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We have studiedt t̄ production using multijet final states inpp̄ collisions at a center-of-mass energy of 1.8
TeV, with an integrated luminosity of 110.3 pb21. Each of the top quarks with these final states decays
exclusively to a bottom quark and aW boson, with theW bosons decaying into quark-antiquark pairs. The
analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on

the t t̄ production cross section, and yields a cross section of 7.162.8 ~stat!61.5 ~syst! pb, assuming a top
quark mass of 172.1 GeV/c2. Combining this result with previous DO” measurements, where one or both of the

W bosons decay leptonically, gives at t̄ production cross section of 5.961.2 (stat)61.1 (syst) pb.
@S0556-2821~99!03607-3#

PACS number~s!: 14.65.Ha, 13.85.Ni, 13.85.Qk
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I. INTRODUCTION

In the standard model, the top quark decays to ab quark
and aW boson, and the dominant decay of theW boson is
into a quark-antiquark pair. Events with at t̄ pair can have
01200
both W bosons decaying to quarks. This is referred to as
‘‘all-jets’’ channel, and is expected to account for 44% of t
t t̄ production cross section.

The observation of top quark production@1,2# in the chan-
nels involving one or two leptons motivates us to investig
1-2
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t t̄ decays into other channels. DO” has measured a top qua
mass,mt , of 172.165.2 (stat)64.9 (syst) GeV/c2 @3# and
a t t̄ production cross section of 5.661.4 (stat)
61.2 (syst) pb @4#, while Collider Detector at Fermilab
~CDF! has measured a mass of 175.964.8 (stat)
64.9 (syst) GeV/c2 @5# and at t̄ production cross section o
7.621.5

11.8 pb @6#. Recently, CDF has reported on the all-je

channel@7#, and finds thet t̄ production cross section to b
10.1 23.6

14.5 pb and a top quark mass of 186610 (stat)
612 (syst) GeV/c2.

The work presented here is based on 110.365.8 pb21 of
data recorded between August 1992 and February 199
the Fermilab Tevatron collider, with app̄ center-of-mass
energy of 1.8 TeV. Assuming the branching ratio and cr
section predicted by the standard model, we expect appr
mately 200 t t̄→ all-jets events in this data sample.

The signature fort t̄ production in the all-jets channel i
six or more high transverse momentum jets with kinema
properties consistent with the top quark decay hypothesis
least two of these jets originate fromb quarks. The back-
ground to this signature consists of events from other p
cesses that can also produce six or more jets. Thet t̄ channel
is one of the few examples of multijet final states that
dominated by quarks rather than gluons. This fact has m
vated us to include the characteristic differences betw
quark and gluon jets in separating the top quark to all-
signal from background.

Interest in the all-jets decay channel of top quarks a
stems from the fact that, without any unobserved particle
the final-state, the all-jets mode is the most kinematica
constrained of all the top quark decay channels. Furtherm
since the top quark is quite massive, decays via char
Higgs may be possible. If channels such ast→H1b have a
significant branching fraction, the main effect could be
deficit in the t t̄ final states with energetic electrons
muons, relative to the all-jets channel.

II. OUTLINE OF THE METHOD

The search for the top quark in the all-jets channel be
with the imposition of preliminary selection criteria at th
trigger stage, followed by more stringent criteria in the o
line analysis. As these initial criteria were not very restr
tive, the observed cross section, primarily from QCD p
cesses, was more than 3000 times larger than the expe
signal. The principal challenge in the search was to deve
a set of selection criteria that could significantly improve t
signal-to-background ratio, and provide an estimate of
background remaining after imposing any selection requ
ments.

The data sample consisted of over 600 000 events a
the initial selection criteria. Because of the small number
t t̄ events expected in the presence of this large backgro
and with only modest discrimination in any single kinema
or topological property, traditional methods of analysis we
inadequate. The analysis would have to involve many v
ables, which are likely to be highly correlated. Neural n
01200
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works were chosen as the appropriate tool for handling m
variables simultaneously.

The analysis relied on Monte Carlo simulations to mod

the properties oft t̄ events. These simulations were pe
formed for different top quark masses, and the final res
interpolated to the mass measured by the DO” Collaboration.

We note that thet t̄ detection efficiency is not strongly de
pendent on the assumed mass of the top quark.

In contrast, the background model was determined
tirely from data. An advantage of the overwhelmin
background-to-signal ratio is that the data provide an alm
pure background sample. This approach obviates a num
of concerns when calculating the background. The ba
ground is predominantly QCD multijet production, which in
volves higher-order processes that may not be well mode
in a Monte Carlo simulation. Furthermore, detector effe
are implicitly included when data are employed for t
model of the background.

Soft-lepton tagging, using muons embedded in jets, se
as a possible signature for the presence of ab quark within
the jet, and is referred to asb-tagging. By identifying the
muon from the semileptonic decay of ab quark ~or the se-
quential decay!, b-tagging of jets improves the signal-to
background ratio significantly. Thet t̄ events are tagged
roughly 20% of the time, whereas the tag rate for QCD m
tijet events with similar requirements is about 3%. Requiri
the presence of a muon tag in the event therefore prov
nearly a factor of 10 in background rejection and a method
estimate this background.

The background calculation relied on being able to pred
the number of events that areb-tagged, based on events with
out such tags. To make the untagged data represent the b
ground in this analysis, a way of estimating the tagging r
in QCD events was needed. This was done by constructin
‘‘tag rate’’ function, determined from data, that is applied
each jet separately. This function is simply the probabil
for any individual jet to have a muon tag. Application of th
tag rate function to each jet in untagged events gives
background model for our final event sample. The prese
of t t̄ signal was identified by an excess observed in the d
above this background. This excess should be small in
regions of the neural network output where backgrou
dominates, but should be enhanced where significant si
is expected.

This analysis employed two neural networks to extract
final t t̄ cross section. The first had as its input variables th
parameters involving kinematic and topological properties
the events that were highly correlated. The output of t
neural network was used as an input variable to a sec
neural network, along with three other inputs. These th
inputs were the transverse momentum (pT) of the tagging
muon, a discriminant based on the widths of the jets, an
likelihood variable that parametrized the degree to which
event was consistent with thet t̄ decay hypothesis. Thes
three variables were less correlated than the kinematic v
ables used in the first neural network. Thet t̄ cross section
was determined from the output of this second neural n
1-3
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work by fitting the neural network output distributions of th
signal and background outputs to the observed data.

III. DO” DETECTOR

DO” is a multipurpose detector designed to studypp̄ col-
lisions at the Fermilab Tevatron Collider. The detector w
commissioned during the summer of 1992. A full descripti
of the detector can be found in Refs.@8,9#. Here we describe
the properties of the detector that are most relevant to
search in the all-jets channel. An isometric view of the d
tector is shown in Fig. 1.

A. Tracking system

The tracking system consists of a vertex drift chambe
transition radiation detector, a central drift chamber, and
forward drift chambers. The system provides charg
particle tracking over the pseudorapidity regionuhu,3.2,
whereh52 ln@tan(u/2)#; u andf are, respectively, the po
lar and azimuthal angles relative to the proton beam a
The resolution for charged particles is 2.5 mrad inf and 28
mrad in u. The position of the interaction vertex along th
beam direction~z! is determined typically to an accuracy of
mm.

B. Calorimeter

The liquid-argon calorimeter, using uranium an
stainless-steel–copper absorber, is divided into three par
central calorimeter and two end calorimeters. Each part c
sists of an inner electromagnetic section, a fine hadronic
tion, and a coarse hadronic section, housed in a stain
steel cryostat. The intercryostat detector consists of scint
tor tiles inserted in the space between the central and
calorimeter cryostats. In addition, ‘‘massless gaps,’’ instal
inside both central and end calorimeters, are active rea
cells, without absorber material, located inside the cryo
adjacent to the cryostat walls. The intercryostat detector
massless gaps improve the energy resolution for jets
straddle two cryostats. The calorimeter covers the pseud

FIG. 1. Isometric view of the DO” detector.
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pidity range uhu,4.2, and has a typical segmentation
0.130.1 in Dh3Df. The energy resolution isd(E)/E
515%/AE(GeV)% 0.4% for electrons. For charged pion
the resolution is approximately 50%/AE(GeV), and for jets
approximately 80%/AE(GeV) @8,9#.

As can be seen in Fig. 1, the Main Ring beam pipe p
etrates the outer hadronic section of the calorimeters and
muon spectrometer. The Main Ring carries protons with
ergies between 8 and 150 GeV, and is used in antipro
production during the Tevatronpp̄ running. Because of this
any losses from the Main Ring can produce background
the detector that must be removed.

C. Muon spectrometer

The DO” experiment detects muons using proportion
drift tubes~PDTs! and an iron toroid. Because muons fro
top quark decays populate predominantly the central reg
this analysis uses muon detection systems in the regionuhu
,1.

The combined material in the calorimeter and iron toro
has between 13 and 19 interaction lengths~the range-out
energy for muons is approximately 3.5 GeV!, making back-
ground from hadronic punchthrough negligible. Also, t
small central tracking volume minimizes background fro
in-flight decays of pions and kaons.

A typical muon track is measured in four layers of PD
before, and six layers after, the iron toroid. The six layers
constructed in two super-layers that are separated by abo
m to provide a good lever arm for measuring the muon m
mentum,p. The muon momentum is determined from i
deflection angle in the magnetic field of the toroid. The m
mentum resolution is limited by multiple scattering in th
traversed material, knowledge of the integrated magn
field, and resolution on the measurement of the deflec
angle. The resolution is roughly Gaussian in 1/p, and is ap-
proximately d(1/p)50.18(p22)/p2

% 0.003 ~with p in
GeV/c) for the algorithms that were used in this analysis

IV. DATA SAMPLE

This section describes the data sample and the simul
events for thet t̄ signal used in our analysis.

A. Initial selection criteria

The data sample was selected by imposing both hardw
~level 1! and software~level 2! trigger requirements. Thes
requirements were modified slightly over the course of
1992–1996 run in order to accommodate the higher ins
taneous luminosities later in the run. Table I indicates

TABLE I. Main running periods of the 1992–1996 run.

Run Run Integrated
period Dates numbers luminosity

Ia 1992–1993 50000–70000 13.0 pb21

Ib 1993–1995 70000–94000 86.4 pb21

Ic 1995–1996 94000–96000 10.8 pb21
1-4
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three main running periods, the run numbers associated
these periods, and the integrated luminosity collected.

The hardware trigger required the presence of at least
calorimeter trigger towers (0.230.2 inDh3Df), each with
transverse energyET.5 GeV, for the Ia period. In the Ib
and Ic periods, theET requirement was raised to 7 GeV, an
an additional requirement for at least three large tiles (
31.6 in Dh3Df) with ET.15 GeV was imposed. Thes
were imposed to reduce the trigger rate and avoid satura
the bandwidth of the trigger system at high instantane
luminosities (>1031 cm22 s21).

The software filter required five jets, defined byR
5A(Dh)21(Df)250.3 cones, with uhu,2.5 and ET
.10 GeV. Again, in order to reduce the data rate at h
luminosities during the Ib period, a further condition w

FIG. 2. The effect of imposing requirements to reject Main Ri
events. A scatter plot of missingET versusf for jets before~a!, and
after ~b!, imposing our Main Ring requirements.
01200
ith

ur
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ng
s

h

added requiring the scalar sum of theET of all jets ~defined
asHT) to be greater than 110 or 115 GeV, depending up
run number. ThisHT requirement was raised to 120 Ge
during the Ic period. The effects of these changes on

acceptance fort t̄ events were studied using Monte Car
simulations, and were found to be negligible.

