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Abstract 

Most theories of categorization emphasize how continuous perceptual information is mapped to 
categories. However, equally important is the informational assumptions of a model, the type of 
information subserving this mapping.  This is crucial in speech perception where the signal is 
variable and context-dependent.  This study assessed the informational assumptions of several 
models of speech categorization, in particular, the number of cues that are the basis of 
categorization and whether these cues represent the input veridically or have undergone 
compensation.  We collected a corpus of 2880 fricative productions (Jongman, Wayland & 
Wong, 2000) spanning many talker- and vowel-contexts and measured 24 cues for each.  A 
subset was also presented to listeners in an 8AFC phoneme categorization task.  We then trained 
a common classification model based on logistic regression to categorize the fricative from the 
cue values, and manipulated the information in the training set to contrast 1) models based on a 
small number of invariant cues; 2) models using all cues without compensation, and 3) models in 
which cues underwent compensation for contextual factors.  Compensation was modeled by 
Computing Cues Relative to Expectations (C-CuRE), a new approach to compensation that 
preserves fine-grained detail in the signal. Only the compensation model achieved a similar 
accuracy to listeners, and showed the same effects of context.  Thus, even simple categorization 
metrics can overcome the variability in speech when sufficient information is available and 
compensation schemes like C-CuRE are employed.  
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What information is necessary for speech categorization?  Assessing the informational 

assumptions of models of speech perception with a corpus of fricatives. 

 

1.  Categorization and Information 

Work on perceptual categorization encompasses diverse domains like speech perception, object 
identification, music perception and face recognition.  These are unified by the insight that 
categorization requires mapping from one or more continuous perceptual dimensions to a set of 
meaningful categories, and it is often assumed that the principles governing this may be common 
across domains (e.g., Goldstone & Kersten, 2003; though see Medin, Lynch & Solomon, 2000). 
 The most important debates concern the memory representations used to distinguish 
categories, contrasting accounts based on boundaries (e.g., Ashby & Perrin, 1988), prototypes 
(e.g., Homa, 1984; Posner & Keele, 1968; Reed, 1972), and sets of exemplars (Hintzman, 1986; 
Medin & Schafer, 1978; Nosofsky, 1986).  Such representations are used to map individual 
exemplars, described by continuous perceptual cues, onto discrete categories. But these are only 
part of the story.  Equally important for any specific type of categorization (e.g. speech 
categorization) is the nature of the perceptual cues. 
 There has been little work on this within research on categorization.  What has been done 
emphasizes the effect of categories on perceptual encoding.  We know that participants’ 
categories can alter how individual cue-values along dimensions like hue are encoded (Hansen, 
Olkkonen, Walter & Gegenfurtner, 2006; Goldstone, 1995). For example, a color is perceived as 
more yellow in the context of a banana than a pear.  Categories may also warp distance within a 
dimension as in categorical perception (e.g. Liberman, Harris, Hofffman & Griffith, 1957; 
Goldstone, Lippa & Shiffrin, 2001) though this has been controversial (Massaro & Cohen, 1983; 
Schouten, Gerrits & Van Hessen, 2003; Roberson, Hanley & Pak, 2009; Toscano, McMurray, 
Dennhardt & Luck, 2010).  Finally, the acquisition of categories can influence the primitives or 
dimensions used for categorization (Schyns & Rodet, 1997; Oliva & Schyns, 1997).   

While there has been some work examining how categories affect continuous perceptual 
processing, there has been little work examining the other direction, whether the type of 
information that serves as input to categorization matters.  Crucially, does the nature of the 
perceptual dimensions constrain or distinguish theories of categorization?  In fact, some 
approaches (e.g. Soto & Wasserman, 2010) argue that we can understand much about 
categorization by abstracting away from the specific perceptual dimensions. 
 Nonetheless, we cannot ignore this altogether.  Smits, Jongman and Sereno (2006), for 
example, taught participants auditory categories along either resonance-frequency or duration 
dimensions.  The distribution of the exemplars was manipulated to contrast boundary-based, 
prototype and statistical accounts. While boundaries fit well for frequency categories, duration 
categories required a hybrid of boundary and statistical accounts.  Thus, the nature of the 
perceptual dimension may matter for distinguishing theoretical accounts of categorization. 
 Beyond the matter of the cue being encoded, a second issue, and the focus of this study, 
is whether and how perceptual cues are normalized during categorization.  Perceptual cues are 
affected by multiple factors, and it is widely, though not universally, accepted that that 
perceptual systems compensate for these sources of variance.  For example, in vision, to 
correctly perceive hue, observers compensate for light-source (McCann, McKee & Taylor, 
1976); in music, pitch is computed relative to a tonic note (relative pitch); and in speech, 
temporal cues like duration may be calibrated to the speaking rate (Summerfield, 1981), while 
pitch is computed relative to the talker’s pitch range (Honorof & Whalen, 2005).   
 Many theories of categorization do not address the relationship between compensation 
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and categorization.  Compensation is often assumed to be a low-level autonomous process 
occurring prior to and independently of categorization (though see Mitterer & de Ruiter, 2008). 
Moreover, in laboratory learning studies, it doesn’t matter whether perceptual cues undergo 
compensation. Boundaries, prototypes and exemplars can be constructed with either type of 
information, and most experiments control for factors that demand compensation like lighting.  
 However, there are conditions under which such assumptions are unwarranted.  First, if 
the input dimensions were context-dependent and categorization was difficult, compensation 
could make a difference in whether a particular model of categorization could classify the stimuli 
with the same accuracy as humans.  This is unlikely to matter in laboratory-learning tasks where 
categorization is relatively unambiguous, but it may be crucial for real-life category systems like 
speech in which tokens can not always be unambiguously identified.  Here, a model’s accuracy 
may be as much a product of the information in the input as the nature of the mappings. 
 Second, if compensation is a function of categorization we cannot assume autonomy.  
Color constancy, for example, is stronger at hue values near category prototypes (Kulikowski & 
Vaitkevicius, 1997).  In speech, phonemes surrounding a target phoneme affect the same cues, 
such that the interpretation of a cue for one phoneme may depend on the category assigned to 
others (Pisoni & Sawusch, 1974; Whalen, 1989; Smits, 2001a,b; Cole, Linebaugh, Munson & 
McMurray, 2010; though see Nearey, 1990).  Such bidirectional effects imply that categorization 
and compensation are not independent and models of categorization must account for both, 
something that few models in any domain have considered (though see Smits, 2001a,b). 
 Finally, and perhaps most importantly, some theories of categorization make explicit 
claims about the nature of the information leading to categorization.  In vision, Gibsonian 
approaches (Gibson, 1966) and Geon theory (e.g. Biederman, 1995) posit invariant cues for 
object recognition; while in speech perception, the theory of acoustic invariance (Stevens & 
Blumstein, 1978; Blumstein & Stevens, 1980; Lahiri, Gewirth & Blumstein, 1984) and quantal 
theory (Stevens, 2002; Stevens & Keyser, 2010) posit invariant cues for some phonetic 
distinctions (cf., Sussman, Fruchter, Hilbert& Sirosh, 1998).  Other approaches such as the 
version of exemplar theory posited in speech explicitly claim that while there may be no 
invariant perceptual cues, category representations can cope with this without normalization (e.g. 
Pisoni, 1997).  In such theories, normalization prior to categorization is not necessary, and this 
raises the possibility that normalization does not occur at all as part of the categorization process. 

Any theory of categorization can be evaluated on two levels: the mechanisms which 
partition the perceptual space, and the nature of the perceptual space.  This latter construct refers 
to the informational assumptions of a theory and is logically independent from the categorization 
architecture. For example, one could build a prototype theory on either raw or normalized inputs, 
and exemplars could be represented in either format.  In Marr’s (1982) levels of analysis, the 
informational assumptions of a theory can be seen as part of the first, computational level of 
analysis, where the problem is defined in terms of input/output relationships, while the 
mechanism of categorization may be best described at the algorithmic level. However, when the 
aforementioned conditions are met, understanding the informational assumptions of a theory may 
be crucial for evaluating it.  Contrasting with Marr, we argue that levels of analysis may 
constrain each other: one must properly characterize a problem to distinguish solutions. 

Speech perception presents a compelling domain in which to examine these issues, as all 
of the above conditions are met.  Thus, the purpose of this study is to evaluate the informational 
assumptions of several approaches to speech categorization, and to ask what kind of information 
is necessary to support listener-like categorization.  This was done by collecting a large dataset 
of measurements on a corpus of speech tokens, and manipulating the input to a series of 
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categorization models to determine what informational structure is necessary to obtain listener-
like performance.  While our emphasis is on theories of speech perception, consistent with a 
history of work relating speech categories to general principles of categorization1, this may also 
uncover principles that are relevant to categorization more broadly. 
 The remainder this introduction will discuss the classic problems in speech perception, 
and the debate over normalization.  We then present a new approach to compensation which 
addresses concerns about whether fine-grained acoustic detail is preserved.  Finally, we describe 
the speech categories we investigated, the eight fricatives of English. Section 2 presents the 
empirical work that is the basis of our modeling: a corpus of 2880 fricatives, with measurements 
of 24 cues for each, and listeners’ categorization for a subset of them.  Sections 3 and 4 then 
present a series of investigations in which the input to a standard categorization model is 
manipulated to determine which informational account best yields listener-like performance. 
 
1.1 The Information Necessary for Speech Perception 

Speech perception is increasingly being described as a problem of mapping from continuous 
acoustic cues to categories (e.g. Oden & Massaro, 1978; Nearey, 1997; Holt & Lotto, 2010). We 
take a relatively theory-neutral approach to what a cue is, defining a cue as a specific measurable 
property of the speech signal that can potentially be used to identify a useful characteristic like 
the phoneme category or the talker.  Our use of this term is not meant to imply that a specific cue 
is actually used in speech perception, or that a given cue is the fundamental property that is 
encoded during perception. Cues are merely a convenient way to measure and describe the input. 

A classic framing in speech perception is the problem of lack of invariant cues in the 
signal for categorical distinctions like phonemes.   Most speech cues are context-dependent and 
there are few, if any, that invariantly signal a given phonetic category.  There is debate on how to 
solve this problem (e.g. Fowler, 1996; Ohala, 1996; Lindblom, 1996) and about the availability 
of invariant cues (e.g. Blumstein & Stevens, 1980; Lahiri et al., 1984; Sussman et al, 1998).  But 
there is little question that this is a fundamental issue that theories of speech perception must 
address.  Thus, the information in the signal to support categorization is of fundamental 
importance to theories of speech perception. 

