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We have studie(ﬂt_production using multijet final states 'prﬁcollisions at a center-of-mass energy of 1.8
TeV, with an integrated luminosity of 110.3 ph Each of the top quarks with these final states decays
exclusively to a bottom quark and\& boson, with theW bosons decaying into quark-antiquark pairs. The
analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on
the tt production cross section, and yields a cross section of 2.8 (staj= 1.5 (sysh pb, assuming a top
quark mass of 172.1 Ged. Combining this result with previous D@easurements, where one or both of the
W bosons decay leptonically, givestEproduction cross section of 5:91.2 (staty=1.1 (syst) pb.
[S0556-282199)03607-3

PACS numbgs): 14.65.Ha, 13.85.Ni, 13.85.Qk

I. INTRODUCTION both W bosons decaying to quarks. This is referred to as the

“all-jets” channel, and is expected to account for 44% of the
In the standard model, the top quark decays aquark  t{ production cross section.

and aW boson, and the dominant decay of téboson is The observation of top quark productifih2] in the chan-
into a quark-antiquark pair. Events withta pair can have nels involving one or two leptons motivates us to investigate
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tt decays into other channels./D@s measured a top quark Works were chosen as the appropriate tool for handling many

mass,m,, of 172.1+5.2 (stat)-4.9 (syst) GeV¢? [3] and  Variables simultaneously.
a tt production cross section of 5.4 (stat) The analysis relied on Monte Carlo simulations to model

+1.2 (syst) pb[4], while Collider Detector at Fermilab the properties oftt events. These simulations were per-
(CDF) has measured a mass of 17548 (stat) formed for different top quark masses, and the final results
+4.9 (syst) GeVé? [5] and att_production cross section of interpolated to the_mass measured by the O@laboration.
7.6° 18 pb [6]. Recently, CDF has reported on the all-jets We note that thet detection efficiency is not strongly de-
channel[7], and finds thett production cross section to be Pendent on the assumed mass of the top quark.
10.1 *45 pb and a top quark mass of 1880 (stat) In contrast, the background model was determined en-
+12 (syst) GeVeé2. tirely from data. An advantage of the overwhelming
The work presented here is based on 1153 pb ! of  background-to-signal ratio is that the data provide an almost

data recorded between August 1992 and February 1996 &tre background sample. This approach obviates a number
the Fermilab Tevatron collider, with pp center-of-mass ©f concems when calculating the background. The back-
energy of 1.8 TeV. Assuming the branching ratio and cros@round is predominantly QCD multijet production, which in-

section predicted by the standard model, we expect approx}olves higher-order processes that may not be well modeled
mately 200 tt— all-jets events in this data sample in a Monte Carlo simulation. Furthermore, detector effects

. . . . are implicitly included when data are employed for the
The signature fott production in the all-jets channel is model of the background.

six or more high transverse momentum jets with kinematic Soft-lepton taaaing. using muons embedded in iets. serves
properties consistent with the top quark decay hypothesis. At P 9ging, 9 1€1s,

least two of these jets originate fromquarks. The back- asa possiblg signature for the presence t?quua.rk_within
ground to this signature consists of events from other protmhﬁ ojrelt%rgr%dtrllse rseg(r:}:irlidt;%i?at:gglngfbe?qyugi?gmag ;ge
cesses that can also produce six or more jets.tThohannel quential decay b-tagg?ng of jets )i/mproves the signal-to-
is one of the few examples of multijet final states that ar —

dominated by quarks rather than gluons. This fact has moti?@ckground ratio significantly. Thet events are tagged

vated us to include the characteristic differences betweeﬁ.)ughly 20% .Of the time, wh_ereas the_ tag rate f(?r QCD _mul-
quark and gluon jets in separating the top quark to a”_jetéljet events with similar requirements is about 3%. Requiring
signal from background the presence of a muon tag in the event therefore provides

Interest in the all-jets decay channel of top quarks als&earlyafactor of 10 in background rejection and a method to

stems from the fact that, without any unobserved particles pstimate this background. . . . .
the final-state, the all-jets mode is the most kinematically, The background calculation relied on being able to predict

he number of events that abetagged, based on events with-

constrained of all the top quark decay channels. Furthermore,
since the top quark is quite massive, decays via chargeﬁ'“'t such tags. To make the untagged data represent the back-

Higgs may be possible. If channels suchtasH *b have a _ground in this analysis, a way qf estimating the tagging rate
significant branching fraction, the main effect could be a!,n QCD e”vents was needeq. This was done by constructing a
L — . . . tag rate” function, determined from data, that is applied to
deficit in the tt final states with energetic electrons or g,ch jet separately. This function is simply the probability

muons, relative to the all-jets channel. for any individual jet to have a muon tag. Application of the
tag rate function to each jet in untagged events gives the
[l. OUTLINE OF THE METHOD background model for our final event sample. The presence

of tt signal was identified by an excess observed in the data
with the imposition of preliminar lection criteri h abo_ve this background. This excess should be small in the
th the imposition of pre ary selection criteria at the regions of the neural network output where background

trigger stage, followed by more stringent criteria in the off-d nates. but should b h d wh ianificant sianal
line analysis. As these initial criteria were not very restric-. ominates, but should be enhanced where significant signa

tive, the observed cross section, primarily from QCD pro—IS expected. .
cesses, was more than 3000 times larger than the expectedThE analysis employed two neural networks to extract the
Signa'_ The principal Cha”enge in the Search was to deve'oﬁnal tt cross Section. The firSt had as |tS input Variables those
a set of selection criteria that could significantly improve theParameters involving kinematic and topological properties of
signal-to-background ratio, and provide an estimate of théhe events that were highly correlated. The output of this
background remaining after imposing any selection requireneural network was used as an input variable to a second
ments. neural network, along with three other inputs. These three
The data sample consisted of over 600000 events aftdPputs were the transverse momentupy)( of the tagging
the initial selection criteria. Because of the small number ofnuon, a discriminant based on the widths of the jets, and a
tt events expected in the presence of this large backgrounHl,(e“hOOd variable that parame_tnzed the degree to which an
and with only modest discrimination in any single kinematic€vent was consistent with thg decay hypothesis. These
or t0p0|ogica| property, traditional methods of ana|ysis Werethree variables were less correlated than_the kinematic vari-
inadequate. The analysis would have to involve many variables used in the first neural network. Ttiecross section
ables, which are likely to be highly correlated. Neural net-was determined from the output of this second neural net-

The search for the top quark in the all-jets channel begal
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Muon Chambers Iron Toroid TABLE |. Main running periods of the 1992-1996 run.

Main Ring Run Run Integrated

beam pipe k i )
period Dates numbers luminosity
la 1992-1993 50000-70000 13.0 pb
Ib 1993-1995 70000-94000 86.4 pb
Ic 1995-1996 94000-96000 10.8 Pb

pidity range |n|<4.2, and has a typical segmentation of

0.1X0.1 in ApXA¢. The energy resolution i$(E)/E

=15%/JE(GeV)®0.4% for electrons. For charged pions,
- the resolution is approximately 50%&(GeV), and for jets
approximately 80%yE(GeV) [8,9].

As can be seen in Fig. 1, the Main Ring beam pipe pen-
etrates the outer hadronic section of the calorimeters and the
muon spectrometer. The Main Ring carries protons with en-
ergies between 8 and 150 GeV, and is used in antiproton
production during the Tevatromp running. Because of this,
any losses from the Main Ring can produce backgrounds in
the detector that must be removed.

Tracking Chambers

FIG. 1. Isometric view of the DQ@letector.

work by fitting the neural network output distributions of the
signal and background outputs to the observed data.

C. Muon spectrometer

ll. DO’ DETECTOR The DO ment detect _ ional
. . . — e experiment detects muons using proportiona
DO is a multipurpose detector designed to study col- drift tubes(PDT9 and an iron toroid. Because muons from

R et eop e decayspopuat predominany e cenal regon,
. ) _ his analysi muon ion ms in the regjon
of the detector can be found in Ref8,9]. Here we describe this analysis uses muon detection systems in the rejgip

the properties of the detector that are most relevant to the
search in the all-jets channel. An isometric view of the de
tector is shown in Fig. 1.

The combined material in the calorimeter and iron toroid
‘has between 13 and 19 interaction lengtti®e range-out
energy for muons is approximately 3.5 Gevhaking back-
A. Tracking system ground from hadronic punchthrough negligible. Also, the
. j . small central tracking volume minimizes background from
The tracking system consists of a vertex drift chamber, 8n-flight decays of pions and kaons.
transition radiation detector, a central drift chamber, and two 5 typical muon track is measured in four layers of PDTs
forward drift chambers. The system provides chargedyefore, and six layers after, the iron toroid. The six layers are
particle tracking over the pseudorapidity regibn|<3.2,  constructed in two super-layers that are separated by about 1
wheren=—In[tan(6/2)]; 6 and¢ are, respectively, the po- m to provide a good lever arm for measuring the muon mo-
lar and azimuthal angles relative to the proton beam axismentum, p. The muon momentum is determined from its
The resolution for charged particles is 2.5 mradfimnd 28  eflection angle in the magnetic field of the toroid. The mo-
mrad in 6. The position of the interaction vertex along the mentum resolution is limited by multiple scattering in the
beam directior(z) is determined typically to an accuracy of 8 {raversed material, knowledge of the integrated magnetic
mm. field, and resolution on the measurement of the deflection
angle. The resolution is roughly Gaussian ip,1and is ap-
o ] ) . proximately &(1/p)=0.18(p—2)/p?®0.003 (with p in
The liquid-argon calorimeter, using uranium and Gey/c) for the algorithms that were used in this analysis.
stainless-steel—copper absorber, is divided into three parts: a
central calorimeter and two end calorimeters. Each part con- IV. DATA SAMPLE
sists of an inner electromagnetic section, a fine hadronic sec-
tion, and a coarse hadronic section, housed in a stainless — . . .
steel cryostat. The intercryostat detector consists of scintilla€Vents for thet signal used in our analysis.
tor tiles inserted in the space between the central and end
calorimeter cryostats. In addition, “massless gaps,” installed
inside both central and end calorimeters, are active readout The data sample was selected by imposing both hardware
cells, without absorber material, located inside the cryostatlevel 1) and softwarglevel 2 trigger requirements. These
adjacent to the cryostat walls. The intercryostat detector ancequirements were modified slightly over the course of the
massless gaps improve the energy resolution for jets thdt992—-1996 run in order to accommodate the higher instan-
straddle two cryostats. The calorimeter covers the pseudordaneous luminosities later in the run. Table | indicates the

B. Calorimeter

This section describes the data sample and the simulated

A. Initial selection criteria

012001-4
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g

[
[
(=1

added requiring the scalar sum of the of all jets (defined
asH7y) to be greater than 110 or 115 GeV, depending upon
(b) run number. ThisH; requirement was raised to 120 GeV
during the Ic period. The effects of these changes on the

acceptance fott events were studied using Monte Carlo

- simulations, and were found to be negligible.

s ., - , In addition to imposing trigger and filter requirements, a

100 . set of off-line selection criteria was used to reduce the data
o " sample to a manageable size without greatly affecting the

acceptance for thét signal. First,H; was required to be
greater than 115 GeV, where the sum u%&d 0.5 jets with
|7|<2.5 andE+>8 GeV. Also, requirements were imposed
in order to eliminate events with spurious jets due to spray
from the Main Ring or effects from noisy cells in the calo-
0 2.5 5 0 2.5 5 rimeter[10,11]. For example, Fig. 2 shows the imbalance in
Jet ¢ (rad) Jet ¢ (rad) transverse energy, or missitty (E7), in the event versus

FIG. 2. The effect of imposing requirements to reject Main Ring Fhe azimuthal angle) of the jet, before and after the re-

events. A scatter plot of missirig; versusg for jets before(a), and jection of Main Ring e\(ents' We See_that_ our rquirements
after (b), imposing our Main Ring requirements. have removed the spurious cluster of jets in the region where

the Main Ring pierces the D@etector (1.6 $<<1.8). Table

three main running periods, the run numbers associated witH summarizes the |mpa_ct of the trigger and initial recon-
these periods, and the integrated luminosity collected. struction criteria on thet signal for a top quark mass of
The hardware trigger required the presence of at least fol#80 GeVE?2.
calorimeter trigger towers (0x20.2 inA X A ¢), each with
transverse energ+>5 GeV, for the la period. In the Ib B. Jet algorithms
and Ic periods, th&; requirement was raised to 7 GeV, and
an additional requirement for at least three large tiles (0.8 = . )
X 1.6 in ApxAg) with E;>15 GeV was imposed. These §earch fortt eyents in thg all-jets .mode: One of the _most
were imposed to reduce the trigger rate and avoid saturatinf§’Portant considerations in choosing a jet algorithm is the
the bandwidth of the trigger system at high instantaneousfficiency for reconstructing the six primaty decay prod-
luminosities &10°* cm 2s71). ucts. They distribution of the jets fromt decays tends to be
The software filter required five jets, defined by quite narrow, and therefore the separation between adja-
=J(A75)%+(A¢)%2=0.3 cones, with |7|<2.5 and E;  cent jets is frequently small. When two jets are too close
>10 GeV. Again, in order to reduce the data rate at hightogether, they may not be resolved, leading to reconstruction
luminosities during the Ib period, a further condition wasinefficiency.