In addition to imposing trigger and filter requirements,
set of off-line selection criteria was used to reduce the d
sample to a manageable size without greatly affecting

acceptance for thet t̄ signal. First,HT was required to be
greater than 115 GeV, where the sum usedR50.5 jets with
uhu,2.5 andET.8 GeV. Also, requirements were impose
in order to eliminate events with spurious jets due to sp
from the Main Ring or effects from noisy cells in the cal
rimeter@10,11#. For example, Fig. 2 shows the imbalance
transverse energy, or missingET (E” T), in the event versus
the azimuthal angle (f) of the jet, before and after the re
jection of Main Ring events. We see that our requireme
have removed the spurious cluster of jets in the region wh
the Main Ring pierces the DO” detector (1.6,f,1.8). Table
II summarizes the impact of the trigger and initial reco

struction criteria on thet t̄ signal for a top quark mass o
180 GeV/c2.

B. Jet algorithms

The jet algorithm is the fundamental analysis tool in t
search fort t̄ events in the all-jets mode. One of the mo
important considerations in choosing a jet algorithm is
efficiency for reconstructing the six primaryt t̄ decay prod-
ucts. Theh distribution of the jets fromt t̄ decays tends to be
quite narrow, and therefore theR separation between adja
cent jets is frequently small. When two jets are too clo
together, they may not be resolved, leading to reconstruc
inefficiency.
TABLE II. Initial criteria used for data selection.

Cumulative
Effective efficiency

General Sequential cross (mt5180
conditions requirements section GeV/c2)

Level 1 Four trigger towers
trigger ET.5,7 GeV~Ia, Ib-c! 0.4 6 0.1 mb 0.98

Three large tiles
ET.15 GeV ~Ib-c!

Level 2 FiveR50.3 jets
filter uhu,2.5, ET.10 GeV 206 5 nb 0.92

HT.110,115 GeV~Ib!

HT.120 GeV~Ic!

HT.115 GeV from
Off-line R50.5 jet cones

uhu,2.5, ET.8 GeV 5.46 1.3 nb 0.87
Cuts for spurious jets
1-5
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Figure 3 shows the reconstruction efficiency for the co
jet algorithm @12# with various cone sizes for simulatedt t̄
events in the all-jets channel, as generated with theHERWIG

Monte Carlo program@13#. Here, the definition of a quark
includes any final state gluon radiation added back to
quark momentum. The matching of reconstructed jets
quarks relies on using combinations of the two that minim
the distance inR between them. A jet is considered to b
matched only if that distance is less thanDR50.5, the en-
ergy of the jet is within a factor of 2 of the quark energy, a
the reconstructed jetET is greater than 10 GeV.

Figures 3~a! and 3~b! show how the reconstruction effi
ciency depends on quarkET and h for the cone algorithm
with different cone sizes. TheR50.3 cone algorithm shows
a higher jet reconstruction efficiency than the larger co
algorithms. In the central region, theR50.3 cone algorithm
has an efficiency of 94%, while theR50.5 andR50.7 cone
algorithms are 90% and 81% efficient, respectively. Giv
an average efficiencye for reconstructing a single jet, th
reconstruction efficiency for findingt t̄ events~with six or
more jets! will be of the order ofe6. Therefore, larger cone
sizes are less efficient in the multijet environment.

Figure 3~c! shows the correspondence between parton
jet energies found for various cone algorithms, after DO” jet
energy corrections are applied~see next section!. Linear fits
to the quark-jet correlation in energy are shown in Fig. 3~c!
for the three cone algorithms. Figure 3~d! shows the three-je
invariant mass for the correct combinations of jets match
top and antitop quarks. The areas of the mass distribut
reflect the event reconstruction efficiencies for different
gorithms.

The shift in the reconstructed mass from the input mas
the top quark (175 GeV/c2) shows that the jet algorithm

FIG. 3. Jet reconstruction fort t̄ Monte Carlo events~HERWIG,
mt5175 GeV/c2) for various cone sizes:R50.3 ~open squares!,
R50.5 ~solid circles!, andR50.7 ~open circles!. ~a! Jet finding
efficiency versus quarkET . ~b! Jet finding efficiency versus quar
h. ~c! Reconstructed jet energy versus that of the input quark.~d!
Reconstructed mass of the top quark from correct jet combinati
where the areas reflect the relative efficiencies.
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are not equivalent. The shift in three-jet mass from the no
nal input top quark mass increases as the cone radius is
creased. The widths of the mass distributions are not v
sensitive to the choice of cone size. The overall root-me
square, rms, spread in reconstructed mass for correct co
nations of jets is approximately 10% of the mass.

In summary, there are two competing effects when cho
ing the optimal jet cone size. Smaller cone sizes are be
able to resolve separate jets, but do not do as well at rec
structing jet energy. However, the ability to resolve ind
vidual jets was deemed of higher importance in the sea
for a signal. Hence theR50.3 cone algorithm is preferred
for analyzing multijet events. But as a result of the relative
large shift in the jet energy for theR50.3 cone algorithm,
we chose to use theR50.5 cone algorithm for calculating
some quantities that emphasize energy response at the
pense of jet efficiency. Jets withET ,8 GeV, before appli-
cation of energy corrections~see Sec. IV C!, were discarded.

C. Jet energy correction

DO” has developed a correction procedure@14# to calibrate
jet energies, which is applied to both data and Monte Ca
simulation. The underlying assumption is that the true
energy,Eptcl , is the sum of the energies of all final sta
particles entering the cone algorithm applied at the calor
eter level.Eptcl is obtained from the energy measured in t
calorimeter,Emeas, as follows:

Eptcl5
Emeas2EO~R,h,L!

R~h,E,rms!S~R,h,E!
, ~4.1!

where
~i! EO(R,h,L) is an offset, which includes the physics o

the underlying event, noise from the radioactive decay of
uranium absorber, the effect of previous crossings~pile-up!,
and the contribution of additional contemporaneouspp̄ in-
teractions. The physics of the underlying event is defined
the energy contributed by spectators to the hard parton in
action which resulted in the high-pT event. This offset in-
creases as a function of the cone sizeR. It also depends on
h and on the instantaneous luminosity,L, which is related to
the contribution from the additionalpp̄ interactions.

~ii ! R(h,E,rms) is the energy response of the calorimet
It is nearly independent of the jet cone size,R, but does
depend on the rms width of the jet. The width depende
accounts for differences in the calorimeter response to
row jets, which fragmented into fewer particles~of, on aver-
age, higher energy! than broader jets, with larger particl
multiplicities. Because the various detector components
not identical,R also depends on detectorh. R is typically
less than 1, due to energy loss in the uninstrumented reg
between modules, differences between the electromagn
~e! and hadronic response~h! of the detector (e/h.1), and
module-to-module inhomogeneities.

~iii ! S(R,h,E) is the fraction of the jet energy that i
deposited inside the algorithm cone. Since the jet energ
corrected back to the particle level, the effects of calorime
showering must be removed.S is less than 1, meaning tha

s,
1-6
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the effect of showering is a net flux of energy from inside
outside the cone.S depends strongly on the cone sizeR,
energy, andh.

D. Characteristics of jets

Comparisons of jet properties~jet multiplicity, inclusive
jet ET , h, andf, forR50.3 cones! are shown in Fig. 4 for

data from the Ia and Ib periods~see Table I! and for t t̄
Monte Carlo simulation. Only jets withET.10 GeV and
uhu,2 are included in the comparison. The results from
and Ib are in good agreement, although Ib typically h
higher instantaneous luminosity.

Figure 4~a! shows that for events with six jets, the bac
ground~i.e., data! is at least three orders of magnitude larg

than the expectedt t̄ signal. The peak at five jets is the resu
of the initial event selection~see Table II!. The inclusive jet
ET spectrum in Fig. 4~b! falls exponentially at about the
same rate for signal as for data, and the signal is consiste
three orders of magnitude below the data. In Fig. 4~c!, the
distributions of jeth are normalized to the same area f
signal and data. The signal is concentrated in the cen
region, while the data extend to higherh. There is a differ-
ence of the order of 10% between Ia and Ib in the interc
ostat region (uhu'1.2) due to improvements in the Ib perio
Figure 4~d! shows that thef distribution of jets is isotropic,
except for a 5% suppression in the region of the Main Ri
The Monte Carlo simulation does not simulate the effects
the Main Ring, and consequently has no apparent structu
f.

FIG. 4. Properties of jets withR50.3 cones. Data from the Ia

~histograms! and Ib ~circles! periods, andt t̄ HERWIG for mt

5175 GeV/c2 ~shaded histograms!. Only jets withET.10 GeV
anduhu,2 are included. Distributions in~a! jet multiplicity and~b!
jet ET are each normalized to the expected number of event
110.3 pb21 of data, while distributions in~c! jet uhu and ~d! jet f
are normalized to the same area.
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E. Simulation of t t̄ events

The simulation oft t̄ events plays an important role i
extracting a signal in the presence of significant backgrou
It is necessary, therefore, to have a good description of
production and decay oft t̄ events in order to calculate de
tector acceptances accurately and to develop method
identify t t̄ events in the data.

The t t̄ events were generated for top quark masses
tween 120 and 220 GeV/c2 for the reactionpp̄→t t̄ 1X us-
ing HERWIG as a primary model andISAJET @16# as a check.
The underlying assumptions in the fragmentation of part
are different in the two programs. The generated events w
put through the DO” shower library@17#, a fast detector simu-
lation package based onGEANT @18#, which contains the ef-
fects of cracks and other dead material in the DO” calorim-
eter, and provides accurate shower simulation. TheGEANT

simulation has been tuned to achieve a good match betw
generated single-particle characteristics and observed
@19#. Events were subsequently digitized, passed through
DO” reconstruction program@8#, and subjected to the sam
selection criteria as the data~see Table II!. Events passing
these criteria served as the model for our studies oft t̄ prop-
erties.

Generally, acceptances fort t̄ production as calculated
with HERWIG or ISAJET agree to within 10%, and any differ
ences between the two are incorporated in the final syst
atic uncertainties. As an illustration of the discrepancies,
show in Fig. 5 distributions of jet multiplicity, jeth, theET
of the leading jet, and the fifth highest jetET for HERWIG and
ISAJET. Except for jet multiplicity, these distributions are i
good agreement. It has been shown@9# that ISAJET produces

in

FIG. 5. Comparisons ofISAJET ~circles! and HERWIG ~histo-
grams! for an input top quark mass of 175 GeV/c2, and jets with
R50.3 cones, for~a! jet multiplicity, ~b! jet h, ~c! ET of leading
jet, and~d! fifth highest jetET . Bars on the points indicate statis
tical uncertainties~similar uncertainties, although not shown, app
for the histograms!. The results fromISAJET andHERWIG in ~a!–~d!
are normalized to the same area.
1-7



re
o
er
t
n
et
ct

n
h

n

d
n
e

v

an
o

ou

-
er

m
in

e
ll

pr

je
a
io
vi
se

ve
a

ck-
gy
the

n
ures
sec-

a
ns.

ons,
to

rd-

k
g
nor-
ig-

B. ABBOTT et al. PHYSICAL REVIEW D 60 012001
more gluon radiation thanHERWIG, in accordance with our
results in Fig. 5~a!.

