�,
those memory-effect terms beyond the adiabatic approxima-
tion are actually identical to zero, if the conventional xc-
energy functional �such as that in LSDA and GGA� is
adopted. This may partially account for the success of recent
strong-field studies. Like the steady-state case, the exact
form of time-dependent �TD� xc-energy functional is un-
known. More rigorous nonadiabatic treatment of the TD xc-
energy functional can be facilitated if some information re-
garding the TD electron density for N-electron systems can
be determined by means of the ab initio wave-function ap-
proach. But this task is not feasible at the current time for
N�2. Note that the exact TD xc-energy functional form is
supposed to be universal and independent of N. Thus the
information of the strong-field behavior of the simplest but
nontrivial two-electron systems will be very valuable for the
future construction of TD xc-energy functional. Another di-
rection to improve the TD xc-energy functional is to estab-
lish some exact relationships that must be satisfied by an
exact TD xc-energy functional.96,101–103 Such exact relations
do not actually provide any suggested energy functional form
but they can serve as useful constraints for the future search
of more accurate TD xc-energy functional.

Another open question is regarding the feasibility of the
current TDDFT approaches for the treatment of multiple
electron ionization processes. Several recent treatments of
the nonsequential and double ionization processes of rare gas
atoms in strong fields show that the current TDDFT method-
ology seems to be not yet mature enough to provide satisfac-
tory results. More investigation in this direction will be
needed in the future.

ACKNOWLEDGMENTS

The works reported here were supported by the Chemi-
cal Sciences, Geosciences, and Biosciences Division, Office
of Basic Energy Sciences, Office of Sciences, U.S. Depart-
ment of Energy, and by the National Science Foundation.
The author is grateful for the initial valuable discussions with

Dr. Weitao Yang, Dr. Hardy Gross, Dr. Joseph Krieger, and
Dr. John Perdew on various aspects of DFT/TDDFT, and to
his collaborators, particularly, Dr. Xiao-Min Tong, Dr.
Dmitry Telnov, and Dr. Xi Chu for their original and fruitful
contributions.

1 R. G. Parr and W. T. Yang, Density-Function Theory of Atoms and Mol-
ecules �Oxford University Press, New York, 1989�.

2 Density Functional Methods in Chemistry, edited by J. K. Labanowski
and J. W. Andzelm �Springer, Berlin, 1991�.

3 N. H. March, Electron Density Theory of Atoms and Molecules �Aca-
demic, San Diego, 1992�.

4 Density Functional Theory, NATO ASI, Ser. B., edited by E. K. U. Gross
and R. M. Dreizler �Plenum, New York, 1995�, Vol. 337.

5 E. K. U. Gross, F. J. Dobson, and M. Petersilka, Density Functional
Theory �Springer, New York, 1996�, p. 81.

6 Electronic Density Functional Theory: Recent Progress and New Direc-
tions, edited by J. Dobson, G. Vignale, and M. P. Das �Plenum, New
York, 1997�.

7 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
8 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
9 A. Görling, Phys. Rev. A 54, 3912 �1996�.

10 R. Singh and B. M. Deb, Phys. Rep. 311, 47 �1999�.
11 M. Ĺevy and Á. Nagy, Phys. Rev. Lett. 83, 4361 �1999�.
12 V. N. Glushkov and A. K. Theophilou, Phys. Rev. A 64, 064501 �2001�.
13 M. K. Harbola, Phys. Rev. A 65, 052504 �2002�.
14 A. K. Roy and S. I. Chu, Phys. Rev. A 65, 052508 �2002�.
15 M. Slamet, R. Singh, L. Massa, and V. Sahni, Phys. Rev. A 68, 042504

�2003�.
16 S. J. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 �1980�.
17 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 �1988�.
18 A. D. Becke, Phys. Rev. A 38, 3098 �1988�.
19 J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 �1986�.
20 Q. Zhao and R. G. Parr, Phys. Rev. A 46, R5320 �1992�.
21 X. M. Tong and S. I. Chu, Phys. Rev. A 55, 3406 �1997�.
22 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 �1981�.
23 E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 �1984�.
24 E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 �1985�.
25 A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 �1980�.
26 G. D. Mahan and K. R. Subbaswamy, Local Density Theory of Polariz-

ability �Plenum, New York, 1990�.
27 M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76,

1212 �1996�.
28 M. E. Casida, in Recent Advances in Density-Functional Methods, edited

by D. P. Chong �World Scientific, Singapore, 1995�, p. 155.
29 M. E. Casida, in Recent Developments and Applications of Modern Den-

sity Functional Theory, edited by J. M. Seminario �Elsevier, Amsterdam,
1996�.

