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Abstract

Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus
(VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment.
To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new
classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell
protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified
five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 mM), for further
characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine
encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and
progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring
the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic
approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome
replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day.
Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While
the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral
replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus
infection.
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Introduction

Emergence and re-emergence of arboviruses such as alpha-

viruses continue to present serious health and economic threats

[1,2]. New World alphaviruses, family Togaviridae, including

Venezuelan (VEEV), eastern (EEEV), and western (WEEV)

equine encephalitis viruses, also represent significant biological

defense threats, prompting these agents to be classified as Category

B priority biodefense agents [3]. Most VEEV infections in humans

are non-lethal, however, about 14% of the cases show acute

disease symptoms affecting the central nervous system, resulting in

fatalities in a small percentage of cases (,1%) [4]. Children are

more susceptible to the neurological disease than adults. The lack

of therapeutics for treatment, the possibility of accidental aerosol

exposure of laboratory workers and its possible use as a

bioterrorism agent highlight the importance of developing safe

and effective anti-VEEV therapies.

Despite the urgent need, neither FDA-approved small molecule

drugs or vaccines for VEEV are available. Two experimental

VEEV vaccines, TC-83 and C84, have been developed for

prophylaxis. The TC-83 vaccine is an attenuated virus derived

from wild-type Trinidad donkey (TrD) strain (subtype IAB) by
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serial passage in tissue culture [5]. The TC83 vaccine has been

provided as an investigational product to at-risk populations by the

United States Army Special Immunizations program [6]. The C84

vaccine, which is inactivated VEEV TC-83, was developed to

accommodate individuals who do not seroconvert after receiving

the live TC-83 vaccine. Most individuals tolerate the C84 vaccine

well, but the protection is short-lived and far less effective against

aerosol challenge in hamster models than that of TC-83 [3].

Neither vaccine provides protection against an aerosol challenge in

mice or nonhuman primates [7,8]. Efforts to improve prophylactic

vaccines for VEEV continue; however, a post-exposure therapeu-

tic is a greatly needed alternative for sporadic outbreaks or from an

intentional release.

Considerable research has been devoted to the discovery of new

antivirals for VEEV infection. For many years, inosine-59-

monophosphate dehydrogenase inhibitors, such as ribavirin,

VX-497 and mycophenolic acid, have been recognized to have

antiviral activity in vitro [9]. Additionally, (-)-carbodine, a cytosine

analogue, displayed anti-VEEV efficacy in vitro; however the in

vivo efficacy was moderate [10]. Another reported VEEV

inhibitor, a quinazolinone compound, has moderate activity

against VEEV and Tacaribe virus (an Arenavirus), with an IC50

of 16.7 mM [11]. Most recently, the GSK-3b inhibitor, BIOder,

was reported to decrease viral replication and pathogenesis from

VEEV infection [12]. To our knowledge, none of these

compounds have progressed past preclinical testing.

To find promising new leads for antiviral compounds for

VEEV, we embarked on a high-throughput screening (HTS)

campaign using the VEEV strain TC-83. Herein we present the

discovery of a potent antiviral (CID15997213) showing promising

antiviral activity in vitro and in vivo with low toxicity. Moreover, the

CID15997213 targets the amino-terminal domain of the VEEV

nonstructural protein 2 (nsP2), revealing a previously unrecog-

nized biological function of this domain. This scaffold is a

promising candidate for further optimization and preclinical

testing for the development of anti-VEEV therapeutics.

Results

High-throughput screening and identification of hits
We screened a total of 348,140 compounds from the NIH

Molecular Libraries Small Molecule Repository (MLSMR) library

at a concentration of 20 mM with a Vero 76-based assay that

measures cytopathic effect (CPE) from VEEV TC-83 infection.

Prior to screening, the assay was standardized and validated for

HTS. The average Z9 score during the screen was 0.8460.04

(Figure S1). The ability of each compound to inhibit VEEV TC-

83 CPE was measured three days post-infection. The cut-off for

antiviral activity was 13.69% inhibition of CPE resulting in a

1.04% hit rate and 3,608 hits (Figure S2).

To down-select the hit compounds identified in the HTS, we

used the CPE-based assay in a dose response format. Using a

cheminformatic approach, we selected a total of 1,481 re-supplied

compounds available from the MLSMR compound repository.

The compounds were tested for potency in a ten-point dose-

response format with concentrations that ranged from 0.5–25 mM.

In parallel, we tested the compounds for cytotoxicity in the Vero

76. The dose-response experiment identified 453 compounds that

showed .30% inhibition of VEEV TC-83 and acceptable dose-

response activity profiles. The cytotoxicity test identified 564

compounds that showed .70% cell viability at all concentrations

tested. Combined, the results highlighted 90 compounds that met

our initial criteria: IC50 values ,12.5 mM, CC50 values .25 mM

and a Selectivity Index (SI) .2 (Figure 1).