150 ¢ 150

Missing E; (GeV)
SN
Q
p—_
Missing E; (GeV)

The jet algorithm is the fundamental analysis tool in the

TABLE II. Initial criteria used for data selection.

Cumulative
Effective efficiency
General Sequential Cross m(=180
conditions requirements section GeY)
Level 1 Four trigger towers
trigger E:>5,7 GeV(la, Ib-0 0.4+ 0.1ub 0.98
Three large tiles
E+>15 GeV(Ib-c)
Level 2 FiveR=0.3 jets
filter |7|<2.5, Et>10 GeV 20+ 5nb 0.92
H:>110,115 Ge\lb)
H:>120 GeV(Ic)
H:>115 GeV from
Off-line R=0.5 jet cones
|7|<2.5, Et>8 GeV 54+ 1.3nb 0.87

Cuts for spurious jets
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3 . F > ! are not equivalent. The shift in three-jet mass from the nomi-
o wage 0 _ . s

k] o9 nal input top quark mass increases as the cone radius is de-
0 09I o E . . . .

£, Eost creased. The widths of the mass distributions are not very

sensitive to the choice of cone size. The overall root-mean-
square, rms, spread in reconstructed mass for correct combi-
nations of jets is approximately 10% of the mass.

In summary, there are two competing effects when choos-

o
~3

0.7
F 0.6
0.6 g . (0) 0s :

B

NI TN 04 Ble ol

’ mcguorkZEOf(Gevs)oo 2o Q'uork’n ing the optimal jet cone size. Smaller cone sizes are better
30 80 able to resolve separate jets, but do not do as well at recon-
?5250 fg‘m- % structing jet energy. However, the ability to resolve indi-

o 200 600 C A vidual jets was deemed of higher import_ance. in the search
3 . x: S.q for a 3|gngl. Hence th&® =0.3 cone algorithm is preferr_ed
. m_ m.(% for analy_2|r_19 mult_uet events. But as a result of the rglatlvely
“ 0 | E,’g ) large shift in the jet energy for tthO_.S cone algorlthm,
4 wg O we chose to use th®=0.5 cone algorithm for calculating
[ Ty O s . 200 30 some quantities that emphasize energy response at the ex-
Quark E (GeV) Mass (GeV/c?) pense of jet efficiency. Jets withy <8 GeV, before appli-

- cation of energy correctionisee Sec. IV § were discarded.

FIG. 3. Jet reconstruction fat Monte Carlo event$HERWIG, _
m,=175 GeVt?) for various cone sizesR=0.3 (open squarés C. Jet energy correction
R=0.5 (solid circleg, and’R=0.7 (open circles (a) Jet finding DO has developed a correction procedi4] to calibrate
efficiency versus quar_ET. (b) Jet finding efficiency versus quark jet energies, which is applied to both data and Monte Carlo
7- () Reconstructed jet energy versus that of the input quaik. iy j1ation. The underlying assumption is that the true jet
Reconstructed mass of the top quark from correct jet combinationsenergy E is the sum of the energies of all final state
. .. . y pIC|’
where the areas reflect the relative efficiencies. particles entering the cone algorithm applied at the calorim-
Figure 3 shows the reconstruction efficiency for the coneeter level.Ey, is obtained from the energy measured in the

jet algorithm[12] with various cone sizes for simulatgd ~ C@lorimeter Epeas as follows:

events in the all-jets channel, as generated withHbRWIG Erens Eo( R, 7.L)

Monte Carlo progranmi13]. Here, the definition of a quark Epte= meas —OV > D ,

includes any final state gluon radiation added back to the R(7,E,rms)S(R, 7,E)

guark momentum. The matching of reconstructed jets to

quarks relies on using combinations of the two that minimizevhere

the distance iR between them. A jet is considered to be (i) Eo(R,7,£) is an offset, which includes the physics of

matched only if that distance is less thAR=0.5, the en- the underlying event, noise from the radioactive decay of the

ergy of the jet is within a factor of 2 of the quark energy, anduranium absorber, the effect of previous crossifgte-up),

the reconstructed jéE is greater than 10 GeV. and the contribution of additional contemporane@ysin-
Figures 3a) and 3b) show how the reconstruction effi- teractions. The physics of the underlying event is defined as

ciency depends on quatk; and % for the cone algorithm the energy contributed by spectators to the hard parton inter-

with different cone sizes. ThR = 0.3 cone algorithm shows action which resulted in the highy event. This offset in-

a higher jet reconstruction efficiency than the larger conereases as a function of the cone sRelt also depends on

algorithms. In the central region, tife=0.3 cone algorithm # and on the instantaneous luminosiy;, which is related to

has an efficiency of 94%, while tiie=0.5 andR=0.7 cone  the contribution from the additionaip interactions.

algorithms are 90% and 81% efficient, respectively. Given (i) R( n,E’rms) is the energy response of the calorimeter.

an average efficiency for reconstructing a single jet, the |t is nearly independent of the jet cone siZe, but does

reconstruction efficiency for findingt events(with six or  depend on the rms width of the jet. The width dependence

more jet$ will be of the order ofe®. Therefore, larger cone accounts for differences in the calorimeter response to nar-

sizes are less efficient in the multijet environment. row jets, which fragmented into fewer particlesf, on aver-
Figure 3c) shows the correspondence between parton andge, higher energythan broader jets, with larger particle

jet energies found for various cone algorithms, after O  multiplicities. Because the various detector components are

energy corrections are appliégee next sectionLinear fits  not identical,R also depends on detectgr R is typically

to the quark-jet correlation in energy are shown in Fig)3 less than 1, due to energy loss in the uninstrumented regions

for the three cone algorithms. Figur@Bshows the three-jet between modules, differences between the electromagnetic

invariant mass for the correct combinations of jets matchinge) and hadronic respongg) of the detector é/h>1), and

top and antitop quarks. The areas of the mass distributionsmodule-to-module inhomogenetities.

reflect the event reconstruction efficiencies for different al- (i) S(R,#,E) is the fraction of the jet energy that is

gorithms. deposited inside the algorithm cone. Since the jet energy is
The shift in the reconstructed mass from the input mass oforrected back to the particle level, the effects of calorimeter

the top quark (175 Ge¢f) shows that the jet algorithms showering must be remove8.is less than 1, meaning that

4.9
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FIG. 5. Comparisons ofsaJET (circles and HERwIG (histo-
gramg for an input top quark mass of 175 Gea¥/ and jets with
R=0.3 cones, fora) jet multiplicity, (b) jet », (¢) Et of leading
jet, and(d) fifth highest jetE;. Bars on the points indicate statis-
tical uncertaintiegsimilar uncertainties, although not shown, apply
or the histogramys The results fromsaJET andHERWIG in (8)—(d)
are normalized to the same area.

FIG. 4. Properties of jets witiR=0.3 cones. Data from the la
(histogram$ and Ib (circles periods, andtt HERwIG for m,
=175 GeVt? (shaded histogramsOnly jets withE;>10 GeV
and| 77| <2 are included. Distributions ite) jet multiplicity and(b)
jet E; are each normalized to the expected number of events i
110.3 pb'? of data, while distributions irfc) jet | 7| and(d) jet ¢
are normalized to the same area.

_ - E. Simulation of tt events
the effect of showering is a net flux of energy from inside to o
outside the coneS depends strongly on the cone si&g The simulation oftt events plays an important role in
energy, andy. extracting a signal in the presence of significant background.
It is necessary, therefore, to have a good description of the

production and decay dft events in order to calculate de-
D. Characteristics of jets tector acceptances accurately and to develop methods to

identify tt events in the data.
The tt events were generated for top quark masses be-
tween 120 and 220 GeW for the reactiorpp—tt+X us-

Comparisons of jet propertigget multiplicity, inclusive
jetEr, 7, and¢, for R=0.3 conesare shown in Fig. 4 for

data from the 'Ia a“?‘ Ib penod(see Table Y and fortt ing HERWIG as a primary model ansAJET [16] as a check.
Monte Carlo simulation. Only jets witlEr>10 GeV and g ynderlying assumptions in the fragmentation of partons
|7|<2 are included in the comparison. The results from lagye gifferent in the two programs. The generated events were
and Ib are in good agreement, although Ib typically hadyyt through the DGhower libran{17), a fast detector simu-
higher instantaneous luminosity. lation package based @reANT [18], which contains the ef-
Figure 4a) shows that for events with six jets, the back- fects of cracks and other dead material in thé Eedorim-
ground(i.e., datais at least three orders of magnitude largereter, and provides accurate shower simulation. GHenT
than the expectett signal. The peak at five jets is the result Simulation has been tuned to achieve a good match between
of the initial event selectiofsee Table Ii. The inclusive jet generated single-particle characteristics and observed data
E; spectrum in Fig. %) falls exponentially at about the [19]. Events were subsequently digitized, passed through the
same rate for signal as for data, and the signal is consistentl)@ reconstruction prograrf], and subjected to the same
three orders of magnitude below the data. In Figg)4the Selection criteria as the dataee Table . Events - passing
distributions of jetn are normalized to the same area for these criteria served as the model for our studiest qfrop-
signal and data. The signal is concentrated in the centrdrties. o
region, while the data extend to highgr There is a differ- Generally, acceptances fat production as calculated
ence of the order of 10% between la and Ib in the intercrywith HERWIG or ISAJET agree to within 10%, and any differ-
ostat region || ~1.2) due to improvements in the Ib period. ences between the two are incorporated in the final system-
Figure 4d) shows that thep distribution of jets is isotropic, atic uncertainties. As an illustration of the discrepancies, we
except for a 5% suppression in the region of the Main Ringshow in Fig. 5 distributions of jet multiplicity, jef, theE+
The Monte Carlo simulation does not simulate the effects obf the leading jet, and the fifth highest gt for HERwWIG and
the Main Ring, and consequently has no apparent structure ISAJET. Except for jet multiplicity, these distributions are in
¢. good agreement. It has been shd@WhthatISAJET produces

012001-7



B. ABBOTT et al. PHYSICAL REVIEW D 60 012001

more gluon radiation thaRERWIG, in accordance with our 9 U} Dato
. . N
results in Fig. §a). S - TNt
E | JIEN
V. KINEMATIC PARAMETERS 2 T

The principal background to the signal is QCD multijet
production, which is dominated by a—22 parton process glo“
with additional jets produced through gluon radiation. There- o
fore, the background tends to have jets that are more
forward-backward in rapidity. The additional jets are gener- . 1
ally lower in E+ (i.e., softey than the initial outgoing parent 0 500 10000 500 1000
partons. Furthermore, this extra radiation tends to lie in a s (Gev/<c?) Vs (Gev/c?)

