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Abstract 

Introduction: Hormone replacement therapy (HRT) is an effective treatment option for women 

experiencing symptoms of menopause but long-term use is associated with an increased risk of breast 

cancer. HRT-related breast cancer risk is dependent on many other factors including age at menopause, 

age at initiation of therapy, duration of use, dose and method of delivery. Differences in genetic factors, 

specifically single nucleotide polymorphisms (SNP) may identify those women whose breast tissue is 

likely or unlikely to be seriously affected by HRT.  Methods: Post-menopausal women at increased risk 

for breast cancer underwent breast tissue sampling by random periareolar fine needle aspiration (RPFNA) 

and epithelial cells were characterized as to whether they exhibited cytologic evidence of hyperplasia with 

atypia. DNA was isolated from buccal cells for assessment of candidate genes involved in steroid 

metabolism, receptor function, cell cycle control, DNA repair and/or carcinogen metabolism. 

Associations between each SNP and RPFNA atypia were examined by unconditional logistic regression 

in three different genetic models: a log-additive, dominant, and co-dominant. Linear regression was used 

to assess the association between each SNP and worsening cytomorphology while taking systemic HRT 

for ≥ 6 months vs. off systemic HRT. The adjusted significance level, p<0.001 was used to account for 

multiple testing.  Results: RAD54 Gln
929

Glu, TFR Gly
142

Ser, VEGF 3’UTR and ACE16 (I/D) were 

associated with RPFNA atypia in all women at p<0.05 and TFR Gly
142

Ser reached borderline significance 

(p=0.0025).  Interestingly, the cohort of women with RPFNA cytomorphology both while taking 

HRT and off HRT showed the most significant results. RAD23B Ala249Val was significantly 

associated with worsening cytomorphology while on HRT vs. off HRT (p=0.0009) and ERCC1 

3’UTR was borderline (p=0.0015). SNPs associated with worse cytomorphology showed similar 

effects when we defined the outcome variable as evidence of atypia while on systemic HRT with no 

atypia while off systemic HRT. Conclusion: Promising associations exist between polymorphisms 

involved in DNA repair and worse RPFNA cytomorphology as a consequence of HRT use. However, 

given the probability of chance finding due to multiple testing, these results will need to be 

validated in an independent cohort.
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Introduction 

Hormone replacement therapy (HRT) is an effective treatment option for women experiencing symptoms 

of menopause. However, long-term use is associated with an increased risk of breast cancer in post-

menopausal women [Beral 2003, Rossouw 2002, Chlebowski 2009].  It is well-established that breast 

cancer risk associated with HRT differs by the type of therapy, with combined estrogen-progestin therapy 

posing a greater risk than estrogen monotherapy [Rossouw 2002; Beral 2003; Li 2003; Anderson 2004]. 

However, HRT-related breast cancer risk is dependent on many other factors including age at menopause, 

age at initiation of therapy, duration of use, dose and method of delivery [Sood 2014, Manson 2013, Li 

2003, Modena 2005] and it is likely that for the majority of women there is little to no increase in risk 

from taking low-dose HRT for 5 years or less during the menopause transition [Johansen 2008, North 

American Menopause Society 2012].  

Women who are already at increased risk for breast cancer, due to family history or other risk factors, 

may be particularly anxious about initiating HRT despite the adverse effects of estrogen deprivation on 

their quality of life. While a 15-50% increase in relative risk would not appreciably elevate absolute risk 

in the average 50 year old whose baseline five year risk is 1%, a high risk woman with a baseline five 

year risk of 5% could have her absolute risk estimate increased to as much as 7.5% with more than five 

years of use of estrogen and progestin [Rossouw 2002]. However, high risk women who undergo 

oophorectomy for risk reduction before age 45, resulting in early or pre-mature menopause are at 

increased risk for osteoporosis, heart disease or cognitive impairment if they do not take HRT until the 

age of natural menopause [Shuster 2009]. Given that the quality of life symptoms during the menopause 

transition and the long-term consequences of estrogen deprivation can be severe, it would be 

advantageous to develop a simple way to identify those women whose breast tissue is unlikely to be 

seriously affected by HRT.  

A research program was started at The University of Kansas Medical Center (KUMC) in the late 1980s 

aimed at predicting the short-term risk of developing breast cancer in women who were already at 

increased risk on the basis of family and personal history. Given the principle that histologic hyperplasia 
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with atypia on a diagnostic biopsy is known to increase 5 year risk of breast cancer by 4 fold [Hartmann 

2005; Dupont 1985; Pearlman 2010] and reported evidence that proliferative changes in the breast are 

seen in a multi-focal and multi-centric pattern [Neilson 1987, Hoogerbrugge 2003], CJF developed the 

procedure of random per-areolar fine needle aspiration (RPFNA). This minimally invasive, non-lesion 

directed technique assesses multiple areas of benign breast tissue in order to detect a field effect in the 

entire breast. The rationale was that women with evidence of atypia upon random sampling of the entire 

breast are likely to have multiple areas of proliferative tissue and increased likelihood that one of these 

areas will progress to invasive cancer. The RPFNA technique was assessed in a cohort of 480 high-risk 

women. The results of this prospective study indicated that evidence of atypia by RPFNA strongly 

predicts the development of subsequent DCIS or invasive breast cancer and that cytomorphology along 

with the Gail model [Gail 1989] could be used to identify a cohort of women at a very high short-term 

risk (Fabian 2000).  RPFNA is currently used in the Breast Cancer Prevention Center at KUMC for risk 

stratification and as a surrogate end point biomarker in chemoprevention trials (Fabian 2007).  

Estrogen and its metabolic compounds are involved in breast carcinogenesis indirectly through their 

influence on cell growth and proliferation [Horwitz 1998, Zumoff 1998] and directly via oxidative 

reactions with DNA, forming adducts which generate mutations [Yue 2003, Yager 2006, Cavalieri 2006]. 

Progesterone can influence breast carcinogenesis through increased formation of estradiol by induction of 

17β-hydroxysteroid dehydrogenase.  [Poutanen 1995] Progesterone metabolites regulate estrogen receptor 

levels in breast epithelial cells [Pawlak 2007] as well as proliferation, apoptosis and cell adhesion in 

tumor and normal breast cells [Weibe 2006, Wiebe 2006]. The effects of exogenous hormones on benign 

breast tissue are likely to be modulated by genes important in steroidogenesis, catabolism and elimination 

of estrogens, transcriptional activation in response to hormones and growth factors, cell cycle control, 

differentiation, and genes involved in carcinogen metabolism and DNA repair. Common polymorphisms 

in these genes have been associated with increased breast cancer risk in prior studies [Haiman 2003; 

Tworoger 2004; Lisgarten 2004; Brandt 2004; Liede 2003; Haiman 2002; Zheng 2001; Aston 2004; 

Coughlin 1999] and some have been shown to influence hormone levels [Feigelson 1998, Dunning 2004, 
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Tworoger 2004]. However, associations with HRT-related breast cancer risk have been inconsistent 

[Campa 2011, Kawase 2009, Prentice 2009, Travis 2010, Hein 2012, MARIE-GENICA 2010 (1-4), 

Nickels 2013, Rebbeck 2007, Reding 2009, Conway 2007, Lee 2011, Andersen 2013, Diergaarde 2008] 

and few validated interactions between single nucleotide polymorphisms (SNP) and HRT use exist to date 

[Hein 2012, Justenhoven 2011, Obazee 2013].  