The 90 hit compounds identified by the dose-response assay

were ranked on the basis of structure-activity-relationship (SAR)

tractability -if SAR was present in the hit set-, lack of reactive or

unstable functionality, synthetic feasibility, potency (IC50), and

CC50. Additionally, a PubChem promiscuity analysis was assessed

by the number of times the compound showed positive in distinct

assays versus the number of times it was found to be active at

concentrations less than 10 mM, and acceptable aqueous solubility

in PBS for selected scaffolds. Based on these analyses, we selected

six compounds (Figure 2), which were purified and analyzed for

structural purity as solid powders. Purified compounds were then

screened in secondary assays for confirmation as follows.

Validation of antiviral activity of most promising
compounds in secondary assays

Six of the most promising selected compounds (Figure 2) were

tested in a 96-well format using the CPE-based assay with the

VEEV TC-83 and VEEV V3526 to confirm their anti-VEEV

Author Summary

Alphaviruses occur worldwide, causing significant diseases
such as encephalitis or arthritis in humans and animals. In
addition, some alphaviruses, such as VEEV, pose a
biothreat due to their high infectivity and lack of available
treatments. To discover small molecule inhibitors with lead
development potential, we used a cell-based assay to
screen 348,140 compounds for inhibition of a VEEV-
induced cytopathic effect. The screen revealed a scaffold
with high inhibitory VEEV cellular potency and low
cytotoxicity liability. While most previously reported anti-
alphavirus compounds inhibit host proteins, evidence
supported that this scaffold targeted the VEEV nsP2
protein, and that inhibition was associated with viral
replication. Interestingly, compound resistance studies
with VEEV mapped activity to the N-terminal domain of
nsP2, to which no known function has been attributed.
Ultimately, this discovery has delivered a small molecule-
derived class of potent VEEV inhibitors whose activity is
coupled to the nsP2 viral protein, a novel target with a
previously unestablished biological role that is now
implicated in viral replication.

Figure 1. HTS of 348K compounds and identification of the hit
compound. A flow diagram of various assays used in the screen. The
number of hits remaining after each run is indicated in bold.
doi:10.1371/journal.ppat.1004213.g001

Antiviral Compound Targeting VEEV nsP2
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activities. V3526 is a live-attenuated virus derived by site-directed

mutagenesis from a virulent molecular clone of the TrD strain,

V3000 [13,14]. Five compounds showed promising anti-VEEV

activity with IC50 values less than 6.5 mM and CC50.25 mM. The

anti-V3526 activity of the compounds was comparable to that for

TC-83 (Figure 2). CID15997213 was the most active compound

with an IC50 of 1.3 and 1.01 mM for TC-83 and V3526,

respectively; hence, we selected CID15997213 as the lead anti-

VEEV inhibitory compound for further studies (Figure 2). This

compound showed no cytotoxicity up to 50 mM (Figure S3). The

average IC50 of CID15997213 from 17 independent tests for TC-

83 was 0.84 mM with a standard deviation of 0.27 (Table 1).

Additional confirmation of antiviral potency was measured for

CID15997213 using plaque and titer reduction assays. Vero 76

cells were infected with 0.05 MOI of the TC-83 or TrD strain in

the presence of the compound in the medium, and the titers of

Figure 2. Selected small molecules with potent antiviral activity. * Percent inhibition at a concentration of 20 mM with the primary screening.
doi:10.1371/journal.ppat.1004213.g002

Antiviral Compound Targeting VEEV nsP2
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Table 1. Spectrum of antiviral activity of CID15997213.

Viral family Virus Antiviral Activity (mM) *

Togaviridae New World alphavirus VEEV TC-83{ 0.84

Togaviridae New World alphavirus VEEV V3526 0.67

Togaviridae New World alphavirus VEEV TrD 0.38/0.481

Togaviridae New World alphavirus EEEV .20

Togaviridae New World alphavirus WEEV 10

Togaviridae Old World alphavirus CHIKV .50

Filoviridae Ebola virus (Zaire)-GFP .10

Paramyxoviridae RSV .50

Poxviridae VACV-LREV .20

Rhabdoviridae VSV-EGFP .20

* IC50 measured in a cell-based CPE assay (mM) with triplicate data points for VEEV 3526, TrD, CHIKV and RSV. IC50 value presented here for VEEV TC-83 is the mean from
17 independent experiments.
{Log difference in progeny virus titers between in the absence/presence of the compound at 5 mM was .6. 0.05 MOI of VEEV TC-83 was used for infection.
`IC50 measured in Neuro 2A cell line.
doi:10.1371/journal.ppat.1004213.t001