Normalized

plane formed by the incoming beam and the two leading jets. 2 104 9
Because the mass of the top quark is large, the character- L% 102:f /////// £
istic energy scalécommonly calledQ?) of the tt event is | : Jam ///////////// g ]
significantly larger than that of the average QCD background 0 05 1 =z 0 X

event. This means thdt events generally have jets with Erv/He Eri/Hs
higherE, and have larger multijet invariant masses.

Extracting a signal from data dominated by background FIG. 6. TheH, Vs, and Er, /Hy distributions for datapre-
reqUIre§ the use of globa'l kinematic parameters based %minantly backgroundand forHERW|GtTgenerated at a top quark
these differences. Employing such parameters helps to difyass of 175 Get?. Each plot on the left is normalized according
ferentiate between thét signal and background. We can to the expected number of events. On the right the plots are nor-
summarize the salient features of the background, relative tmalized to unity and reveal significant discrimination between sig-

thett signal, as follows: nal and background.
(i) The overall energy scale is lower, leading jets have
lower E;, and multijet invariant masses are smaller.
(i) The additional radiated jets are softdrave lower HT=JEl Er, (5.1
Eqr). N
(i) The event shape is more plar(#ss spherical
(iv) The jets are more forward-backward in rapidityss ~ WhereEr, is the transverse energy of the jet, as ordered
centra). in decreasing jeEr rank, andNjes is the number of jets in
We defined two or more kinematic parameters that quanthe event.
tified aspects of each property. O_nly the most effective of ) \/g
thesg were used and thesg are Q|scussed bglow. We found p;g parameter is the invariant mass of tg system.
that, in general, better discrimination was achieved ugng (3) Eq. IHq
=0. j i i <2. 1 . .
05 Govy a2 05 cone jors, However. in some in- _ E, 5 the ransverse energy of =05 cone jet wit
stancesR=0.5 cone jets were used, and this is noted wherdlighestEr . This parameter characterizes tefraction car-
it occurs. All of the jets with| 7|<2.5 in an event are in- 'ied by the leading jet, and tends to be high for QCD back-
cluded in most of the variable calculations, though for someground. Thett events are likely to have transverse energy
variables the best discrimination was obtained by includingoughly equipartitioned among all six jets, and hence the
only a subset of the jets, selected byfgtor », and thisis leadingE+ jet is, on average, fractionally softer.
also noted where these variables are described. Figure 6 shows the distributions oHy, \/g and
Although correlations exist between many of the kine-g. /H;, each of which reveals significant discrimination

matic parameters, each includes useful information not fullybe,;Ween signal and background. This and subsequent figures
con:a:jn(_ad Sm an\% gf the others. These correlations are P'%%r the parameters are shown both normalized to cross sec-
sented in sec. ' tion and normalized to unity.

Njets

A. Parameters sensitive to energy scale

. B. Parameters sensitive to additional radiation
Any parameter that depends on the energy scale of the jets

is also sensitive to the mass of the top quark. These “mass As previously noted, the QCD background is primarily a

sensitive” parameters usually provide better discrimination2— 2 parton process that contains additional radiated gluons.

against QCD background than other parameters that providehese gluons tend to be much softer than the leading partons,

only a measure of some topological feature. Three mass seAnd therefore the jets associated with this radiation tend to

sitive parameters are the following: have smallerfE;. Three parameters that measure the hard-
(1) Hy ness of this radiation are the following:

The sum of the transverse energies of jets in a given event (4) H?—j
characterizes the transverse energy flow, and is defined as This variable is defined 40,11
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FIG. 8. The allowed range of normalized momentum tensor ei-
genvalues in the space spanned by @he

FIG. 7. TheHY, Nf, andEr,__distributions for datapre-

dominantly backgroundand for HERwIG tt events. Each distribu-
tion is normalized to the expected number of eveieft) and to
unity (right).

Again, these variables are effective in differentiating be-
tween signal and background.

C. Aplanarity and sphericity

H$j=HT— ETl— ET2 (5.2 _The direction and shape of the momentum flow of jets in
tt production are different from those in QCD background.

where Er, and Er, are the transverse energies of the two These differences can be quantified using event-shape pa-
leading (highestE+) jets. By subtracting th&- of the two rameterg 20]. For each event, we define the normalized mo-

leading jets, what remains is a better measure of any addpjentum tensoMap:

tional gluon radiation in QCD events, enhancing the dis- Niets Niets
crimination betweernt signal and QCD background. Map= 2 PjaPijb E pj2 (5.5
(5) Nigss ) J

. A .
An average jet count parametéli;;, provides a way 0 \ynarea andb run over thex,y,z componentsindices of the

parametrize the number of jets _in an event,_while taking aCtensoy, andj runs over the number of jets in an event. As is
count of the hardness of these jets. We define clear from its definitionM,;, is @ symmetric matrix that is
o always diagonalizable, and has positive-definite eigenvalues
f EEPrN(EEPr)dE’%[w (Q1,Q,,Q3) satisfying the conditions:
15
Nigs= : (5.3 Q;+Q,+Q3=1 and 0<Q;=<Q,<Q;. (5.6

5
f ENr gD
15

The equatiorQ; +Q,+ Q=1 represents a plane in a space
spanned byQ1,Q,, andQ3, and the inequality restricts the
where N(E™" is the number of jets in a given event with range of each eigenvalue, as shown in Fig. 8:

| 7]<2.0 andE; greater than some threshoBY" in GeV.

Therefore, this parameter corresponds to the number of jets, 0=Q,< E
but is more sensitive to jets of high&k than just a simple 3
jet count above some given threshold.
(©) Er,, | N o 0=Qu=>,
The transverse energies of the fifth €y, and sixth jet, 2
Er,. are also useful in discriminating QCD background from 1
tt events. Our final selectiofsee Sec. VII A requires at §sQ3s 1. (5.7

least six jets. For background these usually correspond to

soft radiation. The variable chosen is The magnitude of an®; represents the portion of mo-

mentum flow in the direction of thigh eigenvector. Limiting
ET5,6: VEt, Erg (5.4 event shapes can therefore be characterized as follows:
_ Linear: Q;=Q,=0 andQ;=1.
Figure 7 shows distributions o3, Njﬁts and Erye Planar:Q,;=0 andQ,=Q3;=13.

012001-9



B. ABBOTT et al.

°
]
‘-g Data
£
S
=
AR ‘
0 0.2 0.4
Aplanarity
°
8 - i
g Jal
S 4{;0'&0':; \ \
o 'o"o’«’;','u
LN, A bre AN
it VIR 0’0‘0'0'{//4"’0"‘/’,0”‘:‘1.
.5

0 0.5 1

Sphericity

0. 1

Sphericity

FIG. 9. The aplanarity and sphericity distributions for déatee-

dominantly background and forHERWIG tt events. Each distribu-
tion is normalized to the expected number of evefeft) and to
unity (right).

Spherical:Q;=Q,=Q3;=1.

The aplanarity /) and sphericity §) parameters that we
use are defined as follows:

(7) AZEQL

(8) S=3(Q1+Q2),
with 0=<.4=<0.5 and G=S=<1.

Top quark €t) events tend to have higher aplanarity and
sphericity than background events. We calculdtandS in
the pp collision frame; little difference is found using the
parton center of mass frame. Distributions.4fand S for
HERWIG tt events form=175 GeVt? and for data are
shown in Fig. 9.

D. Parameters sensitive to rapidity distributions

0) C
The centrality ) parameter is defined as

c= 5.8
_H_E! ( . )
where
Njets
He= 2, Ej. (5.9

=1

Centrality is similar toH, characterizing the transverse en-

PHYSICAL REVIEW D 60 012001
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FIG. 10. The centrality an¢i?) distributions for datgpredomi-
nantly backgroundand forHERWIG tt events. Each distribution is
normalized to the expected number of eve(iest) and to unity
(right).

The (7?) variable is defined using only the leading six jets.
We useR=0.5 cone jets for this variable.

We calculate %) by taking the square of the difference
between each jey and theEr-weighted meany, weighted
by a factonV(E1). W(E7) depends upon the difference in

rms betweertt signal (at,;) and backgroundo(lfykg), and is
larger at thosee; values where signal and background are
expected to differ. Théz,?) parameter is given by

6
2, WE)(nj= m)°

j
()= 5 : (5.10
> W(Er)
=1 !
where
o(Er) = o ¥UEy)
W(Ep)=—"——" (5.1
o-n(ET)
and
. 1 Njets
- ]Zl Er7;. (5.12

Note that bothot;(ET) and o2%Ey) depend on thé of
the jets in they distribution. Jets with loweE+ tend to be at

ergy in events, but is normalized in such a way that it dedarger values ofl |, and consequently, decreases with

pends only weakly on the mass of the top quark.
(10 (7% B
To good approximation, the distribution for jets intt
events is normally distributed about zero with an rmrs,
close to unity. With typically six or more jets in an event, the
rms of the jety distribution can be a useful discriminator.

increasinget. The QCD multijet background has a broader

distribution in the( %) variable than thet signal.

The C and (#%?) distributions are shown in Fig. 10, for
m,=175 GeVt2.

The above ten kinematic variables are employed as inputs
to the first neural network. The output of this network is an
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FIG. 11. Comparison of muopy spectra for(a) HERwIG and FIG. 12. The mean width of 0.5 cone jets versus tigifor (a)
ISAJET tt events, andb) HERWIG tt events and data. These distri- data(barg andHERWIG QCD (star$, and(b) data(bar9 andHERWIG
butions have been normalized to unity. tt_(stars).

input to the secondand fina) neural network, whose three

other inputs are described in the following section. diation. Although gluon splitting can take place, producing

both quark and gluon jets, it is expected that gluons dominate
QCD multijet production.