To our knowledge, no study has associated candidate polymorphisms with risk biomarkers, such as 

benign breast tissue cytology. Since risk biomarkers may be subject to modulation, they are ideally suited 

to monitor change in breast cancer susceptibility with to the use of HRT.  Additionally, breast tissue 

cytology has the advantage of being directly related to the underlying neoplastic process [Fabian 2005]. 

Thus, high risk women who develop abnormal cytomorphology as a consequence of HRT are likely more 

susceptible to the carcinogenic effects of exogenous hormones. In order to examine the relationship 

between relevant polymorphisms, HRT use and RPFNA cytomorphology, we have conducted a genetic 

association study in post-menopausal women at increased risk for breast cancer.  

Materials and Methods 

Study Subjects 

High-risk post-menopausal women were selected from those being followed at the KUMC Breast Cancer 

Prevention Center as part of the High Risk Breast Clinic (HRBC) cohort. The HRBC database was 

queried to identify potential subjects with prior RPFNA (performed by CJF between January 2000 and 

October 2004) or those planning RPFNA for short-term risk assessment or for ongoing clinical trials 

between October 2004 and January 2006. The cohort was later expanded to include women (at high risk 

for breast cancer) with RPFNA performed between January 2000 and March 2009. In order to meet the 

criteria for the RPFNA procedure as previously described [Fabian 2007, Fabian 2013], subjects were 

required to be at increased risk for breast cancer by virtue of one or more of the following: (1) five-year 

Gail predicted probability of breast cancer ≥1.67% [Gail 1989]; (2) prior biopsy showing atypical 

hyperplasia or lobular carcinoma in situ; (3) prior treated contralateral DCIS or invasive cancer; (4) 
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known BRCA1/2 mutation carrier. Potential subjects were post-menopausal at the time of aspiration, 

defined as complete surgical (a prior hysterectomy and bilateral oophorectomy), partial surgical (a prior 

hysterectomy with ovaries intact and age >50 years) or natural menopause (no period for at least 

12 months prior to RPFNA), and were either not using hormone replacement therapy or had been on a 

stable dose of estrogen alone or estrogen plus a progestin for at least 6 months prior to RPFNA.  

Upon entry into the HRBC cohort and before each RPFNA procedure, women were asked to sign a  

consent form which stated that the RPFNA was still considered a research procedure and outlined any 

additional specimen collection procedures, including buccal cell collection, to be conducted for future 

studies in the HRBC cohort. Potential subjects for our study were contacted either in-person or by phone 

and asked to provide a buccal cell sample for SNP genotyping. Women who agreed to participate were 

either mailed or given a buccal cell collection kit and asked to sign a separate consent form.  At the time 

of buccal cell sample collection, women were asked to verify information in the HRBC database 

corresponding to their baseline risk and reproductive history factors.  A separate database was created to 

record baseline data, RPFNA history and HRT use at the time of each RPFNA for our study cohort. HRT 

use was divided into four categories: (1) on well-absorbed systemic HRT (oral, patch, troches, vaginal 

creams or gels, estrogen + progestin +/- testosterone, estrogen alone, estrogen + testosterone); (2) on 

poorly-absorbed vaginal estrogen (estring, vagifem tabs); (3) on phytoestrogens (flaxseed, soy, black 

cohash); (4) off HRT (none of these). Only those women with RPFNA while on well-absorbed systemic 

HRT for at least six months prior to aspiration or off HRT for at least six months prior to aspiration were 

considered for this study.  RPFNA data and HRT information was updated prospectively for each subject 

from the time of entry into the study database until March 2009, when data was extracted for analysis.   

RPFNA and cytomorphology 

RPFNA was performed under local anesthesia from two sites (upper outer and upper inner quadrant) and 

cells were pooled from both breasts [Fabian 2000] in a single 15 cc tube containing 9 cc of CytoLyt™ 

and 1 cc of 10% neutral buffered formalin. Cells were spun, washed and re-suspended in PreservCyt™ 

after approximately 24 h in CytoLyt™. At least three aliquots were processed to slides using a 
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ThinPrep™ (Cytyc Corporation, Malborough, MA) non-Gyn protocol. Slides for cytomorphology were 

Papanicolaou-stained using an RNase-free technique [Fabian 2000, Fabian 2005]. All slides were 

assessed by a single cytopathologist (Carolla M. Zalles) who assigned a categorical assessment of non-

proliferative, hyperplasia, borderline hyperplasia with atypia, or hyperplasia with atypia [Zalles 1995, 

Zalles 2006]; a Masood semi-quantitative index score [Masood 1990], and a Consensus Panel 

Designation [Uniform 1997]. 

Sample collection, DNA isolation and genotyping assays 

Buccal cells collected via an oral rinse with Scope mouthwash were obtained either by mail or in person 

from each participant and shipped to Intergenetics, Inc. (Oklahoma City, OK). Genomic DNA was 

isolated using the Gentra PureGene DNA extraction kit (Gentra, Minneapolis, MN). Genotyping was 

done by high throughput microsphere-based, allele-specific primer extension (ASPE) assays followed by 

analysis on the Luminex 100 flow cytometer (Luminex, Austin, TX) as previously described [Ashton 

2005, Diergaarde 2008]. DNA was pre-amplified by multiplex PCR using HotStar Taq DNA polymerse 

(Qiagen Inc., Valencia, CA).  

One-hundred and seventeen common single nucleotide polymorphisms (SNPs) were selected in 

collaboration with Intergenetics, Inc. [Jupe 2007, Ralph 2007, Diergaarde 2008, Jupe 2008]; a summary 

of these SNPs can be found in the supplementary materials (Supp. Table 1). The SNPs were located in 

breast cancer candidate genes involved in steroid hormone metabolism (CYP17, CYP19, CYP1A1, 

CYP1B1, COMT, SULT1A1, UGT1A1) and receptor function (AR, A1B1, ESR1, PGR), cell cycle 

control (PHB, CCDN1, EGFR), DNA repair (ERCC2, RAD23B) and/or carcinogen metabolism 

(SULT1A1, NQ01, GSTP1) [Haiman 2003; Tworoger 2004; Lisgarten 2004; Brandt 2004; Liede 2003; 

Haiman 2002, 2003; Zheng 2001; Aston 2004; Coughlin 1999].  