Figure 3. Anti-VEEV activity of CID15997213. (A) Dose response curve of CID15997213 in the CPE-based anti-VEEV TC-83 assay using Vero 76
cells from a representative experiment. (B) Titer reduction assay results for CID15997213. Vero 76 cells grown in 6-well plates were infected with 0.05
MOI of TC-83 or TrD and then incubated in the presence of CID15997213 at the denoted concentrations. Forty hours later the supernatant was
harvested and the titer of the progeny virus was determined. Each point represents the mean from two independent experiments. The horizontal line
in the figure indicates the detection limit of the assay. (C, D) Viral RNA and protein analysis. Vero 76 cells were infected with VEEV TC-83 at MOI of 5
and then incubated in the presence of DMSO or CID15997213 for 16 hours. In C, viral RNA was quantified using a quantitative real-time RT-PCR
method with the total RNA from the cells. In D, proteins from VEEV TC83-infected cell extracts were analyzed by western blot assay. Closed triangles
indicate bands corresponding to actin (internal control) and open arrows indicate bands that are specific to the viral proteins.
doi:10.1371/journal.ppat.1004213.g003

Antiviral Compound Targeting VEEV nsP2
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progeny viruses in the collected supernatant were measured in a

microplaque assay. CID15997213 inhibited the replication of both

viruses effectively in a dose-response manner (Figure 3B).

No progeny virus was detected at a concentration of 10 mM,

indicating a complete inhibition of the replication of the viruses. In

agreement, no visible plaques were developed when the TC-83

infected cells were overlaid with the agarose-overlay media

containing CID15997213 at 5 mM (data not shown).

The final assays we used to confirm antiviral activity were real-

time RT-PCR and western blot analyses of VEEV RNA

(Figure 3C) and proteins (Figure 3D), respectively. Cells were

infected at a MOI of 5 in the presence of CID15997213 and viral

RNA and protein levels were measured 18 hours post-infection.

The data showed that treatment with CID15997213 at a

concentration of 5 mM inhibited viral replication resulting in a

.8,000-fold reduction in viral RNA levels as compared to the

control (Figure 3C). In western blot analyses, treatment with the

compound at 1 mM resulted in a dramatic decrease in viral protein

level, and we were not able to detect viral proteins at compound

concentrations higher than 2 mM.

Spectrum of antiviral activity against wild-type VEEV,
additional members of the Togaviridae and other virus
families

To evaluate the spectrum of antiviral activity, we tested

CID15997213 against representative viruses from additional

members of the Togaviridae and other virus families in dose-

response cell-based assays (Table 1). Antiviral activity of

CID15997213 for VEEV TrD was equivalent to that of the TC-

83 strain with IC50 values of 0.36 to 0.48 mM in Vero 76 or

Neuro-2a cell lines. The SI for VEEV TrD in Vero 76 was 131.

Two additional New World alphaviruses, Eastern equine enceph-

alitis virus (FL91) and Western equine encephalitis virus (VR-70)

showed no activity and a moderate activity (IC50 of 10 mM),

respectively. Chikungunya virus, an Old World alphavirus, was

not inhibited by CID15997213. No antiviral activity was observed

against Ebola virus (Zaire), vesicular stomatitis virus, vaccinia virus

(western reserve), or human respiratory syncytial virus (Long

strain). There was no cytotoxicity associated with the compound in

the cell lines at the concentrations tested. These results suggest that

CID15997213 shows a selective and promising antiviral activity

against VEEV and WEEV, albeit 10-fold lower, with minimal

cytotoxicity.

Mechanism of action studies
To examine the point in the virus replication cycle at which the

compound inhibits replication, we performed a time of addition

experiment with CID15997213 (Figure 4A) [15]. The addition of

CID15997213 within 2 hours post-infection showed a similar level

of activity as when added at time 0. However, the addition of the

compound 4 hours post-infection lessens the antiviral activity and

addition of the compound at 8 hours post-infection did not inhibit

the replication of the virus at all. This suggests that CID15997213

targeted the virus during the middle stage of the virus’s replication,

rather than the early entry or later stages of assembly.

Mapping of VEEV resistance mutations to CID15997213
To determine whether the CID15997213 inhibits VEEV

directly, we asked whether resistance of the virus to the compound

could arise. VEEV TC-83 was passaged with increasing concen-

trations of the compound (2.5 mM to 10 mM). At passage 4, virus

began to emerge with resistance to the compound. Six plaques

were purified from the eighth passage in the presence of

CID15997213. The entire genome was amplified in 3 overlapping

segments and sequenced (Table S2). As compared to the wild-type

sequence, only two mutations were identified, Y102C and D116N,

which are both located in nsP2 (Figure 4B). Five out of the six

isolates carried Y102C mutation and one had D116N. VEEV TC-

83 and V3526 harboring these mutations, Y102 and D116N, were

completely resistant to CID15997213 with IC50 values greater

than 25 mM in the CPE-based, dose-response assay (Table 2).

