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Using molecular-dynamics simulation and Gibbs-Cahn Integration, we calculate the interfacial free
energy γ of a binary hard-sphere fluid mixture at a structureless, planar hard wall. The calculation
is performed as a function of packing fraction (density) for several values of the diameter ratio α

= σ 2/σ 1, where σ 1 and σ 2 are the diameters of the two particle types in the mixture. Our results
are compared to those obtained from the bulk version of the White Bear Mark II (WBII) classical
density-functional theory, which is a modification of the Fundamental-Measure Theory of Rosen-
feld. The WBII bulk theory is shown to be in very good agreement with the simulation results,
with significant deviation only at the very highest packing fractions. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4858433]

INTRODUCTION

The interfacial free energy γ is the primary property
governing the thermodynamics of solid-liquid interfaces.
For chemically heterogeneous interfaces, in which the
solid and liquid have a large difference in composition, an
important reference system is the hard-sphere (HS) fluid
confined at a structureless hard wall (HW). The simple, but
non-trivial, nature of such systems is well suited for the
evaluation and development of theories for inhomogeneous
fluids, especially integral-equation methods or classical
density-functional theories (cDFT). In addition, some real
polymer and colloid systems can be modeled quantitatively
as hard-spheres. For example, it has recently been shown
that poly-N-isopropylacrylamide (PNIPAM) spheres in a
solvent with appropriate charge screening reproduce results
from previous calculations on the pure HS system.1 There
has been considerable theoretical and computational work
focused on the HS/HW system; however, the vast majority of
such studies has focused on single component HS fluids, with
significantly less work examining confined multi-component
HS fluids. In this work, we examine the interfacial thermo-
dynamics of a binary hard-sphere fluid at a structureless hard
wall using molecular-dynamics simulation.

Although theoretical estimates from Scaled Particle
Theory have been in existence since the 1960s,2, 3 the first
simulations to calculate γ for a single component HS/HW
system were those of Henderson and van Swol,4 who ob-
tained γ by integrating the excess surface stress obtained from
molecular-dynamics simulation. Subsequently, a number of
higher precision calculations were reported using thermody-
namic integration (TI).5–7 Mechanical methods8 can also be
used, but require considerable computational effort in order
to achieve acceptable precision. Laird and Davidchack used
the cleaving-wall method9 and Gibbs-Cahn Integration10, 11

to obtain very high precision results for this system that are

a)Author to whom correspondence should be addressed. Electronic mail:
blaird@ku.edu

useful in evaluating theoretical predictions, such as that from
SPT2 and recent cDFT results from Fundamental Measure
Theory (FMT)12 and its extensions.13, 14

There have been a number of cDFT studies of the struc-
ture and interfacial thermodynamics of the binary HS/hard
wall system.;13–17 however, simulation studies have been
limited to evaluations of structure through the calculation
of density profiles.18, 19 This has made it difficult to quan-
titatively evaluate the thermodynamic predictions of the
theoretical studies. In this work, we present results from
molecular-dynamics simulation for the interfacial thermody-
namics of a variety of binary hard-sphere fluids at a struc-
tureless hard wall. In these simulations, the interfacial free
energy γ is determined using an extension of the Gibbs-Cahn
Integration10, 11, 20–22 technique to a multicomponent fluid at
a static, structureless solid wall. The results are compared to
recent results based on the White Bear II cDFT.14, 17

SYSTEM

We consider a binary mixture of hard-sphere particles of
differing sizes at a structureless wall. The interparticle and
wall-particle potentials φ and φw are, respectively,

φ(r) =
{

∞ r < σij

0 r ≥ σij

, (1)

and φw(z) =
{

∞ z < σi/2

0 z ≥ σi/2
, (2)

where σ i is the diameter of spheres of type i ∈ {1, 2}, σ ij is
the arithmetic mean of σ i and σ j, r the distance between the
centers of two spheres, and z the distance between sphere cen-
ter and wall. Defined in this manner, the sphere-wall collision
occurs at the surface of the sphere, not the center.

Our system consists of N1 type 1 spheres with diameter
σ 1 and N2 type 2 spheres with diameter σ 2 in a volume V ,

0021-9606/2014/140(2)/024703/7/$30.00 © 2014 AIP Publishing LLC140, 024703-1
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giving a total number density ρ of

ρ = N1 + N2

V
= ρ1 + ρ2, (3)

where ρ i is the number density of species i. Without loss of
generality, we assume σ 1 > σ 2. The mole fraction of each
species is xi = ρ i/ρ, with x1 + x2 = 1. The total packing frac-
tion η for the mixture is η = η1 + η2, where ηi = π

6 σ 3
i ρi . For

a given α, the system is completely described by specifying
x1 and η.