As a result of this, a common benchmark for theories of speech perception accuracy, the 
ability to separate categories.  This benchmark is applied to complete theories (e.g. Johnson, 
1997; Nearey, 1990; Maddox, Molis & Diehl, 2002; Smits, 2001a; Hillenbrand & Houde, 2003), 
and even to phonetic analyses of particular phonemic distinctions (e.g., Stevens & Blumstein, 
1978; Blumstein & Stevens, 1980, 1981; Forrest, Weismer, Milenkovic & Dougall, 1988; 
Jongman, Wayland & Wong, 2000; Werker et al, 2007). The difficulty attaining this benchmark 
means that sometimes accuracy is all that is needed to validate a theory.  Thus, speech meets our 
first condition: categorization is difficult and the information available to it matters.  
 Classic approaches to the lack of invariance problem posited normalization or 
compensation processes for coping with specific sources of variability.  In speech, normalization 
is typically defined as a process that factors out systematic but phonologically non-distinctive 
acoustic variability (e.g. systematic variability that does not distinguish phonemes) for the 
purposes of identifying phonemes or words.  Normalization is presumed to operate on the 
perceptual encoding prior to categorization and classic normalization processes include rate (e.g., 
Summerfield, 1981) and talker (Nearey, 1978; see chapters in Johnson & Mullenix, 1997) 
normalization.  Not all systematic variability is non-phonological, however: the acoustic signal at 
any point in time is always affected by the preceding and subsequent phonemes, due to a 
phenomenon known as coarticulation (e.g., Delattre, Liberman & Cooper, 1955; Öhman, 1966; 
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Fowler & Smith, 1986; Cole et al., 2010).  As a result, the term compensation has often been 
invoked as a more general term to describe both normalization (e.g. compensating for speaking 
rate) and processes that cope with coarticulation (e.g. Mann & Repp, 1981).  While 
normalization generally describes processes at the level of perceptual encoding, compensation 
can be accomplished either pre-categorically or as part of the categorization process (e.g. Smits, 
2001b). Due to this greater generality, we use the term compensation throughout this paper.  

A number of studies show that listeners compensate for coarticulation in various domains 
(e.g. Mann & Repp, 1981; Pardo & Fowler, 1997; Fowler & Brown, 2000).  Crucially, the fact 
that portions of the signal are affected by multiple phonemes raises the possibility that how 
listeners categorize one phoneme may affect how subsequent or preceding cues are interpreted. 
For example, consonants can alter the formant frequencies listeners use to categorize vowels 
(Öhman, 1966).  Do listeners compensate for this variability, by categorizing the consonant and 
then interpret the formant frequencies differently on the basis of the consonant?  Or, do they 
compensate for coarticulation by tracking low-level contingencies between the cues for 
consonants and vowels or higher level contingencies between phonemes? Studies on this offer 
conflicting results (Mermelstein, 1978; Whalen, 1989; Nearey, 1990; Smits, 2001a).   

Clearer evidence for such bidirectional processes comes from work on talker 
identification. Nygaard, Sommers and Pisoni (1994), for example, showed that learning to 
classify talkers improves speech perception, and a number of studies suggest that visual cues 
about a talker’s gender affect how auditory cues are interpreted (Strand, 1999; Johnson, Strand & 
D’Imperio, 1999). Thus, interpretation of phonetic cues may be conditioned on judgments of 
talker identity.  As a whole, then, there is ample interest, and some evidence that compensation 
and categorization are interactive, the second condition under which informational factors are 
important for categorization. 

Compensation is not a given however. Some forms of compensation may not fully occur 
prior to lexical access.  Talker voice, or indexical, properties of the signal (which do not contrast 
individual phonemes and words) affects a word’s recognition (Creel, Aslin & Tanenhaus, 2008; 
McLennan & Luce, 2005) and memory (Palmeri, Goldinger & Pisoni, 1993; Bradlow, Nygaard 
& Pisoni, 1999). Perhaps most tellingly, speakers’ productions gradually reflect indexical detail 
in auditory stimuli they are shadowing (Goldinger, 1998), suggesting that such detail is part of 
the representations that mediate perception and production.  Thus, compensation for talker voice 
is not complete—indexical factors are not (completely) removed from the perceptual 
representations used for lexical access and may even be stored with lexical representations 
(Pisoni, 1997).  This challenges the necessity of compensation as a precursor to categorization. 

Thus, informational factors are essential to understanding speech categorization: the 
signal is variable and context-dependent; compensation may be dependent on categorization, but 
may also be incomplete.  As a result, it is not surprising that some theories of speech perception 
make claims about the information necessary to support categorization. 

On one extreme, although many researchers have abandoned hope of finding invariant 
cues (e.g. Ohala, 1996; Lindblom, 1996), for others, the search for invariance is ongoing.  A 
variety of cues have been examined, such as burst onset spectra (Blumstein & Stevens, 1981; 
Kewley-Port & Luce, 1984), or locus equations for place of articulation in stop consonants, 
(Sussman et al, 1998; Sussman & Shore, 1996), and duration ratios for voicing (e.g. Port & 
Dalby, 1982; Pind, 1995).  Most importantly, Quantal Theory (Stevens, 2002; Stevens & Keyser, 
2010) posits that speech perception harnesses specific invariant cues for some contrasts 
(particularly manner of articulation, e.g., the b/w distinction).  Invariance views, broadly 
construed, then, make the informational assumptions that 1) a small number of cues should 
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suffice for many types of categorization; and 2) compensation is not required to harness them. 
On the other extreme, exemplar approaches (e.g., Johnson, 1997; Goldinger, 1998; 

Pierrehumbert, 2001, 2003; Hawkins, 2003) argue that invariant cues are neither necessary nor 
available. If the signal is represented faithfully and listeners store many exemplars of each word, 
context-dependencies can be overcome without compensation.  Each exemplar in memory is a 
holistic chunk containing both the contextually conditioned variance and the context, and is 
matched in its entirety to incoming speech.  Because of this, compensation is not needed and 
may impede listeners by eliminating fine-grained detail that helps sort things out (Pisoni, 1997).  
Broadly construed, then, exemplar approaches make the informational assumptions that 1) input 
must be encoded in fine-grained detail with all available cues; and 2) compensation or 
normalization does not occur. 

Finally, in the middle, lie a range of theoretical approaches that do not make strong 
informational claims.  For lack of a better term, we call these cue-integration approaches, and 
they include the Fuzzy Logical Model, FLMP (Oden, 1978; Oden & Massaro, 1978), the 
Normalized a Posteriori Probability model, NAPP (Nearey, 1990), the Hierarchical 
Categorization of coarticulated phonemes, HICAT (Smits, 2001a,b), statistical learning models 
(McMurray, Aslin & Toscano, 2009a; Toscano & McMurray, 2010), and connectionist models 
like TRACE (Elman & McClelland, 1986).  Most of these can be characterized as prototype 
models, though they are also sensitive to the range of variation.  All assume that multiple 
(perhaps many) cues participate in categorization, and that these cues must be represented more 
or less veridically.  However, few make strong claims about whether explicit compensation of 
some form occurs (although many implementations use raw cue-values for convenience).  In 
fact, given the high-dimensional input, normalization may not be needed—categories may be 
separable with a high-dimensional boundary in raw cue-space (e.g., Nearey, 1997) and these 
models have been in the forefront of debates as to whether compensation for coarticulation is 
dependent on categorization (e.g., Nearey, 1990, 1992, 1997; Smits, 2001a,b).  Thus it is an open 
question whether compensation is needed in such models. 

Across theories, two factors describe the range of informational assumptions.  Invariance 
accounts can be distinguished from exemplar and cue-integration accounts on the basis of 
number of cues (and their invariance).  The other factor is whether cues undergo compensation 
or not.  On this, exemplar and invariance accounts argue that cues do not undergo explicit 
compensation, while cue-integration models appear more agnostic.  Our goal is to contrast these 
informational assumptions using a common categorization model.  However, this requires a 
formal approach to compensation, which is not currently available. Thus, the next section 
describes several approaches to compensation and elaborates a new, generalized approach which 
builds on their strengths to offer a more general and formally well-specified approach based on 
Computing Cues Relative to Expectations (C-CuRE).  . 

  
1.2 Normalization, Compensation and C-CuRE 

Classic normalization schemes posit interactions between cues that allow the perceptual system 
to remove the effects of confounding factors like speaker and rate.  These are bottom-up 
processes motivated by articulatory relationships and signal processing.  Such accounts are most 
associated with work on vowel categorization (e.g., Rosner & Pickering, 1994; Hillenbrand & 
Houde, 2003), though to some extent complex cue-combinations like locus equations (Sussman 
et al., 1998) or CV ratios (Port & Dalby, 1982), also fall under this framework.  Such approaches 
offer concrete algorithms for processing the acoustic signal, but they have not led to broader 
psychological principles for compensation. 
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 Other approaches emphasize principles at the expense of computational specificity.  
Fowler’s (1984; Fowler & Smith, 1986; Pardo & Fowler, 1997) gestural parsing posits that 
speech is coded in terms of articulatory gestures, and that overlapping gestures are parsed into 
underlying causes.  So for example, when a partially nasalized vowel precedes a nasal stop, the 
nasality gesture is assigned to the stop (a result of anticipatory coarticulation), since English does 
not use nasalized vowels contrastively (as does French), and the vowel is perceived as more oral 
(Fowler & Brown, 2000). As part of direct realist accounts, gestural parsing only compensates 
for coarticulation—the initial gestural encoding overcomes variation due to talker and rate.   

Gow (2003) argues that parsing need not be gestural.  His feature-cue parsing suggests 
that similar results can be achieved by grouping principles operating over acoustic features.  This 
too has been primarily associated with coarticulation—variation in talker and/or rate is not 
discussed.  However, the principle captured by both accounts is that by grouping overlapping 
acoustic cues or gestures, the underlying properties of the signal can be revealed (Ohala, 1981). 

In contrast, Kluender and colleagues argue that low-level auditory mechanisms may do 
some of the work of compensation. Acoustic properties (like frequency) may be interpreted 
relative to other portions of the signal: a 1000 Hz tone played after a 500 Hz tone will sound 
higher than after an 800 Hz tone.  This is supported by findings that non-speech events (e.g. pure 
tones) can create seemingly compensatory effects on speech (e.g. Lotto & Kluender, 1998, Holt, 
2006; Kluender, Coady & Kiefte, 2003; though see Viswanathan, Fowler, & Magnuson, 2009).  
Thus, auditory contrast, either from other events in the signal or from long-term expectations 
about cues (Kluender et al, 2003) may alter the information available in the signal. 

