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A search for the lepton-family-number-violating decayst→eg and t→mg has been performed using
CLEO II data. No evidence of a signal has been found and the corresponding upper limits are
B(t→eg),2.731026 andB(t→mg),3.031026 at 90% C.L.@S0556-2821~97!50207-4#

PACS number~s!: 13.35.Dx, 11.30.Fs, 14.60.Fg

Nonconservation of the leptonic quantum number is ex-
pected in many extensions of the standard model and
searches for lepton-number-violating decays provide strong
constraints on possible new physics processes. The most
stringent limits so far have been obtained in the studies of
m decays @1#: B(m→eg),4.9310211 and B(m→eee)
,1.0310212. Even though we cannot reach a similar level
of sensitivity fort ’s, the search for lepton-number-violating
t decays becomes competitive with them results in theoret-
ical models with mass-dependent couplings. There have been
several recent theoretical calculations based on specific su-
persymmetric, grand unified theory~GUT! and superstring
models@2–4#. For example, a superstring model@4# gives an
enhancement oft decays over the correspondingm decays
of B(t→mg)523105B(m→eg).

Lepton-number-violating neutrinolesst decays have been
studied extensively. Upper limits have been set by CLEO@5#
on branching fractions for 22 channels with three charged
particles in the final state at the level of few times 1026, and
the limit @6# B(t→mg),4.231026 has also been pub-
lished. This paper describes CLEO’s first search for the neu-
trinoless decayt→eg. The upper limit of B(t→eg)
,1.231024 at 90% C.L. was previously obtained by
ARGUS @7#. A new analysis searching for themg final state
is also presented.

In this analysis we use data from the reaction
e1e2→t1t2 collected at the Cornell Electron Storage Ring
~CESR! at or near the energy ofY(4S). The data correspond
to a total integrated luminosity of 4.68 fb21 and contain

about 4.243106 t1t2 pairs. We search for events with a
1-vs-1 topology, where the signal candidatet decays into
eg or mg and the tag side includes all standardt decays into
one charged particle, any number of photons and at least one
neutrino. The selection criteria are based on the studies of
two Monte Carlo samples of 10 000t pair events each. The
Monte Carlo sample uses theKORALB @8# generator with
two-body phase space for theeg andmg decay modes and a
detector simulation based on theGEANT package@9#.

We select t1t2 pair events with exactly two good
charged tracks, with total charge equal to zero, and with the
angle between the charged tracks greater than 90°. Since
radiative Bhabha scattering andm-pair production provide
high background rates, we allow only one identified electron
or one identified muon per event. Thus in theeg search, one
of the tracks has to be positively identified as an electron
while the other should be inconsistent with the electron hy-
pothesis, and in themg search one of the tracks has to be
identified as a muon while the other has to be inconsistent
with the muon hypothesis. After these criteria are applied,
19.3% ofeg and 36.2% ofmg Monte Carlo events remain in
the signal region.

In addition, each candidate event must have exactly one
photon separated by more than 20° from the closest charged
track in the lepton hemisphere. This photon must lie in a
good section of the calorimeter barrel~i.e., ucosuu,0.71,
whereu is an angle between the photon and beam directions!
and have energy deposition in the calorimeter greater than
300 MeV. This minimum energy cut is dictated by the kine-
matics of two-bodyt decay. The angle between the direction
of the photon and the momentum of the electron or the muon
track must satisfy 0.4,cosulg,0.8, where the upper limit is
again dictated by kinematics, and the lower limit by selection
efficiency. The Monte Carlo expectation of the cosueg distri-
bution for thet→eg channel is compared in Fig. 1 with the
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data. The corresponding distributions fort→mg are similar.
14.6% of theeg and 20.9% of themg original Monte Carlo
sample survive these initial selection criteria.

For electron identification we use both drift chamber
dE/dx and calorimeter information. In theeg analysis we
require that an electron candidate’s specific ionization be
within three standard deviations of the expected value, and
the energy,E, deposited in the calorimeter match the track
momentum, p, measured in the drift chamber: 0.8
,E/upu,1.1. After these cuts are applied, a large fraction of
low momentum electrons, mostly from two photon pro-
cesses, still survive on the tag side. Therefore, unless the
tagging track is identified as a muon, we impose additional
requirements to reject soft electrons while keeping hadrons
on the tag side: the tagging track’s transverse momentum
must be greater than 300 MeV/c, its momentum must point
to the good portion of the calorimeter barrel (ucosuu,0.71),
and theE/upu ratio must be less than 0.6.