GIBBS-CAHN INTEGRATION

In this work, we calculate the interfacial free energy from
MD simulations using the Gibbs-Cahn Integration method,
which is based on Cahn’s extension23 of the surface ther-
modynamics of Gibbs.24 This method has been applied to
the calculation of γ for one- and two-component crystal-
melt interfaces20–22 and for single-component fluids at static
walls,10, 11 where it was shown to have considerably less com-
putational overhead than competing methods without sacri-
ficing precision. The derivation of the Gibbs-Cahn adsorption
equation specifically for a fluid at a static wall was discussed
in Ref. 10 and is outlined here. Consider an r-component fluid
at a static surface. The total Gibbs free energy G for this
system is

G = E − T S + PV, (4)

where E, T, S, and P are the internal energy, temperature, en-
tropy, and pressure, respectively. The Gibbs free energy of the
bulk fluid Gf is

Gf =
r∑

i=1

μiNi, (5)

where μi is the chemical potential of species i and superscript
“f” denotes bulk fluid quantities. The interfacial free energy is
defined as the difference per unit area between the free energy
of the fluid at the interface and the bulk fluid.

γA = G − Gf = E − T S + PV −
r∑

i=1

μiNi, (6)

where A is the interfacial area. The differential of this quantity
is

d(γA) = −SdT + V dP −
r∑

i=1

Nidμi. (7)

This equation and the Gibbs-Duhem equation for the bulk
fluid

− SfdT + V fdP −
r∑

i=1

N f
i dμi = 0 (8)

then form a system of two simultaneous linear equations con-
necting the differentials. Cramer’s rule from linear algebra
can then be used to eliminate one of the differential terms on
the right-hand side of Eq. (7), giving

Adγ = −[S/X] dT + [V/X] dP −
r∑

i=1

[Ni/X] dμi, (9)

where X can be any variable conjugate to a differential dx in
Eq. (9) and the notation [Y/X] is defined as

[Y/X] ≡ 1

Xf

∣∣∣∣∣Y X

Y f Xf

∣∣∣∣∣ . (10)

In Eq. (10), the quantities with superscript “f ” are measured
in a region of the system far enough away from the interface
to be considered bulk fluid, whereas the unscripted quantities
are measured in a region that wholly encompasses the inter-
face and associated interfacial fluid. The form of Eqs. (9) and
(10) ensures that one of the [Y/X] dx terms in Eq. (9) can be
eliminated by setting X = Y.

For a hard-sphere system, such as the one studied here,
the temperature dependence of γ is a trivial linear scaling,25

so the dT term in Eq. (9) can be neglected. Thus, for a binary
(2-component) hard-sphere fluid at a hard wall, the Gibbs-
Cahn adsorption equation (Eq. (9)) becomes

Adγ = [V/X] dP − [N1/X] dμ1 − [N2/X] dμ2. (11)

The application of Eq. (11) requires a specific choice for
X, which is equivalent to defining a Gibbs Dividing Surface
(GDS)26 such that the excess surface value of the quantity X
is zero. For example, one possible choice is X = N1 yielding

dγ = 1

A
[V/N1] dP − 1

A
[N2/N1] dμ2

= vN1dP − 	2|N1dμ2, (12)

where vN1 and 	2|N1 are the excess volume and excess number
of type 2 particles per unit volume using a GDS defined such
that the surface excess number of type 1 particles is zero. Sim-
ilarly, one can choose X = N2 or V ; however, for this study,
we found it most convenient to choose X to be the total parti-
cle number, N = N1 + N2. To do this, we must rewrite Eq. (7)
for the binary hard-sphere system as

A dγ = V dP − N1dμ1 − N2dμ2

= V dP − N1d(μ1 − μ2) − Ndμ2

= V dP − N1d
μ − Ndμ2, (13)

where 
μ = μ1 − μ2. Equation (11) then becomes

Adγ = [V/X] dP − [N1/X] d
μ − [N/X] dμ2. (14)

Setting X = N then gives

dγ = vN dP − 	1|N d
μ, (15)

where vN and 	1|N are the excess V and excess N1 for a GDS
defined such that the excess total number of particles is zero.
The choice of X = N was used in the current work because
we find it gives significantly smaller statistical error than the
other possible choices for similar computational effort and the
value of 
μ can be calculated easily using a particle swap
method, as described later in this section.