The resistant viruses formed normal size plaques in the presence of

the compounds at 5 mM (Figure S4); however, their peak virus

titers were 10-fold lower than the parental virus strain (the median

virus titers of 1.056108 pfu/mL vs. 3.96109 pfu/mL for wild type

TC-83).

To confirm the resistance of the mutant viruses, we used a

reverse genetics approach. We introduced the Y102C and D116N

mutations into the VEEV V3526 genome and tested the sensitivity

of the rescued viruses, V3526 Y102C and V3526D116N, to

CID15997213. Both strains showed complete resistance to

CID15997213 (IC50.25 mM) while the parental strain, V3526

remained inhibited in the presence of compound (Table 2). This

implies Y102 and D116N within the amino terminus of the nsP2

domain are targeted directly by CID15997213.

In vivo efficacy of CID15997213 in a lethal VEEVTC83–
mouse model

We first assessed the acute toxicity to define the maximum

tolerated dose (MTD) of the CID15997213. The experimental

design for the single dose range-finding study assessed four doses

(1, 5, 50, 100 mg/kg) in one mouse per dose given by

intraperitoneal administration (i.p.) at 0 hours. Mice were

observed immediately after and for 24 hours for any adverse

clinical signs. No mice showed any clinical signs suggesting no

acute toxicity up to 100 mg/kg/day. In the multiple dose range-

finding study of the CID15997213, three mice were used per dose

(1, 5, 50, 100 mg/kg). In this study, each dose of CID15997213

was administered by i.p. twice daily on day (D) 0, 1, 2, and 3. Mice

were examined twice daily for any adverse effects. No apparent

toxicity of CID15997213 was shown in the mice at any of these

concentrations as measured by body weight loss or any notable

adverse effects as noted by potential for lethargy, hunched posture

and ruffled fur. These studies suggest a MTD of CID15997213 in

mice was $800 mg/kg.

Prior to testing for the efficacy of the compound in mice, we also

conducted an in vitro absorption, distribution, metabolism, and

excretion (ADME) study with CID15997213. CID15997213

showed 1) good blood-brain barrier (BBB) penetration potential,

2) low protein binding (32%) and 3) good microsomal and plasma

stability (Table S1). These preliminary ADME studies suggested

that the compound would have bioavailability.

To screen for antiviral activity in vivo, we used the C3H/HeN

mouse, which is susceptible to infection by the VEEV TC-83

strain and causes a lethal disease [16]. Based on the MTD and

ADME data, we chose to evaluate for antiviral efficacy of

CID15997213 at 2, 10, 50 or 200 mg/kg/day with 10 mice per

group. One group received compound vehicle only (1% carboxy-

methylcellulose) and one group received virus only. Compound

was administered two times per day by i.p. from D0 to D4. On

D0, dosing started at 4 hours prior to virus challenge and 4 hours

post-challenge. At 4 hours after the first administration of

compound, mice were infected intranasally with 10 LD50 of TC-

83. All animals were weighed and observed for clinical signs twice

daily from the D0 through D14. The median time-to-death for the

group challenged with VEEV was 8 days. The treatment of

CID15997213 significantly increased survival of the groups treated

Antiviral Compound Targeting VEEV nsP2
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with 50 or 200 mg/kg/day as compared to VEEV (Figure 5).

There was no significant difference between VEEV group and 2 or

10 mg/kg/day

Discussion

We report the discovery of a novel antiviral for VEEV with an

excellent potency and safety profile from a large HTS. For HTS,

we took advantage of the attenuated VEEV strain, TC-83 [5]. We

developed a series of assays to screen and further evaluated the hits

from a .340,000-compound library. We selected CID15997213,

a quinazolinone compound as our top hit and confirmed its

potency and lack of toxicity in several assays. Further, because

VEEV is neurotropic, we assessed the antiviral activity of the

compound in neuronal cells and found that the antiviral activity in

the neuronal cells is almost identical to that observed in Vero 76

cell culture (Table 1). We also tested the CID15997213

compound for its spectrum of antiviral activity against several

additional alphaviruses and viruses from other families. Neither

EEEV nor CHIKV were inhibited in vitro by CID15997213.