V. KINEMATIC PARAMETERS

The principal background to thet t̄ signal is QCD multijet
production, which is dominated by a 2→2 parton process
with additional jets produced through gluon radiation. The
fore, the background tends to have jets that are m
forward-backward in rapidity. The additional jets are gen
ally lower in ET ~i.e., softer! than the initial outgoing paren
partons. Furthermore, this extra radiation tends to lie i
plane formed by the incoming beam and the two leading j

Because the mass of the top quark is large, the chara
istic energy scale~commonly calledQ2) of the t t̄ event is
significantly larger than that of the average QCD backgrou
event. This means thatt t̄ events generally have jets wit
higherET , and have larger multijet invariant masses.

Extracting a signal from data dominated by backgrou
requires the use of global kinematic parameters based
these differences. Employing such parameters helps to
ferentiate between thet t̄ signal and background. We ca
summarize the salient features of the background, relativ
the t t̄ signal, as follows:

~i! The overall energy scale is lower, leading jets ha
lower ET , and multijet invariant masses are smaller.

~ii ! The additional radiated jets are softer~have lower
ET).

~iii ! The event shape is more planar~less spherical!.
~iv! The jets are more forward-backward in rapidity~less

central!.
We defined two or more kinematic parameters that qu

tified aspects of each property. Only the most effective
these were used and these are discussed below. We f
that, in general, better discrimination was achieved usingR
50.3 cone jets~particularly in the rangeuhu,2.0 andET
.15 GeV) thanR50.5 cone jets. However, in some in
stances,R50.5 cone jets were used, and this is noted wh
it occurs. All of the jets withuhu,2.5 in an event are in-
cluded in most of the variable calculations, though for so
variables the best discrimination was obtained by includ
only a subset of the jets, selected by jetET or h, and this is
also noted where these variables are described.

Although correlations exist between many of the kin
matic parameters, each includes useful information not fu
contained in any of the others. These correlations are
sented in Sec. VI D.

A. Parameters sensitive to energy scale

Any parameter that depends on the energy scale of the
is also sensitive to the mass of the top quark. These ‘‘m
sensitive’’ parameters usually provide better discriminat
against QCD background than other parameters that pro
only a measure of some topological feature. Three mass
sitive parameters are the following:

~1! HT
The sum of the transverse energies of jets in a given e

characterizes the transverse energy flow, and is defined
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HT5(
j 51

Njets

ETj
~5.1!

whereETj
is the transverse energy of thej th jet, as ordered

in decreasing jetET rank, andNjets is the number of jets in
the event.

~2! Aŝ
This parameter is the invariant mass of theNjets system.
~3! ET1

/HT

ET1
is the transverse energy of theR50.5 cone jet with

highestET . This parameter characterizes theET fraction car-
ried by the leading jet, and tends to be high for QCD ba
ground. Thet t̄ events are likely to have transverse ener
roughly equipartitioned among all six jets, and hence
leadingET jet is, on average, fractionally softer.

Figure 6 shows the distributions ofHT , Aŝ, and
ET1

/HT , each of which reveals significant discriminatio
between signal and background. This and subsequent fig
for the parameters are shown both normalized to cross
tion and normalized to unity.

B. Parameters sensitive to additional radiation

As previously noted, the QCD background is primarily
2→2 parton process that contains additional radiated gluo
These gluons tend to be much softer than the leading part
and therefore the jets associated with this radiation tend
have smallerET . Three parameters that measure the ha
ness of this radiation are the following:

~4! HT
3 j

This variable is defined as@10,11#

FIG. 6. TheHT , Aŝ, andET1
/HT distributions for data~pre-

dominantly background! and forHERWIG t t̄ generated at a top quar
mass of 175 GeV/c2. Each plot on the left is normalized accordin
to the expected number of events. On the right the plots are
malized to unity and reveal significant discrimination between s
nal and background.
1-8
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HT
3 j5HT2ET1

2ET2
~5.2!

where ET1
and ET2

are the transverse energies of the tw

leading~highestET) jets. By subtracting theET of the two
leading jets, what remains is a better measure of any a
tional gluon radiation in QCD events, enhancing the d
crimination betweent t̄ signal and QCD background.

~5! Njets
A

An average jet count parameter,Njets
A , provides a way to

parametrize the number of jets in an event, while taking
count of the hardness of these jets. We define

Njets
A 5

E
15

55

ET
thrN~ET

thr!dET
thr

E
15

55

ET
thr dET

thr
~5.3!

whereN(ET
thr) is the number of jets in a given event wit

uhu,2.0 andET greater than some threshold,ET
thr in GeV.

Therefore, this parameter corresponds to the number of
but is more sensitive to jets of higherET than just a simple
jet count above some given threshold.

~6! ET5,6

The transverse energies of the fifth jet,ET5
, and sixth jet,

ET6
, are also useful in discriminating QCD background fro

t t̄ events. Our final selection~see Sec. VII A! requires at
least six jets. For background these usually correspon
soft radiation. The variable chosen is

ET5,6
5AET5

ET6
. ~5.4!

Figure 7 shows distributions ofHT
3 j , Njets

A and ET5,6
.

FIG. 7. TheHT
3 j , Njets

A , and ET5,6
distributions for data~pre-

dominantly background! and for HERWIG t t̄ events. Each distribu-
tion is normalized to the expected number of events~left! and to
unity ~right!.
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Again, these variables are effective in differentiating b
tween signal and background.

C. Aplanarity and sphericity

The direction and shape of the momentum flow of jets
t t̄ production are different from those in QCD backgroun
These differences can be quantified using event-shape
rameters@20#. For each event, we define the normalized m
mentum tensorMab :

Mab5(
j

Njets

pjapjb Y (
j

Njets

pj
2 ~5.5!

wherea andb run over thex,y,z components~indices of the
tensor!, andj runs over the number of jets in an event. As
clear from its definition,Mab is a symmetric matrix that is
always diagonalizable, and has positive-definite eigenva
(Q1 ,Q2 ,Q3) satisfying the conditions:

Q11Q21Q351 and 0<Q1<Q2<Q3 . ~5.6!

The equationQ11Q21Q351 represents a plane in a spa
spanned byQ1 ,Q2 , andQ3 , and the inequality restricts th
range of each eigenvalue, as shown in Fig. 8:

0<Q1<
1

3
,

0<Q2<
1

2
,

1

3
<Q3<1. ~5.7!

The magnitude of anyQi represents the portion of mo
mentum flow in the direction of thei th eigenvector. Limiting
event shapes can therefore be characterized as follows:

Linear: Q15Q250 andQ351.
Planar:Q150 andQ25Q35 1

2 .

FIG. 8. The allowed range of normalized momentum tensor
genvalues in the space spanned by theQi .
1-9
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Spherical:Q15Q25Q35 1
3 .

The aplanarity (A) and sphericity (S) parameters that we
use are defined as follows:

~7! A5 3
2 Q1 ,

~8! S5 3
2 (Q11Q2),

with 0<A<0.5 and 0<S<1.
Top quark (t t̄ ) events tend to have higher aplanarity a

sphericity than background events. We calculateA andS in
the pp̄ collision frame; little difference is found using th
parton center of mass frame. Distributions ofA and S for
HERWIG t t̄ events formt5175 GeV/c2 and for data are
shown in Fig. 9.

D. Parameters sensitive to rapidity distributions

~0! C
The centrality (C) parameter is defined as

C5
HT

HE
, ~5.8!

where

HE5(
j 51

Njets

Ej . ~5.9!

Centrality is similar toHT , characterizing the transverse e
ergy in events, but is normalized in such a way that it d
pends only weakly on the mass of the top quark.

~10! ^h2&
To good approximation, theh distribution for jets int t̄

events is normally distributed about zero with an rms,sh ,
close to unity. With typically six or more jets in an event, t
rms of the jeth distribution can be a useful discriminato

FIG. 9. The aplanarity and sphericity distributions for data~pre-

dominantly background!, and forHERWIG t t̄ events. Each distribu-
tion is normalized to the expected number of events~left! and to
unity ~right!.
01200
-

The ^h2& variable is defined using only the leading six je
We useR50.5 cone jets for this variable.

We calculatê h2& by taking the square of the differenc
between each jeth and theET-weighted mean,h̄, weighted
by a factorW(ET). W(ET) depends upon the difference i

rms betweent t̄ signal (sh
t t̄) and background (sh

bkg), and is
larger at thoseET values where signal and background a
expected to differ. Thêh2& parameter is given by

^h2&5

(
j 51

6

W~ETj
!~h j2h̄ !2

(
j 51

6

W~ETj
!

, ~5.10!

where

W~ET!5
sh

t t̄~ET!2sh
bkg~ET!

sh
t t̄~ET!

~5.11!

and

h̄5
1

HT
(
j 51

Njets

ETj
h j . ~5.12!

Note that bothsh
t t̄(ET) and sh

bkg(ET) depend on theET of
the jets in theh distribution. Jets with lowerET tend to be at
larger values ofuhu, and consequentlysh decreases with
increasingET . The QCD multijet background has a broad
distribution in the^h2& variable than thet t̄ signal.

The C and ^h2& distributions are shown in Fig. 10, fo
mt5175 GeV/c2.

The above ten kinematic variables are employed as inp
to the first neural network. The output of this network is

FIG. 10. The centrality and̂h2& distributions for data~predomi-

nantly background! and for HERWIG t t̄ events. Each distribution is
normalized to the expected number of events~left! and to unity
~right!.
1-10
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input to the second~and final! neural network, whose thre
other inputs are described in the following section.

VI. EVENT STRUCTURE VARIABLES

In addition to the kinematic and topological character
tics examined in Sec. V, there are other differences betw
the t t̄ signal and the QCD multijet background that we w
exploit in extracting thet t̄ signal.

A. pT of tagging muon

The pT of the tagging muon gives further discriminatio
betweent t̄ signal and QCD background. Not only does t
fragmentation ofb quarks produce higherpT objects, but the
b quark is also more energetic int t̄ events than in back
ground. Thus, the mean muonpT ,pT

m , is significantly larger

in t t̄ events. Figure 11 shows the muonpT spectra. Figure
11~a! compares the muonpT in HERWIG and ISAJET t t̄
events, which shows that the muonpT spectrum is modeled
consistently by Monte Carlo simulation. Figure 11~b! com-
pares HERWIG t t̄ events and data~predominantly back-
ground!. These results show that thepT of the muon can
serve as a useful tool in differentiating between signal a
background.

B. Widths of jets

At the simplest level, eacht( t̄ ) quark decays into ab(b̄)
quark and aW1(W2) boson, with eachW boson decaying
into light quarks. Barring extra gluon bremsstrahlung, t
represents six quark-jets in the final state. The average
multiplicity for HERWIG t t̄ events (mt5175 GeV/c2) using
our selection criteria is 6.9, implying that the contributio
from gluons is relatively small. Conversely, jets in the QC
multijet background originate predominantly from gluon r

FIG. 11. Comparison of muonpT spectra for~a! HERWIG and

ISAJET t t̄ events, and~b! HERWIG t t̄ events and data. These distr
butions have been normalized to unity.
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diation. Although gluon splitting can take place, produci
both quark and gluon jets, it is expected that gluons domin
QCD multijet production.

QCD predicts substantial differences between quark
and gluon jets and, in fact, observed differences in quark
gluon jet widths have been reported by experiments at
KEK e1e2 collider ~TRISTAN! @21# and the CERNe1e2

collider ~LEP! @22#. Parton shower Monte Carlo program
such asHERWIG have been shown to reproduce the widt
observed in data@22#, althoughHERWIG has been found to
slightly underestimate jet widths at the Fermilab Tevatr
@23#. We found that by applying a correction of 3% to th
widths, HERWIG QCD Monte Carlo reproduces the observ
distributions in the width of the jets. Further studies ha
shown that the kinematic distributions of the multijet bac
ground are also well modeled usingHERWIG. We have there-
fore chosenHERWIG as the generator for studying jet width
with a 3% correction applied to the widths of each jet.