VI. EVENT STRUCTURE VARIABLES QCD predicts substantial differences between quark jets
and gluon jets and, in fact, observed differences in quark and
luon jet widths have been reported by experiments at the
EK e*e™ collider (TRISTAN) [21] and the CERNe" e~
collider (LEP) [22]. Parton shower Monte Carlo programs

In addition to the kinematic and topological characteris-
tics examined in Sec. V, there are other differences betwee

thett_signal and the QCD multijet background that we will

exploit in extracting thet signal. such asHERWIG have been shown to reproduce the widths
observed in datf22], althoughHERWIG has been found to
A. p7 of tagging muon slightly underestimate jet widths at the Fermilab Tevatron

[23]. We found that by applying a correction of 3% to the

The pT_of.the tagging muon gives further discrimination widths, HERwIG QCD Monte Carlo reproduces the observed
betweentt signal and QCD background. Not only does the yistributions in the width of the jets. Further studies have

fragmentation ob quarks produce highepr objects, butthe  ghawn that the kinematic distributions of the multijet back-
b quark is also more energetic it events than in back- ground are also well modeled usingrwiG. We have there-
ground. Thus, the mean mu@y,p%, is significantly larger  fore choserHERWIG as the generator for studying jet widths,
in tt events. Figure 11 shows the mupr spectra. Figure With a 3% correction applied to the widths of each jet.
11(2) compares the muomr in HERWIG and ISAJET tt Figure 12a) §hows the mean width of 0.5 cone.jets versus
events, which shows that the mupr spectrum is modeled jet Ey for multijet data andHERW'G QCD and Fig. 1)
consistently by Monte Carlo simulation. Figure(fiflcom-  compares the data ¥ERWIG tt. Here, the jet width is

pares HERWIG tt events and datdpredominantly back- e ara
ground. These results show that the of the muon can Tjet= Ny T, 6.0
serve as a useful tool in differentiating between signal and
background. where o, and o, are the transverse energy weighted rms
widths in » and ¢, respectively, and are calculated using the
B. Widths of jets (n,¢) positions of each calorimeter bin (XD.1 in Ay

_ — X A¢) weighted by the transverse energy in that bin. In
At the simplest level, eact(t) quark decays into &(b)  order to account for the broadening of jets from additional
quark and aV"(W™) boson, with eaclW boson decaying minimum bias interactions which could overlap an event,
into light quarks. Barring extra gluon bremsstrahlung, thiscorrections were applied to the widths of each jet in the
represents six quark-jets in the final state. The average j@lvent. These corrections were typically a few percent, and
multiplicity for HERWIG tt events (=175 GeVt?) using depended, among other factors, upon the instantaneous lumi-
our selection criteria is 6.9, implying that the contribution nosity during that event. These corrections were determined
from gluons is relatively small. Conversely, jets in the QCDby assuming that the energy coming from minimum bias
multijet background originate predominantly from gluon ra- interactions was uniformly distributed i » and A ¢, and
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FIG. 13. Distributions in Jet rms Widtthe[y for HERWIG quark_ FIG. 14. Distributions ofF for (a) data(predomijantly back-

like jets (solid and the gluon-like jetgdashed for (a) 5<Er ground andHERWIG QCD and(b) data andHERWIG tt events.
<25 GeV, (b) 20<E;<40 GeV, (c) 35<E;<55 GeV, (d) 50

<E;<70 GeV, (¢) 65<E;<85 GeV, and () 80<Er  Fisher discriminantZ, in terms of the individual jet width
<100 GeV. These distributions were normalized to have equab-jet and the width expected for gluon-like g, and quark-
numbers(1000 of events. like (oquan) jets, as follows:

therefore the measured rms of a jet was the sum in quadra- F :[‘Tiet_ O quark En)]? _ [Tjet— Ogiuor Ep)J? 6.2
ture of its true RMs and the rms of a uniform distribution. et o2, Ev) 2wl ED
It is clear from Fig. 12a) thatHERWIG QCD describes the
We used this single parameter to characterize the quark-

widths observed in the data, and therwiG tt has signifi- : ) astelles U 3
like or gluon-like essence of a jet. This discriminant is

cantly narrower jets. This suggests that the difference may b . ;
due to the different mix of gluons and quarks in the tWOsummed over the four unmerged jets with the smallest values

processes. of Fje in an event to form a variable™ which reflects

For Monte Carlo simulation it is possible to match initial Whether the event is motte-like (signa) or more QCD-like

state quarks to final state reconstructed jets becausesthe ~ (Packground Summing only over the four smallest values
— . . i of F (most quark-like jets according to Monte Carlo
WIG tt events are relatively simple. The mapping betweensimuJ

K qi ) ah hAR. b h lation, optimizes the discrimination. Where there are
quarks and jets requires a tight matc etween the o ver than four unmerged jets in an event, we average only

initial quark and the jet, as well as a reasonable maitch iR, er those jets. This summed discriminaftwill be used in
energy. The following criteria were employed to define — . . . L
" o our search fott signal in the all-jets channel. The distribu-

Monte Carlo “quark-like jets™: . f h A is k hat | idth

(i) Good quality 0.5 cone jet, reconstructed without merg—tlons of 7 are shown in E|g. 14. Itis known that jet widths
. h qf ' ¢ ' di ¢ iband with are not as well modeled insAJET[24], and we have, there-
Ny (20 ormed from two or more adjacent jptand wi fore, based this discriminant only on tRErRwIG generator.
|7 ..\2'.5‘ L . Figure 14a) showsF for data and HERwIG QCD, and Fig.

(ii) Distance between initial quark and its reconstructed — ) .
ot to beAR<0.05 14(b) showsF for data andHERWIG tt— all-jets. Compari-
Jetlo e son shows that the jets in data are significantly wider, and are

(iii) The difference in energy between the quark and the istent witlh CD th ith T
jet AE< rquark (E in GeV). more consistent WithERWIG Q an wWithHERWIG tt.

Monte Carlo “gluon-like jets” were defined to be good
quality jets, without merging, but where the separation dis-
tance to the nearest quark wAfR=1. Imposing these cri- A mass likelihood variableM, defined below, provides
teria, the distributions in the jet rms widths are shown in Fig.good discrimination between signal and background by re-
13. To guide the eye, Gaussian fits have been superimposeiiring two jet pairs that are consistent with thi¢ boson
on the distributions. With these definitions, it appears thamass, and twdV+jet pairs that are consistent with a single
gluon-like jets are 20—30 % wider than quark-like jets. top quark mass ofiny value. Since there are no high-

Figure 13 suggests that the jet rms distributions for theséeptons in the all-jets channel, and hence no gtreutri-
definitions of quark-gluon jets can be approximated by GausPos, the event is in principle fully reconstructible. The pres-
sians. A Fisher discriminant can be used to differentiate staence of twoW bosons intt events provides significant rejec-
tistically between any two such distributions. We defined aion against QCD background. A further requirement that the

C. Mass likelihood parameter

012001-12
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two recontsfcructed.top quar_ks haye eq_ual massezs _provides § ] (o) T HERWIG
some additional discriminationM is defined as g--like = T ISAJET th
object: £
zo 1 T T T
(Mw,~Mw)?  (My,—My)? (M —m)? 0 2 4 6 8 10
= > + 5 5 , Mass Likelithood
Ow Ow gt o
6.3 o - (b) {77 Data
<= [TIHERWIG QCD
. . I
whereMW1 (MWz) is the mass of the tw& =0.5 cone jets g Wi T i e
corresponding to th&V boson from the first(second top 0 2 4 6 8 10
quark, of massn, (m,). The parameterdly,, o anday Mass Likelihood
were fixed at 80, 1_6 and 62 Gecfz/_, respectively. Thg Igst § i © VI HERWIG tt
two values approximate the full widths of the two distribu- = 1 1Dota
tions, and taking them to be constant simplifies the calcula- £l
tion. 2 4 T ; T
The M variable is calculated by looping over combina- 0 2 4 6 8 10

tions of jets, and assigning all jets witly] <2.5 to one of Mass Likelihood

theW bosons ob quarks from the two top quark decays. The  F|G. 15. Distribution in mass likelihood parameter féa)
smallest value ofM is selected as the discriminator. To \erwic andisaserT tt events,(b) HErwic QCD and data, anéc)
reduce the number of combinations, two jets are assigned 1%rwic tt events and data. These distributions were normalized to
eachW boson and one to thequark from one of the two top unity.

quarks. Jets from th&V boson are required to have;

>10 GeV, while those from thé quark must haveE;

>15 GeV. All remaining jets are assigned to thegquark ND Xiyi— > X Vi

from the second top quark. To kebgagged events on the r= — —
same footing as untagged events,ariori assignment is 2_ ‘ ;_( )

made between tagged jets abdquarks. Since in the top NE Xi 2 Xi NE Yi 2 i

quark rest frame th&V boson and thé quark have equal (6.9

momenta, theE; of W bosons and-jets are more similar

than for QCD background. The following criterion helps fur- _ 1he value ofr ranges from 0, when there is no correla-
ther reduce combinatorics: tion, to =1, when there is complete correlation or anticorre-

lation. Table IV shows the average correlations among 13
parameters defined in Sec. V and Sec. VI for data. These are
average correlation coefficients; local correlations can vary
significantly, depending upon the region of multivariate
whereErw,) (Erqw,) is theEs from the vector sum of two  gpace. Note that the parametgés, F, and M have rela-
jet momenta assigned to theé boson from the firssecond  tively small correlations with the other kinematic parameters.
top quark. Although there are other possible algorithms foiTheir correlations with the output of the first neural network
assigning jets to the two top quarks, the discrimination in theare also small: 0.02, 0.00 and 0.03, respectively, as would
M variable is not very sensitive to the choice of reasonabldollow from their correlations with the individual kinematic
algorithms. network inputs.

The distributions in theM variable are shown in Fig. 15.
Figure 1%a) compares the\ variable inHERWIG andISAJET VII. ANALYSIS

tt events (=175 GeVt?). Figure 1%b) comparesHeR-
wIG QCD and the datgpredominantly backgroundFigure

that this variable is modeled consistently by the o criteria were applied to the data and to Monte Carlo events:

Monte Carlo programs, thatERwic QCD models the back- (i) Isolated leptonsEvents containing an isolated electron

ground well, and that\1 is useful in discriminating between or muon[9,4] were rejected. This ensgred_that our e_vent
signal and background. sample was orthogonal to those used in theanalyses in

other decay channels.

(i) H$‘>25 GeV Removed QCD 2-2 events with little
additional jet activity.

A summary of the 13 parameters used in this analysis is (iii) Number of jetsEvents with fewer than sit=0.3
given in Table Ill. The first ten parameters are simple kine-cone jets or more than eigft=0.5 cone jets were rejected.
matic variables, and are correlated. To quantify the degree of (a) By eliminating events with fewer than si®=0.3
correlation between any two variablgsandy, we define a cone jets, the signal-to-background ratio is improved. Only
linear correlation coefficient, as[25] 14% of the signal is lost, while 36% of the background is

ET(Wl) + ET(WZ)g 065"1’ y

A. Event selection criteria

D. Correlations between parameters
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TABLE lll. The 13 variables used in the neural network analysis, the jet cone size employed and the
event characteristic upon which it discriminates are given.

Variable Description Cone Characteristic
Ht Total transverse energy 0.3 Energy
Js Total tt 0.3 Energy
center-of-mass energy
ETll Hy Leading jet transverse 0.5/0.3 Energy
energy fraction
H3) Transverse energy of 0.3 Radiation
non-leading jets
Nf;ts Weighted number of jets 0.3 Radiation
Er,, E+ of 5th and 0.3 Radiation
6th jets
A Aplanarity 0.3 Topology
S Sphericity 0.3 Topology
C Centrality 0.3 Topology
(7% Rapidity distribution 0.5 Topology
pr ps of tagging muon - Event
Structure
F Fisher discriminant 0.5 Event
based on jet widths Structure
M Mass likelihood 0.5 Event
Structure

rejected(The E of the sixth jet is required in the calculation the background and only 5% of the signal. The calculation of

of several variables.
(b) Removal of events with more than eigRt=0.5 cone
jets also improves signal-to-background, rejecting 13% ohations.

the M variable and Fisher discriminant are thereby im-
proved because of the reduction in the number of jet combi-

TABLE IV. Average correlations among the 13 parameters for data.