Parsing and contrast accounts offer principles that apply across many acoustic cues, 
categories and sources of variation.  However, they have not been formalized in a way that 
permits a test of the sufficiency of such mechanisms to support categorization of speech input.  
All three accounts also make strong representational claims (articulatory vs. auditory), and a 
more general approach to compensation may be more useful (Ohala, 1981). 
 In developing a principled, yet computationally specific approach to compensation, one 
final concern is the role of fine phonetic detail.  Traditional approaches to normalization assumed 
bottom-up processes that operate autonomously to clean up the signal before categorization, 
stripping away factors like talker or speaking rate2.  However, research shows that such 
seemingly irrelevant detail is useful to phonetic categorization and word recognition. Word 
recognition is sensitive to within-category variation in voice onset time (Andruski, Blumstein & 
Burton, 1994; McMurray et al, 2002, 2008a), indexical detail (Creel et al, 2005, Goldinger, 
1998), word-level prosody (Salverda, Dahan & McQueen, 2003), coarticulation (Marslen-Wilson 
& Warren, 1994; Dahan, Magnuson, Tanenhaus & Hogan, 2001), and alternations like reduction 
(Connine, 2004; Connine, Ronbom & Patterson, 2008) and assimilation (Gow, 2003).  In many 
of these cases, such detail facilitates processing by allowing listeners to anticipate upcoming 
material (Martin & Bunnel, 1981, 1982; Gow, 2001, 2003), resolve prior ambiguity (Gow, 2003; 
McMurray, Tanenhaus & Aslin, 2009b) and disambiguate words faster (Salverda et al, 2003).  
Such evidence has led some to reject normalization altogether in favor of exemplar approaches 
(e.g. Pisoni, 1997; Port, 2007) which preserve continuous detail. 

What is needed is a compensation scheme which is applicable across different cues and 
sources of variance, is computationally well-specified, and can retain and harness fine-grained 
acoustic detail. Cole et al. (2010; McMurray, Cole & Munson, in press) introduced such a 
scheme in an analysis of vowel coarticulation; we develop it further as a more complete account 
of compensation.  This account, Computing Cues Relative to Expectations (C-CuRE), combines 
grouping principles from parsing accounts with the relativity of contrast accounts.  
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Under C-CuRE, incoming acoustic cues are initially encoded veridically, but as different 
sources of variance are categorized, cues are recoded in terms of their difference from expected 
values.  Consider a stop-vowel syllable. The fundamental frequency (F0) at the onset of the 
vowel is a secondary cue for voicing. In the dataset we describe here, F0 at vowel onset had a 
mean of 149 Hz for voiced sounds and 163 Hz for voiceless ones, though it was variable 
(SDvoiced=43.2; SDvoiceless=49.8).  Thus F0 is informative for voicing, but any given F0 is difficult 
to interpret.  An F0 of 154 Hz, for example, could be high for a voiced sound or low for a 
voiceless one.  However once the talker is identified (on the basis of other cues or portions of the 
signal) this cue may become more useful.  If the talker’s average F0 was 128 Hz, then the current 
154 Hz is 26 Hz higher than expected and likely the result of a voiceless segment.  Such an 
operation removes the effects of talker on F0 by recoding F0 in terms of its difference from the 
expected F0 for that talker, making it more useful for voicing judgments.   

C-CuRE is similar to both versions of parsing in that it partials out influences on the 
signal at any time point.  It also builds on auditory-contrast approaches by positing that acoustic 
cues are coded as the difference from expectations.  However, it is also more general than these 
theories. Unlike gestural and feature-cue parsing, talker is parsed from acoustic cues the same 
way coarticulation is; unlike contrast accounts, expectations can be based on abstractions and 
there is an explicit role for categorization (phonetic categories, talkers, etc.) in compensation.   

C-CuRE is straightforward to implement using linear regression.  To do this, first a 
regression equation is estimated predicting the cue-value from the factor(s) being parsed out, for 
example, F0 as a function of talker gender.  Next, for any incoming speech token, this formula is 
used to generate the expected cue-value given what is known (e.g., if the speaker is known), and 
the actual cue value is subtracted from it.  The residual becomes the estimate of contrast or 
deviation from expectations. In terms of linear regression, then, parsing in the C-CuRE 
framework separates the variance in any cue into components and uses the regression formula to 
generate expectations on which the remaining variance can be used to do perceptual work. 

When the independent factors are dichotomous (e.g. male/female), the regression 
predictions will be based on the cell means of each factor.  This could lead to computational 
intractability if the regression had to capture all combinations of factors.  For example, a vowel’s 
first formant frequency (F1) is influenced by the talker’s gender, the voicing of neighboring 
consonants, and the height of the subsequent vowel.  If listeners required cell-means of the four-
way <talker> × <initial voicing> × <final voicing> × <vowel height> contrast to generate 
expectations it is unlikely that they could track all of the possible combinations of influences on 
a cue.  However, Cole et al (2010; McMurray et al, in press) demonstrated that by performing the 
regression hierarchically (e.g., first partialing out the simple effect of talker, then the simple 
effect of voicing, then vowel height, and so on), substantial improvements can be made in the 
utility of the signal using only simple effects, without needing higher-order interactions.   

In sum, C-CuRE offers a somewhat new approach to compensation that is 
computationally well specified, yet principled.  It maintains a continuous representation of cue 
values and does not discard variation due to talker, coarticulation and the like.  Rather C-CuRE 
capitalizes on this variation to build representations for other categories.  It is neutral with 
respect to whether speech is auditory or gestural, but consistent with principles from both parsing 
approaches, and with the notion of contrast in auditory contrast accounts.  Finally, C-CuRE 
explicitly demands a categorization framework: compensation occurs as the informational 
content of the signal is interpreted relative to expectations driven by categories.   

The goal of this project is to evaluate the informational assumptions of theories of speech 
categorization in terms of compensated vs. uncompensated inputs, a question at the 
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computational level (Marr, 1982).  Testing this quantitatively requires that we assume a 
particular form of compensation, a solution properly described at the algorithmic level, and 
existing forms of compensation do not have the generality or computational specificity to be 
applied.  C-CuRE offers such a general, yet implementable compensation scheme and as a result, 
our test of compensation at the information level also tests this specific processing approach.   

Such a test has only been examined in limited form by Cole et al (2010). This study used 
parsing in the C-CuRE framework to examine information used to anticipate upcoming vowels, 
and did not examine compensation for variance in a target segment.  It showed that the recoding 
of formant values as the difference from expectations on the basis of talker and intervening 
consonant was necessary to leverage coarticulatory information for anticipating upcoming 
vowels.  This validated C-CuRE’s ability to harness fine-grained detail, but did not address its 
generality as only two cues were examined (F1 and F2); these cues were similar in form (both 
frequencies); only a small number of vowels were used; and results were not compared to 
listener data.  Thus, it is an open question as to how well C-CuRE scales to dozens of cues 
representing different signal components (e.g. amplitudes, durations and frequencies) in the 
context of a larger set of categories, and it is unclear whether its predictions match listeners. 
 
1.3 Logic and Overview 

Our goal is to contrast three informational accounts: 1) that a small number of invariant cues 
distinguishes speech categories; 2) that a large number of cues is sufficient without 
compensation; and 3) that compensation must be applied.   To accomplish this, we measured a 
set of cues from a corpus of speech sounds, and used them to train a generic categorization 
model. This was compared to listener performance on a subset of that corpus.  By manipulating 
the cues available to the model and whether or not compensation was applied, we assessed the 
information required to yield listener performance.   
 One question that arises is which phonemes to use.  Ideally, they should be difficult to 
classify, as accuracy is likely to be a distinguishing factor.  There should also be a large number 
of categories for a more realistic test. For a fair test, the categories should have a mix of cues in 
which some have been posited to be invariant and others more contextually determined.  Finally, 
C-CuRE suggests that the ability to identify context (e.g. the neighboring phoneme) underlies 
compensation.  Thus, during perceptual testing, it would be useful to be able to separate the 
portion of the stimulus that primarily cues the phoneme categories of interest from portions that 
primarily cue contextual factors.  The fricatives of English meet these criteria. 
 
1.4 Phonetics of Fricatives. 

English has eight fricatives created by partially obstructing the airflow through the mouth (see 
Table 1).  They are commonly defined by three phonological features: sibilance, place of 
articulation and voicing.  There are four places of articulation, each of which can be either voiced 
or voiceless.  Fricatives produced at the alveolar ridge (/s/ or /z/ as in sip and zip) or at the post-
alveolar position (/ʃ/ as in ship or /ʒ/ as in genre) are known as sibilants due to their high-
frequency spectra; labiodental (/f/ or /v/ as in face and vase) and interdental fricatives (/ɵ/ or /ð/ 
as in think and this) are non-sibilants.  The fact that there are eight categories makes 
categorization a challenging but realistic problem for listeners and models. As a result, listeners 
are not at ceiling even for naturally produced unambiguous tokens (LaRiviere, Winitz & 
Herriman, 1975; You, 1979; Jongman, 1989; Tomiak, 1990; Balise & Diehl, 1994), particularly 
for the non-sibilants (/f, v, ɵ, ð/) where accuracy estimates range from 43% to 99%.  

Fricatives are signaled by a large number of cues. Place of articulation can be 
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distinguished by the four spectral moments (mean, variance, skew and kurtosis of the frequency 
spectrum of the frication) (Forrest, et al., 1988; Jongman, et al., 2000), and by spectral changes 
in the onset of the subsequent vowel, particularly the second formant (Jongman et al, 2000; 
Fowler, 1994).  Duration and amplitude of the frication are related to place of articulation, 
primarily distinguishing sibilants from non-sibilants (Behrens & Blumstein, 1988; Baum & 
Blumstein, 1987; Crystal & House, 1988; Jongman et al., 2000; Strevens, 1960).  Voicing is 
marked by changes in duration (Behrens & Blumstein, 1988; Baum & Blumstein, 1987; 
Jongman et al., 2000) and spectral properties (Stevens, Blumstein, Glicksman, Burton, & 
Kurowski, 1992; Jongman et al, 2000).  Thus, there are large numbers of potentially useful cues.  