Figure 12~a! shows the mean width of 0.5 cone jets vers
jet ET for multijet data andHERWIG QCD and Fig. 12~b!

compares the data toHERWIG t t̄ . Here, the jet width is

s jet5Ash
21sf

2 , ~6.1!

where sh and sf are the transverse energy weighted rm
widths inh andf, respectively, and are calculated using t
(h,f) positions of each calorimeter bin (0.130.1 in Dh
3Df) weighted by the transverse energy in that bin.
order to account for the broadening of jets from addition
minimum bias interactions which could overlap an eve
corrections were applied to the widths of each jet in t
event. These corrections were typically a few percent,
depended, among other factors, upon the instantaneous l
nosity during that event. These corrections were determi
by assuming that the energy coming from minimum b
interactions was uniformly distributed inDh and Df, and

FIG. 12. The mean width of 0.5 cone jets versus theirET for ~a!
data~bars! andHERWIG QCD ~stars!, and~b! data~bars! andHERWIG

t t̄ ~stars!.
1-11
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therefore the measured rms of a jet was the sum in qua
ture of its true RMS and the rms of a uniform distribution.

It is clear from Fig. 12~a! thatHERWIG QCD describes the

widths observed in the data, and theHERWIG t t̄ has signifi-
cantly narrower jets. This suggests that the difference ma
due to the different mix of gluons and quarks in the tw
processes.

For Monte Carlo simulation it is possible to match initi
state quarks to final state reconstructed jets because theHER-

WIG t t̄ events are relatively simple. The mapping betwe
quarks and jets requires a tight match inDR between the
initial quark and the jet, as well as a reasonable match
energy. The following criteria were employed to defi
Monte Carlo ‘‘quark-like jets’’:

~i! Good quality 0.5 cone jet, reconstructed without me
ing ~not formed from two or more adjacent jets! and with
uhu <2.5.

~ii ! Distance between initial quark and its reconstruc
jet to beDR<0.05.

~iii ! The difference in energy between the quark and
jet DE<AEquark (E in GeV!.

Monte Carlo ‘‘gluon-like jets’’ were defined to be goo
quality jets, without merging, but where the separation d
tance to the nearest quark wasDR>1. Imposing these cri-
teria, the distributions in the jet rms widths are shown in F
13. To guide the eye, Gaussian fits have been superimp
on the distributions. With these definitions, it appears t
gluon-like jets are 20–30 % wider than quark-like jets.

Figure 13 suggests that the jet rms distributions for th
definitions of quark-gluon jets can be approximated by Ga
sians. A Fisher discriminant can be used to differentiate
tistically between any two such distributions. We defined

FIG. 13. Distributions in jet rms width,s jet , for HERWIG quark-
like jets ~solid! and the gluon-like jets~dashed! for ~a! 5,ET

,25 GeV, ~b! 20,ET,40 GeV, ~c! 35,ET,55 GeV, ~d! 50
,ET,70 GeV, ~e! 65,ET,85 GeV, and ~f! 80,ET

,100 GeV. These distributions were normalized to have eq
numbers~1000! of events.
01200
a-

be

n

in

-

d

e

-

.
ed
t

e
s-
a-
a

Fisher discriminant,Fjet , in terms of the individual jet width
s jet and the width expected for gluon-like (sgluon) and quark-
like (squark) jets, as follows:

Fjet5
@s jet2squark~ET!#2

squark
2 ~ET!

2
@s jet2sgluon~ET!#2

sgluon
2 ~ET!

. ~6.2!

We used this single parameter to characterize the qu
like or gluon-like essence of a jet. This discriminant
summed over the four unmerged jets with the smallest va
of Fjet in an event to form a variableF which reflects
whether the event is moret t̄ -like ~signal! or more QCD-like
~background!. Summing only over the four smallest value
of Fjet ~most quark-like jets!, according to Monte Carlo
simulation, optimizes the discrimination. Where there a
fewer than four unmerged jets in an event, we average o
over those jets. This summed discriminant,F, will be used in
our search fort t̄ signal in the all-jets channel. The distribu
tions ofF are shown in Fig. 14. It is known that jet width
are not as well modeled inISAJET @24#, and we have, there
fore, based this discriminant only on theHERWIG generator.
Figure 14~a! showsF for data and HERWIG QCD, and Fig.
14~b! showsF for data andHERWIG t t̄→ all-jets. Compari-
son shows that the jets in data are significantly wider, and
more consistent withHERWIG QCD than withHERWIG t t̄ .

C. Mass likelihood parameter

A mass likelihood variable,M, defined below, provides
good discrimination between signal and background by
quiring two jet pairs that are consistent with theW boson
mass, and twoW1 jet pairs that are consistent with a sing
top quark mass ofany value. Since there are no high-pT
leptons in the all-jets channel, and hence no high-pT neutri-
nos, the event is in principle fully reconstructible. The pre
ence of twoW bosons int t̄ events provides significant rejec
tion against QCD background. A further requirement that

al

FIG. 14. Distributions ofF for ~a! data ~predominantly back-

ground! andHERWIG QCD and~b! data and HERWIG t t̄ events.
1-12
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two reconstructed top quarks have equal masses prov
some additional discrimination.M is defined as ax2-like
object:

M5
~MW1

2MW!2

sW
2

1
~MW2

2MW!2

sW
2

1
~mt1

2mt2
!2

s t
2

,

~6.3!

whereMW1
(MW2

) is the mass of the twoR50.5 cone jets
corresponding to theW boson from the first~second! top
quark, of massmt1

(mt2
). The parametersMW , sW ands t

were fixed at 80, 16 and 62 GeV/c2, respectively. The las
two values approximate the full widths of the two distrib
tions, and taking them to be constant simplifies the calcu
tion.

TheM variable is calculated by looping over combin
tions of jets, and assigning all jets withuhu <2.5 to one of
theW bosons orb quarks from the two top quark decays. Th
smallest value ofM is selected as the discriminator. T
reduce the number of combinations, two jets are assigne
eachW boson and one to theb quark from one of the two top
quarks. Jets from theW boson are required to haveET
.10 GeV, while those from theb quark must haveET
.15 GeV. All remaining jets are assigned to theb quark
from the second top quark. To keepb-tagged events on th
same footing as untagged events, noa priori assignment is
made between tagged jets andb quarks. Since in the top
quark rest frame theW boson and theb quark have equa
momenta, theET of W bosons andb-jets are more similar
than for QCD background. The following criterion helps fu
ther reduce combinatorics:

ET~W1!1ET~W2!<0.65HT ,

whereET(W1) (ET(W2)) is theET from the vector sum of two
jet momenta assigned to theW boson from the first~second!
top quark. Although there are other possible algorithms
assigning jets to the two top quarks, the discrimination in
M variable is not very sensitive to the choice of reasona
algorithms.

The distributions in theM variable are shown in Fig. 15
Figure 15~a! compares theM variable inHERWIG andISAJET

t t̄ events (mt5175 GeV/c2). Figure 15~b! comparesHER-

WIG QCD and the data~predominantly background!. Figure
15~c! comparesHERWIG t t̄ events and data. These plots sho
that this variable is modeled consistently by the twot t̄
Monte Carlo programs, thatHERWIG QCD models the back
ground well, and thatM is useful in discriminating betwee
signal and background.

D. Correlations between parameters

A summary of the 13 parameters used in this analysi
given in Table III. The first ten parameters are simple kin
matic variables, and are correlated. To quantify the degre
correlation between any two variablesx and y, we define a
linear correlation coefficient,r as @25#
01200
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r 5

N( xiyi2( xi( yi

FN( xi
22S ( xi D 2G1/2FN( yi

22S ( yi D 2G1/2.

~6.4!

The value ofr ranges from 0, when there is no correl
tion, to 61, when there is complete correlation or anticorr
lation. Table IV shows the average correlations among
parameters defined in Sec. V and Sec. VI for data. These
average correlation coefficients; local correlations can v
significantly, depending upon the region of multivaria
space. Note that the parameterspT

m , F, andM have rela-
tively small correlations with the other kinematic paramete
Their correlations with the output of the first neural netwo
are also small: 0.02, 0.00 and 0.03, respectively, as wo
follow from their correlations with the individual kinemati
network inputs.

VII. ANALYSIS

A. Event selection criteria

Before proceeding further with the analysis, basic qua
criteria were applied to the data and to Monte Carlo eve

~i! Isolated leptons: Events containing an isolated electro
or muon @9,4# were rejected. This ensured that our eve
sample was orthogonal to those used in thet t̄ analyses in
other decay channels.

~ii ! HT
3 j>25 GeV: Removed QCD 2→2 events with little

additional jet activity.
~iii ! Number of jets:Events with fewer than sixR50.3

cone jets or more than eightR50.5 cone jets were rejected
~a! By eliminating events with fewer than sixR50.3

cone jets, the signal-to-background ratio is improved. O
14% of the signal is lost, while 36% of the background

FIG. 15. Distribution in mass likelihood parameter for~a!

HERWIG and ISAJET t t̄ events,~b! HERWIG QCD and data, and~c!

HERWIG t t̄ events and data. These distributions were normalized
unity.
1-13
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TABLE III. The 13 variables used in the neural network analysis, the jet cone size employed andt t̄
event characteristic upon which it discriminates are given.

Variable Description Cone Characteristic

HT Total transverse energy 0.3 Energy

Aŝ Total t t̄ 0.3 Energy

center-of-mass energy

ET1
/HT Leading jet transverse 0.5/0.3 Energy

energy fraction

HT
3 j Transverse energy of 0.3 Radiation

non-leading jets

Njets
A Weighted number of jets 0.3 Radiation

ET5,6
ET of 5th and 0.3 Radiation

6th jets

A Aplanarity 0.3 Topology

S Sphericity 0.3 Topology

C Centrality 0.3 Topology

^h2& Rapidity distribution 0.5 Topology

pT
m pT of tagging muon - Event

Structure

F Fisher discriminant 0.5 Event
based on jet widths Structure

M Mass likelihood 0.5 Event
Structure
n

o

of
-

bi-
rejected.~TheET of the sixth jet is required in the calculatio
of several variables.!

~b! Removal of events with more than eightR50.5 cone
jets also improves signal-to-background, rejecting 13%
01200
f

the background and only 5% of the signal. The calculation
the M variable and Fisher discriminant are thereby im
proved because of the reduction in the number of jet com
nations.
.05

.05

.30
10
04
0
6
4

TABLE IV. Average correlations among the 13 parameters for data.

HT Aŝ ET1
/HT HT

3 j Njets
A ET5,6

A S C ^h2& pT
m F M

HT 1 0.80 –0.14 0.71 0.76 0.39 0.01 0. 0.17 –0.31 0.04 –0.04 0

Aŝ 1 –0.20 0.64 0.64 0.36 –0.16 –0.25 –0.32 0.14 0.01 –0.08 0

ET1
/HT 1 –0.54 –0.36 –0.37 –0.34 –0.23 0.07 0.14 –0.02 0.23 0

HT
3 j 1 0.76 0.71 0.25 0.15 0.05 –0.25 0.04 –0.02 –0.