We calculate γ by integrating Eq. (15) with respect to
pressure at fixed x1, recognizing that γ (P = 0) = 0. The
resulting expression can be written as

γ (P ; x1) =
∫ P

0

[
vN (P ′; x1) − 	1|N

(
d
μ

dP ′

)
x1

]
dP ′. (16)
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In this work, we evaluate this integral numerically at fixed
x1 as a function of η for the system, as identity and num-
ber of particles are far easier to control than pressure and

μ. We use reduced units throughout with energy and
length scales of kBT and σ 1, respectively, giving the fol-
lowing reduced quantities: ρ∗

i = ρiσ
3
1 , γ ∗ = γ σ 2

1 /kBT , P ∗

= Pσ 3
1 /kBT , v∗

N = vN/σ1, 	
∗
1|N = 	1|Nσ 2, and μ∗

i = μi/

kBT . For simplicity, in what follows, the “*” superscript is
omitted and all quantities are assumed to be in reduced units,
unless otherwise specified.

SIMULATION DETAILS

Molecular dynamics (MD) simulations are performed
on a HS mixture between two structureless hard walls in a
slit-pore geometry. The MD simulations were implemented
using the linked-cell-list algorithm of Rapaport.27 The size
of the simulation box is fixed at approximately Lx×Ly×Lz

= 33σ 1×33σ 1×38σ 1 for most systems. At larger values of
η and smaller values of x1, we use a smaller system size
of 22σ 1×22σ 1×26σ 1 to keep N < 50 000 and computation
times reasonable. The z-axis is defined as being normal to the
walls, and periodic boundary conditions are employed in the
x and y directions. The distance between the walls (Lz) is cho-
sen to be large enough that the walls do not interact and there
is a significant region of bulk fluid in the center of the simula-
tion. For this initial study diameter ratios of α = 0.7, 0.8, and
0.9 were chosen, as the phase diagrams in this range of α are
well characterized.28–30

Each system equilibrates for 1000 τ , where τ

= σ1
√

m/kBT is the natural time unit for hard-sphere
dynamics. Equilibrium averages of P, 
μ, and the individual
density profiles, ρ1(z) and ρ2(z), are collected for each system
studied over a total time of 20 000 τ , divided into 20 blocks
of 1000 τ each. Bulk values such as density and mole fraction
are determined by averaging over the bulk region. We found
that defining the bulk region to consist of all particles more
than 7σ 1 away from either wall was sufficient for all systems
studied. Pressures are calculated using the equation

βP = ρf + βm

3V f
τ

〈∑
	rij · 	vij

〉
, (17)

where β = 1/kBT, V f is the volume of the bulk region, 
τ is
the time over which collisions are summed in the bulk fluid,
	rij is the vector between the centers of two spheres upon col-
lision, m is the mass of the particles and 	vij is the difference
of the velocities of two spheres upon collision. Fig. 1 shows
an example of the density profiles calculated for α = 0.9 at a
reduced pressure of 1.6627 and a mole fraction x1 = 0.25.

The chemical potential difference (
μ) is calculated in
a manner similar to the Widom insertion method,31 in which
individual chemical potentials (μi) are calculated by insert-
ing test particles into the system. To calculate 
μ the Widom
insertion method is modified by replacing particle insertions
with particle swaps.32, 33 The advantage of the particle swap
method is that it determines 
μ directly, without the need
to separately calculate the individual μi, which is difficult at
large η. Dividing 
μ into an ideal-solution component and

0 0.5 1 1.5 2 2.5
z /σ1

0

0.5

1

1.5

2

ρ i /ρ
f

Type 1
Type 2

η = 0.19933

α = 0.9

x
1
 = 0.25

FIG. 1. Sample density profiles near the wall for α = 0.9, x1 = 0.25, and
P = 1.6627. The dashed lines represent the density profiles for this α in the
zero-pressure limit.

an excess component, we have


μ = 
μideal + 
μexcess, (18)

where


μideal = ln

(
x1

1 − x1

)
, (19)

and, for the hard-sphere binary system, the excess component
is given by


μexcess = ln

[P(σ2←1)

P(σ1←2)

]
, (20)

where P(σj←i) is the probability that changing the identity of
a randomly chosen particle from type i to type j will not re-
sult in a particle overlap. [Note: for the hard-sphere mixtures
considered here, P(σ2←1) is identically 1.]