This offers fodder for distinguishing invariance and cue-integration approaches on the 
basis of the number of cues, and across fricatives we see differences in the utility of a small 
number of cues.  The four sibilants (/s, z, ʃ, ʒ/ can be distinguished at 97% by just the four 
spectral moments (Forrest et al, 1988).  Thus, an invariance approach may be sufficient for 
sibilants.  On the other hand, most studies have failed to find any single cue that distinguishes 
non-sibilants (/f, v, ɵ, ð/) (Maniwa, Jongman & Wade, 2008, 2009; though see Nissen & Fox, 
2005), and Jongman et al.’s (2000) discriminant analysis using 21 cues only achieved 66% 
correct.  Thus, non-sibilants may require many information sources, and possibly compensation. 

In this vein, virtually all fricative cues are dependent on context including talker identity 
(Hughes & Halle, 1956; Jongman et al, 2000), the adjacent vowel (Soli, 1981; Jongman et al, 
2000; LaRiviere et al., 1975; Whalen, 1981) and socio-phonetic factors (Munson, 2007; Munson 
et al, 2006; Jongman, Wang & Sereno, 2000).  This is true even for cues like spectral moments 
that have been posited to be relatively invariant. 

Thus, fricatives represent an ideal platform for examining the informational assumptions 
of models of speech categorization. They are difficult to categorize, and listeners can potentially 
utilize a large number of cues to do so.  Both invariant and cue-combination approaches may be 
appropriate for some fricatives, but the context dependence of many, if not all cues, raises the 
possibility that compensation is necessary.  Given the large number of cues, it is currently 
uncertain what information will be required for successful categorization. 
 
1.5 Research Design 

We first collected a corpus of fricative productions and measured a large set of cues in both the 
frication and vocalic portion of each.  Next, we presented a subset of this corpus to listeners in an 
identification experiment with and without the vocalic portion.  While this portion contains a 
number of secondary cues to fricative identity, it is also necessary for accurate identification of 
the talker (Lee, Dutton & Ram, 2010) and vowel, which is necessary for compensating in the C-
CuRE framework.  The complete corpus of measurements, including the perceptual results, is 

Table 1: The eight fricatives of English can be classified along two dimensions: voicing (whether the vocal folds 
are vibrating or not) and place of articulation.  Fricatives produced with alveolar and post-alveolar places of 
articulation are known as sibilants, others are non-sibilants. 

 
Voiceless Voiced  Place of 

Articulation IPA Examples IPA Examples 

Labiodental f fat, fork v van, vase Non-sibilants 

Interdental ɵ think, thick ð this, those 

Alveolar s sick, sun z zip, zoom Sibilants 

Post Alveolar ʃ ship, shut ʒ Jacques, genre 
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available in the online supplement.  Finally, we implemented a generic categorization model 
using logistic regression (see also Cole et al, 2010; McMurray et al, in press), which is inspired 
by Nearey’s (1990, 1997) NAPP model and Smits’ (2001a,b) HICAT model.  This model was 
trained to predict the intended production (not listeners’ categorizations, as in NAPP and some 
versions of HICAT) from particular sets of cues in either raw form or after parsing.  The model’s 
performance was then compared to listeners’ to determine what informational structure is needed 
to create their pattern of responding.  This was used to contrast three informational accounts 
distinguished by the number of cues and the presence or absence of compensation. 
 

2.0 Empirical Work 

2.1 The Corpus    

The corpus of fricatives for this study was based on the recordings and measurements of 
Jongman et al (2000) with additional measurements of ten new cues on these tokens. 
2.1.1 Methods and Measurements 
Jongman et al (2000) analyzed 2873 recordings of the 8 English fricatives /f, v, ɵ, ð, s, z, ʃ, ʒ/.  
Fricatives were produced in the initial position of a CVC syllable in which the vowel was /i, e, æ, 
ɑ, o, u/, and the final consonant was /p/.  Twenty speakers (10 female) produced each CVC three 
times in the carrier phrase "Say ____ again".  This led to 8 (fricatives) × 6 (vowels) × 3 
(repetitions) × 20 (speakers), or 2880 tokens, of which 2873 were analyzed. All recordings were 
sampled at 22 kHz (16 bit quantization, 11 kHz low-pass filter).  The measurements reported 
here are all of the original measurements of Jongman et al. (2000, the JWW database)3, although 
some cues were collapsed (e.g. spectral moments at two locations).  We also measured 10 new 
cues from these tokens to yield a set of 24 cues for each fricative.  A complete list is shown in 
Table 2, and Figure 1 shows a labeled waveform and spectrogram of a typical fricative 
recording.  Details on the measurements of individual cues and the transformations applied to 
them can be found in 
Appendix A.   

We deliberately left 
out compound or relative cues 
(based on two measured 
values) like locus equations or 
duration ratios to avoid 
introducing additional forms 
of compensation into our 
dataset.  We did include the 
independent measurements 
that contribute to such cues 
(e.g. duration of the vowel 
and consonant separately).  
Compound cues are discussed 
(and modeled in a similar 
framework) in the Online 
Supplement, Note #6. 
 The final set of 24 
cues represents to the best of 
our knowledge all simple cues 
that have been proposed for 

Frication
onset

Frication
offset

Vowel
offset

W1 W3W2
Transition

F2

F3AMPV

F3AMPF

LFAMP

F1

F5AMPV

F5AMPF

Frication
onset

Frication
offset

Vowel
offset

W1 W3W2
Transition

F2

F3AMPV

F3AMPF

LFAMP

F1

F5AMPV

F5AMPF

Figure 1: Annotated waveform and spectrogram of a typical sample in the 
corpus, /ʃip/ ‘sheep’. Annotations indicate a subset of the cues that are 
described in Table 2. 
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distinguishing place, voicing or sibilance in fricatives, and also includes a number of cues not 
previously considered (such as F3, F4 and F5, and low frequency energy).  
 

2.1.2 Results 

Table 2: Summary of the cues included in the present study. JWW indicates cues that were previously reported by Jongman et al 
(2000).  Also shown are several derived cues included in a subset of the analysis. The “cue for” column indicates the 
phonological feature typically associated with each cue. 

 

Cue Variable Noise 

Cue 

Description Cue for Source 

Peak Frequency MaxPF * Frequency with highest amplitude. Place  JWW 

Frication Duration DURF * Duration of frication Voicing JWW 

Vowel Duration DURV  Duration of vocalic portion Voicing JWW 

Frication RMS RMSF * Amplitude of frication Sibilance JWW 

Vowel RMS RMSV  Amplitude of vocalic portion Normalization JWW 

F3 narrow-band 

amplitude (frication). 
F3AMPF * 

Amplitude of frication at F3. Place New 

F3 barrow band 

Amplitude (vowel) 
F3AMPV  

Amplitude of vowel at F3. Place New 

F5 narrow-band 

amplitude (frication). 
F5AMPF * 

Amplitude of frication at F5. Place New 

F5 barrow band 

Amplitude (vowel) 
F5AMPV  

Amplitude of vowel at F5. Place New 

Low Frequency Energy LF * Mean RMS below 500 Hz in frication Voicing New 

Pitch F0  Fundamental frequency at vowel onset Voicing New 

First Formant F1  First formant frequency of vowel Voicing New 

Second Formant F2  Second formant frequency of vowel Place JWW 

Third Formant F3  Third formant frequency of vowel Place New 

Fourth Formant F4  Fourth formant frequency of vowel Unknown New 

Fifth Formant F5  Fifth formant frequency of vowel Unknown New 

Spectral Mean M1 * 
Spectral mean at three windows in 

frication noise (onset, middle, offset) 

Place / 

Voicing 

JWW 

Spectral Variance M2 * 
Spectral variance at three windows in 

frication noise 

Place JWW 

Spectral Skewness M3 * 
Spectral skewness at three windows in 

frication noise 

Place / 

Voicing 

JWW 

Spectral Kurtosis M4 * 
Spectral kurtosis at three windows in 

frication noise 

Place JWW 

Transition Mean M1trans  
Spectral mean in window including end 

of frication and vowel onset 

Place JWW 

Transition Variance M2trans  
Spectral variance in window including 

end of frication and vowel onset 

Place JWW 

Transition Skewness M3trans  
Spectral skewness in window including 

end of frication and vowel onset 

Place JWW 

Transition Kurtosis M4trans  
Spectral kurtosis in window including 

end of frication and vowel onset 

Place JWW 

 



Statistical models of fricative perception 

14 

Since the purpose of this corpus is to examine the information available to categorization, we do 
not report a complete phonetic analysis.  Instead, we offer a brief analysis that characterizes the 
information in this dataset, asking which cues could be useful for fricative categorization and the 
effect of context (talker and vowel) on them.  A complete analysis is found in the Online 
Supplement, Note #1, and see Jongman et al. (2000) for extensive analyses of those measures.   
 Our analyses consisted of a series of hierarchical linear regressions.  In each one, a single 
cue was the dependent variable, and the independent variables were a set of dummy codes4 for 
fricative identity (7 variables).  Each regression first partialed out the effect of talker (19 dummy 
codes) and vowel (5 dummy 
codes), before entering the 
fricative terms into the model.  
We also ran individual 
regressions breaking fricative 
identity down into phonetic 
features (sibilance, place of 
articulation and voicing). Table 
3 displays a summary. 

Every cue was affected 
by fricative identity.  While 
effect sizes ranged from large 
(10 cues had R2

change> .40) to 
very small (RMSvowel, the 
smallest: R2

change =.011), all 
were highly significant.  Even 
cues that were originally 
measured to compensate for 
variance in other cues (e.g. 
vowel duration to normalize 
fricative duration) had 
significant effects. 
Interestingly, two of the new 
measures (F4 and F5) had 
surprisingly large effects.  

A few cues could 
clearly be attributed to one 
feature over others, although 
none were associated with a 
single feature.  The two 
duration measures and low 
frequency energy were largely 
associated with voicing; RMSF 

and F5AMPF were largely 
affected by sibilance; and the 
formant frequencies, F2, F4 and 
F5 had moderate effects of 
place of articulation for 
sibilants and non-sibilants.  

Table 3: Summary of regression analyses examining effects of speaker 
(20), vowel (6) and fricative (8) for each cue.  Shown are R

2
change values.  