We identified 361 potential subjects from the HRBC database; of these potential subjects, 258 were 

genotyped and had at least one RPFNA performed by March 2009. Following quality-control, 218 

women & 79 SNPs passed with >95% call rate. A flow-chart of the exclusion of subjects and SNPs can 
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be found in the supplementary materials (Supp. Table 2).  To note, no SNP deviated from Hardy-

Weinberg equilibrium (HWE) with a p-value <0.05.  

Statistical Analysis 

Descriptive statistics were generated using mean and standard deviation for continuous variables and 

frequency and percent for categorical variables. Distribution of risk, reproductive, RPFNA history and 

hormone use factors among women with RPFNA atypia and women without RPFNA atypia were 

compared using t-tests for continuous variables and X
2
 test for categorical variables. Genotype 

frequencies were tested for Hard-Weinberg equilibrium (HWE) using X
2 
goodness-of-fit test. All analyses 

were performed using R 3.0.2 [R Core Team 2013].  

To examine associations between each SNP and RPFNA atypia we used three different genetic models: a 

log-additive (genotype coded in terms of the number of minor alleles), dominant (carrier vs non-carrier of 

minor allele), and co-dominant (genotype) genetic models. These analyses were completed in all women 

regardless of HRT use and then stratified by HRT use. Analysis of each SNP with evidence of RPFNA 

atypia was computed using unconditional logistic regression models with odds ratio (OR) and 95% 

confidence interval (CI) estimated using Wald statistics. In addition to the SNP association analysis 

stratified by HRT use, we also completed tests for gene-environment interaction with logistic regression 

models including each SNP, the HRT use variable (stable dose for ≥6 months at time of RPFNA) and a 

gene-environment (GE) interaction term. P-values for the interaction effects were obtained using 

likelihood-ratio tests (i.e. Ho: interaction effect = 0).  

Women with RPFNA performed both on and off HRT were excluded from the stratified analysis 

(described above) and made up the group of women for which we assessed the change in RPFNA 

cytomorphology while on HRT versus off HRT. Linear regression was used to evaluate the correlation 

between each SNP and change in cytomorphology (worst on HRT minus worst off HRT) based on the 

numeric cytomorphology categorization index (1=no cells, 2=normal, 3=normal borderline EH, 

4=apocrine metaplasia, 5=EH, 6=EH borderline atypia, 7=atypia, 8=suspicious for cancer). Most changes 

in RPFNA cytomorphology categorization index occurred between category 5 and category 7 (EH to AH) 



 
 

7 
 

although a few women developed atypia (category 7) on HRT with normal cytology (category 2) off 

HRT. Logistic regression was used to evaluate the association between each SNP and the development of 

RPFNA atypia only while on HRT (with no atypia while off HRT).  All significance tests were two-sided 

and p-value <0.001 was considered significant when we adjusted for multiple testing; however, p<0.05 

was reported due to the exploratory nature of this analysis.  

Results 

Risk and reproductive history   

The study population consisted of 218 post-menopausal women at increased risk for breast cancer. Of 

these women, 95 (43.6 %) had evidence of atypia by RPFNA and 123 (56.4 %) did not have evidence of 

atypia by RPFNA. Baseline characteristics for the study population are presented in Table 1. In general, 

the cohort consisted of young post-menopausal women, mean age at menopause = 45.3 years and age at 

entry < 60 years (data not shown), who were at increased risk for breast cancer compared to the general 

population, mean 5-yr GAIL risk = 3.80% (data not shown). Women with evidence of atypia by RPFNA 

do not differ from women without evidence of atypia by most risk or reproductive history factors. 

However, those with evidence of RPFNA atypia were slightly younger at baseline (54.5 ± 6.53 vs. 56.48 

± 7.38, p=0.042) and more likely to have a negative family history, although this did not reach statistical 

significance (p=0.052). These findings are consistent with other studies using the high risk breast clinic 

(HRBC) post-menopausal cohort. 

Women with evidence of atypia had an average of 4.66 ± 2.15 aspirations throughout the duration of this 

study while women without evidence of atypia had an average of 2.68 ± 1.78 aspirations (p<0.001). Two 

factors contribute to this finding: (1) the RPFNA procedure involves random, non-lesion directed 

sampling of the breast tissue and thus cytologic atypia is more likely to be recognized in those women 

with increased sampling and (2) those with evidence of atypia by RPFNA are more likely to enroll in 

chemoprevention trials and continue to receive aspirations as part of the HRBC cohort. Women with 

evidence of atypia as part of this study were also more likely to have had evidence of atypia prior to 2000. 
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Evidence of atypia in random sampling of benign breast tissue is indicative of widespread proliferative 

changes in the breast [Fabian 2005] and the high-risk density is not removed as part of the RPFNA 

procedure. 

Table 1: Description of risk and reproductive history for 218 women by evidence of atypia on RPFNA  

Characteristic 
Never Atypia 

(n=123)
a 

Ever Atypia  

(n=95)
a 

p-

value
b 

Breast Cancer Risk Information
c 

Age (yrs), mean (SD) 56.48 (7.38) 54.5 (6.53) 0.042 

BMI (kg/m
2
), mean (SD) 27.02 (6.65) 27.48 (6.68) 0.62 

Mammographic Breast Density, n (%) 

<5% 

5-25% 

26-50% 

51-75% 

>75% 

 

14 (11.48%) 

40 (32.79%) 

35 (28.69%) 

19 (15.57%) 

10 (8.2%) 

 

8 (8.42%) 

25 (26.32%) 

25 (26.32%) 

16 (16.84%) 

11 (11.58%) 

0.27 

Number of affected 1
st
  Degree Relatives 

None 

1 

At least 2 

 

30 (24.4%) 

61 (49.6%) 

32 (26.0%) 

 

36 (37.9%) 

43 (45.3%) 

16 (16.8%) 

0.064 

 

 

5-yr Gail Risk (%), mean (SD) 3.84 (2.3) 3.74 (2.64) 0.76 

Prior AH or LCIS biopsy, n (%) 22 (17.89%) 21 (22.11%) 0.55 

Prior contralateral breast cancer, n (%) 14 (11.38%) 13 (13.68%) 0.76 

Reproductive History Information
c 

Parity (0 vs. ≥1), n (%) 15 (12.2%) 16 (16.84%) 0.44 

Age at Menopause (yrs), mean (SD) 45.42 (7.24) 45.05 (7.11) 0.71 

Interval from Menopause (yrs), mean (SD) 11.11 (8.39) 9.45 (7.57) 0.13 

Type of Menopause 

Natural  

Surgical 

 