Hr s Er/Hr  HY N Er,, A S c (7%) P F M
Hy 1 0.80 -0.14 0.71 0.76 0.39 0.01 0. 0.17 -0.31 0.04 -0.04 0.05
\/g 1 -0.20 0.64 0.64 0.36 -0.16 -0.25 -0.32 0.14 0.01 -0.08 0.05
ETllHT 1 -0.54 -0.36 -0.37 -0.34 -0.23 0.07 0.14 -0.02 0.23 0.30
H?J 1 0.76 0.71 0.25 0.15 0.05 -0.25 0.04 -0.02 -0.10
Nigs 1 0.44 0.12 0.09 009 -027 004 -005 -0.04
ET5,6 1 0.21 0.12 0.02 0.02 0.03 -0.03 -0.10
A 1 0.58 0.26 -0.30 0.04 -0.07 -0.16
S 1 0.37 -0.40 0.03 -0.04 -0.14
C 1 -0.59 0.05 0.06 0.
(7% 1 -0.05 -0.07 0.03
p¥ 1 -0.01 0.
F 1 0.10
M 1

012001-14
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Of the roughly 600 000 events passing our initial criteria

(see Table I, approximately 280000 events survive these = (®) 3
selection requirements. = = - %E
@ B
jad ~
B. Muon tagging 0 !
. . . . -1 0 1
The direct branching fraction of b quark into a muon n of jet

plus anything is 10.Z0.5% [26]. However, when all con-
tributions from decays ob and c quarks from the two top
quarks are considered, and with a muon acceptance of about

50%, approximately 20% of the events in the— all-jets
mode are expected to yield at least one muon. Muons in
QCD background processes arise mainly from gluon splitting
into cc or bb pairs, but intrinsiccc and bb production as °Z 0 1 -1 0 1

well as in-flight pion and kaon decays within jets also con- n of jet n of jet

tribute. These sources occur in only a small fraction of the

events, and therefore only a few percent of the QCD multijet FIG. 16. The relative muon detection efficiency as a function of
background events will have a muon @ the » of the jet, for different ranges of runga) N,,,<70000,(b)

To take advantage of the difference in the muon tag raté0000<N,,,;<84000, (c) 84000<N,,<89000, and (d) Ny,

and enhance thta:_signal, our analysis requires the presencezggooo' The curves represent the results of polynomial fits.

of at least one muon near a jet in every evérti-tagging”).
This also provides a means of estimating the background in probabilities of tagging individual jetf9], and is approxi-
given data sample, which can be determined purely fromately independent of the nature of the rest of the event. The
data. Theb-tagging requirement should give nearly a factormyon tagging rate is therefore defined in terms of probability
of 10 improvement in signal/backgroud]. . per jet rather than per event. We define the muon tagging
Procedures for tagging jets with muons were defined aftefate a5 the ratio of tagged to untagged jets, allowing us to
extensive Monte Carlo studies of production in lepton multiply this function by the number of untagged events to
+jets final stateg9]. The requirements used to select suchobtain an estimate of the tagged background.
muon tags are the following: Initially, the tagging rate was modeled only as a function
(i) The presence of a fully reconstructed muon track in theys jet E1 [1,9]. However, it was found subsequently that
central region (7|<1.0). This restriction does not ‘have there was any-dependence to the muon tag rate which de-
much impact on the acceptance of muons flomuark jets  hended on the date of the run. This was traced to the fact that
from tt decay because thesequarks tend to be produced the muon chambers experienced radiation damage, and re-
mainly at central rapidities. _ _ quired that some of the wires be cleaned during the run.
(i) The track must be flagged as a high-quality muon.gigyre 16 shows the relative muon detection efficiency as a
fit to the track in both the bend  fynction of the 5 of the jet for different ranges of runs.

Rel. Eff
T
Rt
Mot
Rel. Eff
}

This quality is based on g

and non-bend views of the muon systga7]. Fi : }
. X ) . gures 16a)—16(c) correspond to the time before the clean
(iii ) The signal from the calorimeter in the road defined bying and Fig. 16d) to that after the cleaningN;,,=89000).

the track must be consistent with the passage of a minimuny oo | < jilustrate the need to account for the dependence
ionizing parpcle. The signal is measured by energy deposne(c:i)n and run number when performing estimates of tagging
in the calorimeter cells along the track. ratens

d .

(iv) Because thet spectrum of muons from pion an .
kaon decays is softer than from heavy quarks, an overall To address this problem, t_he tag rate fqr background,
pr>4.0 GeV/c cutoff is imposed to enhance the signal from"tad ET, 7, Nwr), was parametrized as a function of [,
heavy quarks. Imposing this cutoff has limited impact on thg€t 7. and the run numbeNy,,, and was assumed to factor-

tt acceptance, since the muon energy must be greater thift

about 3.5 GeV in order to penetrate the material of the calo- P. (E N. V=f(E N 71

rimeter and the iron toroid a=0. tag E77,Nrun) =T (Er) €(7. Nrwr), 7.0
(v) The muon must be reconstructed near a jet that has

| 7|<1.0 andE;>10 GeV. The distancA R, in 7-¢ space wheref(E7) is the relative probability that a jet of give;

between the muon and the jet axis must be less than 0.5. : . }
If a muon satisfies the above conditions, the jet associategas a muon tag, ane( N,y is the relative muon detection

with the muon is defined aslatagged jet, and the muon is efficiency. The function$(Ey) and e(7,Ny,) are not nor-
called a tag. Of the roughly 280000 events which survivedﬂal'zed individually, but it is the product of the two which is

. . N normalized.
}gte initial selection criteria, 3853 have at least dragged Besides the differences in chamber efficiency caused by

the deterioration and cleaning of wires, there were also
changes in the gas mixtures used in the muon chambers be-
tween the la period and Isee Table), and changes in the
The probability of tagging QCD background events con-high voltage settings, which were implemented at run 84000.
taining several jets is observed to be just the sum of thdhese required two additional separations of runs, as shown

C. Muon tagging rates
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FIG. 17. The relative probabilityf(E;), for central jets as a . . .
function of the jetE;, for runs in the rangéa) N,,,<70000,(b) funlétlic(;ﬁ t?'”;re h(_eetrEeIatl}/oer ?S?}gig"lgg(gg’ gz)r Nceniri;loj()eéz ?t?) a
70000<N,,,<84000, (c) 84000<N,,,<89000, and (d) N, JetEr, 9&a) Nrun '

Lo 700006<N,,,,<84000, (c) 84000<N,,,<89000, and (d) N
=89000. The curves re_pregent the results of a common fit using Eq?' 89000. r'r'%e curves represent the rr;gults of a common fit u:i?lg Eq.
(7.2), and saturate at high jé; (7.3), and saturate at high j&; .

in Fig. 16. WAe also found a small dependence of the tag ratg\dditional dependence, most notable in variables that are
function onv's of the entire event, which is described below. sensitive to the total energy scale of the event. Figure 19

The jetEy factor in the muon tag rate functigf(Er)11S 5105 the muon tag rate in two bins ¢, which reflects

shown in Fig. 17.f(Ey) was parametrized in tWo Ways, yhe total energy of the partonic collision. The superimposed

which allowed us to estimate a systematic error due 10 the,iy cyryes represent fits to E€7.3), but where the coeffi-
model dependence of this function. The first parametnzaﬂor&ientsao a,, a,, anda, are now second-order polynomi-

assumed that(Ey) saturates at high values of jgt, and . R . .
(Ex) g B alsin \/g In Fig. 19b), the dashed curve represents the fit at

was given by the form >
200< \/;< 300 GeVt?, and a small shift in the relative tag

rate is apparent. This/g dependence was included through a
modification of the principaE-dependent part of the func-
tion, f(Ey).

As indicated by Eq.(7.1), the observed tag rate is the
product of two parts. Because of this, the fits of E§2) or
(7.3 to the observed tag rate are correlated with the muon
detection efficiency. To disentangle the two components, the
fit used data only from central rapidities, where the detection
efficiency was a weak function ofy. The criterion
€(7,N,,n)/€(0,N,,)=0.6 defined the region used in the fit,
corresponding to the region where tlyedependence varied

(7.3 least rapidly. Once this initigl(E;) was determined, it was
necessary to use it to re-estimaten,N,,,). This involved
Here, f(E1) continues to increase with j&;, and the con- taking the ratio of the number of observed tagged jets to the
stantsa,, a;, a,, andas are again obtained from fits to number predicted using the initid(E;). This ratio, as a
the observed tagged distributions, shown in Fig. 18. The dif-

(7.2

Er—Er,
A )

f(ET):AO N(

where X(x) is the normal frequency functiofi.e., X(x)
=(1/\/27r)fx_we‘22’2dz], which approaches 1 at high jet
Et. The parameterd,,Ex , and\ are obtained from the fits

to the observed tag rates, shown in Fig. 17.
An alternative parametrization ¢{E;) assumed a poly-
nomial in InE;), and was given by

f(ET) = a0+ a.l |n(E-|-) + a2 |n2( ET) + a.3 |n3( ET)

ference in the background estimate between @ and 5 002 5 ooz il
Eq. (7.3 is discussed in Sec. VIl I. Because the tagging rate ¢ (a) ° (b) g
in Eq. (7.3 continues to grow with increasing jé, it A& 0.01 —/')ﬂx/ A 001 ”
gives a slightly larger estimate of the background than Eq. T

(7.2). Increasing the tag rate increases the estimated back- = .00 L % .00 '
ground, thereby decreasing the signal. Both versions of 0 100 0 100

f(Eq) give similar x? fits, but as our Monte Carlo studies
showed that the tag rate continues to slowly increase with jet
E+, even for highE;, we chose Eq(7.3) for estimating the
background in this analysis.

E; of Jet (GeV)

E; of Jet (GeV)

FIG. 19. The relative probabilityf(Ey), for central jets as a
function of the jetEy, for (8) 200<3<300 GeV£? and (b)

Having considered all factors that go into the tag rate*00< V5<500 GeVe?. Solid curves represent fits using Bd.3),

function on a jet-by-jet basis, we looked for dependence orincluding a dependence

characteristics of the event as a whole. We observed a smait 200< \/§< 300 GeVE?

012001-16
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function of 7, is plotted in Fig. 16 for different run ranges. S 125 4
The process of fittingf(E;) and then re-calculating % 10
€(7,N,,) was iterated several times until stable results were £ 75 s, —
obtained. The final relative probabiliti¢$(E+)] are shown f ’
in Fig. 17 and Fig. 18, and the final relative efficiency is S 37 (0)
shown in Fig. 16. These are labeled relative probabilities and f,, 25 7
efficiencies because it is not possible to determine the overall 2 0 T T . .
normalizations off (E1) and e(#,N,,) independently; it is 20 60 80 | ItO(E) . \/120
their product which is well determined. st £ (CeV)
Using Eq. (7.1, the number of expected tagged events 104 * Iet E' range ;535_36897\/0 J
i i i a A e range 35.8-60.
(from backgroungin a given event sample is o .A“‘ n j’et b mnge 358-50.7 e
Axh
NEXPL= Pud E1,7.Nup)- 7.4 LL LI
tag eventsj;ts tag( T 7] run) ( ) 10—. (b) §$$$§$$e$é*$*
[
T

In using Eq.(7.4) to estimate the tagged background, we
assumed that this relation remains valid for extrapolation

PHYSICAL REVIEW 30 012001

10

T
20

30

Tagging Muon p; (GeV/c)

from the background region through to the signal region.
These regions will be defined in terms of the neural network FIG. 20. (&) Mean muonpr (solid circles versus tagged jer
output, in Sec. VIIE. This supposes that there is no signifi-and(b) muonpy distributions for three jeEr ranges(chosen to be

cant correlation between thatrinsic heavy quark QE or equally populatedfor data events. The line ifa) is the average of
the points. No correlation is observed between the npuoand the

b_b) Con_tent and t_he neural netw_ork output, apart from amfet E;, whereE7} is the observed energy for tagged jets, without
kinematic correlation through variation By and 7, as pa-  corrections(see text

rametrized by Eq(7.4). Therefore, we attribute any excess
of tagged events over the background predicted by(Ed)

to tt_production.