Missing values were not significant (p>.05). The final column shows 
secondary analyses examining individual contrasts. Each cue is given the 
appropriate letter code if the effect size was Medium or Large 
(R

2
change>.05). A few exceptions with smaller effect sizes are marked 

because there were few robust cues to non-sibilants.  Sibilant vs. non-
sibilant (/s, z, ʃ, ʒ/ vs. /f, v, ɵ, ð/) is coded as S; voicing is coded as V; 
place of articulation in non-sibilants (/f, v/ vs. /ɵ, ð/) is coded as Pn; and 
place of articulation in sibilants (/s, z/ vs. /ʃ, ʒ/) is coded as Ps.  

 

Contextual Factors 

Cue 

Speaker 

df=19,2860 

Vowel 

df=5,2855 

Fricative 

Identity 

df=7,2848 Cue for 

MaxPF 0.084*  0.493* S, Ps 
DURF 0.158* 0.021* 0.469* S, V  
DURV 0.475* 0.316* 0.060* V 
RMSF 0.081*  0.657* S, V 
RMSV 0.570* 0.043* 0.011*  
F3AMPF 0.070* 0.028* 0.483* S, Ps 
F3AMPV 0.140* 0.156* 0.076* Pn

1, Ps 
F5AMPF 0.077* 0.012* 0.460* S 
F5AMPV 0.203* 0.040* 0.046*  
LF 0.117* 0.004+ 0.607* S, V 
F0 0.838* 0.007* 0.023*  
F1 0.064* 0.603* 0.082* V2 
F2 0.109* 0.514* 0.119* S, Pn, Ps 
F3 0.341* 0.128* 0.054* Pn 
F4 0.428* 0.050* 0.121* Pn, Ps 
F5 0.294* 0.045* 0.117* Pn, Ps 
M1 0.122*  0.425* V, Ps 

M2 0.036*  0.678* S, V, Ps 
M3 0.064*  0.387* S, Ps 
M4 0.031*  0.262* Ps 
M1trans 0.066* 0.043* 0.430* S, V, Ps 
M2trans 0.084* 0.061* 0.164* Pn

3, Ps 
M3trans 0.029* 0.079* 0.403* S, V, Pn, Ps  
M4trans 0.031* 0.069* 0.192* S, Pn, Ps 

+p<.05 1 R2
change=.043 3 R2

change=.038 
*p<.0001 2 R2

change=.045 
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However, the bulk of the cues were correlated with multiple features. 
While few cues were uniquely associated with one feature, most features had strong 

correlates. Many cues were sensitive to place of articulation in sibilants, suggesting an invariance 
approach may be successful for distinguishing sibilants.  However, there were few cues for place 
in non-sibilants (F4, F5, and the 3rd and 4th moments in the transition). These showed only 
moderate to low effect sizes (none greater than .1), and were context-dependent.  Thus, 
categorizing non-sibilants may require at least cue-integration, and potentially, compensation.  

We next asked if any cues appeared more invariant than others. That is, are there cues 
that are correlated with a single feature (place of articulation, sibilance or voicing), but not with 
context?  There is no standard for what statistically constitutes an invariant cue, so we adopted a 
simple criterion based on Cohen and Cohen’s (1983) definition of effect sizes as small (R2 <.05), 
medium (.05<R2<.15) and large (R2>.15): a cue is invariant if it had a large effect of a single 
feature (sibilance, place of articulation, voicing) and at most, small effects of context.   

No cue met this definition.  Contextual factors (talker and vowel) accounted for a 
significant portion of the variance in every cue, particularly cues in the vocalic portion. 
However, relaxing this criterion to allow moderate context effects yielded several.   

Peak frequency (MaxPF) was highly correlated with place of articulation (R2
change=.483), 

less so with sibilance (R2=.260) (it distinguishes /s/ from /ʃ/), and virtually uncorrelated with 
voicing (R2=.004).  While it was moderately related to talker (R2=.084), it was not related to 
vowel.   The narrow-band amplitudes in the frication (F3AMPF and F5AMPF) showed a similar 
pattern. Amplitude at F3 had a strong relationship to place (R2=.450; /s/ vs. /ʃ/), and a smaller 
relationship to sibilance (R2=.239); while amplitude at F5 was related to sibilance (R2

change=.394) 
but not place within either class (non-sibilants: R2

change<.001; sibilants: R2
change=.02). Neither was 

strongly related to voicing (F3AMPF: R2
change=.002; F5AMPF=.024) and they were only 

moderately affected by context (F3AMPF: R2
change=.098; F5AMPF=.089). 

Finally, the upper spectral moments in the frication were strongly associated with 
fricative identity (M2: R2

change=.68; M3: R2
change=.39; M4: R2

change=.26) (primarily place of 
articulation), and only moderately with context (M2: R2

change=.04; M3: R2
change=.07; M4: 

R2
change=.03). This was true to a lesser extent for M1 (Fric.: R2

change=.42; Context: R2
change=.12).   

In sum, every cue was useful for distinguishing fricatives, although most were related to 
multiple phonetic features, and every cue was affected by context.  There were several highly 
predictive cues that met a liberal criterion for invariance.  Together, they may be sufficient for 
categorization, particularly given the large number of potentially supporting cues.   
 
2.2 Perceptual Experiment  

The perceptual experiment probed listeners’ categorization of a subset of the corpus.  We 
assessed overall accuracy and variation in accuracy across talkers and vowels on the complete 
syllable and the frication alone. Excising the vocalic portion eliminates some secondary cues to 
fricatives, but also reduces the ability to categorize the vowel and talker, which is required for 
compensation in C-CuRE.  Thus, the difference between the frication-only and complete-syllable 

conditions may offer a crucial platform for model comparison. 
2.2.1 Methods 

The 2880 fricatives in the corpus were too many for listeners to classify in a reasonable amount 
of time, so this was trimmed to include 10 talkers (5 female), 3 vowels (/i, ɑ, u/), and the second 
repetition.  This left 240 stimuli which were identified twice by each listener.   The presence or 
absence of the vocalic portion was manipulated between-subjects.   
 Procedure.  Listeners were tested in groups of two to four. Stimuli were played from disk 
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over Sony (MDR-7506) headphones, using BLISS (Mertus, 1989). Stimuli were presented in 
random order at 3-s intervals. Listeners responded by circling one of 9 alternatives f, v, th, dh, s, 
z, sh, zh, or 'other' on answer sheets.  Participants were asked to repeat a few words with /ɵ, ð, ʃ, 
ʒ/ in initial position to ensure they were aware of the difference between these sounds. 

Participants. Forty Cornell University students (20 females) participated.  Twenty served 
in each condition (complete-syllable vs. frication-only). All were native speakers of English with 
no known speech or hearing impairments. Participants were paid for their participation. 
2.2.2 Results 

Figure 2 shows a summary of listeners’ accuracy.  In the complete-syllable condition, listeners 
were highly accurate overall (M=91.2%), particularly on the sibilants (M=97.4%), while in the 
frication-only condition, performance dropped substantially (M=76.3%).  There were also 

Figure 2: Listeners’ performance (proportion 
correct) on an 8AFC fricative categorization task.  
A) Performance on each of the eight fricatives as 
function of condition. B) Performance across 
fricatives as a function of vowel and condition C). 
Performance by condition and speaker.  D) 
Performance as a function of place of articulation 
and condition. E) Performance as a function of 
place of articulation and voicing across 
conditions.   
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systematic effects of vowel (Figure 2B) and talker (Figure 2C) on accuracy. It was necessary to 
characterize which of these effects were reliable to identify criteria for model evaluation.  
However, this proved challenging given that our dependent measure has eight possibilities (eight 
response categories), and the independent factors included condition, talker, vowel, place and 
voicing.  Since we only needed to identify diagnostic patterns, we simplified this by focusing on 
accuracy and collapsing the dependent measure into a single binary variable: correct or incorrect 
(though see Supplementary Note 3 for a more descriptive analysis of the confusion matrices).   
 We used generalized estimating equations with a logistic linking function to conduct the 
equivalent of a repeated measures ANOVA (Lipsitz, Kim & Zhao, 2006).  Talker, vowel, place 
and voicing were within-subjects factors; syllable-type (complete-syllable vs. frication-only) was 
between-subjects.  Since we only had two repetitions of each stimulus per subject, the complete 
model (subject, five factors and interactions) was almost fully saturated.  Thus, the context 
factors (talker and vowel) were included as main effects, but did not participate in interactions. 
 There was a significant main effect of syllable-type (Wald χ2(1)=69.9, p<.0001) with 
better performance in the complete-syllable condition (90.8% vs. 75.4%) for every fricative 
(Figure 2A).  Vowel (Figure 2B) had a significant main effect (Wald χ2(2)=12.1, p=.02): 
fricatives preceding /i/ had the lowest performance followed by those preceding /ɑ/, and then /u/; 
and both /i/ and /ɑ/ were significantly different from /u/ (/i/: Wald χ2(1)=12.1, p=.001; /ɑ/: Wald 
χ2(1)=5.5, p=.019).  Talker was also a significant source of variance (Talker: Wald χ2(9)=278.1, 
p<.0001), with performance by talker ranging from 75.0% to 88.2% (Figure 2C).  

Place of articulation was highly significant (Wald χ2(3)=312.5, p<.0001).  Individual 
comparisons against the postalveolars (which showed the best performance) showed that all three 
places of articulation were significantly worse (Labiodental: Wald χ2(1)=72.2, p<.0001; 
Interdental: Wald χ2(1)=75.0, p<.0001; Alveolar: Wald χ2(1)=51.6, p<.0001), though the large 
difference between sibilants and non-sibilants was the biggest component of this effect.  A 
similar place effect was seen in both syllable-types (Figure 2D), though attenuated in complete-
syllables, leading to a place × condition interaction (Wald χ2(3)=12.0, p=.008). 

 The main effect of voicing was significant (Wald χ2(1)=6.2, p=.013): voiceless fricatives 
were identified better than voiced fricatives. This was driven by the interdentals (Figure 2E), 
leading to a significant voicing × place interaction (Wald χ2(3)=47.0, p<.0001).  The voicing 
effect was also enhanced in the noise-only condition, where voiceless sounds were 8.9% better, 
relative to the complete-syllable condition where the difference was 2.1%, a significant voicing × 
syllable-type interaction (Wald χ2(1)=4.1, p=.042).  The three-way interaction (voicing × place × 
syllable type) was not significant (Wald χ2(3)=5.9, p=.12). 