Broader spectrum screening also did not show any additional

Figure 4. CID15997213 targets viral nsP2. (A) Time of addition study. Test compound, CID15997213, was added to the designated wells by
replenishing the culture media with fresh culture media containing 5 mM of the compound at the time points denoted on the x axis. The graph
denotes the virus titers at 16 hours post-infection from various time of addition points. Each data point is the mean from two independent replicates
with duplication in titration. (B) Location of the mutations in the CID15997213 resistant viruses. The mutations mapped within the N-terminus of nsP2
protein (pink). There were no missense mutations in either nsP1, nsP3 or nsP4 genes. * Methyl-transferase like domain. (C) Sequence alignment of
nsP2 alphaviruses. Amino acid sequences of nsP2 of following alphaviruses were aligned with Clustal W (www.clustal.org): VEEV (L01442.2, GenBank
Access No. hereafter), EEEV (NC_003899), WEEV (NC_003908), Fort Morgan virus (FMV, NC_013528), Ross River virus (RRV, NC_001544), Semliki Forest
virus (SFV, NC_003215), O’nyong-nyong virus (ONYV, NC_001512.1), CHIKV (L37661.3), Sindbis virus (SINV, NP_740671.1). Y102 position is highlighted
in red.
doi:10.1371/journal.ppat.1004213.g004

Table 2. Antiviral activity of CID15997213 with VEEV and
VEEV mutants.

Virus IC50 (mM)

TC-83 0.84

TC-83 Y102C .25

TC-83 D116N .25

V3526 0.32

V3526 Y102C .25

V3526 D116N .25

TC-83 Y102C and D116N were isolated by passaging of VEEV TC-83 in the
presence of CID15997213. V3526 Y102C and V3526 D116N were generated by
site-directed mutagenesis of pV3526 and virus was generated from synthetic
RNA. The amino acid positions in the table refer to the position of the amino
acid in the nsP2 protein.
doi:10.1371/journal.ppat.1004213.t002

Antiviral Compound Targeting VEEV nsP2
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antiviral activity against Ebola virus, vesicular stomatitis virus,

vaccinia virus, or human respiratory syncytial virus, suggesting

selectivity for VEEV and WEEV.

Time of addition studies using VEEV TC83 in Vero 76 showed

the compound had equivalent inhibitory activity if added as late as

two hours post-infection. The effectiveness of the CID15997213

gradually decreased when added 4 hours post-infection and was

not active at 8 hours post-infection. This suggests that the

compound does not target entry or fusion, but a function required

for replication of the virus. The replication cycle of alphaviruses

progresses through three main stages: early, middle, and late, as

defined by molecular synthesis. In the early stage of replication

from entry until about 4 hours after, the nonstructural proteins

(nsP123+nsP4) are translated from newly infecting genomic (+)

RNA, and the (2) 42S RNA synthesis from the genomic (+) RNA

takes place first, after which the (2) RNA are used as templates to

make viral (+) RNA. The 42S (2) RNA synthesis shuts down

approximately 4 hours after infection, correlating with the rapid

cleavage of all nsP123 proteins into individual nsPs by protease

activity in nsP2 [17]. During the middle stage of replication (4–

8 hours post-infection), the viral replication complex synthesizes

the 42S genomic (+) RNA and the 26S mRNA. Proteins are

translated from the 26S mRNA and cleaved at this stage. In the

final stage of replication, virions assemble at the plasma membrane

and exit by budding. The maximum titer of virus in cell culture

models is typically reached by16 hours [18,19]. In summary,

adding the drug at 4 hpi still allows 90% of the maximum virus

production to occur suggesting the target of the compound is

during minus strand synthesis.

A potential clue to the target during replication was provided by

the compound resistance study, which identified two key resistance

mutations in the N-terminal region of nsP2 (Y102C and D116N,

Table 2 and Figure 4B). The C-terminal regions comprising the

helicase and the proteinase domains in nsP2 are well defined

structurally or enzymatically [20–26]. The role of the N-terminus

portion of nsP2, however, remains unclear. The nsP2 Y102 is

conserved among VEEV, WEEV and EEEV, while the Old

World alphaviruses have a K102 at this position (Figure 4C).

This may explain the susceptibility difference between VEEV and

CHIKV to the compound, but not among VEEV, WEEV and

EEEV. Differences in the observed sensitivity of the VEEV,

WEEV and EEEV may be due to differences in rates of viral

replication. In addition to replication, nsP2 functions also include

interacting with host functions in the nucleus and control of the

host response and interferon production by the infected cells

[27,28]. This may also in turn effect viral replication. These

aspects will be of interest for future studies of the mechanism of

action of this drug.

We used the lethal VEEV TC-83-mouse model, which has been

used widely for screening and efficacy studies of antivirals and

vaccine candidates, to test the efficacy of CID15997213 [10,16].

Forty percent of the challenged mice survived when treated with

10 mg/kg of CID15997213, and all mice survived when treated

with 50 or 200 mg/kg/day. This efficacy is substantially better

than other anti-VEEV compounds reported to date [10,29], and

hence shows promise for further development. For example,

100 mg/kg of (2)-carbodine was required to show 50% survival in

the same model. Moreover, in vitro ADME studies suggest that

CID15997213 was moderately effective at crossing the blood-

brain barrier (BBB PAMPA, Table S1). Therefore,

CID15997213 would be able to penetrate the blood brain barrier

to fight infection.