50 (41.0%) 

72 (59.0%) 

 

30 (31.9%) 

64 (68.1%) 

0.17 

RPFNA History in High Risk Breast Clinic (HRBC)
d
  

Number of RPFNAs since 2000, mean (SD) 2.68 (1.78 4.66 (2.15) <0.001 
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RPFNA atypia prior to 2000, n (%) 17 (14.05%) 26 (27.66%) 0.021 

a. Numbers do not add up to the total for never atypia (n=123) and ever atypia (n=95) due to missing data for some participants 

b. Two-sided t-test p-value for continuous variable; chi-square p-value for categorical variables 

c. Risk information and reproductive history were collected prospectively upon entry and at each follow-up visit with CJF as part 

of the High Risk Breast Clinic (HRBC); information stored in the HRBC database was verified at the time of buccal sample 

collection 

d. RPFNA data was collected prospectively at each aspiration visit and entered into the  HRBC database; relevant information was 

collected for each subject throughout the duration of this study and entered in a separate database 

Hormone Replacement Therapy (HRT) use history 

As shown in Table 2, most women in this post-menopausal cohort had used hormone replacement at 

some point in their personal history to control symptoms of menopause (n=172/218, 78.9%). The 

proportion women with a history of HRT use appears to be slightly greater among those women with 

evidence RPFNA atypia (85.3% vs. 74.0%, p=0.064). In order to examine this further, we considered 

three important factors which contribute to HRT-related breast cancer risk: duration of use, type of 

therapy and whether dose was expected to increase risk.  

Most women in our study cohort, with or without evidence of RPFNA atypia, were likely advised to 

initiate low-dose and/or estrogen alone hormone replacement therapy; especially since this cohort 

consisted of young post-menopausal women (mean age at menopause = 45.3, data not shown) and more 

than 50% had undergone partial or complete surgical removal of their uterus and/or both ovaries. 

Consistent with this, combined estrogen + progesterone therapy use was low in our cohort (37.5%). 

However, many women were taking doses of estrogen that have been associated with increased risk of 

breast cancer (≥ 0.625 mg oral estrogen, 0.05 mg transdermal estradiol or 1 mg oral estradiol) and there 

appears that more women with evidence of RPFNA atypia were on these higher doses compared to 

women without evidence of RPFNA atypia (74.5% vs 60.7%, p=0.046).  

Duration of HRT use appears to differ among those with and without evidence of RPFNA atypia 

(p=0.0014); the greatest proportion of women with evidence of atypia were on HRT for ≤ 5 years while 

the greatest proportion of women without evidence of atypia were on HRT for > 5 years. This difference 

indicates that certain women in our cohort may have continue on hormone replacement long-term, either 
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for symptom relief or until the age of natural menopause (if <40 years), without affecting their breast 

cancer risk as predicted by benign breast tissue cytomorphology.  

Table 2: Description of Hormone Replacement Therapy (HRT) for 218 women by evidence of atypia on RPFNA 

Post-menopausal Hormone Use
e Entire Cohort 

(n=218)
a 

Never Atypia 

(n=123)
a 

Ever Atypia  

(n=95)
a p-value

b
 

On Systemic HRT, n (%) 

Never 

Ever 

 

46 (21.1%) 

172 (78.9%) 

 

32 (26.02%) 

91 (74.0%) 

 

14 (14.7%) 

81 (85.3%) 

0.064 

 

Duration of systemic HRT (years) 

Never 

≤ 5 years 

>5 years 

 

46 (21.1%) 

78 (35.8%) 

94 (43.1%) 

 

32 (26.02%) 

31 (25.2%) 

60 (48.8%) 

 

14 (14.7%) 

47 (49.5%) 

34 (35.8%) 

0.0014 

Estrogen Dose Increased Risk
c
, n (%) 

No 

Yes 

 

72 (33.3%) 

144 (66.7%) 

 

48 (39.3%) 

74 (60.7%) 

 

24 (25.5%) 

70 (74.5%) 

0.046 

On Combined (E + P) HRT
d
, n (%) 

Never 

Ever 

 

141 (65.3%) 

75 (34.7%) 

 

80 (65.6%) 

42 (34.4%) 

 

61 (64.9%) 

33 (35.1%) 

0.99 

a. Numbers do not add up to the total for never atypia (n=123) and ever atypia (n=95) due to missing data for some participants 

b. Two-sided t-test p-value for continuous variable; chi-square p-value for categorical variables 

c. Estrogen dosages expected to increase risk include: ≥ 0.625 mg oral estrogen, 0.05 mg transdermal estradiol or 1 mg oral 

estradiol 

d. Use of systemic Estrogen + Progesterone (or Progestin) hormone replacement therapy 

e. Post-menopausal hormone use was collected prospectively at each BCPC clinic visit and recorded in the HRBC database.  The 

drug name, dose, type, dose-class, method of delivery, start and end date of HRT use was collected at each RPFNA throughout 

the duration of this study and entered in a separate database 

SNPs associated with RPFNA atypia 

Polymorphisms in four genes were associated with evidence of RPFNA atypia with a p-value < 0.05. 

However, these polymorphisms did not remain significant when we adjust for multiple testing, p<0.001.  

Results for select polymorphisms (p<0.05) are shown in Table 3 and for all polymorphisms in the 

supplementary materials (Supp. Table 3). Carriers of the variant allele for RAD54 Gln
929

Glu, TFR 

Gly
142

Ser or VEGF 3’UTR polymorphisms showed the highest frequency of RPFNA atypia (ORdom= 

1.74, 1.98 and 1.86, pdom=0.046, 0.026, 0.022). Log-additive genetic models for both RAD54 

Gln
929

Glu and TFR Gly
142

Ser showed an increase in the frequency of RPFNA atypia in relationship 

to the number of minor alleles a woman carried (ORord=1.71, 1.81 and pord=0.013, 0.0025). The 
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VEGF 3’UTR polymorphism was not associated with RPFNA atypia in this model and this was 

most likely due to a very small number of women with two minor alleles (T/T=2). The D/D 

genotype for the ACE16 I/D polymorphism is considered to be rare in the general population and 

associated with high expression of the ACE16 gene. However, in our cohort the deletion genotype 

was most common, with genotype frequencies D/D=33.2%, D/I=45.8%, I/I=21.03%, and DD was 

significantly associated with RPFNA atypia (ORdom=0.55, pdom=0.036). 