Njets
A 1 0.44 0.12 0.09 0.09 –0.27 0.04 –0.05 –0.

ET5,6
1 0.21 0.12 0.02 0.02 0.03 –0.03 –0.1

A 1 0.58 0.26 –0.30 0.04 –0.07 –0.1
S 1 0.37 –0.40 0.03 –0.04 –0.1
C 1 –0.59 0.05 0.06 0.
^h2& 1 –0.05 –0.07 0.03
pT

m 1 –0.01 0.
F 1 0.10
M 1
1-14
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Of the roughly 600 000 events passing our initial crite
~see Table II!, approximately 280 000 events survive the
selection requirements.

B. Muon tagging

The direct branching fraction of ab quark into a muon
plus anything is 10.760.5 % @26#. However, when all con-
tributions from decays ofb and c quarks from the two top
quarks are considered, and with a muon acceptance of a
50%, approximately 20% of the events in thet t̄→ all-jets
mode are expected to yield at least one muon. Muons
QCD background processes arise mainly from gluon splitt
into cc̄ or bb̄ pairs, but intrinsiccc̄ and bb̄ production as
well as in-flight pion and kaon decays within jets also co
tribute. These sources occur in only a small fraction of
events, and therefore only a few percent of the QCD mult
background events will have a muon tag@9#.

To take advantage of the difference in the muon tag r
and enhance thet t̄ signal, our analysis requires the presen
of at least one muon near a jet in every event~‘‘ b-tagging’’!.
This also provides a means of estimating the background
given data sample, which can be determined purely fr
data. Theb-tagging requirement should give nearly a fac
of 10 improvement in signal/background@9#.

Procedures for tagging jets with muons were defined a
extensive Monte Carlo studies oft t̄ production in lepton
1jets final states@9#. The requirements used to select su
muon tags are the following:

~i! The presence of a fully reconstructed muon track in
central region (uhu,1.0). This restriction does not hav
much impact on the acceptance of muons fromb quark jets
from t t̄ decay because theseb quarks tend to be produce
mainly at central rapidities.

~ii ! The track must be flagged as a high-quality muo
This quality is based on ax2 fit to the track in both the bend
and non-bend views of the muon system@27#.

~iii ! The signal from the calorimeter in the road defined
the track must be consistent with the passage of a minim
ionizing particle. The signal is measured by energy depos
in the calorimeter cells along the track.

~iv! Because thepT spectrum of muons from pion an
kaon decays is softer than from heavy quarks, an ove
pT.4.0 GeV/c cutoff is imposed to enhance the signal fro
heavy quarks. Imposing this cutoff has limited impact on
t t̄ acceptance, since the muon energy must be greater
about 3.5 GeV in order to penetrate the material of the ca
rimeter and the iron toroid ath50.

~v! The muon must be reconstructed near a jet that
uhu,1.0 andET.10 GeV. The distanceDRm in h-f space
between the muon and the jet axis must be less than 0.5

If a muon satisfies the above conditions, the jet associa
with the muon is defined as ab-tagged jet, and the muon i
called a tag. Of the roughly 280 000 events which surviv
the initial selection criteria, 3853 have at least oneb-tagged
jet.

C. Muon tagging rates

The probability of tagging QCD background events co
taining several jets is observed to be just the sum of
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probabilities of tagging individual jets@9#, and is approxi-
mately independent of the nature of the rest of the event.
muon tagging rate is therefore defined in terms of probabi
per jet rather than per event. We define the muon tagg
rate as the ratio of tagged to untagged jets, allowing us
multiply this function by the number of untagged events
obtain an estimate of the tagged background.

Initially, the tagging rate was modeled only as a functi
of jet ET @1,9#. However, it was found subsequently th
there was anh-dependence to the muon tag rate which d
pended on the date of the run. This was traced to the fact
the muon chambers experienced radiation damage, and
quired that some of the wires be cleaned during the r
Figure 16 shows the relative muon detection efficiency a
function of the h of the jet for different ranges of runs
Figures 16~a!–16~c! correspond to the time before the clea
ing and Fig. 16~d! to that after the cleaning (Nrun>89000).
These plots illustrate the need to account for the depende
on h and run number when performing estimates of tagg
rates.

To address this problem, the tag rate for backgrou
Ptag(ET ,h,Nrun), was parametrized as a function of jetET ,
jet h, and the run number,Nrun, and was assumed to facto
ize:

Ptag~ET ,h,Nrun!5 f ~ET!e~h,Nrun!, ~7.1!

wheref (ET) is the relative probability that a jet of givenET
has a muon tag, ande(h,Nrun) is the relative muon detection
efficiency. The functionsf (ET) and e(h,Nrun) are not nor-
malized individually, but it is the product of the two which
normalized.

Besides the differences in chamber efficiency caused
the deterioration and cleaning of wires, there were a
changes in the gas mixtures used in the muon chambers
tween the Ia period and Ib~see Table I!, and changes in the
high voltage settings, which were implemented at run 840
These required two additional separations of runs, as sh

FIG. 16. The relative muon detection efficiency as a function
the h of the jet, for different ranges of runs:~a! Nrun,70000,~b!
70000<Nrun,84000, ~c! 84000<Nrun,89000, and ~d! Nrun

>89000. The curves represent the results of polynomial fits.
1-15
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in Fig. 16. We also found a small dependence of the tag

function onAŝ of the entire event, which is described belo
The jetET factor in the muon tag rate function@ f (ET)# is

shown in Fig. 17.f (ET) was parametrized in two ways
which allowed us to estimate a systematic error due to
model dependence of this function. The first parametriza
assumed thatf (ET) saturates at high values of jetET , and
was given by the form

f ~ET!5A0 :S ET2ET0

l
D , ~7.2!

where :(x) is the normal frequency function@i.e., :(x)
5(1/A2p)*2`

x e2z2/2dz], which approaches 1 at high je
ET . The parametersA0 ,ET0

, andl are obtained from the fits
to the observed tag rates, shown in Fig. 17.

An alternative parametrization off (ET) assumed a poly-
nomial in ln(ET), and was given by

f ~ET!5a01a1 ln~ET!1a2 ln2~ET!1a3 ln3~ET!.
~7.3!

Here, f (ET) continues to increase with jetET , and the con-
stantsa0 , a1 , a2 , and a3 are again obtained from fits t
the observed tagged distributions, shown in Fig. 18. The
ference in the background estimate between Eq.~7.2! and
Eq. ~7.3! is discussed in Sec. VII I. Because the tagging r
in Eq. ~7.3! continues to grow with increasing jetET , it
gives a slightly larger estimate of the background than
~7.2!. Increasing the tag rate increases the estimated b
ground, thereby decreasing the signal. Both versions
f (ET) give similar x2 fits, but as our Monte Carlo studie
showed that the tag rate continues to slowly increase with
ET , even for highET , we chose Eq.~7.3! for estimating the
background in this analysis.

Having considered all factors that go into the tag r
function on a jet-by-jet basis, we looked for dependence
characteristics of the event as a whole. We observed a s

FIG. 17. The relative probability,f (ET), for central jets as a
function of the jetET , for runs in the range~a! Nrun,70000,~b!
70000<Nrun,84000, ~c! 84000<Nrun,89000, and ~d! Nrun

>89000. The curves represent the results of a common fit using
~7.2!, and saturate at high jetET .
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additional dependence, most notable in variables that
sensitive to the total energy scale of the event. Figure

shows the muon tag rate in two bins ofAŝ, which reflects
the total energy of the partonic collision. The superimpos
solid curves represent fits to Eq.~7.3!, but where the coeffi-
cientsa0 , a1 , a2 , anda3 are now second-order polynom

als inAŝ. In Fig. 19~b!, the dashed curve represents the fit

200,Aŝ,300 GeV/c2, and a small shift in the relative ta

rate is apparent. ThisAŝ dependence was included through
modification of the principalET-dependent part of the func
tion, f (ET).

As indicated by Eq.~7.1!, the observed tag rate is th
product of two parts. Because of this, the fits of Eq.~7.2! or
~7.3! to the observed tag rate are correlated with the mu
detection efficiency. To disentangle the two components,
fit used data only from central rapidities, where the detect
efficiency was a weak function ofh. The criterion
e(h,Nrun)/e(0,Nrun)>0.6 defined the region used in the fi
corresponding to the region where theh-dependence varied
least rapidly. Once this initialf (ET) was determined, it was
necessary to use it to re-estimatee(h,Nrun). This involved
taking the ratio of the number of observed tagged jets to
number predicted using the initialf (ET). This ratio, as a

q.

FIG. 18. The relative probability,f (ET), for central jets as a
function of the jetET , for runs in the range~a! Nrun,70000,~b!
70000<Nrun,84000, ~c! 84000<Nrun,89000, and ~d! Nrun

>89000. The curves represent the results of a common fit using
~7.3!, and saturate at high jetET .

FIG. 19. The relative probability,f (ET), for central jets as a

function of the jetET , for ~a! 200,Aŝ,300 GeV/c2 and ~b!

400,Aŝ,500 GeV/c2. Solid curves represent fits using Eq.~7.3!,

including a dependence onAŝ. The dashed curve represents the

at 200,Aŝ,300 GeV/c2.
1-16
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function of h, is plotted in Fig. 16 for different run ranges
The process of fitting f (ET) and then re-calculating
e(h,Nrun) was iterated several times until stable results w
obtained. The final relative probabilities@ f (ET)# are shown
in Fig. 17 and Fig. 18, and the final relative efficiency
shown in Fig. 16. These are labeled relative probabilities
efficiencies because it is not possible to determine the ove
normalizations off (ET) and e(h,Nrun) independently; it is
their product which is well determined.

Using Eq. ~7.1!, the number of expected tagged even
~from background! in a given event sample is

Ntag
expt5 (

events
(
jets

Ptag~ET ,h,Nrun!. ~7.4!

In using Eq. ~7.4! to estimate the tagged background, w
assumed that this relation remains valid for extrapolat
from the background region through to the signal regi
These regions will be defined in terms of the neural netw
output, in Sec. VII E. This supposes that there is no sign
cant correlation between theintrinsic heavy quark (cc̄ or
bb̄) content and the neural network output, apart from a
kinematic correlation through variation inET andh, as pa-
rametrized by Eq.~7.4!. Therefore, we attribute any exce
of tagged events over the background predicted by Eq.~7.4!
to t t̄ production.

D. Background modeling

Since the kinematic variables are calculated using the
energies, they are to some extent sensitive to the small
in energy due to the presence of the tagged muon and
associated neutrino. As was described earlier, jets are m
sured through the deposition of energy in the calorime
and are not corrected for the muon’s momentum. The n
trino’s energy is, of course, missed completely, and ther
no unique prescription for correcting the jet’s energy for t
neutrino. However, these corrections are typically small~of
the order of the muon momentum!.

Previous analyses@3# aimed at determining the top quar
mass have incorporated approximate correction factors
the energies of tagged jets. For our analysis, such correc
are not strictly needed and, as we argue below, are d
vored due to the correlations they introduce between theET
of the tagged jet and thepT of the tagging muon. Our pro
cedure consists of calculating the muon tag rate function@Eq.
~7.1!# from jets containing muon tags and untagged jets
follows: we denote the distribution of untagged jets as
function of ET by U(ET), and the distribution of the tagge
jets by T(ET8). The distributionU(ET) reflects dominantly
QCD background. Here,ET is the transverse energy ob
served for jets with no observable muon, and thus is on
erage the true jet energy;ET8 is the observed energy fo
tagged jets, without corrections, and thus is missing the c
tributions to the progenitor jets due to the transverse ene
of the muon and neutrino. We formed the rat
T(ET8)/U(ET), taking the same numerical values ofET8 and
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ET . This ratio was then parameterized, as discussed in
VII C, to give the tag rate function,Ptag(ET). TheET distri-
bution of QCD background events with a tagged jet,B(ET),
for our analysis was then obtained using the untagged
sample U(ET) from the expressionB(ET)5Ptag(ET)
3U(ET), which, apart from the smoothing applied to the t
rate function, is equivalent toB(ET)5T(ET8).