In themg analysis a particle is identified as a muon if it
traverses at least three absorption lengths of the material, has
correlated drift and muon chamber hits, and has a calorimeter
response consistent with that of a minimum ionizing particle.

The main sources of background in the selected samples
are due to Bhabha scattering,m-pair production, radiative
t→egnn andt→mgnn decays, and two photon processes.

A large fraction of these backgrounds can be rejected by
imposing a cut on the angle between the momentum of the
tagging particle and the missing momentum of the event. We
calculate the missing momentum as a negative of the sum of
momenta of the two charged tracks and all showers detected
in the calorimeter with energies above 30 MeV. Since there
must be at least one undetected neutrino on the tag side, the
missing momentum in at event is expected to fall into the
tagging track hemisphere, while for all radiative processes
the missing momentum should be uncorrelated with the
charged track on the tag side~see Fig. 2!. To reduce this
background, we require that the cosine of the angle between
the total missing momentum of the event and the momentum
of the tagging particle be greater than 0.4.

The neutrino emission on the tag side should also result in

a large total transverse momentum with respect to the beam
direction. The data, however, show a pronounced peak near
zero transverse momentum that comes mostly from copious
two-photon and radiative QED processes. This background
is eliminated by requiring the total transverse momentum of
the event to be greater than 300 MeV/c ~see Fig. 3!. After
all the previous requirements are applied, 13.2% ofeg and
17.9% ofmg Monte Carlo sample remain in the signal re-
gion.

The final signal selection criteria are based on kinematic
constraints since a neutrinolesst decay should have a total
energy and an effective mass of theeg ormg consistent with
the beam energy andt mass, respectively. To define a signal
region in the mass vs energy plane we studied the corre-
sponding Monte Carlo distributions. We fitted the mass and
energy distributions separately to a Gaussian function plus a
polynomial. The order of the polynomial was increased until
a fit with a confidence level above 20% was obtained. The
signal region was then defined to be within63 standard
deviations of the fitted Gaussian component of the distribu-

FIG. 1. The cosueg distribution fort→eg analysis in data and
signal Monte Carlo.

FIG. 2. The cosine of the angle between the missing momentum
and the momentum of the tagging track in data and signal
Monte Carlo events for~a! t→eg and ~b! t→mg. Region

cosu(pWmis,pW tag),0.4 is rejected.
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tion. In Table I we show mean values of thet mass and
beam energy and their corresponding resolutions obtained
with this fitting technique. The63s energy cut was im-
posed on the differenceDE5Elg2Erun between the total
energy of lepton and photon and the beam energy of a par-
ticular run. The inputt mass and beam energy in the Monte
Carlo samples were 1.777 GeV/c2 and 5.29 GeV, respec-
tively. After these cuts were applied, noeg and threemg
events remained in the signal region.

We estimate the amount of the expected background in
each signal region directly from the data by extrapolating it
from a sideband region. We assume that the background dis-
tributions are linear in the vicinity ofmt and DE50 and
define the sideband regions between five and eight standard
deviations as shown in Fig. 4. The regionumlg2mtu
.5sm , uDEu.5sE , wheremlg is an effective mass of lep-
ton and photon, captures only 4.3% of theeg and 1.8% of

FIG. 3. Total transverse momentum of the event in data and
signal Monte Carlo for ~a! t→eg and ~b! t→mg. Region
pT,0.3 GeV/c is rejected.

FIG. 4. DE vs (mlg2mt) distributions for~a! t→eg and ~b!
t→mg. Solid squares represent the data; open circles represent the
signal Monte Carlo distributions. The diameter of the circles is
proportional to the number of entries. The box at the center repre-
sents the signal region, and the four other boxes represent the side-
band regions defined in the text.

TABLE I. Mean values of effective mass, energy and corre-
sponding resolutions obtained from the fits to Monte Carlo event
sample.

Channel t→eg t→mg

mt (GeV/c2) 1.772 1.774
sm (GeV/c2! 0.024 0.025
Elg2Erun (GeV) 20.013 20.010
sE (GeV) 0.060 0.053
MC efficiency ~%! 10.1 14.4

TABLE II. Summary of the results.