Table 3: SNPs associated with RPFNA atypia (n=218) (p < 0.05) 

SNP ID 
Gene 

(var) 
Genotype 

RPFNA atypia 

/ total
a
 (%) 

P2df 
OR (95% 

CI) 
Pdom OR (95% CI) Pord 

rs4646994 ACE16  

(I/D) 

D/D 

D/I 

I/I 

38/71 (53.5%) 

38/98 (38.8%) 

17/45 (37.8%) 

0.11 0.55 (0.31, 

0.96) 

0.036 0.7 (0.48, 

1.02) 

0.067 

rs3088074 RAD54 

(Q929E) 

C/C 

C/G 

G/G 

37/103 (35.9%) 

44/94 (46.8%) 

13/20 (65.0%) 

0.050 1.74 (1.01, 

2.99) 

0.046 1.71 (1.12, 

2.62) 

0.013 

rs3817672 TFR  

(S142G) 

A/A 

A/G 

G/G 

21/67 (31.3%) 

43/100 (43.0%)  

30/50 (60.0%) 

0.013 1.98 (1.09, 

3.61) 

0.026 1.81 (1.23, 

2.65) 

0.0025* 

rs3025039 VEGF 

(3’UTR) 

C/C 

C/T 

T/T 

62/162 (38.3%)  

30/50 (60.0%)  

0/2 (0%) 

0.037 2.12 (1.13, 

3.99) 

0.022 1.86 (1.02, 

3.39) 

0.042 

*borderline statistically significant when we adjust for multiple testing using Bonferroni type-1 error correction, p<0.001 

a. total may not add to 218 due to incomplete genotype data for certain polymorphisms 

SNPs associated with RPFNA atypia and HRT use 

In order to determine whether the associations between candidate polymorphisms and RPFNA 

atypia would be modified by HRT, we stratified our cohort by use of systemic hormone replacement 

therapy at the time of RPFNA. This analysis excluded women with RPFNA results both on and off 

HRT (n=55) so that gene-environment interaction could be assessed using a single RPFNA for each 

subject’s worst benign breast tissue cytomorphology.  Results for select polymorphisms (p<0.05) 
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are shown in Table 4 and for all polymorphisms in the supplementary materials (Supp. Table 4). 

We found 13 polymorphisms associated with RPNFA atypia in only one of the two strata (p<0.05), 

indicating a gene-environment effect or a modifying effect of HRT use on genetic risk.  

Table 4: SNPs associated with RPFNA atypia in cohort (n=163a) stratified by systemic HRT use at time of aspiration (p < 0.05) 

SNP ID 
Gene 

(var) 
Genotype 

OFF Systemic HRT (n=77) ON Systemic HRT (n=86) 

RPFNA atypia 

/ totalb (%) 

OR  

(95% 

CI) 

Pdom 

OR  

(95% CI) 
Pord 

RPFNA atypia 

/ totalb (%) 

OR 

(95% 

CI) 

Pdom 

OR 

(95% 

CI) 

Pord 

rs16260 
ECAD  

(nt-160) 

C/C 

C/A 

A/A 

14/32 (43.8%) 

12/36 (33.3%) 

3/9 (33.3%) 

0.64  

(0.25, 

1.64) 

0.35 0.74 

(0.37, 

1.51) 

0.41 12/43 (27.9%) 

17/32 (53.1%) 

4/10 (40.0%) 

2.67  

(1.09, 

6.54) 

0.032 1.65  

(0.87, 

3.13) 

0.12 

rs3088074 
RAD54 

(Q929E) 

C/C 

C/G 

G/G 

26/70 (37.1%) 

3/7 (42.9%) 

NONE 

0.81  

(0.32, 

2.05) 

0.66 0.93  

(0.43, 

2.03) 

0.86 31/79 (39.2%) 

2/6 (33.3%) 

NONE 

2.28  

(0.93, 

5.58) 

0.07 1.89  

(1.01, 

3.53) 

0.046 

rs3817672 
TFR  

(S142G) 

A/A 

A/G 

G/G 

11/30 (36.7%) 

10/32 (31.3%) 

8/15 (53.3%) 

1.07  

(0.42, 

2.76) 

0.89 1.31  

(0.7, 2.44) 

0.4 5/23 (21.7%) 

14/38 (36.8%) 

14/25 (56.0%) 

0.36 

(0.14, 

0.93) 

0.034 0.47 

(0.25, 

0.87) 

0.017 

rs1139793 
TXNRD2 

(I340T) 

C/C 

C/T 

T/T 

11/30 (36.7%) 

14/38 (36.8%) 

4/9 (44.4%) 

1.07  

(0.42, 

2.76) 

0.89 1.12 

(0.56, 

2.26) 

0.75 24/29 (49.0%) 

7/29 (24.1%) 

1/7 (14.3%) 

0.29 

(0.11, 

0.75) 

0.011 0.37 

(0.16, 

0.83) 

0.016 

rs3025039 
VEGF  

(3’UTR) 

C/C 

C/T 

T/T 

18/53 (34.0%) 

11/23 (47.8%) 

0/1 (0.0%) 

1.65  

(0.62, 

4.4) 

0.32 1.42  

(0.57, 

3.57) 

0.45 22/68 (32.4%) 

10/15 (66.7%) 

0/1 (0.0%) 

3.41 

(1.1, 

10.53) 

0.033 2.57 

(0.91, 

7.29) 

0.076 

rs25487 
XRCC1 

(Q399R) 

G/G 

G/A 

A/A 

13/37 (35.1%) 

13/34 (38.2%) 

3/6 (50.0%) 

1.23  

(0.49, 

3.1) 

0.66 1.26 

(0.61, 

2.62) 

0.53 14/27 (51.9%) 

17/45 (37.8%) 

2/14 (14.3%) 

0.44 

(0.17, 

1.12) 

0.085 0.45 

(0.22, 

0.9) 

0.024 

rs700519 
CYP19 

(R264C) 

C/C 

C/T 

T/T 

23/66 (34.8%) 

6/9 (66.7% 

NONE 

3.91  

(0.9, 

17.09) 

0.07 3.74 

(0.86, 

16.35) 

0.08 32/80 (40.0%) 

1/6 (16.7%) 

NONE 

0.3  

(0.03, 

2.69) 

0.28 0.3  

(0.03, 

2.69) 

0.28 

rs10012 
CYP1B1 

(R48G) 

C/C 

C/G 

G/G 

13/44 (29.5%) 

12/25 (48.0%) 

4/7 (57.1%) 

2.46  

(0.96, 

6.34) 

0.062 1.92 

(0.94, 

3.93) 

0.072 13/38 (34.2%) 

13/37 (35.1%) 

5/9 (55.6%) 

1.07  

(0.45, 

2.56) 