Although there is noa priori advantage to using uncor
rectedET8 instead of correctedET for the tagged jets, it does
simplify the background calculation for the neural netwo
analyses. Our studies show that thepT of the muon is uncor-
related withET8 , but not withET . This is illustrated in Fig.
20~a!, which shows the mean muonpT as a function of the
tagged jetET8 for data. A fit to a straight line gives a slop
consistent with zero. Figure 20~b! shows muonpT distribu-
tions for three distinct ranges of tagged jetET8 ~chosen to be
equally populated!; they are indistinguishable. Similar plot
are shown in Fig. 21 forHERWIG t t̄ events. Again, no sig-
nificant correlation between muonpT and tagged jetET8 is
observed.

Since thepT of the muon is not correlated with the un
corrected jetET , it is largely independent of event kinema
ics and the probability of finding a muon of a givenpT fac-
torizes from the tag rate function. Tagged background eve
can therefore be generated by adding~‘‘fake’’ ! muons to
untagged events by assigning a randompT value from the
observedpT spectra. The value ofpT enters into the second
neural network and must be generated for the modeled b
ground. ThepT distributions for both data~predominantly
background! andHERWIG t t̄ events were fitted separately t
the sum of two exponentials, and the parametrizations fr
the fits were used in the random generation of muonpT

FIG. 20. ~a! Mean muonpT ~solid circles! versus tagged jetET8
and~b! muonpT distributions for three jetET8 ranges~chosen to be
equally populated! for data events. The line in~a! is the average of
the points. No correlation is observed between the muonpT and the
jet ET8 , whereET8 is the observed energy for tagged jets, witho
corrections~see text!.
1-17
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values for both background and signal. These spectra an
associated fits are shown in Fig. 22. As discussed ab
correcting the jets for muon and neutrinopT would introduce
correlations that would complicate the application of the
rate function; we have consequently not applied such cor
tions to the jet energies.

The procedure used for estimating the number of tag
events expected from background can be checked by c
paring the distributions of estimated tags to those for
observed tags. Figure 23 shows this comparison for the
tributions in each of the 13 parameters used in this analy
for the entire multijet tagged data sample. In these distri

FIG. 21. ~a! Mean muonpT ~solid circles! versus tagged jetET8
and~b! muonpT distributions for three jetET8 ranges~chosen to be

equally populated! for HERWIG t t̄ events. The line in~a! is the
average of the points. No correlation is observed between the m
pT and the jetET8 , whereET8 is the observed energy for tagged je
without corrections~see text!.

FIG. 22. Muon pT distributions for ~a! data ~predominantly

background! and~b! HERWIG t t̄ events. The smooth curves are fro
fits to the sum of two exponentials. The fact that the curve in~a! is
below the points forpT.35 GeV/c does not measurably bias th
analysis, because the fraction of events in that region is,0.6%.
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tions thet t̄ fraction is negligible, as less than 40t t̄ events
are expected. The predicted rate, absolutely normalized u
Eq. ~7.4!, is shown for all distributions, and consistently r
produces the observed number of tagged events. The va
of x2 per degree of freedom for the plots in Fig. 23 are giv
in Table V.

Once the background sample is generated, these ev
are treated exactly as the tagged sample~the sample used to
extract signal!. The neural network is applied to both sets
events, tagged and modeled background~untagged events
1‘‘fake-tags’’!, and the difference between the two repr
sents an excess that is attributed to thet t̄ signal. Similarly,
‘‘fake-tags’’ are applied to the untaggedHERWIG t t̄ events,
and these events are used to model the signal. This e
tively increases the statistics of the tagged events in
Monte Carlot t̄ sample.

A correction for the small contamination of the bac
ground sample due tot t̄ events is made~see Sec. VII I!.

on

FIG. 23. Comparison of the absolute number ofb-tagged events
expected from multijet background~histogram! with the observed
~3853! b-tagged events in data~circles!, as a function of each of the

13 variables:~a! HT ~GeV!, ~b! Aŝ (GeV/c2), ~c! ET1
/HT , ~d! HT

3 j

~GeV!, ~e! Njets
A , ~f! ET5,6

(GeV), ~g! A, ~h! S, ~i! C, ~j! ^h2&, ~k!

pT
m (GeV/c), ~l! F, and~m! M.
1-18
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E. Neural network analysis

Artificial neural networks constitute a powerful extensi
of conventional methods of multidimensional data analy
@28#, and are well suited to our search because they ha
information from a large number of inputs and can acco
for nonlinear correlations between inputs. A neural netw
is a multivariate discriminant. Its construction typically co
sists of input nodes, output~s!, and intermediary ‘‘hidden
nodes.’’ The connection between any two nodes is gover
by a sigmoidal function which is characterized by
‘‘weight’’ and ‘‘threshold.’’ The neural network is
‘‘trained’’ by setting weights and thresholds of the nod
through an optimization algorithm.

The output of the neural network is simply a mappi
between the multidimensional space described by our k
matic input variables and a one-dimensional output spa
Setting a threshold on the output of the neural network c
responds to a set of hypersurface cuts in multidimensio
input space. Consequently, the neural network output ma
employed to discriminate between signal and backgroun
long as the following conditions are observed:

~i! The neural network is trained on event samples that
independent of the sample used for the measurement.

~ii ! There is a reliable method for determining the bac
ground level for a given value of neural network output.

Independence of the training sample and the sample u
to extract thet t̄ signal is maintained by considering on
b-tagged events in the final extraction of a signal fort t̄ pro-
duction. Events that did not have ab-tagged jet are used fo
training and for defining the background sample.

In order to simulate the background, untagged eve
were made to resemble tagged events by adding muon
to one of the jets in the event. With such ‘‘fake’’ muon
these events were taken to represent the background.
prescription for adding these muons to the untagged jets
described in Sec. VII D. A subset of these events was use
train the neural network response to background.

TABLE V. x2 per degrees of freedom for the plots in Fig. 2
For simplicity, only bins with more than ten events were used a
only statistical errors were included in the calculations.

Variable x2/NDF Probability ofx2

HT 20.1 / 20 0.45

Aŝ 25.4 / 25 0.44

ET1
/HT 24.1 / 20 0.24

HT
3 j 17.5 / 22 0.74

Njets
A 16.9 / 18 0.53

ET5,6
26.7 / 25 0.37

A 15.0 / 23 0.89
S 13.7 / 18 0.75
C 10.0 / 18 0.93
^h2& 22.0 / 17 0.18
pT

m 18.2 / 26 0.87
F 33.7 / 25 0.11
M 23.6 / 24 0.48
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The set of 13 parameters~see Table III! was used as the
set of input nodes in training the neural network. Becau
training time increases markedly and quality of converge
decreases with the number of input nodes and hidden lay
the problem was simplified by first training a neural netwo
using the first ten kinematic variables. These variab
tended to be more highly correlated than the remaining th
~see Sec. VI!. Based on studies using our training sampl
we chose to have 20 hidden nodes and one network ou
and used the back-propagation learning algorithm inJETNET

@29#. The output of this neural network and the remaini
three parameters were used as inputs to a second neura
work. Here, we chose eight hidden nodes and one netw
output.

Events used to train the two neural networks were
lected as follows. A simpler initial network (NN0), using a
subset of seven kinematic parameters~excluding
ET1

/HT , ET5,6
, and^h2&), was trained using all events. Th

output of this network, for both data andHERWIG t t̄ Monte
Carlo, is shown in Fig. 24. Figure 24 shows that thet t̄ signal
tends to peak at values of neural network output near 1~the
‘‘signal region’’!, whereas the background events peak n
0 ~the ‘‘background region’’!. For the final training samples
we selected data andt t̄ Monte Carlo events having NN0
.0.3. This neural network was used only for choosing
best training samples, and was not employed in the fi
analysis~i.e., all events were reanalyzed!. Removing events
that were very unlikelyt t̄ candidates (NN0,0.3) improved
the efficiency of the training and increased network sensi
ity to background events that more closely mimict t̄ event
characteristics, thereby improving signal-to-background d
crimination in the final analysis.

Training of the two neural networks used in the fin
analysis proceeded as follows. The first neural netw
(NN1) was trained on the ten kinematic variables using

FIG. 24. Initial training of the neural network (NN0). The net-

work output is shown for~a! data, and~b! HERWIG t t̄ Monte Carlo
program formt5180 GeV/c2.

d
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B. ABBOTT et al. PHYSICAL REVIEW D 60 012001
training sets, as described above~Fig. 25!. The output of
NN1 and the remaining three variables were then used
inputs to the second neural network (NN2). NN2 was
trained using taggedHERWIG t t̄ Monte Carlo events and
‘‘fake’’ tagged data, also described in Sec. VII D.

F. Cross section using neural network fits

The t t̄ cross section, integrated over all values of neu
network output, is determined from the distributions in t
output of the final neural network. Any excess of the tagg
data over the modeled background distribution is attribu
to t t̄ production. This excess, integrated over all values
neural network output, is independent of the neural netwo
and depends only on the accuracy of the modeling of
background by the tag rate function. If the location of a
excess appears in the region oft t̄ signal ~in neural network
output! it would make these events likelyt t̄ candidates. The
final neural network (NN2) distributions for the data and th
expected background are shown in Fig. 26~a!, and for
HERWIG t t̄ events in Fig. 26~b!. The normalization of thet t̄
signal is described below. These distributions demonstra
strong discrimination between signal and background.

We extract the cross section from a fit to the data of
sum of the neural network output distributions expected
the t t̄ signal and for QCD multijet background. Because t
shapes of thet t̄ and QCD network output distributions diffe
significantly, the relative amounts of each can be dis
tangled. The generatedHERWIG t t̄ events were arbitrarily
normalized assumings t t̄56.4 pb at each top quark mas
This value needs to be factored out in normalizing F
26~b!. The data of Fig. 26~a! are fitted usingx2 minimization
to the hypothesis:

FIG. 25. Training of the first neural network (NN1). The net-

work output is shown for data~selected by NN0) and HERWIG t t̄
Monte Carlo output formt5180 GeV/c2. The three plots are~a!
linear, with data and MC signal normalized,~b! logarithmic, with
data and MC signal normalized, and~c! logarithmic, with data and
MC signal scaled to cross section.
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Nexpected5Abkg Nbkg
i 1

s t t̄

6.4 pb
Nt t̄

i , ~7.5!

whereNbkg
i is the expected number of background events

the i th bin, andNt t̄
i is the expected signal in this bin. Becau

the full Monte Carlo sample, scaled to the total number
events~given by 6.4 pb multiplied by the integrated lumino
ity!, is subjected to exactly the same trigger and selec
criteria as the data,Nt t̄

i accounts for the luminosity, branch

ing ratio ~BR!, and t t̄ efficiency of our selection criteria
Both Abkg, the background normalization factor, ands t t̄ ,
are obtained from the fit, along with their respective statis
cal errors. The results of this fit are shown in Fig. 27~see
also Fig. 28!.