Channel t→eg t→mg

MC efficiency, % 10.1 14.4
n0 0 3
mB 2.0 5.5
l 2.3 3.6
Upper limit at 90% C.L. 2.731026 3.031026
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the mg Monte Carlo samples, so we can neglect the small
bias introduced by this extrapolation back into the signal
region. The extrapolation from the sidebands allows us to
estimate the expected background as 2.0 events for theeg
sample and 5.5 events for themg analysis. To check that the
background value is stable with respect to the sideband re-
gion geometry, we varied the sideband definition. The back-
ground estimates were the same within60.5 events for the
eg and61.0 event for themg channel. Finally, we estimate
the background values as 2.060.5 in theeg and 5.561.0 in
the mg analysis. The background rate is higher for themg
analysis because the selection criteria for the tagging track
are loose, and a large fraction of soft muons that failed the
standard identification procedure, mostly frommmg pro-
cesses, survive on the tag side. These estimates strongly de-
pend on the assumption of the linearity of the background
across the signal region.

To understand the origin of the events remaining in the
signal region, we applied our selection criteria to about
273106 continuum hadronic Monte Carlo events and
173106 generict Monte Carlo events. No hadronic Monte
Carlo events satisfied the selection requirements. There are 2
eg and 4mg events from generict Monte Carlo that sur-
vived all the cuts. After normalization to the same luminosity
as the data, these correspond to 0.5 and 1.0 event, respec-
tively, and are in reasonable agreement with the numbers of
events found in the signal regions. Since the Monte Carlo
simulation is uncertain at the level of precision of our mea-
surement, we choose to use background extrapolated from
the data for the estimate of upper limits.

Before discussing effects caused by systematic uncertain-
ties, we estimate the upper limits on the branching fractions
for the t→eg andt→mg channels using the statistics of a
Poisson process with background@10#:

e2~mB1l! (
n50

n0 ~mB1l!n

/n! Y e2mB(
n50

n0 mB
n

n!
50.1 , ~1!

wherel is the number of events for the upper limit at 90%
confidence level,mB is the expected background, andn0 is
the number of observed events. The upper limitLU for a
branching fraction is:

LU5l/2eNtt , ~2!

wheree is the event selection efficiency andNtt is the total
number oft pairs produced.

For theeg analysis,n050 gives usl52.3 events, and
the corresponding upper limit isB(t→eg),2.731026 at
90% C.L. For themg analysis,n053 andmB55.5 give us
the value ofl53.6 events, and the corresponding upper
limit of B(t→mg),2.931026 at 90% C.L.

The systematic uncertainty in detector sensitivity
S52eNtt is estimated as 9% for botheg andmg channels.
This uncertainty is obtained by adding in quadrature uncer-
tainties in track reconstruction efficiency~3%!, photon re-
construction efficiency~5%!, cut selection~5%!, luminosity
~1.4%!, lepton identification~1.5% fore and 4% form), and
Monte Carlo statistics~3% for eg and 2.5% formg). The
upper limit for themg channel is also affected by uncertainty
in background estimate. To incorporate systematic uncertain-
ties into the upper limits, we assume that the errors related to
eNtt and to the background estimates have Gaussian distri-
butions and apply a technique described in Ref.@11#. This
technique reweights the Poisson probability~1! of observing
l5R3S or a larger number of events by a Gaussian prob-
ability density of the detector sensitivityS and a Gaussian
probability density of the number of background events
mB . It gives a new value of the upper limit at 90% C.L.:

E
0

`E
0

`

e2RS (
n50

n0 ~mB1RS!n

n! Y S (
n50

n0 mB
n

n! D 1

A2psS

3exp@2~S2S0!
2/2sS

2#
1

A2psB

3exp@2~mB2mB0!
2/2sB

2 #dSdmB50.1 , ~3!

whereR is a new upper limit,S0 is an unbiased estimate of
S, mB0 is an estimated value of background, andsS /S0 and
sB /mB0 are relative uncertainties in detector sensitivity and
background estimate, respectively. The efficiencies, numbers
of events, expected background values, and the recalculated
upper limits for the decay branching fractions incorporating
systematic errors are summarized in Table II. These results
are limited by the total integrated luminosity and represent a
significant improvement over previous analyses.
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