0.88 1.37 

(0.7, 

2.66) 

0.36 

rs5918 
ITGB3 

(L33P) 

T/T 

T/C 

C/C 

19/60 (31.7%) 

10/17 (58.8%) 

NONE 

3.08  

(1.02, 

9.34) 

0.047 3.08 

(1.02, 

9.34) 

0.047 23/81 (37.7%) 

10/22 (45.5%) 

0/2 (0.0%) 

1.21 

(0.46, 

3.17) 

0.7 0.98  

(0.42, 

2.32) 

0.97 
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rs198977 
KLK2  

(G226W) 

C/C 

C/T 

T/T 

21/45 (46.7%) 

6/28 (21.4%) 

2/4 (50.0%) 

0.38 

(0.14, 

1.03) 

0.056 0.55 

(0.24, 

1.27) 

0.16 14/43 (32.6%) 

3/10 (30.0%) 

15/36 (41.7%) 

1.64 

(0.68, 

3.94) 

0.27 1.71 

(0.84, 

3.47) 

0.14 

rs6917 
PHB  

(3’UTR) 

C/C 

C/G 

G/G 

16/24 (33.3%)  

12/35 (34.3%)  

6/12 (50.0%) 

0.29 

(0.1, 

0.9) 

0.031 0.29 

(0.1, 0.88) 

0.029 13/35 (37.1%) 

12/33 (36.4%) 

7/10 (70.0%) 

0.47 

(0.16, 

1.35) 

0.16 0.68 

(0.33, 

1.37) 

0.28 

rs1799977 
MLH1 

(I219V) 

A/A 

A/G 

G/G 

19/40 (47.5%) 

9/34 (26.5%) 

1/3 (33.3%) 

0.41 

(0.16, 

1.06) 

0.067 0.48 

(0.2, 1.15) 

0.099 14/44 (31.8%) 

18/41 (43.9%) 

1/1 (100%) 

1.77 

(0.74, 

4.26) 

0.2 1.88 

(0.81, 

4.38) 

0.14 

rs4072037 
MUC1 

(E2) 

A/A 

A/G 

G/G 

7/24 (29.2%) 

13/37 (35.1%) 

9/16 (56.3%) 

1.72 

(0.61, 

4.86) 

0.30 2.64c 

(0.86, 8.1) 

0.091c 7/26 (26.9%) 

18/36 (50.0%) 

6/21 (28.6%) 

1.62 

(0.63, 

4.16) 

0.32 0.56c 

(0.19, 

1.64) 

0.29c 

a. Certain women (n=55) were excluded due to cross-over (multiple RPFNAs were performed both on and off systemic HRT); 

these women were analyzed separately (table 6, 7) 

b. Total may not add to total women in each strata due to incomplete genotype data for some polymorphisms 

c. Interaction most significant using the recessive model (those homozygous for the variant allele used as the reference group) 

Gene-environment (GE) interaction was formally assessed by incorporating an interaction term into 

the logistic model. For this analysis, we used a stable dose of systemic HRT for at least 6 months 

prior to aspiration as our hormone environment variable. Again, we excluded women with RPFNA 

results both on and off HRT (n=55). The GE interaction results can be found in the supplementary 

materials (Supp. Table 5). GE interactions for ECAD (nt-160), TXNRD2 (I340T), CYP19 (R264C), 

KLK2 (G226W), MLH1 (I219V) were significant at p<0.05 but did not remain significant when we 

adjusted for multiple testing, p<0.001 (Table 5).  

Table 5: Gene-Environment
b
 interaction in cohort (n=163

a
) stratified by systemic HRT use at the time of aspiration 

(p < 0.05)
 

SNP ID 
Gene  

(var) 

Dominance model
 

Log-additive model
 

OROFF HRT 

(95% CI) 

ORSYS HRT 

(95% CI) 
Pint 

OROFF HRT 

(95% CI) 

ORSYS HRT 

(95% CI) 
Pint 

rs16260 
ECAD  

(nt-160) 

0.64  

(0.25, 1.64) 

2.67  

(1.09, 6.54) 
0.03 

0.74  

(0.37, 1.51) 

1.65  

(0.87, 3.13) 
0.1 

rs1139793 
TXNRD2 

(I340T) 

1.07  

(0.42, 2.76) 

0.29  

(0.11, 0.75) 
0.05 

1.12  

(0.56, 2.26) 

0.37  

(0.16, 0.83) 
0.04 
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rs25487 
XRCC1 

(Q399R) 

1.23  

(0.49, 3.1) 

0.44  

(0.17, 1.12) 
0.12 

1.26  

(0.61, 2.62) 

0.45  

(0.22, 0.9) 
0.04 

rs700519 
CYP19 

(R264C) 

3.91 

(0.9, 17.09) 

0.3  

(0.03, 2.69) 
0.04 

3.74  

(0.86, 16.4) 

0.3  

(0.03, 2.69) 
0.04 

rs198977 
KLK2 

(G226W) 

0.38   

(0.14, 1.03) 

1.64  

(0.68, 3.94) 
0.03 

0.55  

(0.24, 1.27) 

1.71  

(0.84, 3.47) 
0.04 

rs1799977 
MLH1 

(I219V) 

0.41  

(0.16, 1.06) 

1.77  

(0.74, 4.26) 
0.03 

0.48  

(0.2, 1.15) 

1.88  

(0.81, 4.38) 
0.02 

rs4072037 
MUC1 

(E2) 

1.72  

(0.61, 4.86) 

1.62  

(0.63, 4.16) 
0.29 

2.64
C
  

(0.86, 8.1) 

0.56
C
  

(0.19, 1.64) 
0.05

C
 

a. Certain women (n=55) were excluded due to cross-over (multiple RPFNAs were performed both on and off systemic HRT ); 

these women were analyzed separately (table 6, 7) 

b. The environment variable considered for this analysis was on or off a stable dose of systemic HRT for ≥ 6 months prior to 

aspiration 

c. Interaction most significant using the recessive model (those homozygous for the variant allele used as the reference group) 

Given the lack of significant GE effect when we examined SNPs in two separate hormone 

environment strata, we were interested in examining the association between candidate 

polymorphisms and individual change in cytomorphology as a consequence of HRT use. For 

approximately ¼ of our cohort (n=55), RPFNA cytomorphology was assessed under multiple 

hormone environments. In this subset of women, we were able to identify SNPs associated with 

worse cytomorphology while on a stable dose of systemic HRT for ≥6 months compared to 

cytomorphology while off HRT for ≥6 months. Table 6 shows select associations between 

polymorphisms ERCC1 (3’UTR), RAD23B (A249V), RAD51D (E233G), XRCC3 (T241M), INS-

IGF2 (nt1107), MMP2 (nt-1306), NBS1 (E185Q) and worse RPFNA cytomorphology while on HRT 

vs. off HRT at the significance level p <0.05. For this outcome variable, RPFNA cytomorphology is 

treated as a numeric index with more abnormal cytomorphology (ex. Hyperplasia with Atypia) 

receiving as higher score than normal or less abnormal cytomorphology (ex. Epithelial 