In conclusion, we present the discovery of novel anti-VEEV

compounds using a cell-based HTS of the MLSMR compounds

library. This effort resulted in the identification of CID15997213,

a potent hit compound, which is being optimized as a potential

antiviral lead. In addition, the compound is being employed as a

probe to study the role and the pharmacological relevance of

intervening with the viral nsP2 domain. A comprehensive

structure-activity study and mechanism of action study of the hit

Figure 5. Effect of CID15997213 on survival of VEEV TC-83 infected mice. Six groups of ten C3H/HeN mice were used to assess antiviral
activity in vivo; Group 1-Vehicle control; Group 2-VEEV only; Group 3- VEEV and 2 mg/kg/day CID15997213; Group 4- VEEV and 10 mg/kg/day
CID15997213; Group 5- VEEV and 50 mg/kg/day CID15997213; Group 6- VEEV and 200 mg/kg/day CID15997213. Vehicle or CID15997213 were
administered by i.p. four hours prior to mock or i.n. infection of VEEV TC-83. Treatments continued for from D0 though D5. Survival of mice in each
group in plotted by time. Each group was compared to Group 3 for measurement of the p-value using the Mantel-Cox test. Analyses of each P value
generated by the Mantel-Cox test were evaluated by comparison to a Bonferroni corrected threshold of 0.0125 (p = 0.05) to measure any potential
significant differences between groups.
doi:10.1371/journal.ppat.1004213.g005
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compound will be important to generate optimized lead

compounds and develop a therapeutic candidate that can be used

for the treatment of VEEV infection.

Materials and Methods

VEEV viruses and cells
VEEV TC-83 (lyophilized vaccine from USAMRIID) and

V3526 were amplified in BHK-21 [30]. V3526 was rescued from

the BHK cells transfected a full-length viral RNA derived from

pV3526 plasmid as described elsewhere [31]. pV3526 was

generated by removing the luciferase gene from pV3526-luc

plasmid with QuickChange site-directed mutagenesis method

(Stratagene). V3526 Y102C and V3526 D116N viruses were

generated with same method from plasmids, pV3526 Y102C and

pV3526 D116N, in which the corresponding mutation was

introduced with QuickChange method. VEEV TrD (gift from

Dr. R. Tesh, World Reference Center for Emerging Viruses and

Arboviruses) and CHIKV (ATCC, VR-64) were grown in Vero 76

cells. (CRL-1587, ATCC) that were maintained in Dulbeccos-

modified essential media (DMEM) with 10% FBS. BHK C-21

(CCL-10, ATCC). Neuro-2a (CCL-131, ATCC) were maintained

in Minimum Essential Media with Earle’s modification (MEM-E)

with 10% FBS.

VEEV HTS
348,140 compounds were plated in 384-well black wall plates

containing 4,500 Vero 76 cells/well in single dose of 20 mM at a

final concentration in Eagle’s minimum essential medium with 5%

heat inactivated FBS, 1% penicillin/streptomycin/L-glutamine,

1% Hepes and 0.2% DMSO. Twenty-five microliters of 175

TCID50 of VEEV TC-83 were added to each well using a Matrix

WellMate. The plates were incubated for three days in an actively

humidified incubator with 5.0% CO2 at 37uC and 95% humidity.

The cell viability at the end of incubation period was measured as

described elsewhere [32]. The Z factor values were calculated

from 1 minus (3*standard deviation of cell control (sc) plus 3*

standard deviation of the virus control (sv)/[mean cell control

signal (mc) minus mean virus control signal (mv) [33].

Antiviral dose response and cytotoxicity assays
1600 hits were selected for dose-response and cytotoxicity

assays. Detailed procedures for these procedures are described in

elsewhere (PubChem AID: 588727. http://pubchem.ncbi.nlm.

nih.gov/assay/assay.cgi?aid = 588727&loc = ea_ras).

A similar approach was used to measure the dose-response

inhibition and cytotoxicity screens in a 96-well format against

other viruses with a cell density of 12,000 cells per well in a volume

of ninety microliters and 600 pfu of virus. Cell viability was

measured with 90 mL per well of CellTiter-Glo reagent (Promega)

after incubation for two days for VEEV or three days for CHIKV.

VEEV microplaque, plaque and time of addition assays
To measure titer reduction using a microplaque assay, six well

dishes with Vero 76 cells were infected with virus at an MOI of

0.05 in the presence or absence of media containing compounds.

At 40 hours post-infection, the presence of PFU was measured as

follows. Supernates from the 6 well plate from each treatment

were diluted in DMEM supplemented with 5% FBS using a liquid

handler, epMotion 5070 CB (Eppendorf Inc.). Vero 76 cells grown

overnight in 96-well plates were infected with 25 mL of the serially

diluted samples. The plates were incubated for 1 hour at 37uC,

5% CO2. Wells were rinsed with 100 mL of PBS and replenished

with DMEM supplemented with 0.75% methylcellulose and 10%

FBS and incubated at 37uC, 5% CO2 for three days. The

microplaques were visualized by staining with 0.2% crystal violet

in 4% paraformaldehyde and 20% ethanol.