Follow-up analyses separated the data by syllable-type. Complete details are presented in 
the Online Note #2, but several key effects should be mentioned.  First, talker was significant for 
both conditions (complete-syllable: Wald χ2(9)=135.5, p<.0001; frication-only: Wald 
χ2(9)=196.9, p<.0001), but vowel was only significant in complete-syllables (complete-syllable: 
Wald χ2(1)=71.0, p<.0001; frication-only: Wald χ2(2)=.9, p=.6). Place of articulation was 
significant in both conditions (complete-syllable: Wald χ2(3)=180.5, p<.0001; frication-only: 
Wald χ2(3)=189.8, p<.0001), although voicing was only significant in the frication-only 
condition (complete-syllable: Wald χ2(1)=.08, p=.7; frication-only: Wald χ2(1)=15.0, p<.0001). 

To summarize, we found that 1) performance without the vocalic portion was 
substantially worse than with it, though performance in both cases was fairly good; 2) accuracy 
varied across talkers; 3) sibilants were easier to identify than non-sibilants but there were place 
differences even within sibilants; and 4) the vowel identity affected performance, but only in the 
complete-syllable condition.  This may be due to two factors.  First, particular vowels may alter 
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secondary cues in the vocalic portion in a way that misleads listeners (for /ɑ/ and /i/) or helps 
them (for /u/).  Alternatively, the identity of the vowel may cause subjects to treat the cues in the 
frication noise differently.  This may be particularly important for /u/—its lip rounding has a 
strong effect on the frication.  As a result, listeners’ ability to identify the vowel (and thus 
account for these effects) may offer a benefit for /u/ that is not seen for the unrounded vowels. 
 
2.3 Discussion 

The acoustic analysis revealed that every cue was useful for categorizing fricatives, but all were 
affected by context. However, the handful of nearly invariant cues raises the possibility that 
uncompensated cues, particularly in combination, may be sufficient for separating categories.  
Our perceptual study also revealed consistent differences across talkers, vowels and fricatives in 
accuracy.  The presence or absence of the vocalic portion had the largest effect. This hints at 
compensation using C-CuRE mechanisms since this difference may be both due to secondary 
cues to the fricative, and also to listeners’ ability to identify the talker and the vowel as a basis of 
compensation.  This may also account for the effect of context vowels on accuracy in the 
complete-syllable condition but not in the fricative-only condition.   
  

3. Computational Approach 

Our primary goal was to determine what information is needed to separate fricative categories at 
listener-like levels. We thus employed multinomial logistic regression as a simple, common 
model of phoneme categorization that is theoretically similar to several existing approaches 
(Oden & Massaro, 1978; Nearey, 1990; Smits, 2001; Cole et a., 2010).  We varied its training set 
to examine three sets of informational assumptions: 

1) Naïve Invariance: This model used the small number of cues that were robustly correlated 
with fricative identify and less with context.  Cues did not undergo compensation—if cues 
are invariant with respect to context, this should not be required. 

2) Cue-Integration: This model used every cue available, without compensation.  This is 
consistent with the informational assumptions of exemplar approaches, and is an 
unexamined assumption of cue-integration models like NAPP (Nearey, 1997).   

3) Compensation: This model used every cue, but after the effects of talker and vowel on 
these cues had been accounted for using C-CuRE. 

It may seem a forgone conclusion that compensation will yield the best performance–it has the 
most information and involves the most processing.  However, our acoustic analysis suggests 
there is substantial information in the raw cues to support fricative categorization, and no one has 
tested the power of integrating 24 cues for supporting categorization.  Thus, uncompensated cues 
may be sufficient.  Moreover, compensation in C-CuRE is not optimized to fricative 
categorization – it could transform the input in ways that hurt categorization.  Finally, the goal is 
not necessarily the best performance, but listener-like performance—none of the models are 
optimized to the listeners’ responses and they may or may not show such effects 
 The next section describes the categorization model and its assumptions.  Next, we 
describes how we instantiated each of our three hypotheses in terms of specific sets of cues.  
 
3.1 Logistic Regression as a model of Phoneme Categorization 

Our model is based on work by Nearey (1990, 1997; see also Smits, 2001a,b; Cole et al., 2010; 
McMurray, et al., in press) which uses logistic regression as a model of listeners’ mappings 
between acoustic cues and categories. Logistic regression first weights and combines multiple 
cues linearly.  This is transformed into a probability (e.g. the probability of an /s/ given the cues).  
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Weights are determined during training to optimally separate categories (Hosmer & Lemshow, 
2000, for a tutorial).  These parameters allow the model to alter both the location of the boundary 
in a multi-dimensional space and the amount each cue participates in categorization.   

Logistic regression typically uses a binary dependent variable (e.g. /s/ vs. /ʃ/) as in (1).   

( )
K221101
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...,| 21 xx

e
xxsP

βββ +++
=        (1)  

Here, the exponential term is a linear function of the independent factors (cues: x1…xn) weighted 
by their regression coefficients (β’s). Multinomial logistic regression generalizes this to map 
cues to any number of categories. Consider, for example, a model built to distinguish /s/, /z/, /f/ 
and /v/. First, there are separate regression parameters for each of the four categories, except one, 
the reference category5 (in this case, /v/).  The exponential of each of these linear terms is in (2) 
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These are then combined to yield a probability for any given category. 
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The probability of the reference category is  
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Thus, if there are 10 cues, the logistic regression requires 10 parameters plus an intercept for 
each category (minus one).  Thus, a multinomial logistic regression mapping 10 cues to four 
categories requires 33 parameters.  Typically these are estimated using gradient descent methods 
that maximize the likelihood of the data given the parameters. 

The models used here were first trained to map the dataset of acoustic measurements to 
the intended production.  This is overgenerous. The model knows both the cues in the acoustic 
signal, and the category the speaker intended to produce—something which learners may not 
always have access to. However, by training it on intended productions, not listener data, its 
match to listeners’ performance must come from the information in the input, as the model is not 
trained to match listeners, only to achieve the best categorization it can with the input.  

We held out from training the 240 tokens used in the perception experiment.  Thus, 
training consisted of 2880 - 240 = 2640 tokens. After estimating the parameters, we used them to 
determine the likelihood of each category for each token in the perceptual experiment. 
 

3.1.1 Evaluating the models 

Evaluating logistic models is tricky.  There is no agreed upon measure for model comparison 
(like R2 in linear regression).  Moreover, this study compares models that use only a handful of 
cues to those that use many, and therefore should compensate for the increased power of the 
more complex models.  Finally, model fit (e.g. how well the model predicts the training data) is 
less important than its ability to yield listener-like performance (on which it was not trained).  
Thus, we evaluated our models in three ways: Bayesian Information Criterion (BIC); estimated 
performance by experimental condition; and the likelihood of the human data given the model.  
We discuss the first two here, and discuss the final measure in Section 4.4 where it is used. 

Bayesian Information Criterion (BIC; Schwarz, 1978) is used for selecting among 
competing models. BIC is sensitive to the number of free parameters and the sample-size.  It is 
usually computed using (5), which provides an asymptotic approximation for large sample sizes. 

( ) ( )nkLBIC lnln2 ⋅+⋅−=         (5) 



Statistical models of fricative perception 

20 

Here, L is the likelihood of the model, k is the number of free parameters, and n is the number of 
samples.  Given two models, the one with the lower BIC is preferred.  

BIC can be used in two ways.  It is primarily used to compare two models’ fit to the 
training data.  Secondarily, it offers an omnibus test of model fit.  To do this, the model is first 
estimated with no independent variables. This “intercept-only” model should have little 
predictive value, but if one response was a priori more likely, it could perform above chance.  
Next, the independent factors are added and the two models are compared using BIC to 
determine if the addition of the variables offers any real advantage.   

Categorization performance can be computed from logistic regression models and is 
analogous to the listener data.  This estimated listener performance can be compared as a 
function of experimental condition (e.g. as a function of fricative, talker or vowel), for a 
qualitative match to listeners.  If one of the models shows similar effects of talker, vowel, or 
fricative this may offer a compelling case for this set of informational assumptions. 

Crucially, this relies on the ability to generate data analogous to listener categorization 
from the logistic model.  While, the logistic formula yields a probability of each of the categories 
for any given set of cues, there is debate about how best to map this to listener performance.   

For any token, the optimal decision rule is to choose the most likely category as the 
response (Nearey & Hogan, 1986)6. This implies that listeners always choose the same category 
for repetitions of the same token (even if it is only marginally better). This seems unrealistic: in 
our experiment listeners responded identically to each repetition only 76.4% of the time in the 
frication-only condition and 90.5% in complete-syllables (close to the average accuracies).  
Thus, a more realistic approach is to use the probabilities generated by the model as the 
probability the listener chose each category (as in Nearey, 1990; Oden & Massaro, 1978).   

The discrete-choice rule generally yields better performance than the probabilistic rule 
(typically about 10% in these models) and listeners likely lie between these extremes. This could 
be modeled with something like the Luce-choice rule (Luce, 1959), which includes a temperature 
parameter controlling how “winner-take-all” the decision is.  However, we had no independent 
data on the listeners’ decision criteria, and since models were fit to the intended production, not 
to the perceptual response, we could not estimate this during training.  We thus report both the 
discrete-choice and probabilistic decision rules for each model as a range, with the discrete-
choice as the upper limit and the probabilistic rule as the lower limit.   

Finally, neither method offers a direct fit to the perceptual data. BIC is based on the 
training data, and performance-based measures are analogous to perceptual data but offer no way 
to quantitatively relate them.  Thus, in Section 4.4, we describe a method of comparing models 
based on the likelihood that the perceptual data was generated by each model. 
3.1.2 Theoretical Assumptions of logistic regression as a categorization model 

As a model of the interface between continuous cues and phoneme categories, logistic regression 
makes a number of simplifications.  First, it assumes linear boundaries in cue-space (unless 
interaction terms are included).  However, Nearey (1990) has shown that this can be sufficient 
for some speech categories.  Similarly, cue combination is treated as a linear process.  However, 
weighting-by-reliability in vision (e.g. Jacobs, 2002; Ernst & Banks, 2002) also assumes linear 
combinations and this has been tested in speech as well (Toscano & McMurray, 2010).  Given 
the wide-spread use of this assumption in similar models in speech (e.g. Oden & Massaro, 1978; 
Nearey, 1997; Smits, 2001b), this seems uncontroversial.  Moreover, lacking hypotheses about 
particular nonlinearities or interaction terms, the use of a full complement of interactions and 
nonlinear transformations may add too many parameters to fit effectively. 