E;. This ratio was then parameterized, as discussed in Sec.
VIIC, to give the tag rate functiorP,( E+). The Er distri-
bution of QCD background events with a tagged B{E+),
for our analysis was then obtained using the untagged jet
) . ) i ) _sample U(Ey) from the expressionB(Ey)=PdEt)
Since the kinematic variables are calculated using the jex U(E+), which, apart from the smoothing applied to the tag
energies, they are to some extent sensitive to the small shifyte function, is equivalent tB(E1)=T(E).
in energy due to the presence of the tagged muon and its ajthough there is na priori advantage to using uncor-
associated neutrino. As was described e_arlier, jets are me?éctedE} instead of correctel; for the tagged jets, it does
sured through the deposition of energy in the calorimeterg;y it the background calculation for the neural network
and are not corrected for the muon’s momentum. The NeUsnalyses. Our studies show that fheof the muon is uncor-
trino’s energy is, of course, missed completely, and there i§

. L ; e elated withEy, but not withE+. This is illustrated in Fig.
no unique prescription for correcting the jet's energy for theZO(a) which shows the mean mugw as a function of the
neutrino. However, these corrections are typically sl '

the order of the muon momentom tagged jetE; for data. A fit to a straight line gives a slope

Previous analyseiS] aimed at determining the top quark Consistent with zero. Figure £ shows muorpy distribu-
mass have incorporated approximate correction factors fdions for three distinct ranges of tagged gt (chosen to be
the energies of tagged jets. For our analysis, such correctiof@iually populated they are indistinguishable. Similar plots
are not strictly needed and, as we argue below, are disfére shown in Fig. 21 foHERWIG tt events. Again, no sig-
vored due to the correlations they introduce betweerEthe nificant correlation between mugm; and tagged jeE; is
of the tagged jet and thp; of the tagging muon. Our pro- observed.
cedure consists of calculating the muon tag rate fundgtn Since thept of the muon is not correlated with the un-
(7.1)] from jets containing muon tags and untagged jets asorrected jeE+, it is largely independent of event kinemat-
follows: we denote the distribution of untagged jets as acs and the probability of finding a muon of a given fac-
function of E; by U(E+), and the distribution of the tagged torizes from the tag rate function. Tagged background events
jets by T(E7). The distributionU(E+) reflects dominantly can therefore be generated by addififpke” ) muons to
QCD background. HereE; is the transverse energy ob- untagged events by assigning a randpmvalue from the
served for jets with no observable muon, and thus is on avebservedpr spectra. The value g enters into the second
erage the true jet energfE; is the observed energy for neural network and must be generated for the modeled back-
tagged jets, without corrections, and thus is missing the corground. Thep+ distributions for both datdpredominantly
tributions to the progenitor jets due to the transverse energgackgroungl and HERWIG tt events were fitted separately to
of the muon and neutrino. We formed the ratiothe sum of two exponentials, and the parametrizations from
T(ET)/U(E+), taking the same numerical values®f and  the fits were used in the random generation of mygn

D. Background modeling
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FIG. 21. (8 Mean muonpy (solid circles versus tagged jeE+
and(b) muon py distributions for three jeE; ranges(chosen to be
equally populated for HERWIG tt events. The line in(@) is the
average of the points. No correlation is observed between the muol
pr and the jeE}, whereE; is the observed energy for tagged jets, 0

10

without correctiongsee text

values for both background and signal. These spectra and th
associated fits are shown in Fig. 22. As discussed above
correcting the jets for muon and neutripg would introduce

correlations that would complicate the application of the tag
rate function; we have consequently not applied such correc 500

tions to the jet energies.

The procedure used for estimating the number of taggec

T
20 30
Tagging Muon P; (GeV/c)
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events expected from background can be checked by com 0 2 4 6 8 10

paring the distributions of estimated tags to those for the
observed tags. Figure 23 shows this comparison for the dis-
tributions in each of the 13 parameters used in this analysi
for the entire multijet tagged data sample. In these distribu-

Events

Events

100 L

FIG. 22. Muon p; distributions for (a) data (predominantly
backgroundand(b) HERWIG tt events. The smooth curves are from

108 |
10% f
101 }

{ |

20 40
pr of Muon (GeV/c)

FIG. 23. Comparison of the absolute numbebdfgged events
—expected from multijet backgrounghistogram with the observed
?3853 b-tagged events in dafaircles, as a function of each of the

13 variables(a) H (GeV), (b) \/§ (GeVic?), (c) Er, /Hr, (d) H3
(GeV), () Nfgs, (1) Er, , (GeV), (@) A, () S, () C, () (77), (K
pr (GeVic), () F, and(m) M.

tions thett fraction is negligible, as less than 4Q events

are expected. The predicted rate, absolutely normalized using
Eq. (7.4), is shown for all distributions, and consistently re-
produces the observed number of tagged events. The values
of x? per degree of freedom for the plots in Fig. 23 are given
in Table V.

Once the background sample is generated, these events
are treated exactly as the tagged sanifile sample used to
extract signagl The neural network is applied to both sets of
events, tagged and modeled backgroyodtagged events
+“fake-tags”), and the difference between the two repre-

sents an excess that is attributed to tFe;ignaI. Similarly,

“fake-tags” are applied to the untagge®RwIG tt events,
and these events are used to model the signal. This effec-
tively increases the statistics of the tagged events in the

fits to the sum of two exponentials. The fact that the curviains ~ Monte Carlott sample. o
below the points fop;>35 GeVk does not measurably bias this A correction for the small contamination of the back-

analysis, because the fraction of events in that region(s6%. ground sample due tt events is madésee Sec. VII).
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TABLE V. x? per degrees of freedom for the plots in Fig. 23. o 100
For simplicity, only bins with more than ten events were used and S g4 ()
only statistical errors were included in the calculations. X 60 N
Variable X%Npe Probability of x2 2 40-

o 20

Hy 20.1/20 0.45
\/E 254125 0.4 ° _o 0.2 0f4 0{6 0!8 1
ET1/HT 24.1/20 0.24 ' Neural Network Output
H3 17.5/22 0.74 w 100
Niets 16.9/18 0.53 8 s © HERWIG tt |
ET56 26.7 /25 0.37 W 60 -

' 15.0/ 23 0.89
S 13.7 /18 0.75 40 7
C 10.0/ 18 0.93 20
<772> 22.0/17 0.18 0 T T T T
p4 18.2 /26 0.87 0 0.2 0.4 0.6 0.8 1
F 33.7/25 0.11 Neural Network Output
M 23.6 /24 0.48 FIG. 24. Initial training of the neural network (NN The net-

work output is shown fofa) data, andb) HERWIG tt Monte Carlo

program form,=180 GeVt2.
E. Neural network analysis

Artificial neural networks constitute a powerful extension  The set of 13 parametetsee Table ]l was used as the
of conventional methods of multidimensional data analysisset of input nodes in training the neural network. Because
[28], and are well suited to our search because they handigaining time increases markedly and quality of convergence
information from a large number of inputs and can accouniecreases with the number of input nodes and hidden layers,
for nonlinear correlations between inputs. A neural networkhe problem was simplified by first training a neural network
is a multivariate discriminant. Its construction typically con- using the first ten kinematic variables. These variables
sists of input nodes, outp), and intermediary “hidden tended to be more highly correlated than the remaining three
nodes.” The connection between any two nodes is governegsee Sec. \Jl Based on studies using our training samples,
by a sigmoidal function which is characterized by awe chose to have 20 hidden nodes and one network output,
“weight” and “threshold.” The neural network is and used the back-propagation learning algorithreirNeT
“trained” by setting weights and thresholds of the nodes[29]. The output of this neural network and the remaining
through an optimization algorithm. three parameters were used as inputs to a second neural net-

The output of the neural network is simply a mappingwork. Here, we chose eight hidden nodes and one network
between the multidimensional space described by our kinesutput.
matic input variables and a one-dimensional output space. Events used to train the two neural networks were se-
Setting a threshold on the output of the neural network cortected as follows. A simpler initial network (N§)l, using a
responds to a set of hypersurface cuts in multidimensionadubset of seven kinematic parameteréexcluding
input space. Consequently, the neural network output may be; /H, Er. o and(7?)), was trained using all events. The

employed to discriminate between signal and background as
Iong ag the following conditions are (Q)Jbserved 9 output of th|s network for both data am@ERWIG tt Monte

(i) The neural network is trained on event samples that ar€arlo, is shown in Fig. 24. Figure 24 shows that theignal
independent of the sample used for the measurement.  tends to peak at values of neural network output neg@hé

(i) There is a reliable method for determining the back- signal region”), whereas the background events peak near
ground level for a given value of neural network output. O (the “background region). For the final training samples,

Independence of the training sample and the sample usete selected data antt Monte Carlo events having NN
to extract thett signal is maintained by considering only >0-3. This neural network was used only for choosing the

b-tagged events in the final extraction ofa5|gnaltfbpro- best training samples, and was not employed in the final
duction. Events that did not havebatagged jet are used for analysis(i.e., all events were reanalyzedkemoving events
training and for defining the background sample. that were very unlikelytt candidates (Npk<0.3) improved

In order to simulate the background, untagged eventéhe efficiency of the training and increased network sensitiv-
were made to resemble tagged events by adding muon ta@y to background events that more closely minbtcevent
to one of the jets in the event. With such “fake” muons, characteristics, thereby improving signal-to-background dis-
these events were taken to represent the background. Tleeimination in the final analysis.
prescription for adding these muons to the untagged jets was Training of the two neural networks used in the final
described in Sec. VII D. A subset of these events was used tanalysis proceeded as follows. The first neural network
train the neural network response to background. (NN,) was trained on the ten kinematic variables using the
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) 1000
._’L‘_, 05 ] VI Data © 0
E 025 HERWIG tt § 500 8
2 <
0 XXX ek L
0.0 0.2 0.4 0.6 0.8 1.0
°
£
2 2
5
2
2 0 2T %
g 0.0 02 0.4 06 0.8 1.0
0 02 0.4 06 08 1 FIG. 26. The distributions in final neural network (B)Noutput
NNet 1 for (a) data(diamond$ and expected backgrour{tlistogram and

n ) (b) HERWIG tt_signal form,=180 GeV£?.
FIG. 25. Training of the first neural network (NN The net-

work output is shown for datgselected by NB) and HERwIG tt ‘ o~ )
Monte Carlo output form,=180 GeVt2. The three plots aréa) Nexpected™ Abkg NbkgT 1 N,
linear, with data and MC signal normalized) logarithmic, with 6.4 pb
data and MC signal normalized, afg) logarithmic, with data and
MC signal scaled to cross section.

(7.5

whereNibkg is the expected number of background events in
theith bin, andNLt—is the expected signal in this bin. Because
training sets, as described abo(fig. 25. The output of the full Monte Carlo sample, scaled to the total number of
NN; and the remaining three variables were then used asvents(given by 6.4 pb multiplied by the integrated luminos-
inputs to the second neural network (BN NN, was ity), is subjected to exactly the same trigger and selection
trained using tagge®tERWIG tt Monte Carlo events and criteria as the datat}l'“faccounts for the luminosity, branch-

“fake” tagged data, also described in Sec. VIID. ing ratio (BR), and tt efficiency of our selection criteria.
_ _ _ Both Apg, the background normalization factor, aog,
F. Cross section using neural network fits are obtained from the fit, along with their respective statisti-

Thett cross section, integrated over all values of neuraf:‘l”II eL(orsé;he results of this fit are shown in Fig. @ee
network output, is determined from the distributions in the@S0 F19. 0. . N
output of the final neural network. Any excess of the taggeg By allowing the s_,lgnal and backg_rounq normallzatlpn fac-
data over the modeled background distribution is attribute ors to be dgtermme_d from the.f't' this method S'm}l!ta'
to tt production. This excess, integrated over all values Opeously provides thét cross section anq a more sensitive
neural network output, is independent of the neural networkmeasurement of the background_normallzatlon. It efficiently
background by the tag rate function. If the location of any

excess appears in the regiontofsignal (in neural network 1222
outpu) it would make these events likety candidates. The i Signal+Background
final neural network (NB) distributions for the data and the r
expected background are shown in Fig.(&6 and for 100
HERWIG tt events in Fig. 2@). The normalization of thét % 50 F
signal is described below. These distributions demonstrate a @ [
strong discrimination between signal and background. =
We extract the cross section from a fit to the data of the 10§
sum of the neural network output distributions expected for 5F

thett_signal and for QCD multijet background. Because the

shapes of thet and QCD network output distributions differ 1 =& X

significantly, the relative amounts of each can be disen- 0.0 0.2 0.4 0.6 08 1.0
— o Neural Net Output

tangled. The generatederRwWIG tt events were arbitrarily

normalized assuming;=6.4 pb at each top quark mass.  FIG. 27. The distribution in neural network (§Noutput for

This value needs to be factored out in normalizing Fig.data(diamond$ and the fits for expected signal and background.