For the plaque assays, six-well plates containing one-day-old

Vero 76 cells were infected with 300 pfu of TC-83. After infection,

an agarose overlay media (0.35% agarose, 1X MEM-E, 10% FBS)

with or without CID15997213 (final concentration of 5 mM) was

added. Plaques were visualized by 0.2% crystal violet in 4%

paraformaldehyde.

For the time of addition assay, six-well plates containing Vero

76 cells were infected with 5 MOI of VEEV TC-83. At specific

time before, during or after infection, 1.5 mL of cell culture media

containing 10 mM of the compound was added. After 40 hours,

supernate was harvested and PFU were measured.

VEEV RNA quantitation
Total RNAs from infected cells were isolated with Trizol (Life

Technologies) reagent as per the manufacturer’s protocol and

were dissolved in 50 mL of deionized water. Ten microliter of

RNA samples were subjected to a cDNA synthesis with Super-

ScriptIII (Life Technologies) and random hexamers by following

the manufacturer’s protocol. To quantitate the relative viral RNA,

we used a method of real-time PCR with 2(2Delta C(T)) method

in conjunction with TaqMan chemistry. Sequences for the primers

and probe are described in the Table S2. 18S rRNA was used for

the endogenous control. The real-time PCR was done in a total of

twenty microliters per well with 2 mL of 10-fold diluted cDNA

mixture in a multiplex mode using ABI 9700HT genetic analyzer.

Western blot
Western blot assay to detect viral protein was done with a

standard protocol with anti-VEEV mouse monoclonal antibody 6

(DD-332, BEI Resources) and anti-actin rabbit polyclonal

antibody (Sigma-Aldrich). The proteins were visualized with

HRPO-conjugated anti-mouse IgG and HRPO-conjugated anti-

rabbit IgG from goat in conjunction with an enhanced chemilu-

minescence substrate (GE Healthcare).

VEEV resistance screening
CID15997213-resistant viruses were selected by passaging

VEEV TC-83 in the presence of the compound. Drug concen-

tration was increased by 2.5 mM every other passages starting at

2.5 mM (Passage 0) and ending at 10 mM (Passage 8). Resistant

viruses were plaque-purified and amplified in the presence of the

compound at 5 mM. Viral RNA was purified with MagMAX viral

RNA isolation kit (Ambion) with 250 mL of virus culture

supernatant. The nsP12, nsP34 and structural gene regions were

amplified by RT-PCR with primers and PhusionTaq (NEB) (See

the Table S2). The sequences were determined by standard

automated Sanger sequencing and compared to the parental

sequences (GenBank Accession No.: L01443.1) as reference.

Broad spectrum CID15997213 screening
Compound CID15997213 was tested for antiviral activity using

cell based assays for several viruses. For testing with EEEV strain

FL91, Vero cells were infected for 1 hour at MOI = 0.05. Virus

was then removed by washing and media was added with a 2-fold

dilution of compound from 20 to 2.5 mM. Titers were assayed

from supernatant collected at 40 hours post-infection by neutral

red plaque assay. Compound was tested for activity against WEEV

(VR-70, ATCC) in Vero cells (CCL-81, ATCC). Briefly, serial

two-fold dilutions of compound from 25 to 0.2 mM were added to

cells in a 96-well microplate followed by addition of virus.
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Cytopathic effect was evaluated by neutral red assay and visual

observation on day 3 to determine the IC50. For measurement of

potential inhibition of Ebolavirus infection of HeLa cells, a

recombinant Ebolavirus with a green fluorescent protein (GFP)