30 C. P. Hsu, S. Hirata, and M. Head-Gordon, J. Phys. Chem. A 105, 451
�2001�.

31 G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 �2002�.
32 V. P. Osinga, S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends, J.

Chem. Phys. 106, 5091 �1997�.
33 U. Hohm, D. Goebel, and S. Grimme, Chem. Phys. Lett. 272, 1059

�1997�.
34 K. Yabana and G. F. Bertsch, Phys. Rev. A 60, 1271 �1999�.
35 J. R. Chelikowsky, L. Kronik, and I. Vasiliev, J. Phys.: Condens. Matter

15, R1517 �2003�.
36 A. L’Huillier, K. J. Schafer, and K. C. Kulander, J. Phys. B 24, 3315

�1991�.
37 J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A 45, 4998

�1992�.
38 R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 �1953�.
39 J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 �1976�.
40 J. Krieger, Y. Li, and G. Iafrate, Phys. Lett. A 146, 256 �1990�; Phys.

Rev. A 45, 101 �1992�; 46, 5453 �1992�.
41 M. Norman and D. Koelling, Phys. Rev. B 30, 5530 �1984�.
42 J. Perdew, R. Parr, M. Levy, and J. J. L. Balduz, Phys. Rev. Lett. 49,

1691 �1982�.
43 K. Codling, R. P. Madden, and D. L. Ederer, Phys. Rev. 155, 26 �1967�.
44 P. G. Burke and K. T. Taylor, J. Phys. B 8, 2620 �1975�.
45 A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 �1973�.
46 A. H. MacDonald and S. H. Vosko, J. Phys. C 12, 2977 �1979�.

062207-15 Self-interaction-free time-dependent density-functional theory J. Chem. Phys. 123, 062207 �2005�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.45.148 On: Tue, 25 Nov 2014 17:49:49



47 M. V. Ramana and A. K. Rajagopal, Adv. Chem. Phys. 54, 231 �1983�.
48 X. M. Tong and S. I. Chu, Phys. Rev. A 57, 855 �1998�.
49 G. Yao and S. I. Chu, Chem. Phys. Lett. 204, 381 �1993�.
50 J. Wang, S. I. Chu, and C. Laughlin, Phys. Rev. A 50, 3208 �1994�.
51 M. Kastner, Phys. Today 46�1�, 24 �1993�.
52 L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots �Springer, New York,

1989�.
53 S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P.

Kouwenhoven, Phys. Rev. Lett. 77, 3613 �1996�.
54 N. Fujito, A. Natori, and H. Yasunaga, Phys. Rev. B 53, 9952 �1996�.
55 M. Macucci, K. Hess, and G. J. Iafrate, Phys. Rev. B 55, R4879 �1997�.
56 I. H. Lee, V. Rao, R. M. Martin, and J.-P. Leburton, Phys. Rev. B 57,

9035 �1998�.
57 T. F. Jiang, X. M. Tong, and S. I. Chu, Phys. Rev. B 63, 045317 �2001�.
58 F. Bloch, Z. Phys. 81, 363 �1933�.
59 B. M. Deb and S. K. Ghosh, J. Chem. Phys. 77, 342 �1982�.
60 X. M. Tong and S. I. Chu, Phys. Rev. A 57, 452 �1998�.
61 C. A. Ullrich, U. J. Grossmann, and E. K. U. Gross, Phys. Rev. Lett. 74,

872 �1995�.
62 M. R. Hermann and J. A. Fleck, Jr., Phys. Rev. A 38, 6000 �1988�.
63 T. F. Jiang and S. I. Chu, Phys. Rev. A 46, 7322 �1992�.
64 K. C. Kulander, Phys. Rev. A 36, 2726 �1987�.
65 C. A. Ullrich and E. K. U. Gross, Comments At. Mol. Phys. 33, 211

�1997�.
66 X. M. Tong and S. I. Chu, Chem. Phys. 217, 119 �1997�.
67 M. D. Perry and G. Mourou, Science 264, 917 �1991�.
68 J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov,

Phys. Rev. Lett. 76, 752 �1996�.
69 I. P. Christov, J. Zhou, J. Peatross, A. Rundquist, M. M. Murnane, and H.