26(b). The data of Fig. 2@) are fitted using¢?> minimization ~ The signal was modeled witherwiG for m,=180 GeVk2. The

to the hypothesis: errors shown are statistical.

012001-20



MEASUREMENT OF THE TOP QUARK PAIR ... PHYSICAL REVIEW [0 012001

g 12F top quark masses. Interpolating to the value for the top quark
= (a) ] mass as measured by/D@] (m=172.1+=7.1 GeV), we
= NS O 1 1 1 I obtaino=7.1+2.8 (stat) pb.
g SR B N N Fitting the data in Fig. 27 only to the backgrounad{
5 1.0 | | { | ] forced to zerp changes the normalization to 1:69.03 and
= 0 2 4 6 8 10 the total y? per degree-of-freedom to 23.1/18. We note that
Number of Points Eliminated the change iny? comes predominantly from the last three
5 bins of neural network outpuin Fig. 27), and the probabil-
= (b) ity for a change iny? of 6.2 (for m;=180 GeVLt?) for one
2, 10—I . additional degree-of-freedom is consistent with the signifi-
= sEt % I 1 I R N N S cance of the extracted cross section, which is 2.5 standard
) Il I I [ 1 deviations from zero.
{ ) 1 | | 1
0 0 2 4 6 8 10

Number of Points Eliminated G. Cross section using counting method

The traditional method for extracting thé cross section
FIG. 28. Results of combined fites in Fig. 27 when data  served as a useful check on the above procedure. We as-
points are removed at small values of neural network output. Th&ymed an absolute normalization of the background as given
refitted (a) background normalization andh) tt cross section are by the tag rate function. Taking the excess in observed
plotted gs_a function of the number of points eliminated._ Error barsevents(seen in Fig. 2Vto be fromtt_production, we calcu-
are statistical, but are correlated through the error matrix. late the cross section for the process using the conventional
relation
ground normalization from the entire range of neural net-
work output, without choosing any particular cutoff on neu-
ral network output. The distributions for signal, background
and data are shown separately in Fig. 27. The error bars are
the square root of the number of data events in each bin. where Ny, is the number of observed events with neural
Events at the lowest values of neural network outputnetwork output greater than some threshdlg, is the cor-
(<0.02) have been removed, leaving 2207 events, or slightlyesponding number of expected background evet®BR is
more than half of the tagged data sample. The resulting fitthe BR times the efficiencye] of the criteria used for se-

may be checked by varying the region of NNsed.(Fig. 27 |ecting tt events, andC is the total integrated luminosity
uses events with NN>002) Figure 28 shows results for (1103—#_— 5.8 pb7 l)_ We useHERWIG as the model for calcu-
Apkg and oy as a function of the lower limit in NNem-  |ating the value ofex BR.
ployed in the fit. The results are seen to be quite stable to the The number of events, as a function of the threshold
change of this lower limit. We note that the jets in eventsplaced on the output of the neural network, is shown in Fig.
with NN,<0.02 tend to have lor, where the tagging rate 29(a). The error bars are the square root of the number of
may not be as well determined due to the low tagging probevents in each bin. The upper smooth curve in Figa29
ability. Because the background modeling may be less acCltepresents the sum of the expected signal and background,
rate in the very low NN region, where the background so and the lower curve is just the expected background. The
strongly dominates the data distribution, we impose a cut oftatistical error in the cross section depends upon where the
NN,>0.02 for our fits toA,; and o;. The stability of the  threshold is placed. A plot of the relative statistical error
results shown in Fig. 27 supports this choice. versus the threshold on the output of the neural network is
A similar plot was produced and fitted for several top shown in Fig. 2%). The fractional erro€ is approximated
quark masses, and the values of the cross section obtaingg
using the output distribution faHERWIG tt events generated
at that mass. The results are shown in Table VI for several

_ Nobs—Npyg
Ott

T eXBRXL (7.6

V(Nit+ Npig)

, (7.7
Nit

TABLE VI. Results of the fits to neural network output.

whereNandNy,4 are the expected number tif and back-

— 2
Top quark , Abkg Tt X“INpg ground events above the neural network threshold. We
mass(GeVic?) (pb) wished to place the final threshold at or near the minimum
140 1.05+ 0.03 18.4+ 78 176/17 e€rror,and chose_0.85, as shown in Fig(l®9The number of
160 1.06+ 0.03 03+ 3.8 17.2 117 er:/ents abO\(/je t_hls Ithre:shﬁld, th.e exgtlacted background, and
170 107+ 002  72+30  17.1/17 (heexpected signal are shown in Table VII. .
180 107+ 0.03 63+ 25 16.9/ 17 Using Eq..(7.6), Tablg VIl lists the efficiency times
200 107+ 0.03 51+ 20 16.8 /17 branching ratios for two input top quark mass values f_;lnd the
220 1.07+ 0.03 44+ 1.7 16.7 /17 EXtractedtt cross sections. We note that the method in Sec.

VIIF gavett_cross sections of 7.2 and 6.3 pb fof of 170
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103 . the entire range of the neural network output variable. This
@ e Expected Sig+Bkg. L . .
2 o assumption is motivated by the fact that the energy scales in
o i such events are well above the energy thresholds for heavy-
@ 10!k (a) Expected Bkg. quark pair production, and therefore the fraction of these
1000 5 0'2 0'4 0'6 ole events should be independent of the neural network output.
’ Ne ) . . 1o The good agreement between the background model and
eural Network Threshold > : . .
. data in the single-tagged channel supports this assumption.
g F We determine the normalization of the background by
= LoF fitting the neural network output distribution to the expected
E 081 background and signal contributions as in Sec. VIIF. The 32
S 0.6 / events were binned in neural network output and the log-
o 0.4 . likelihood calculated. The minimum in negative log-
& 0.0 0.2 0.4 0.6 0.8 1.0 likelihood occurs for a background normalization factor of
Neural Network Threshold 0.97" 349, where the errors correspond to a change in log-

likelihood of 1/2. In determining this normalization, the ex-

FIG. 29. (8) The number of eventslata above any threshold on - pectedtt signal was not varied, but the result is insensitive to
the neural network an¢b) the expected fractional error on the  this value. Allowing the data to determine the normalization
cross section as a function of the threshold placed on the neurghrough this fit accomodates the possibility that the tag rate
network Output The vertical line at 0.85 indicates the Choserfuncuon for the Second muon |n the event |s dlfferent from
threshold. The smooth curves (@) represent the sum of the ex- that for the first muon. The two errors on the expected back-
pected number of signal and background evef@ssumingm.  ground in Table IX represent the uncertainties due to the tag

— 2 —_
gréﬁgdisgﬁtsa;ﬁ;n—GA pb) and the expected number of back rate functiontt subtraction andE; scale(see Sec. V) and
the normalization error, respectively.

2 . . , We note that the fitted normalization is consistent with
and 180 GeW*, respectively, in good agreement with the y4¢ for the single tagged sample indicating that the second
values in Table VIII. When mterpolated to.the. mea§ured to™uon tag probability is roughly the same as for the first. The
quark mass of 172.1 GeVicthis determination yields a o number of events for Ni¥-0.02 is in good agreement
cross section of 7:83.0+ 1_.6 pb. The results from the fit to \,ith the sum of expected background plus the small contri-
the neural network are sllghtl_y Io_wer, as one would expecty) iion from top. The small excess persists as the Nixesh-
since the background normalization was 1(bistead of be- |4 i5 increased, in agreement with expectations. The double

ing fixed to 1 herg The changes in g_ffi_ciencies asa fu_nctior)tag analysis supports our conclusion that the singly-tagged
of top quark mass reflect the sensitivity of the selection cri-

teria to the input massn,. The statistical and systematic sample is due tot production.

uncertainties in the cross sections are discussed in Sec. VII|. _ o
I. Corrections and uncertainties

In this subsection we discuss the major sources of system-
) o atic uncertainty that affect either the background estimate or

The requirement of a secoritagged jet in the event sjgnal efficiency. The statistical errors on the cross section
further reduces the background, thereby increasing thgnd background normalization come directly from the fit
signal-to-background ratio. Unfortunately, the additional re{Eq. (7.5)] shown in Fig. 27.
quirement significantly reduces the expected yield. However, (j) The statistical error in the calculation of the back-
the search for these “double-tagged” events serves as a Coground is estimated by the number of untagged events falling
sistency check of the single-tag analysis, and also as a test gf the signal region. This estimate of 24.8 events, and an
the model for the background. The number of events thagpproximate mean tagging rate of 2%, implies of the order of
contain twob-tagged jets is shown in Table IX for various 1240 untagged events for the background and a consequent
NN, thresholds. The twdx-tags are required to originate 394 statistical uncertainty in the background estimate. This
from separate jets; two tags within the same jet are countegontriputes a 4% uncertainty in the cross section based on
as a single tag. The higher mugr is used as the input to the counting method in Ed7.6).
the neural network. The background is again calculated (ji) The error in the normalization of the tagging rate was
based on Eq(7.1), wherePyfEr, 7,Nyy), summed over all  taken from the combined fits to the output of the neural
jets, represents the expected number of tags in the event. Th@tworks using Eq(7.5). This error is shown in Fig. 28),
double-tag probability is obtained via the Poisson distribu-and was taken to be 5%. It is used only in the calculation of
tion, and is the likelihood of observing at least two taggedthe error on the background, as it is already included in the
jets, given the expected number. This follows since the tagross section(The statistical error on the cross section was
rate function is a rate per jet, and, within our model, the twopptained from a simultaneous fit to the normalization of both
tagged jets are uncorrelated. background and signal, and accounts for the error on the

We make the assumption that the fraction of doublehackground normalization.
tagged events from correlated sources, such as direct heavy- (jii) The uncertainty in the parameterization of the tagging
quark pair productiondc or bb), remains unchanged over rate results in a 5% uncertainty in the predicted number of

H. Double-tagged events
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background events. This was estimated by comparing the TABLE VIIl. Cross sections fott production, using the count-
predicted number of tags for two functional forifisqg. (7.2 ing method, obtained from thietagged events fom, = 170 and
and Eq.(7.3)] assumed for the tag rate. Unlike the normal- 180 GeVt?.

ization of the tagging rate, this error accounts for possible

changes in the shape of the background as a function of Signal efficiency Cross section

neural network output. This results in a 7% uncertainty in the(GeV/c? XBR (pb)

tt cross section. _ 170 0.019+ 0.0032 75+ 3.1+ 16
(iv) The presence oft events in the data used for esti- 180 0.022+ 0.0037 6.5+ 2.6+ 1.4

mating background has been taken into account in all results
presented thus far. The procedure used to estimate the cor-
rection to the background proceeds as follows. Callingefficiency. The difference can originate, for example, from
NI“I—'Stagthe number of untaggaaevents wrongly assigned to the modelin_g of electronic noise or fro_m thg _simulation of
the background estimate, we can estinmﬁ%swgas the underlying event. Furthermore, this efficiency can de-
' pend upon the mass of the top quark. From our trigger simu-
) 0.8 lations, we estimate<5% uncertainty in signal efficiency

e 53(Nobs™ Nixg) Frag (7.8)  from such sourcefl0,11.