gene inserted into the genome was used. Cells were pretreated for

1 hour with two fold-dilutions of 10 to 0.005 mM of compound

and incubated with virus for 24 hours in the presence of the

compound. Fixed cells were imaged by microscope. Total and

infected cells were counted by Cell Profiler image analysis software

(Broad Institute, MIT, Boston, MA), detecting nuclei stained with

DAPI and virus encoded GFP expression. This work was

performed in a biosafety level 4 (BSL4) laboratory at Texas

Biomedical Research Institute. Antiviral activity was tested against

VACV (VACV-LREV) in A549 cells (CCl-85, ATCC). Briefly,

serial dilutions of compound from 20 to 0.1 mM were added to cell

in a 96-well microplate followed by addition of virus. Viral

infection was assayed by the measurement of fluorescent reporter

proteins from early (venus) or late (mCherry) VACV promoters

18 hours post infection to determine the 50% effective concen-

tration (EC50) [34]. Compound was tested for activity against

VSV-EGFP in A549 cells (CCL-85, ATCC). Briefly, serial

dilutions of compound from 20 to 0.1 mM were added to cell in

a 96-well microplate followed by addition of virus. Viral infection

was assayed by the measurement of the fluorescent reporter

protein eGFP at 18 hours post infection to determine the IC50

[35]. Antiviral activity against RSV was tested as described

elsewhere [36]. Briefly, RSV (strain Long, ATCC VR-26) was

amplified in HEp-2 cells grown in MEM-E and the RSV stock

viruses were supplemented with 10% trehalose and then stored in

vapor phase of liquid nitrogen [37]. Serially diluted compound from

25 to 0.2 mM were added to HEp-2 cells in a 96-well microplate

followed by addition of virus (MOI = 0.05). CPE was evaluated by

CellTiter-Glo reagent (Promega) after incubation for five days.

Synthesis of quinazolinone CID15997213
CID15997213 is commercially available from ChemDiv, Inc.

(CAS# 900134-28-3); however, it was synthesized at the University

of Kansas for the purpose of scale, purification, structural analysis

and purity confirmation prior to assessment in assays.

CID15997213 was prepared by the route depicted in Text S1.

In vivo dose-range finding and efficacy studies
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of the University of Louisville (Protocol Number:

12011). All efforts were made to minimize pain and suffering. For

single-dose and multiple dose range-finding studies, we assessed

potential toxicity at four doses (1, 5, 50, 100 mg/kg) in mice. In

single-dose, mice were examined at 0 and 24 hours after

intraperitoneal administration in one mouse per dose. In the

multiple dose range-finding study, three mice were used per dose

(1, 5, 50, 100 mg/kg). CID15997213 was administered by i.p.

twice daily for 4 days on day 0, 1, 2, and 3. Mice were weighed

and examined twice daily for any adverse effects.

For antiviral screening for efficacy, ten five to six week old

C3H/HeN mice obtained from Charles River Laboratories

(Wilmington, MA) were randomly assigned to one of 6 treatment

groups: Group 1-Vehicle control; Group 2-VEEV only; Group 3-

VEEV and 2 mg/kg/day CID15997213; Group 4- VEEV and

10 mg/kg/day CID15997213; Group 5- VEEV and 50 mg/kg/

day CID15997213; Group 6- VEEV and 200 mg/kg/day

CID15997213. Mice were dosed twice per day with 200 mL

volume comprised of vehicle only (1% carboxymethyl cellulose) or

compound formulated in vehicle by i.p. Treatments were

conducted for five days, beginning 4 hours prior to virus

challenge. Mice were infected i.n. with 10 LD50 of TC-83 (Day-

0) diluted in 50 mL of PBS. For the Vehicle control, PBS was used

in place of virus. Mice were weighed from D0–D14 and checked

twice a day for mortality and morbidity. P values were generated

from comparisons of survival data using the Log-Rank (Mantel-

Cox) test using Prism 6 (Graph Pad Software, Inc) and compared

using the Bonferroni method. P values were calculated for each

group (K = 4). Analyses of each P value generated by the Mantel-

Cox test were evaluated by comparison to a Bonferroni corrected

threshold of 0.0125 (p = 0.05) to determine significance.

Supporting Information

Figure S1 The primary HTS assay performance. Z9

analysis (the average Z9 = 0.84) showed that the HTS was robust.

Each data point represents the Z9 (see below) of each 384-well

assay plate in the HTS.

(DOCX)

Figure S2 Hit compounds selection from the HTS. A

total of 348,140 compounds were screened in the CPE based HTS

at 20 mM. The average inhibition was 2.18%. The 3,608

compounds that showed an inhibition efficacy higher than the

cut-off, 13.69% (mean +3 times of standard deviation of all

compounds tested; shown by black horizontal line) were selected as

hit compounds.

(DOCX)

Figure S3 Cytotoxicity assay of CID 15997213. CID

15997213 didn’t show cytotoxicity in Vero 76 cells. Each data

point represents the mean of percent cell viability from

triplicates. Dose-Response curve and IC50 were generated using

the Four Parameter Logistic Model or Sigmoidal Dose-Response

model.

(DOCX)

Figure S4 Plaques from resistant mutant viruses. Viral

plaques of TC-83 P8 which was selected by CID 15997213

treatment for 8 passages were developed in the presence of 5 mM

of CID 15997213 (bottom). Even with the treatment of the

compound, the size of plaques of the mutants (bottom) was nearly

the same as that of wild type TC-83 produced in the absence of the

compound (top).

(DOCX)

Table S1 In vitro ADME profile of CID 15997213.

(DOCX)

Table S2 Sequences of primers and probes used for the
experiments.

(DOCX)

Text S1 Synthetic route of CID 15997213.

(DOCX)
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