Hyperplasia). When we adjusted for multiple testing, RAD23B (A249V) remained significant with 

p=0.0009, while ERCC1 (3’UTR) was considered borderline significant with p=0.0015. Many SNPs 

associated with worse cytomorphology in Table 5 showed similar associations when we defined the 
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outcome variable as evidence of atypia while on systemic HRT with no atypia while off systemic 

HRT. Table 7 shows select associations between polymorphisms, MMP2 (nt-1306), RAD23B 

(A249V), XRCC3 (T241M) and CYP19A1 (3’UTR), and evidence of RPFNA atypia which were 

significant at p<0.05. None of the associations presented in Table 6 remained significant when we 

adjust for multiple testing, p<0.001. However, the two outcomes are highly correlated and it is 

likely that we were under-powered to detect a significant association between the binary outcome 

variable (evidence of RPFNA atypia on vs. off HRT) in this smaller subset of women.  

Table 6: SNPs associated with worse cytomorphology categorization on HRT vs. off HRT (n=55
a
) (p < 0.05) 

SNP ID 
Gene 

(var) 
r 

Beta 

(SE) 
Pord 

Beta 

(SE) 
Pdom 

Beta 

(SE) 
Prec

b 

rs3212986 
ERCC1 

(3’UTR) 
-0.43 

-0.95 

(0.28) 
0.0015* 

-0.85 

(0.37) 
0.024 

-1.67 

(0.70) 
0.022 

rs1805329 
RAD23B 

(A249V) 
-0.45 

-1.20 

(0.34) 
0.0009** 

-1.11 

(0.36) 
0.0035 

-2.59 

(1.39) 
0.068 

rs28363284 
RAD51D 

(E233G) 
0.34 

1.75 

(0.68) 
0.013 

3.52 

(1.35) 
0.012 

3.52 

(1.35) 
0.012 

rs861539 
XRCC3 

(T241M) 
0.32 

0.76 

(0.31) 
0.019 

0.62 

(0.39) 
0.12 

1.84 

(0.70) 
0.011 

rs243865 
MMP2  

(nt-1306) 
-0.25 

-0.55 

(0.30) 
0.076 

-0.45 

(0.39) 
0.25 

-1.40 

(0.71) 
0.056 

* Borderline significant when we adjust for multiple testing using Bonferroni type-1 error correction, p<0.001 

** Statistically significant association when we adjust for multiple testing 

a. Select cohort (n=55) with multiple RPFNAs performed both on and off systemic HRT 

b. Recessive model indicates association with  worse (more abnormal) cytomorphology categorization on sHRT in those 

homozygous for the variant allele vs. those with at least one common allele 

 

Table 7: SNPs associated with RPFNA atypia on sHRT vs. no RPFNA atypia off HRT (n=55
a
) (p < 0.05) 

SNP ID 
Gene 

(Var) 

Geno-

type 

RPFNA 

atypia /  

total
b
 (%) 

OR  

(95% CI) 
Pord  

OR  

(95% CI) 
Pdom 

OR  

(95% CI) 
Prec

c 
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rs1805329 RAD23B 

(A249V) 

C/C 

C/T 

T/T 

18/31 (58.1%) 

6/20 (30.0%) 

0/1 (0.0%) 

0.29 

(0.09, 0.91) 

0.035* 0.36  

(0.11, 1.14) 

0.08

1 

NA 0.99 

rs861539 XRCC3 

(T241M) 

C/C 

C/T 

T/T 

6/19 (31.6%) 

14/31 (45.2%) 

4/4 (100%) 

2.94 

(1.06, 8.14) 

0.038* 2.47  

(0.77, 7.91) 

0.13 NA 0.99 

rs10046 CYP19A1  

(3' UTR) 

C/C 

C/T 

T/T 

5/12 (41.7%)  

11/34 (32.4%)  

6/7 (85.7%) 

1.32 

(0.52, 3.32) 

0.56 0.71  

(0.21, 2.39) 

0.58 10 

(1.1, 90) 

0.04 

rs243865 MMP2  

(nt-1306) 

C/C 

C/T 

T/T 

17/31 (54.8%) 

7/18 (38.9%) 

0/4 (0%) 

0.36  

(0.14, 0.98) 

0.045* 0.44  

(0.14, 1.36) 

0.15 NA 0.99 

*similar association for worse cytomorphology (table 6) & for evidence of atypia (table 7) on HRT vs. off HRT 

a. Select cohort (n=55) with multiple RPFNAs performed both on and off systemic HRT 

b. Total may not add to total women in each strata due to incomplete genotype data for some polymorphisms 

c. Recessive model indicates association with  worse (more abnormal) cytomorphology categorization on sHRT in those 

homozygous for the variant allele vs. those with at least one common allele 

Discussion 

This study evaluated associations between 79 polymorphisms in candidate genes important for 

breast carcinogenesis and the risk biomarker of cytomorphology of breast epithelial cells obtained 

by RPFNA in postmenopausal women either taking a stable dose of hormone replacement for ≥6 

months at the time of cytomorphology assessment or not taking HRT. We were able to identify 

many promising associations between genetic variation and RPFNA atypia (1) in all women 

regardless of hormone use and (2) stratified by HRT use at the time of RPFNA which reached 

significance at p<0.05; however these did not remain significant when we adjust for multiple 

testing. Our most significant findings were for the cohort of women with RPFNA results both on 

and off systemic HRT. Given the probability of chance finding due to multiple testing, these results 

will need to be validated in an independent cohort.  