) (viii) The uncertainty in the integrated luminosity was
taken to be 5.3%30]. This arises mainly from the uncer-

where the 0.8/0.2 corrects thetagged signal back to the <™ R
tainty in the absolute luminosity, and affects all runs system-

untagged signdrecall thattt events are tagged roughly 20% atically.

of the timef, frag is the a\'/erﬁgef.taglj rate per event, M}‘ES he, () Any difference in the relative energy scale between
andNyq refer to events in the final tagged data sample. Thgy,ta and Monte Carlo affects the efficiency for signal. This
corrected background estimation therefore becomes uncertainty was determined using the MPF metfb8l, as

mistag (7.9 described in Sec. IV C. Varying the energy scale in the
o ' Monte Carlo simulation by*(4%+1 GeV) [4] changes

This correction is applied bin by bin in Fig. 27, and is ap-the efﬁmeng for S|gn?1I by=5.7%. — .
proximately 4% in the signal region. We therefore assign a (X) Thett tag rate is based on tié Monte Carlo simu-

systematic uncertainty of 4% to the background estimate antgtion, but assumes that the performance of all detector com-
a corresponding 6% to tHa cross section ponents was stable during the run. The Monte Carlo accep-

(v) Because untagged events, when multiplied by the taéjance was redqced_ by 7.0% to correct malr_1|y for muon
rate function, model the tagged background, Erescale of .etect|on |neff|C|enC|es that were nqt mo.delegm (.)u.r simula-
both sets must be the same. Any mismatch between these clign- We estimate a 7.0% uncertainty in the efficiency
produce subtle differences in the scales of the kinematic varifom any such changes in the muon tag rate.
ables. A useful measure of this scale is méan We ob- (xi) Uncertainty in the model fott production is esti-
serve that the difference in meah; between our data and mated by comparingt predictions fromsAJET and HERWIG
background model is 1:61.4 GeV|[see Fig. 2&)], which
is consistent with no mismatch. We take 1.4 GeV to be the TABLE IX. Number of observed double-tagged events, ex-
uncertainty in the energy scale of the background modelpected background, observed excess, and expected &gsaming
This 1.4 GeV is added to one of the jetwe arbitrarily = m,=180 GeVt? ando=6.4 pb, versus the threshold on the neu-
choose the jet with highe&;), event-by-event, in the back- ral network output. The first error in the expected background is due
ground calculation and the analysis is redone. The resultan the errors in the tag rate functiort, correction, and th& scale
change in the background is 4.2%, and 9.1% change in thencertainties. The second error is due to the uncertainty in the fitted
cross section. background normalization factor, and is assumed to be fully corre-
(vi) The statistical error in thet efficiency is 3.2%. lated at different NN values.
(vii) Any difference in the turn-on of the trigger efficiency

for data and fottt Monte Carlo events can affect the signal

kag(Corr): kag_

NN, Observed Expected Observed Expected
threshold  number background EeXCeSSHERWIG tt

TABLE VII. Number of observed events, expected background, of events events of events  events

. . - 2
observed excess, and expected sigagsumingm,=180 GeVEt 0.02 32 28.7+ 55+ 5.7 33 27
and o;=6.4 pb, for the threshold on the neural network output

shown in Fi. 29 0.1 22 16.6+ 3.2+ 3.3 5.4 2.7
92> 0.2 17 118+ 23+ 23 52 27
Observed Expected Observed Expected 0.4 12 6.8= 1.3+ 14 5.2 2.5
number background excess HERWIG tt 0.6 7 35+ 0.7+ 0.7 3.5 2.1
0.8 3 1.1+ 0.2+ 0.2 1.9 1.4

of events events of events events
0.85 2 0.7 0.1+ 0.1 1.3 1.2
41 24.8- 2.4 16.2 15.9+ 2.6 0.9 1 0.4+ 0.1+ 0.1 0.6 1.0
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g 0.6F £ 06F n TABLE X. Summary of statistical and systematic uncertainties
Soal O 44 Eoa (0 R for the background estimate.
X ook o ++ \ .
< 0.2 - -3 0.2~ .
§ Ofesese® § Ooescssess® Background source Size of uncertainty
S 02f + ¥ 02f
'§'0'45_ L oak Statistical error 3%
&£ -0.65— ¢§_0'65_ Normalization of the muon tag rate 5%
200 300 600 050100150 200 Functional form of the muon tag rate 5%
3j —
H He Background correction fort signal 4%
£ o6 £ osf BackgroundE scale 4%
Joap (9 Soaf (@
3 02p + S o2k
| SUURRRRRE Ll I BN ees* .
2 o F Opeccccccsece were placed on the neural network output. The cross section
| -02¢ |_-02F changed by 6.2%, which we take as the uncertainty in the
04F 04F . . —

“’3-06:— “’3-06:— overall signal efficiency due ttt model dependence.

TN s 0 03 0a o6 o8 (xii) The 6% uncertainty in the— u branching fraction

Aplanarity Centrality [26] corresponds to an average over the produgedesons.

) ) ] o This 6% enters directly into the acceptance error in the
FIG. 30. Fractional differences in efficiencies betwesmET

and HERWIG ( )/ for m=180 GeVk? (a) Monte Carlo simulation.
EISAJET™ €HERWIG) EHERWIG . xiii ) The py of the tagged muon enters as an input to the
as a function of threshold ad, (b) as a function of threshold on (i) Pr 99 P

H3, (c) as a function of the threshold on aplanarity, ddiias a  N€ural network. The meap; in HERWIG tt events was

function of the threshold od. 14.7 GeV/c, while insAJETIt was 15.9 GeV/c, an 8% dif-
ference. Rescaling the mugw in HERWIG by 8% changes

generators. Figure 30 shows the fractional differences in efthe cross section by 7.0%, which is taken as a systematic

fICIenCIES [(E|SAJET_ _eHERW|G|)/EHERW|G] fOI’ d|fferent error i . .

thresholds onHy, H3, aplanarity andC (again, form, . (xiv) '!'he-ur-lcertalnty res-ultlng from the modglmg of the

=180 GeVk?). Although the two generators differ signifi- Fisher Q|scr|m|nant for the jet widthst, was estimated by

cantly in the tails of these distributions, on average they ar€0mparing data to ouieErwIG QCD Monte Carlo program.

in reasonable agreement. The systematic error was estimaté® mean value ofF in data was 0.04760.0002 and in

by repeating the analysis using events generatedigitier,. ~ HERWIG QCD it was 0.04880.0019. The difference of

In order to remove the effects of the Fisher discriminaf, ( 0.0018t 0.00_19 |nd|cat_es that our modeling is reasongble.

which is not well modeled insaJET, F values were ran- 1he uncertainty on this result, 0.0019, was systematically

domly chosen based on a parametrization of HiErwic  added to the value af, event-by-event, in thelERWIG tt

tt £ distribution. To further remove the dependence on thedenerator, and the cross section recalculated. The observed

tag rate, randomly generated values of mpgrwere taken. change in the cross section of 2.0% is used as the systematic

The expected distributions for the two generators, normal€fror from this variable. o
ized as before, are shown in Fig. 31. Identical thresholds The sizes of the above effects are summarized in Table X

for the uncertainties in the background and in Table XI for
10 the cross section. Adding both statistical and systematic er-
rors in quadrature, we estimate the background asi22.8
events(see Table VII. Similarly, the uncertainty in the effi-
ciency of thett signal is calculated from the errors in Table
XI.

Expected Events

J. Measured cross section

By fitting the shape of the output in the neural network
distribution, we obtain thét production cross section as a

function of the input mass of the top quark. Tt cross
sections extracted for several values of the top quark mass,

along with a function used to interpolate tttecross section
(drawn as a smooth curyeare shown in Fig. 32. Interpolat-
. ing both the cross section and the statistical error, we find
0 02 04 06 08 ! oq= 7.1+ 2.8+ 1.5 pb form,=172.1 GeV£t? [3].
. Neural Network Output i . K t K . .
The all-jets cross section can be combined with previous
FIG. 31. Expected distributions in final neural network output D@ measurements of the production cross section, as ex-

(NN,) for HERwiG tt signal and IsAJET tt signal for m, tracted from channels where one or both of iMebosons
=180 GeVk2. decay leptonicallyf4]. This cross section, averaged over all
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TABLE XI. Summary of statistical and systematic uncertainties
for the cross section.
4 —
Background source Size of uncertainty 9 .
. =] S
Statistical error 4% g ° - P
Functional form of the muon tag rate 7% e 0 ° 2 000’
Background correction fdn_signal 6% gg 2 °
Backgrounde+ scale 9% 2
Signal source Size of uncertainty
0
Stfatlstlcal error 3:/0 Y~ 0.8 0.9 1.0
T”ggef tgrn-on 5% Neural Network Threshold
Luminosity error 5%
Jet energy scale 6% FIG. 33. The expectedine) and observeddiamonds values of
tt_tag rate 7% significance oftt signal, plotted in terms of Gaussian equivalent
Model dependence 6% standard deviations. The vertical line corresponds to the cutoff that
b—s u branching fraction 6% is expected to yield the greatest significance.
M 0,
Pr dependence 7% K. Significance of signal
F dependence 2%

In this section, we estimate the significance of the excess
of tt signal relative to expected background. We define the
leptonic channels, was 5t61.4 (statj=1.2 (syst) pb at Probability (P) of seeing at least the number of observed
m,=172.1 GeV¢?, and is shown superimposed on Fig. 32.€events Nqpd, When only background is expected. The sig-
The statistical errors on the all-jets and leptonic cross sectionificance of &t signal can be characterized by the likelihood
measurements are uncorrelated. The systematic uncertainties P being due to a fluctuation. If the distribution for the
in the following categories were assumed to be correlate@xpected number of background events,is assumed to be

with a correlation coefficient of 1.0: a Gaussian with meah, and has a systematic uncertainty
Luminosity. oy, thenP can be calculated as
Jet energy scale. .
Muon tagging efficiency. S - B VAL § M b)2/202
Non-leptonic trigger efficiency. P:nZEN 0 dp n Cy e (kDT
Top quark generator. obs b
b— u branching ratio and muopr spectrum. Nops=1 e Hut 1 L,
Background tag rate function. =1- >, dp—— e~ (k=)o
The combined result for the Dﬂ_production Cross sec- =0 7o ' \/Zab
tion is 5.9-1.2 (statyr1.1 (syst) pb for m=172.1 (7.10
GeVic?. , _ , L
The optimal choice of selection criteria can be found by
minimizing the expected value & and, thereby, maximiz-
ing the significance of the excess, assuming Mgt is com-
20 posed oftt signal and background. Both the expected value
and measured value of the significance are shown, along
= 0 DO leptonic with the cutoff for greatest significance, in Fig. 33. The result
a of the calculation, optimized for significance, with 18 ob-
= served events and an expected background of6.9, is
S 10~ P= 0.0006, corresponding to a 3.2 standard deviation effect.
This is sufficient to establish the existence oftasignal in
multijet final states.
We consequently observe an excess in the multijet final
1;0 ' 16'30 ‘ lgo ' 2(',0 ' zéo states which we attribute td production. The cross section
Top Mass (GeV/c?) measured is consistent with previous measurements in other

B modes oftt decay[4].
FIG. 32. Thett cross section extracted through fitting the
shapes of the distributions in neural network output to data, shown VIIl. SUMMARY
as a function of top quark mass. Error bars are statistical only. For .
reference, the D®t cross section and top quark mass from leptonic ~ We have performed a measurement of theproduction
channeld4] is shown in the figuréopen squane cross section in multijet final states. As described above, we
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