By allowing the signal and background normalization fa
tors to be determined from the fit, this method simul
neously provides thet t̄ cross section and a more sensiti
measurement of the background normalization. It efficien
exploits all information about thet t̄ cross section and back

FIG. 26. The distributions in final neural network (NN2) output
for ~a! data~diamonds! and expected background~histogram! and

~b! HERWIG t t̄ signal formt5180 GeV/c2.

FIG. 27. The distribution in neural network (NN2) output for
data ~diamonds! and the fits for expected signal and backgroun
The signal was modeled withHERWIG for mt5180 GeV/c2. The
errors shown are statistical.
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MEASUREMENT OF THE TOP QUARK PAIR . . . PHYSICAL REVIEW D60 012001
ground normalization from the entire range of neural n
work output, without choosing any particular cutoff on ne
ral network output. The distributions for signal, backgrou
and data are shown separately in Fig. 27. The error bars
the square root of the number of data events in each bin

Events at the lowest values of neural network out
(,0.02) have been removed, leaving 2207 events, or slig
more than half of the tagged data sample. The resulting
may be checked by varying the region of NN2 used.~Fig. 27
uses events with NN2.0.02). Figure 28 shows results fo
Abkg and s t t̄ as a function of the lower limit in NN2 em-
ployed in the fit. The results are seen to be quite stable to
change of this lower limit. We note that the jets in even
with NN2,0.02 tend to have lowET , where the tagging rate
may not be as well determined due to the low tagging pr
ability. Because the background modeling may be less a
rate in the very low NN2 region, where the background s
strongly dominates the data distribution, we impose a cu
NN2.0.02 for our fits toAbkg ands t t̄ . The stability of the
results shown in Fig. 27 supports this choice.

A similar plot was produced and fitted for several t
quark masses, and the values of the cross section obta
using the output distribution forHERWIG t t̄ events generated
at that mass. The results are shown in Table VI for sev

FIG. 28. Results of combined fits~as in Fig. 27! when data
points are removed at small values of neural network output.

refitted ~a! background normalization and~b! t t̄ cross section are
plotted as a function of the number of points eliminated. Error b
are statistical, but are correlated through the error matrix.

TABLE VI. Results of the fits to neural network output.

Top quark Abkg s t t̄ x2/NDF

mass~GeV/c2) ~pb!

140 1.056 0.03 18.46 7.8 17.6 / 17
160 1.066 0.03 9.36 3.8 17.2 / 17
170 1.076 0.02 7.26 3.0 17.1 / 17
180 1.076 0.03 6.36 2.5 16.9 / 17
200 1.076 0.03 5.16 2.0 16.8 / 17
220 1.076 0.03 4.46 1.7 16.7 / 17
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top quark masses. Interpolating to the value for the top qu
mass as measured by DO” @3# (mt5172.167.1 GeV), we
obtains t t̄57.162.8 (stat) pb.

Fitting the data in Fig. 27 only to the background (s t t̄
forced to zero! changes the normalization to 1.0960.03 and
the totalx2 per degree-of-freedom to 23.1/18. We note th
the change inx2 comes predominantly from the last thre
bins of neural network output~in Fig. 27!, and the probabil-
ity for a change inx2 of 6.2 ~for mt5180 GeV/c2) for one
additional degree-of-freedom is consistent with the sign
cance of the extracted cross section, which is 2.5 stand
deviations from zero.

G. Cross section using counting method

The traditional method for extracting thet t̄ cross section
served as a useful check on the above procedure. We
sumed an absolute normalization of the background as g
by the tag rate function. Taking the excess in observ
events~seen in Fig. 27! to be fromt t̄ production, we calcu-
late the cross section for the process using the conventi
relation

s t t̄5
Nobs2Nbkg

e3BR3L ~7.6!

where Nobs is the number of observed events with neu
network output greater than some threshold,Nbkg is the cor-
responding number of expected background events,e3BR is
the BR times the efficiency (e) of the criteria used for se
lecting t t̄ events, andL is the total integrated luminosity
(110.365.8 pb21). We useHERWIG as the model for calcu-
lating the value ofe3BR.

The number of events, as a function of the thresh
placed on the output of the neural network, is shown in F
29~a!. The error bars are the square root of the number
events in each bin. The upper smooth curve in Fig. 29~a!
represents the sum of the expected signal and backgro
and the lower curve is just the expected background. T
statistical error in the cross section depends upon where
threshold is placed. A plot of the relative statistical err
versus the threshold on the output of the neural networ
shown in Fig. 29~b!. The fractional errorE is approximated
by

E5
A~Nt t̄1Nbkg!

Nt t̄

, ~7.7!

whereNt t̄ andNbkg are the expected number oft t̄ and back-
ground events above the neural network threshold.
wished to place the final threshold at or near the minim
error, and chose 0.85, as shown in Fig. 29~b!. The number of
events above this threshold, the expected background,
the expected signal are shown in Table VII.

Using Eq. ~7.6!, Table VIII lists the efficiency times
branching ratios for two input top quark mass values and
extractedt t̄ cross sections. We note that the method in S
VII F gave t t̄ cross sections of 7.2 and 6.3 pb formt of 170

e

s

1-21



e
to

c

on
cr
ic
VI

t
th

re
ve
co
st
h
s
e
te

te

. T
u
e
ta
w

le
a
r

his
s in
avy-
se
put.
and
on.
by
ed
32

og-
-
of
g-

x-
to
on
ate
m
ck-
tag

ith
ond
he
t
tri-

ble
ged

em-
or

tion
fit

k-
ling
an

r of
uent
his
on

as
ral

of
the
as
th
the

ing
of

u
se
-

k-

B. ABBOTT et al. PHYSICAL REVIEW D 60 012001
and 180 GeV/c2, respectively, in good agreement with th
values in Table VIII. When interpolated to the measured
quark mass of 172.1 GeV/c2, this determination yields a
cross section of 7.363.061.6 pb. The results from the fit to
the neural network are slightly lower, as one would expe
since the background normalization was 1.07~instead of be-
ing fixed to 1 here!. The changes in efficiencies as a functi
of top quark mass reflect the sensitivity of the selection
teria to the input massmt . The statistical and systemat
uncertainties in the cross sections are discussed in Sec.

H. Double-tagged events

The requirement of a secondb-tagged jet in the even
further reduces the background, thereby increasing
signal-to-background ratio. Unfortunately, the additional
quirement significantly reduces the expected yield. Howe
the search for these ‘‘double-tagged’’ events serves as a
sistency check of the single-tag analysis, and also as a te
the model for the background. The number of events t
contain twob-tagged jets is shown in Table IX for variou
NN2 thresholds. The twob-tags are required to originat
from separate jets; two tags within the same jet are coun
as a single tag. The higher muonpT is used as the input to
the neural network. The background is again calcula
based on Eq.~7.1!, wherePtag(ET ,h,Nrun), summed over all
jets, represents the expected number of tags in the event
double-tag probability is obtained via the Poisson distrib
tion, and is the likelihood of observing at least two tagg
jets, given the expected number. This follows since the
rate function is a rate per jet, and, within our model, the t
tagged jets are uncorrelated.

We make the assumption that the fraction of doub
tagged events from correlated sources, such as direct he
quark pair production (cc̄ or bb̄), remains unchanged ove

FIG. 29. ~a! The number of events~data! above any threshold on

the neural network and~b! the expected fractional error on thet t̄
cross section as a function of the threshold placed on the ne
network output. The vertical line at 0.85 indicates the cho
threshold. The smooth curves in~a! represent the sum of the ex
pected number of signal and background events~assumingmt

5180 GeV/c2 ands t t̄56.4 pb) and the expected number of bac
ground events only.
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the entire range of the neural network output variable. T
assumption is motivated by the fact that the energy scale
such events are well above the energy thresholds for he
quark pair production, and therefore the fraction of the
events should be independent of the neural network out
The good agreement between the background model
data in the single-tagged channel supports this assumpti

We determine the normalization of the background
fitting the neural network output distribution to the expect
background and signal contributions as in Sec. VII F. The
events were binned in neural network output and the l
likelihood calculated. The minimum in negative log
likelihood occurs for a background normalization factor
0.9720.18

10.20, where the errors correspond to a change in lo
likelihood of 1/2. In determining this normalization, the e
pectedt t̄ signal was not varied, but the result is insensitive
this value. Allowing the data to determine the normalizati
through this fit accomodates the possibility that the tag r
function for the second muon in the event is different fro
that for the first muon. The two errors on the expected ba
ground in Table IX represent the uncertainties due to the
rate function,t t̄ subtraction andET scale~see Sec. VII I! and
the normalization error, respectively.

We note that the fitted normalization is consistent w
that for the single tagged sample indicating that the sec
muon tag probability is roughly the same as for the first. T
total number of events for NN2.0.02 is in good agreemen
with the sum of expected background plus the small con
bution from top. The small excess persists as the NN2 thresh-
old is increased, in agreement with expectations. The dou
tag analysis supports our conclusion that the singly-tag
sample is due tot t̄ production.

I. Corrections and uncertainties

In this subsection we discuss the major sources of syst
atic uncertainty that affect either the background estimate
signal efficiency. The statistical errors on the cross sec
and background normalization come directly from the
@Eq. ~7.5!# shown in Fig. 27.

~i! The statistical error in the calculation of the bac
ground is estimated by the number of untagged events fal
in the signal region. This estimate of 24.8 events, and
approximate mean tagging rate of 2%, implies of the orde
1240 untagged events for the background and a conseq
3% statistical uncertainty in the background estimate. T
contributes a 4% uncertainty in the cross section based
the counting method in Eq.~7.6!.

~ii ! The error in the normalization of the tagging rate w
taken from the combined fits to the output of the neu
networks using Eq.~7.5!. This error is shown in Fig. 28~a!,
and was taken to be 5%. It is used only in the calculation
the error on the background, as it is already included in
cross section.~The statistical error on the cross section w
obtained from a simultaneous fit to the normalization of bo
background and signal, and accounts for the error on
background normalization.!

~iii ! The uncertainty in the parameterization of the tagg
rate results in a 5% uncertainty in the predicted number

ral
n
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MEASUREMENT OF THE TOP QUARK PAIR . . . PHYSICAL REVIEW D60 012001
background events. This was estimated by comparing
predicted number of tags for two functional forms@Eq. ~7.2!
and Eq.~7.3!# assumed for the tag rate. Unlike the norm
ization of the tagging rate, this error accounts for possi
changes in the shape of the background as a function
neural network output. This results in a 7% uncertainty in
t t̄ cross section.

~iv! The presence oft t̄ events in the data used for es
mating background has been taken into account in all res
presented thus far. The procedure used to estimate the
rection to the background proceeds as follows. Call
Nt t̄

mistagthe number of untaggedt t̄ events wrongly assigned t

the background estimate, we can estimateNt t̄
mistag as

Nt t̄
mistag

5
0.8

0.2
~Nobs2Nbkg! f tag ~7.8!

where the 0.8/0.2 corrects theb-tagged signal back to th
untagged signal~recall thatt t̄ events are tagged roughly 20%
of the time!, f tag is the average tag rate per event, andNobs
andNbkg refer to events in the final tagged data sample. T
corrected background estimation therefore becomes

Nbkg~corr !5Nbkg2Nt t̄
mistag. ~7.9!

This correction is applied bin by bin in Fig. 27, and is a
proximately 4% in the signal region. We therefore assig
systematic uncertainty of 4% to the background estimate
a corresponding 6% to thet t̄ cross section.