The values of vN and 	1|N as functions of pressure (or η)
are calculated by numerically integrating their representations
as integrals over the density profiles:

vN (P ) =
∫ ∞

0

[
1 − ρ(z; P )

ρf(P )

]
dz, (21)

	1|N (P ) =
∫ ∞

0

[
ρ1(z, P ) − xf

1(P )ρ(z, P )
]
dz. (22)

Because the density profiles approach step functions in the
low density (pressure) limit, the values of vN (P = 0) and
	1|N(P = 0) can be determined analytically to be [x1 + α(1
− x1)]/2 and 0, respectively. Examples of the density profiles
in the zero-pressure limit are shown in Fig. 1.

RESULTS AND DISCUSSION

For each of the diameter ratios studied here (α = 0.7, 0.8,
and 0.9), we examine the system at mole fractions x1 = 0.25,
0.50, and 0.75, each for packing fractions in the range 0 < η

< 0.5. This range of η was chosen because it corresponds ap-
proximately to the fluid region of the phase diagrams,28–30 in
order to avoid the freezing transition. Because of differential
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x
1
 = 0.00
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FIG. 2. Excess volume per unit area, vN , as a function of packing fraction
for the α = 0.7 mixtures. Results for the pure system (original and scaled)
from Laird and Davidchack10 are included (diamond symbols). For clarity,
the x1 = 1.00 data has been shifted by +0.2 on the vN -axis, the x1 = 0.75
data by +0.1, the x1 = 0.25 data by −0.1, and the x1 = 0.00 data by −0.2.
The solid lines are the predictions from the WBII bulk theory.

adsorption of one species over the other at the interface, the
mole fraction, and density of the bulk fluid region can change
slightly from that of the initial configuration as the system
equilibrates. Before taking averages, we add (or swap) parti-
cles of the requisite type to ensure that the relative deviations
from the desired bulk values are less than 10−4 in the final
equilibrated system.

The observed pressures in the simulation are in good
agreement with pressure values obtained using both the
Mansoori-Carnahan-Starling-Leland equation of state34 or the
Carnahan-Starling Mark III equation of state14 for HS mix-
tures, as are the calculated chemical potential differences. For
more detail, see the supplementary material.35

Figs. 2–4 show the results for the excess volume, vN , for
α = 0.7, 0.8, and 0.9, respectively. For comparison, we also
show in Figs. 2–4 the excess volume as determined from the
White Bear II (WBII) bulk theory.35 For low and intermedi-
ate packing fractions, the WBII expressions are in excellent

0 0.1 0.2 0.3 0.4 0.5η

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v N
 /σ
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x
1
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x
1
 = 0.75

x
1
 = 0.50

x
1
 = 0.25

x
1
 = 0.00

α = 0.8

FIG. 3. Excess volume per unit area, vN , as a function of packing fraction
for the α = 0.8 mixtures. Same conventions as Fig. 2.
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x
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1
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FIG. 4. Excess volume per unit area, vN , as a function of packing fraction
for the α = 0.9 mixtures. Same conventions as Fig. 2.

agreement with the simulation results, although some devia-
tion is seen at the highest packing fractions (η > 0.45). Inter-
estingly, the deviations are seen primarily in the pure systems
(x1 = 0 or 1) and are less pronounced in the mixtures. The
data for vN at for all systems at all mole fractions and packing
fractions studied are given in tabular form in the supplemen-
tary material.35

The excess adsorption 	1|N is a measure of segregation of
the mixture at the interface. Because 	1|N for these systems is
relatively small, it is difficult to get high relative precision for
this quantity in reasonable simulation time. This is especially
true at the higher packing fractions where the calculation of
the 	1|N involves numerical integration over highly oscillatory
density profiles. The results for 	1|N for α = 0.7, 0.8, and 0.9
are shown in Figs. 5–7, respectively. These results are also
given in tabular form in the supplementary material.35 Also
shown in Figs. 5–7 are the corresponding predictions from
WBII. Except at low packing fractions, the scatter in the data
is large – due to the sampling issues discussed above; how-
ever, the contribution of 	1|N to the value of γ through the
integration of Eq. (16) is also quite small, so the scatter in