None of the polymorphisms we examined were significantly associated with RPFNA atypia using 

the adjusted p-value, <0.001. However, the top association in this analysis, TFR (Gly
142

Ser), 
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reached a borderline significant level (p=0.0025). This polymorphism is a missense variation 

located in codon 142 of the transferrin receptor gene (TFR) leading to a Glycine (GGC) to Serine 

(AGC) amino acid change [Evans and Kemp 1997]. The NCBI dbSNP database indicates that the G 

allele (Glycine) is more common in the general population with genotype frequencies: A/A=16.1%, 

G/A=54.8%, G/G=29.2%. However, the A allele (Serine) was more common in our cohort with 

genotype frequencies: A/A=30.7%, G/A=45.9% and G/G=22.9%. We found a higher frequency of 

RPFNA atypia with increasing numbers of the minor allele or G (Gly) in our cohort. A recent study 

in type 2 diabetes patients found that increased prevalence of the G allele ran in parallel to increase 

serum ferritin and increased soluble transferrin receptor levels (Fernández-Real 2010). Transferrin 

is the chief glycoprotein responsible for iron transport in mammalian blood. It binds to transferrin 

receptors leading to iron uptake by the cell [Elliot 1993]. Increased levels of transferrin receptors 

has been reported in proliferating and malignant cells, including breast cancer cells, [Shindelman 

1981, Cavanaugh et al. 1999, Hogemann-Savellano et al 2003] with more malignant and aggressive 

tumors showing higher levels of transferrin receptors (Elliot 1993, Hogeman-Savellano 2003). Most 

published studies to date have found no associations of TFR genotypes with breast cancer risk when 

considered separately; however, in combination with the HFE C
282

Y polymorphism, TFR Ser
142

 was 

associated with increased risk for breast cancer (Beckman et al. 1999).   

We observed that the genetic associations with RPFNA atypia differed when we stratified by 

systemic HRT use, with most SNP showing association in only one of the two strata.  However, none 

of these associations reached statistical significance at p<0.001. Given that HRT use differed among 

those with and without evidence of RPFNA atypia, we would expect significantly different SNP 

effects (estimated by odds-ratios) for groups stratified by use of systemic HRT at the time of 

RPFNA. This difference was statistically assessed using gene-environment interaction models. In 

this study, gene-environment interactions for ECAD (nt-160), TXNRD2 (I340T), CYP19 (R264C), 

KLK2 (G226W), MLH1 (I219V) were significant at p<0.05 but did not remain significant when we 

adjusted for multiple testing, p<0.001.  
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Interestingly, the most significant genes associated with worse cytomophology and many genes 

associated with RPFNA atypia as a consequence of systemic HRT use were genes involved in DNA 

repair pathways. Exogenous estrogens are metabolized by phase 1 enzymes to form catechol 

estrogens and estrogen quinones [Spink 1992, Zhang 2007] and these metabolites have been shown 

to form base adducts in DNA [Ding 2003]. These adducts can either be removed by the nucleotide 

excision repair pathway or can spontaneously depurinate to produce apurinic sites that are then 

repaired by base excision repair [Cavalier 2006]. Thus, estrogens metabolites directly produce many 

of the base lesions that ERCC1, XRCC3, RAD51D and RAD23B proteins help repair. It is possible 

that polymorphisms in DNA repair genes may contribute to individual variation in the ability to 

recover from estrogen-mediated DNA damage.    

The RAD23B Ala
249

Val polymorphism was significantly associated with worse cytomorphology 

(p=0.0009) and non-significantly associated with evidence of RPFNA atypia as a consequence of 

HRT use (p=0.035). The RAD23B protein forms a complex with XPC and this complex acts as the 

earliest DNA damage detector to initiate nucleotide excision repair (NER); it is also speci fically 

involved in global genome NER [Sugasawa 1998]. This pathway is the main mechanism for the 

repair of bulky DNA adducts and non-bulky DNA lesions that result from oxidative damage 

[Hutsell 2005]. Several studies have associated genetic variants in RAD23B gene, including the 

Ala249Val polymorphism, with breast cancer [Mechanic 2006, Perez-Mayoral 2013].  In our cohort, 

we found that frequency of atypia by RPFNA with the use of systemic HRT was decreased for 

carriers of the variant T allele and further reduced in women homozygous for the T allele (OR = 

0.29, p=0.035). We also identified an inverse correlation between number of homozygous alleles 

and worse cytomorphology by RPFNA in this cohort (OR = 0.30, p=0.0009). These findings are 

unexpected, considering a recent study by Perez-Mayoral et al. which showed that women carrying 

the T allele (Valine) at codon position 249 had decreased DNA repair capacity compared to women 

with the wild-type C allele (Alanine). If these findings are validated, it would be interesting to 
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assess the effects of this variation on RAD23B protein function and DNA repair capacity in our 

cohort.   

This study revealed promising associations between certain polymorphisms and worse cytomorphology 

while on a stable dose of systemic HRT compared to off HRT. However, due to the increased 

probability of chance findings due to multiple testing, all associations need to be validated in an 

independent cohort. We have identified 48 potential subjects by querying the HRBC database for post-

menopausal women with multiple RPFNA both while currently using systemic HRT and while not 

currently using systemic HRT. These women have been contacted by phone and asked to submit a saliva 

sample for genotyping with the original 107 SNPs [excluding 10 SNPs never genotyped] and 57 new 

SNPs which have been associated with HRT-related breast cancer risk in recent literature [Campa 2011, 

MARIE 2010, Reding 2009, Hein 2012, Justenhoven 2012, Conway 2007, Prentice 2010, Andersen 2013, 

Obazee 2013, Cerne 2012, Rebbeck 2009, Lee 2011]. These new candidate polymorphisms include genes 

related to hormone metabolism (CYP19A1, CYP2C19, CYP3A4, HSD17B1, SRD5A1, AKR1C3), 

transport (ABCB1, SLCO1B1) and receptor function (FGFR2, KRAS, MAP3K1, ESR1). The original 

cohort of women (n=55) and the independent cohort (n=48) will be genotyped for the new SNPs. This 

will serve to update our study to account for relevant findings from recent breast cancer GWAS and 

candidate gene studies.  

The strengths of our study include the use of prospectively collected data regarding hormone therapy use 

and the use of an outcome variable, evidence of atypia by RPFNA, which divides our cohort into roughly 

two equal groups (43.58% had evidence of atypia by RPFNA and 56.42% did not have evidence of atypia 

by RPFNA). The RPFNA procedure allows for both continued monitoring of short-term breast cancer risk 

with changes in hormonal milieu and is ideally suited to monitor the biological effects of exogenous 

hormones on post-menopausal breast tissue. We tested a large number of polymorphisms in multiple 

candidate genes thought to be involved in breast cancer development; and many of these SNPs were 

suspected to affect protein function [Feigelson 1998, Dunning 2004, Tworoger 2004].Thus, we were well 

positioned to identify biologically relevant associations between SNPs and increased breast cancer risk 
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due to HRT use, predicted by the development of cytomorphologic atypia. One limitations of our study 

was the relatively small sample size and it is possible that some associations and/or interactions were not 

detected due to insufficient power. It must also be noted that multiple comparisons may have led to 

chance findings; with 80 SNPs tested in each analysis we would expect approximately one chance finding 

at p<0.05 for each analysis conducted. It is important to consider adjustment for multiple testing (p< 

0.001) in the interpretation of these study results and to consider that certain associations will be 

confirmed in an independent cohort.  
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