~v! Because untagged events, when multiplied by the
rate function, model the tagged background, theET scale of
both sets must be the same. Any mismatch between thes
produce subtle differences in the scales of the kinematic v
ables. A useful measure of this scale is meanHT . We ob-
serve that the difference in meanHT between our data an
background model is 1.561.4 GeV @see Fig. 23~a!#, which
is consistent with no mismatch. We take 1.4 GeV to be
uncertainty in the energy scale of the background mo
This 1.4 GeV is added to one of the jets~we arbitrarily
choose the jet with highestET), event-by-event, in the back
ground calculation and the analysis is redone. The resu
change in the background is 4.2%, and 9.1% change in
cross section.

~vi! The statistical error in thet t̄ efficiency is 3.2%.
~vii ! Any difference in the turn-on of the trigger efficienc

for data and fort t̄ Monte Carlo events can affect the sign

TABLE VII. Number of observed events, expected backgrou
observed excess, and expected signal~assumingmt5180 GeV/c2

and s t t̄56.4 pb!, for the threshold on the neural network outp
shown in Fig. 29.

Observed Expected Observed Expected
number background excess HERWIG t t̄
of events events of events events

41 24.86 2.4 16.2 15.96 2.6
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efficiency. The difference can originate, for example, fro
the modeling of electronic noise or from the simulation
the underlying event. Furthermore, this efficiency can
pend upon the mass of the top quark. From our trigger sim
lations, we estimate,5% uncertainty in signal efficiency
from such sources@10,11#.

~viii ! The uncertainty in the integrated luminosity wa
taken to be 5.3%@30#. This arises mainly from the uncer
tainty in the absolute luminosity, and affects all runs syste
atically.

~ix! Any difference in the relative energy scale betwe
data and Monte Carlo affects the efficiency for signal. T
uncertainty was determined using the MPF method@15#, as
described in Sec. IV C. Varying the energy scale in thet t̄
Monte Carlo simulation by6(4%11 GeV) @4# changes
the efficiency for signal by65.7%.

~x! The t t̄ tag rate is based on thet t̄ Monte Carlo simu-
lation, but assumes that the performance of all detector c
ponents was stable during the run. The Monte Carlo acc
tance was reduced by 7.0% to correct mainly for mu
detection inefficiencies that were not modeled in our simu
tion. We estimate a 7.0% uncertainty in thet t̄ efficiency
from any such changes in the muon tag rate.

~xi! Uncertainty in the model fort t̄ production is esti-
mated by comparingt t̄ predictions fromISAJET andHERWIG

,

TABLE VIII. Cross sections fort t̄ production, using the count
ing method, obtained from theb-tagged events formt 5 170 and
180 GeV/c2.

mt Signal efficiency Cross section
(GeV/c2 3BR ~pb!

170 0.0196 0.0032 7.56 3.1 6 1.6
180 0.0226 0.0037 6.56 2.6 6 1.4

TABLE IX. Number of observed double-tagged events, e
pected background, observed excess, and expected signal~assuming
mt5180 GeV/c2 ands t t̄56.4 pb!, versus the threshold on the neu
ral network output. The first error in the expected background is

to the errors in the tag rate function,t t̄ correction, and theET scale
uncertainties. The second error is due to the uncertainty in the fi
background normalization factor, and is assumed to be fully co
lated at different NN2 values.

NN2 Observed Expected Observed Expecte
threshold number background excessHERWIG t t̄

of events events of events events

0.02 32 28.76 5.5 6 5.7 3.3 2.7
0.1 22 16.66 3.2 6 3.3 5.4 2.7
0.2 17 11.86 2.3 6 2.3 5.2 2.7
0.4 12 6.86 1.3 6 1.4 5.2 2.5
0.6 7 3.56 0.7 6 0.7 3.5 2.1
0.8 3 1.16 0.2 6 0.2 1.9 1.4
0.85 2 0.76 0.1 6 0.1 1.3 1.2
0.9 1 0.46 0.1 6 0.1 0.6 1.0
1-23
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B. ABBOTT et al. PHYSICAL REVIEW D 60 012001
generators. Figure 30 shows the fractional differences in
ficiencies @(e ISAJET2eHERWIG)/eHERWIG# for different
thresholds onHT , HT

3 j , aplanarity andC ~again, for mt

5180 GeV/c2). Although the two generators differ signifi
cantly in the tails of these distributions, on average they
in reasonable agreement. The systematic error was estim
by repeating the analysis using events generated withISAJET.
In order to remove the effects of the Fisher discriminant (F),
which is not well modeled inISAJET, F values were ran-
domly chosen based on a parametrization of theHERWIG

t t̄ F distribution. To further remove the dependence on
tag rate, randomly generated values of muonpT were taken.
The expected distributions for the two generators, norm
ized as before, are shown in Fig. 31. Identical thresho

FIG. 30. Fractional differences in efficiencies betweenISAJET

and HERWIG ~eISAJET2eHERWIG)/eHERWIG for mt5180 GeV/c2 ~a!
as a function of threshold onHT , ~b! as a function of threshold on
HT

3 j , ~c! as a function of the threshold on aplanarity, and~d! as a
function of the threshold onC.

FIG. 31. Expected distributions in final neural network outp

(NN2) for HERWIG t t̄ signal and ISAJET t t̄ signal for mt

5180 GeV/c2.
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were placed on the neural network output. The cross sec
changed by 6.2%, which we take as the uncertainty in
overall signal efficiency due tot t̄ model dependence.

~xii ! The 6% uncertainty in theb→m branching fraction
@26# corresponds to an average over the producedB-mesons.
This 6% enters directly into the acceptance error in
Monte Carlo simulation.

~xiii ! The pT of the tagged muon enters as an input to t
neural network. The meanpT in HERWIG t t̄ events was
14.7 GeV/c, while inISAJET it was 15.9 GeV/c, an 8% dif-
ference. Rescaling the muonpT in HERWIG by 8% changes
the cross section by 7.0%, which is taken as a system
error.

~xiv! The uncertainty resulting from the modeling of th
Fisher discriminant for the jet widths,F, was estimated by
comparing data to ourHERWIG QCD Monte Carlo program.
The mean value ofF in data was 0.047060.0002 and in
HERWIG QCD it was 0.048860.0019. The difference o
0.001860.0019 indicates that our modeling is reasonab
The uncertainty on this result, 0.0019, was systematic
added to the value ofF, event-by-event, in theHERWIG t t̄
generator, and the cross section recalculated. The obse
change in the cross section of 2.0% is used as the system
error from this variable.

The sizes of the above effects are summarized in Tabl
for the uncertainties in the background and in Table XI
the cross section. Adding both statistical and systematic
rors in quadrature, we estimate the background as 24.86 2.4
events~see Table VII!. Similarly, the uncertainty in the effi-
ciency of thet t̄ signal is calculated from the errors in Tab
XI.

J. Measured cross section

By fitting the shape of the output in the neural netwo
distribution, we obtain thet t̄ production cross section as
function of the input mass of the top quark. Thet t̄ cross
sections extracted for several values of the top quark m
along with a function used to interpolate thet t̄ cross section
~drawn as a smooth curve!, are shown in Fig. 32. Interpolat
ing both the cross section and the statistical error, we fi
s t t̄5 7.16 2.86 1.5 pb formt5172.1 GeV/c2 @3#.

The all-jets cross section can be combined with previo
DO” measurements of thet t̄ production cross section, as ex
tracted from channels where one or both of theW bosons
decay leptonically@4#. This cross section, averaged over

t

TABLE X. Summary of statistical and systematic uncertaint
for the background estimate.

Background source Size of uncertainty

Statistical error 3%
Normalization of the muon tag rate 5%
Functional form of the muon tag rate 5%

Background correction fort t̄ signal 4%

BackgroundET scale 4%
1-24
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leptonic channels, was 5.661.4 (stat)61.2 (syst) pb at
mt5172.1 GeV/c2, and is shown superimposed on Fig. 3
The statistical errors on the all-jets and leptonic cross sec
measurements are uncorrelated. The systematic uncerta
in the following categories were assumed to be correla
with a correlation coefficient of 1.0:

Luminosity.
Jet energy scale.
Muon tagging efficiency.
Non-leptonic trigger efficiency.
Top quark generator.
b→m branching ratio and muonpT spectrum.
Background tag rate function.
The combined result for the DO” t t̄ production cross sec

tion is 5.961.2 (stat)61.1 (syst) pb for mt5172.1
GeV/c2.

FIG. 32. The t t̄ cross section extracted through fitting th
shapes of the distributions in neural network output to data, sh
as a function of top quark mass. Error bars are statistical only.

reference, the DO” t t̄ cross section and top quark mass from lepto
channels@4# is shown in the figure~open square!.

TABLE XI. Summary of statistical and systematic uncertaint
for the cross section.

Background source Size of uncertainty

Statistical error 4%
Functional form of the muon tag rate 7%

Background correction fort t̄ signal 6%

BackgroundET scale 9%

Signal source Size of uncertainty

Statistical error 3%
Trigger turn-on 5%
Luminosity error 5%
Jet energy scale 6%

t t̄ tag rate 7%

Model dependence 6%
b→m branching fraction 6%
pT

m dependence 7%
F dependence 2%
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K. Significance of signal

In this section, we estimate the significance of the exc
of t t̄ signal relative to expected background. We define
probability ~P! of seeing at least the number of observ
events (Nobs), when only background is expected. The s
nificance of at t̄ signal can be characterized by the likelihoo
of P being due to a fluctuation. If the distribution for th
expected number of background events,m, is assumed to be
a Gaussian with meanb, and has a systematic uncertain
sb , thenP can be calculated as

P5 (
n5Nobs

` E
0

`

dm
e2mmn

n!

1

A2psb

e2~m2b!2/2sb
2

512 (
n50

Nobs21 E
0

`

dm
e2mmn

n!

1

A2psb

e2~m2b!2/2sb
2
.

~7.10!

The optimal choice of selection criteria can be found
minimizing the expected value ofP and, thereby, maximiz-
ing the significance of the excess, assuming thatNobs is com-
posed oft t̄ signal and background. Both the expected va
and measured value of the significance are shown, al
with the cutoff for greatest significance, in Fig. 33. The res
of the calculation, optimized for significance, with 18 o
served events and an expected background of 6.960.9, is
P5 0.0006, corresponding to a 3.2 standard deviation eff
This is sufficient to establish the existence of at t̄ signal in
multijet final states.

We consequently observe an excess in the multijet fi
states which we attribute tot t̄ production. The cross sectio
measured is consistent with previous measurements in o
modes oft t̄ decay@4#.

VIII. SUMMARY

We have performed a measurement of thet t̄ production
cross section in multijet final states. As described above,

n
or

FIG. 33. The expected~line! and observed~diamonds! values of

significance oft t̄ signal, plotted in terms of Gaussian equivale
standard deviations. The vertical line corresponds to the cutoff
is expected to yield the greatest significance.
1-25
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observe an excess of events that can be attributed tot t̄ pro-
duction. The level of significance of the signal, as calcula
from a possible upward fluctuation of the background to p
duce the observed excess, is sufficiently high to estab
independently the existence oft t̄ signal in the all-jets chan
nel.

Using the DO” measured value of 172.1 GeV/c2 for the
mass of the top quark, we obtain a cross section of 7.16 2.8
(stat)61.5 ~syst! pb, which agrees with the DO” cross section
as measured in the leptonic channels. Combining this re
with previous DO” measurements of thet t̄ production cross
section gives 5.961.2 (stat)61.1 (syst) pb.
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