Second, while there are more complicated ways to model categorization, many of these 
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approaches are related to logistic regression.  For example, a network that uses no hidden units 
and the softmax activation function is identical to logistic regression, and an exemplar model in 
which speech is compared to all available exemplars will be highly similar to our approach 

Third, logistic regression can be seen as instantiating the outcome of statistical learning 
(e.g. Werker et al, 2007) as its categories are derived from the statistics of the cues in the input.  
However, many statistical learning approaches in speech perception (e.g. McMurray et al, 2009a; 
Maye, Werker & Gerken, 2002) assume unsupervised learning, while logistic regression is 
supervised–the learner has access to both cues and categories.  We are not taking a strong stance 
on learning—likely both are at work in development.  Logistic regression is just a useful tool for 
getting the maximum categorization value out of the input to compare informational hypotheses. 

Finally, our use logistic regression as a common categorization platform intentionally 
simplifies the perceptual processes proposed in models of speech perception.  However this 
allows us to test assumptions about the information that contribute to categorization. By 
modeling phoneme identification using the same framework, we can understand the unique 
contributions of these informational assumptions made by each class of models. 
 
3.2 Hypotheses and datasets 

3.2.1 Naïve Invariance Model 

The naïve invariance model asked whether a small number of uncompensated cues are sufficient 
for classification.  Prior studies have asked similar questions for fricatives (Forrest et al, 1988; 
Jongman et al, 2000) using discriminant analysis and results have been good, though imperfect.  
This has not yet been attempted with more powerful logistic regression; and we have a lot more 
cues (particularly for non-sibilants). Thus, it would be premature to rule out such hypotheses. 

Section 2.1.2 suggested a handful of cues that are somewhat invariant with respect to 
context (Table 4). These nine cues distinguish voicing and sibilance in all fricatives, and place of 
articulation in sibilants.  We did not find any cues that were even modestly invariant for place of 
articulation in non-sibilants.  Thus, we added four additional cues: two with relatively high R2’s 
for place of articulation, but also context (F4 and F5), and two that were less associated with 
place but also with context (M3trans and M4trans). These were located in the vocalic portion, 
offering a way for the naïve invariance model to account for the differences between the 
frication-only and complete-syllable conditions in the perceptual experiment—the loss of these 
cues should lead to bigger decrements for non-sibilants, and smaller decrements for sibilants. As 
our selection of this cue-set was made solely by statistical reliability (rather than a theory of 
production), and we did not use any compound cues, we term this a naïve invariance approach.  
 

3.2.2 Cue-integration Model 

The cue-integration hypothesis suggests that if sufficient cues are encoded in detail, their 
combination is sufficient to overcome variability in any one cue.  This is reflected in the 
informational assumptions of exemplar approaches (e.g. Goldinger, 1998; Pierrehumbert, 2001, 
2003) and it is an unexamined assumption in many cue-integration models. It is possible that in a 
high-dimensional input-space (24 cues), there are boundaries that distinguish the eight fricatives.   

Our use of logistic regression as a categorizer could is a potentially problematic 
assessment of exemplar accounts, as it is clearly more akin to a prototype model than true 
exemplar matching.  However, if the speech signal is compared with the entire “cloud” of 
exemplars, then the decision of an exemplar model for any input will reflect an aggregate of all 
the exemplars, a “Generic Echo” (Goldinger, 1998, p. 254), allowing it to show prototype-like 
effects (Pierrehumbert, 2003).  In contrast, if the signal is compared to only a smaller number of 
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tokens this breaks 
down.  Ultimately, 
formal models will be 
required to determine 
the optimal decision 
rule for exemplar 
models in speech.  
However, given our 
emphasis on 
information, logistic 
regression is a 
reasonable test—it 
maps closely to both 
cue-integration models 
and some versions of 
exemplar theory and is 
sufficiently powerful to 
permit good 
categorization.  

Thus, we 
instantiated the cue-
integration assumptions 
by using all 24 cues 
with no compensation 
for talker or vowel.  To 
account for the 
difference between the 
frication-only and 
complete-syllable 
condition, we 
eliminated the 14 cues 
found in the vocalic 
portion (Table 2), 
asking whether the 
difference in 
performance was due to the loss of additional cues. 
 

3.2.3 Compensation / C-CuRE Model 

The final dataset tests the hypothesis that compensation is required to achieve listener-like 
performance.  This is supported by our phonetic analysis suggesting that all of the cues were 
somewhat context-sensitive. To construct this dataset, all 24 cues were processed to compensate 
for the effects of the talker and vowel on each one.  While the goal of this dataset was to test 
compensation in general, this was instantiated using C-CuRE because it is, to our knowledge, the 
only general purpose compensation scheme that is computationally specific and can be applied to 
any cue; and can accomplish compensation without discarding fine-grained detail in the signal 
(and may enable greater use of it: Cole et al, 2010). 
 To construct the C-CuRE model, all 24 cues were first subjected to individual regressions 

Table 4: Summary of the 9 cues that were relatively invariant with respect to 
speaker and vowel as well as four non-invariant cues that were included because 
they provided the best information about place of articulation in non-sibilants.  R

2
 

are change statistics taken from analyses presented in Section 2.   

 

Cue Cue for Context Effects 

MaxPF Place in sibilants (R2=.504) 
Speaker: Moderate (R2=.084) 

Vowel: n.s. 

DURF Voicing (R2=.40) 
Speaker: Large (R2=.16) 

Vowel: Small (R2=.021) 

RMSF Sibilance (R2=.419) 
Speaker: Moderate (R2=.081) 

Vowel: n.s.  

F3AMPF 
Place in sibilants (R2=.44) 

Sibilance (R2=.24) 

Speaker: Moderate (R2=.07) 

Vowel: Small (R2=.028) 

F5AMPF Sibilance (R2=.39) 
Speaker: Moderate (R2=.07) 

Vowel: Small (R2=.012) 

LF Voicing (R2=.48) 
Speaker: Moderate (R2=.11) 

Vowel: Small (R2=.004) 

M1 Place in sibilants (R2=.55) 
Speaker: Moderate (R2=.122) 

Vowel: n.s.  

M2 
Sibilance (R2=.44) 

Place in sibilants (R2=.34) 

Speaker: Small (R2=.036) 

Vowel: n.s.  

M3 Place in sibilants (R2=.37) 
Speaker: Moderate (R2=.064) 

Vowel: n.s. 

 

Non-invariant cues to place in non-sibilants 

F4 Place in non-sibilants (R2=.083) 
Speaker: Large (R2=.43) 

Vowel: Small (R2=.05) 

F5 Place in non-sibilants (R2=.082) 
Speaker: Large (R2=.29) 

Vowel: Small (R2=.045) 

M3trans Place in non-sibilants (R2=.061) 
Speaker: Small (R2=.029) 

Vowel: Moderate (R2=.079) 

M4trans Place in non-sibilants (R2=.062) 
Speaker: Small(R2=.031) 

Vowel: Small (R2=.069) 
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in which each cue was the dependent variable and talker and vowel were independent factors. 
These two factors were each represented by 19 and 5 dummy variables (respectively), one for 
each talker/vowel (minus one)7.  After the regression equation was estimated, individual cue-
values were then recoded as standardized residuals. This recodes each cue as the difference 
between the actual cue value and what would be predicted for that talker and vowel.  

The use of context in C-CuRE offers an additional route to account for differences 
between the complete-syllable and frication-only condition.  While excising the vocalic portion 
eliminates a lot of useful first order cues (as in the cue-integration model), it would also impair 
parsing.  This is because it would be difficult to identify the talker or vowel from the frication 
alone.  Indeed, Lee et al. (2010) showed that the vocalic portion supports much more robust 
identification of gender than the frication, even when only six pitch pulses were present.  Thus, if 
fricative categorization is contingent on identifying the talker or vowel, we should see an 
additional decrement in the frication-only condition due to the absence of this information.  
 Our use of regression for compensation complicates model comparison using BIC.  How 
do we count the additional parameters?  In the cue-integration model, each cue corresponds to 
seven degrees of freedom (one parameter for each category minus one).  In contrast, the 
compensation / C-CuRE model uses additional degrees of freedom in the regressions for each 
cue: 19 df for talkers, 5 for vowels, and an intercept. Thus, instead of 7x24 parameters, the 
complete C-CuRE model now has 32x24 parameters, suggesting a substantial penalty. 

However, there are three reasons why such a penalty would be ill advised.  First, the free 
parameters added by C-CuRE do not directly contribute to categorization, nor are they optimized 
when the categorization model is trained.  These parameters are fit to a different problem (the 
relationship between contextual factors and cues), and are not manipulated to estimate the 
logistic regression model.  So while they are parameters in the system, they are not optimized to 
improve categorization. In fact, it is possible that the transformations imposed by C-CuRE 
impede categorization or make categorization look less like listeners, as C-CuRE is removing the 
effect of factors like vowel and talker that we found to affect listener performance.   

Second, the parameters for parsing with C-CuRE can be computed directly from the data. 
When the independent variables are discrete, the regression parameters are related to the 
combination of cell means.  No complex optimization is needed to estimate these values.  

Finally, any scaled up system, even without compensation, would need to identify vowels 
and talkers.  Since the parameters used in C-CuRE are simply the mean values of each cue with 
respect to context, a cue-integration model that was trained to identify the context along with the 
fricative would be estimating similar parameters anyways—they just would not be used in 
fricative identification.  The C-CuRE model simply reuses those parameters for compensation.   
 

4. Results 

Our analysis starts with a description of the results of each model.  Next we describe a scheme 
for making quantitative model fits to the perceptual data and compare the three approaches.  
Finally, we address several assumptions of the Compensation / C-CuRE model. 
 

4.1 Naïve Invariance 

4.2.1 Complete Syllables 

Overall, the naïve invariance model offered a good fit to the production data. BIC decreased 
substantially from the intercept-only model (Intercept-only: 11034; Invariance Model: 3399), 
and the χ2 test of model fit was significant (χ2(91)=8353, p<.0001).  Likelihood ratio tests 
showed that the model used all 13 cues (all χ2(7)>28, p<.0001). The model averaged 83.3% 
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correct on the perception tokens using the discrete-choice rule, and 74.8% correct using the 
probabilistic rule.  Thus, this handful of invariant cues supports fairly accurate identification, 
though less so than listeners.  
 However, it was not a good fit to listener performance.  It is much poorer on non-sibilants 
than listeners, and there are no differences within them (Figure 3A).  Similarly, within sibilants, 
it fails to capture listeners’ slightly better performance on the post-alveolars (/ʃ, ʒ) than alveolars 
(/s, z/). Moreover, the breakdown of performance by both vowel (Figure 3B) and talker (Figure 
3C) does not show the expected patterns, with the model showing the inverse effect of vowel, 
and little correlation with listeners’ performance across talkers (R=.18). 