0 0.1 0.2 0.3 0.4 0.5
η

-0.02

0

Γ 1|
N

σ 12

x
1
 = 0.75 

x
1
 = 0.50

x
1
 = 0.25

α = 0.7

FIG. 5. Interfacial excess particle number 	1|N as a function of packing frac-
tion for the α = 0.7 systems. The corresponding predictions from the WBII
bulk theory are shown as solid lines.
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FIG. 6. Same as Fig. 5, except for α = 0.8.

the 	1|N data does not significantly affect the precision of the
calculation of γ . At low packing fractions where the simu-
lated 	1|N is well converged, there is good agreement with the
WBII expressions.

The interfacial free energy γ is then calculated from the
data for vN and 	1|N by numerically integrating Eq. (16) us-
ing the trapezoid rule. As a result, the error in γ includes con-
tribution from the error in 	1|N; despite this, high precision is
preserved. Based on our analysis, the numerical error from the
trapezoid rule is significantly smaller than the corresponding
statistical error. The results for γ are plotted in Figs. 8–10 and
given in tabular form in the supplementary material.35 Also
plotted in Figs. 8–10 are the predictions from the WBII bulk
theory. The WBII predictions are in excellent agreement with
the simulation data, except for overestimations at the highest
packing fractions (η > 0.45). We have included an analysis of
the separate vN and 	1|N contributions to γ in the supplemen-
tary material.35

From the γ versus η data presented in Figs. 8–10, it is
difficult to assess directly the dependence of γ on mole frac-
tion. To better illustrate the composition dependence of the
interfacial free energy, we plot γ as a function of composition
(x1) in Fig. 11 for selected fixed values of η. The correspond-
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FIG. 7. Same as Fig. 5, except for α = 0.9.
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FIG. 8. Interfacial free energy per unit area, γ , as a function of packing frac-
tion for the α = 0.7 mixtures. Results for the pure system from Laird and
Davidchack10 are included (diamond symbols). Curves indicate γWBII. The
inset is included to show better resolution at the higher pressures.
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FIG. 11. Interfacial free energy per unit area, γ , as a function of x1 for
α = 0.7 mixtures. Values at these approximate η were obtained by
interpolation.

ing plots for α = 0.8 and 0.9 are shown in Figs. 12 and 13,
respectively. The data for Figs. 11–13 were generated from
the γ versus η data using quadratic interpolation. The simu-
lation results show a significant negative deviation from lin-
ear dependence, which is well fit by the corresponding WBII
results (also shown). The White Bear II theory predicts de-
viation from strict linear dependence, and we observe such
deviation to a slightly greater extent than predicted. This de-
viation increases with increasing η and is maximum near x1

= 0.50. As the 	1|N contribution to γ is small and (generally)
positive, this negative deviation from linearity is largely due
to contributions from the excess volume, vN .
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FIG. 12. Interfacial free energy per unit area, γ , as a function of x1 for
α = 0.8 mixtures. Values at these approximate η were obtained by
interpolation.
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FIG. 13. Interfacial free energy per unit area, γ , as a function of x1 for
α = 0.9 mixtures. Values at these approximate η were obtained by
interpolation.

SUMMARY

In this work we use molecular-dynamics simulation to
determine the interfacial thermodynamics of hard-sphere fluid
mixtures at a hard wall as functions of density (or packing
fraction) and composition (x1) for diameter ratios α = 0.7,
0.8, and 0.9. The interfacial free energies, γ , for the sys-
tems studied are determined by first determining the excess
interfacial volume vN and adsorption 	1|N for each α, com-
position (x1) and packing fraction studied and then obtaining
γ by numerically integrating a Gibbs-Cahn adsorption equa-
tion. Comparison with the predictions from the WBII density
functional14 shows that the WBII theory is in excellent agree-
ment with the simulation data, except for small deviations at
the highest packing fractions (η > 0.45). The results show that
the contribution to γ from the adsorption 	1|N is very small
compared to that from the excess volume (vN ) for the diame-
ter ratios studied. For this reason, we are able to get high pre-
cision values of γ at all packing fractions and compositions
despite the large statistical errors in the measured values of
the adsorption 	1|N. Further investigation into mixtures with
smaller diameter ratios at a hard wall would complement this
work and others (for example, α = 0.414).36, 37
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