C. Kapteyn, Phys. Rev. Lett. 77, 1743 �1996�.
70 C. Kan, N. H. Burnett, C. E. Capjack, and R. Rankin, Phys. Rev. Lett.

79, 2971 �1997�.
71 Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn,

Phys. Rev. Lett. 79, 2967 �1997�.
72 M. Schnürer, Ch. Spielmann, P. Wobrauschek et al., Phys. Rev. Lett. 80,

3236 �1998�.
73 For a review, see A. L’Huillier, L. A. Lompre, G. Mainfray, and C.

Manus, Advances in Atomic, Molecular and Optical Physics, Suppl. 1,
edited by M. de Gravila �Academic, New York, 1992�, p. 139.

74 N. Sarukura, K. Hata, T. Adachi, R. Nodomi, M. Watanabe, and S. Wa-
tanabe, Phys. Rev. A 43, 1669 �1991�.

75 X. M. Tong and S. I. Chu, Phys. Rev. A 64, 013417 �2001�.
76 X. M. Tong and S. I. Chu, Int. J. Quantum Chem. 69, 293 �1998�.
77 M. D. Perry and J. K. Crane, Phys. Rev. A 48, R4051 �1993�.
78 X. M. Tong and S. I. Chu, Phys. Rev. A 58, R2656 �1998�.
79 X. Chu and S. I. Chu, Phys. Rev. A 63, 023411 �2001�.
80 X. Chu and S. I. Chu, Phys. Rev. A 63, 013414 �2001�.
81 C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral

Methods in Fluid Dynamics �Springer, Berlin, 1988�.
82 D. E. Ramaker and J. M. Peek, At. Data 5, 167 �1973�.
83 M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comput. Phys. 47, 412

�1982�.
84 X. M. Tong and S. I. Chu, Phys. Rev. A 61, 021802 �2000�.
85 C. K. Chui, An Introduction to Wavelets �Academic, New York, 1992�.
86 P. R. T. Schipper, O. V. Gritsenko, S. J. A. Gisbergen, and E. J. Baerends,

J. Chem. Phys. 112, 1344 �2000�.
87 X. Chu and S. I. Chu, Phys. Rev. A 64, 063404 �2001�.
88 S. I. Chu, Adv. At. Mol. Phys. 21, 197 �1985�.
89 S. I. Chu, Adv. Chem. Phys. 73, 739 �1989�.
90 S. I. Chu, in Multiparticle Quantum Scattering with Applications to

Nuclear, Atomic, and Molecular Physics, edited by D. G. Truhlar and B.
Simon �Springer, New York, 1997�, p. 343.

91 S. I. Chu and D. Telnov, Phys. Rep. 390, 1 �2004�.
92 D. Telnov and S. I. Chu, Chem. Phys. Lett. 264, 466 �1997�.
93 D. A. Telnov and S. I. Chu, Int. J. Quantum Chem. 69, 305 �1998�.
94 D. A. Telnov and S. I. Chu, Phys. Rev. A 58, 4749 �1998�.
95 D. A. Telnov and S. I. Chu, Phys. Rev. A 66, 043417 �2002�.
96 D. A. Telnov and S. I. Chu, Phys. Rev. A 63, 012514 �2001�.
97 L. J. Bartolotti, Phys. Rev. A 24, 1661 �1981�.
98 B. M. Deb and P. K. Chattaraj, Phys. Rev. A 39, 1696 �1989�.
99 A. K. Roy and S. I. Chu, Phys. Rev. A 65, 043402 �2002�.

100 A. K. Roy and B. M. Deb, in Nonlinear Phenomena in Physical and
Biological Sciences, edited by S. K. Malik et al. �INSA, New Delhi,
2000�, p. 947.

101 N. T. Maitra, K. Burke, H. Appel, E. K. U. Gross, and R. Leeuwen, in
Reviews of Modern Quantum Chemistry, edited by K. D. Sen �World
Scientific, Singapore, 2002�, Vol. II, p. 1186.

102 K. Capelle, G. Vignale, and B. L. Györffy, Phys. Rev. Lett. 87, 206403
�2001�.

103 A. Nagy, Phys. Rev. A 68, 042503 �2003�.
104 A. A. Radzig and B. M. Smirnov, Reference Data on Atoms and Mol-

ecules �Springer, Berlin, 1985�.

062207-16 Shih-I Chu J. Chem. Phys. 123, 062207 �2005�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.45.148 On: Tue, 25 Nov 2014 17:49:49