Thus, this model undershoots listener performance by about 15% when measured with 
the more realistic probabilistic decision rule and by about 7.5% with the discrete choice rule.  
More importantly, it does not describe listeners’ errors.  The model showed the inverse effect of 
context vowel, and a different effect of talker. Together, this suggests that the information in this 
small set of cues does not fully capture the similarity relations that underlie listeners’ 
categorization, nor is it sufficient to support listeners’ levels of accuracy.   
 
4.2.2 Frication Only 

The invariant cues were largely in the frication portion of the stimulus – only four of the 13 were 
found in the vocalic portion.  Thus, there should be little difference when the cues in the vocalic 
portion were eliminated to model the frication-only condition.   This was confirmed as this 
model performed at 70.1% on the probabilistic rule and 78.7% on the discrete rule (compared 
with 74.5% and 83.3%).  Given the small difference between models, and the fact that both 
models were in the range of the listeners (M=76.3%), we do not report more on this model. 

Figure 3: Performance of the naïve invariance 
model and human listeners (in black). Model 
performance is represented by the gray range, 
bounded by the model’s performance estimated 
with the probabilistic rule on the bottom and the 
discrete-choice rule on the top.   A) Accuracy for 
each of the eight fricatives. B) As a function of 
vowel context. C) As a function of speaker. 
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4.2 Cue-integration. 

4.2.1 Complete Syllables 

When all cues were used, model fit improved markedly.  The intercept-only model had a BIC of 
11034, and the full model showed a substantial decrease to 3381—lower than the naïve 
invariance model even when penalized for additional cues.  The χ2 analysis of fit was highly 
significant (χ2(168)=8977, p<.0001), however, the model did not take advantage of all the cues.  
Likelihood ratio tests showed that five were not used: F2 (χ2(7)=8.7, p=.27), F3AMPv 
(χ2(7)=12.7, p=.08),  F5AMPv (χ

2(7)=7.1, p=.41), M3trans (χ
2(7)=9.7, p=.21) and M4trans 

(χ2(7)=12.7, p=.08)8. Interestingly, these were the cues that were most affected by vowel context. 
All other cues were highly significant (all χ2(7)>15, p<.03).   

The model performed at 85.0% with the discrete-choice rule, and 79.2% with the 
probabilistic rule, an increase over the naïve invariance model (2.5%, 5% respectively). The new 
cues also allowed the model to better approximate listener performance. As Figure 4A shows, the 
model now exhibits differential performance within the non-sibilants: the interdentals are now 
worse than the labiodentals. In other ways, accuracy did not reflect listeners. The model 
performs better on alveolars than postalveolars, better for /i/ than the other two vowels (Figure 
4B), and its performance across talkers is not correlated with listeners (R=-.01).  Thus, this 
model improves over the naïve invariance model in accuracy and match to listeners, but it does 
not fully capture the pattern of errors and context effects. 
 

4.2.2 Frication Only 

Next, we examined whether the model could account for performance on the frication noise 
alone by training a new model on just the 10 cues in the frication (Table 2).   

Figure 4: Performance of the cue-
integration model and human listeners on 
the complete syllable condition.  Model 
performance is represented by the gray 
range whose lower bound is performance 
using the probabilistic rule and whose upper 
bound reflects the discrete-choice rule.  A) 
The complete model as a function of 
fricative. B) The complete model as a 
function of vowel context. C) The complete 
model as a function of speaker. 
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 This model fit the training data well, with a BIC of 11034 for the intercept-only version 
and 3431 for the final model (χ2(70)=8155, p<.0001), and all 10 cues significantly contributed to 
performance (all χ2(7)>31, p<.001).  Performance was worse than the full model, mimicking the 
effect of eliminating the vocalic portion, averaging 77.9% for the discrete choice rule and 70.9% 
for the probabilistic one. This was quite close to listeners (75.4%).  This model also offers a 
close fit to the listeners’ accuracy across fricatives (Figure 5A).  While it outperforms them on 
/ð/9, it correctly captures differences between the other seven, particularly the sibilants.  Its 
accuracy across talkers and vowels was more variable.  Listeners showed little differences across 
vowel while the model was again best with /i/, although its range of performance mostly 
included the listener data.  The effect of talker, however, was different between listeners and the 
model (R=-.04), though, as with vowels, listener performance is largely in the model’s range.  

Thus, the frication-only version of the cue-integration model offers a better fit to the 
corresponding empirical data than the complete-syllable version, particularly in overall accuracy.  
It is imperfect for some of the context effects, but many of the broad patterns are there.  If 
anything, the complete-syllable version needs improvement to account for listener performance. 
 

4.3 Compensation / C-CuRE. 

The compensation model showed the best fit of all (χ2(168)=10381, p<.0001) with BIC reducing 
from 11977 to 2990.  In contrast to the cue-integration model, likelihood ratio tests showed that 
all 24 cues affected performance (all χ2(7)>21, p<.004), suggesting that compensating for 
contextual variance helps the model gain access to new information sources. 

Accuracy was excellent. The model was 92.9% correct using the discrete decision rule 
and 87.0% correct using the probabilistic rule (Figure 6A).  This is a large improvement (over 
7%) over the cue-integration model that puts performance in the range of human listeners.  As 

Figure 5: Performance of the cue-
integration model and human listeners on 
the frication-only condition.  Model 
performance is represented by the gray 
range whose lower bound is performance 
using the probabilistic rule and whose 
upper bound reflects the discrete-choice 
rule.  A) As a function of fricative. B) As a 
function of vowel context. C) As a 
function of speaker. 
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Figure 6A shows, the model performed equivalently to listeners for sibilants and /ɵ/, although it 
slightly undershot them for /f/ and /v/ and overshot them for /ð/.  Perhaps most impressively, the 
effect of vowel context has completely reversed from prior models and now fits the human data 
(Figure 6B), and the talker differences are also well correlated (R=.52) (Figure 6C).  At a 
statistical level, this is surprising – we have partialed the effects of talker and vowel out of the 
raw cues, and yet, we are now seeing the correct effects in performance. This suggests that 
listeners’ differences across vowels may be due to differences in compensation, not differences 
in the raw information available. 
  

4.4 Model Comparison. 

The results thus far (Table 5) indicate that compensated cues using C-CuRE offer the closest 
match to listeners in the complete-syllable condition, while the cue-integration approach works 
well in the frication-only condition.  Our goodness of fit measure, however, compared each 
model’s fit to the training data (the intended productions), showing only that the C-CuRE model 
is the better classifier of this data. While the qualitative differences between models in predicting 
vowel and talker effects suggest the C-CuRE model is a better fit to listeners, we have not 
reported goodness of fit to the perceptual data. Here we develop the tools to do so.  

We focus on comparing the three models in the complete-syllable condition. The naïve 
invariance and cue-integration models were similar for the frication-only data, and differed only 
by a single cue (M4).  Second, applying the C-CuRE model to the frication-only data makes little 
sense theoretically—without the vocalic portion it would be difficult to identify the talker or 
vowel to parse their effects from the cues in the frication. 

The perception data takes the form of a frequency distribution: for each token, the 
number of times each category was chosen.  The output of logistic regression is analogous: the 

Figure 6: Performance of the Compensation / C-
CuRE model and human listeners on the 
complete-syllable condition.  Model performance 
is represented by the gray range whose lower 
bound is performance using the probabilistic rule 
and whose upper bound reflects the discrete-
choice rule.  A) As a function of fricative. B) As a 
function of vowel context. C) As a function of 
speaker. 
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probability of each category given the input.  From these probabilities and frequencies, we can 
use the multinomial distribution to compute the likelihood of getting a particular distribution of 
responses (the listener data) given the probabilities computed by the model: 

  821

821

821 !!!

! XXX
ppp

XXX

N
L K

K
=      (6) 

Here, N is the total number of responses; Xi is the number of times category i was selected; and pi 
is the probability of that category from the model.  Multiplying this across each token in the 
dataset (with p1…p8 for each computed from the model based on that token’s cues) gives the total 
likelihood of the entire perceptual dataset given the model. 
 This allows us to compare any two models using odds-ratios (the ratio of the two 
likelihoods) to determine how much more likely one model is over the other.  Generally, to 
compute the odds-ratio, we divided the likelihoods by 240 to compute the average likelihood of 
each token, and used this to compute the average odds ratio across tokens.  We can also compute 
BIC from the log-likelihoods, to compute a BIC value relative to the observed perceptual data. 
 Thus, we first used each of the three models to compute the probabilities for each 
response for each token in the dataset.  We next computed the likelihood of obtaining the 
distribution of responses observed in perceptual data for each token.  These were logged and 
summed to obtain the total log-likelihood of the data given each model.   
 Consistent with the accuracy data, the cue-integration model fit the listener data better 
than the naïve invariance model. Its log-likelihood was larger (-3823 vs. -4740), and it was 45.7 
times more likely to give rise to the responses for any perceptual token than the naïve invariance 
model.  Even when penalized for its cues, its BIC was still lower (8605.3 vs. 10018.2).   
 Next, we compared the cue-integration and compensation / C-CuRE models. 
Surprisingly, the C-CuRE model (LL=-7142.7; BIC=15245) was a worse fit than the cue-
integration model (LL=-3823.1; BIC=8605.3).  This was unexpected given the compensation 
model’s better overall performance and its closer match to the perceptual data. 

Examining the log-likelihoods for individual tokens, we noticed that while most were in 
the 0 to -50 range, the C-CuRE model had a handful of very unlikely tokens: 16 (out of 240) had 
log-likelihoods less than -100, and one was less than -1000.  This was due to the fact that it was 
extremely confident in categorizing some tokens, outputting probabilities near zero (1e-50 or 
less) for dispreferred fricatives.  If subjects responded even once for these near-zero probability 
events (e.g. if they were guessing), this dramatically decreased the likelihood of the model (since 
this tiny probability, multiplied by all the others, squashes the more likely probabilities from 
other trials).  In contrast, the cue-integration model was less confident in its decision so the 
probabilities for 
dispreferred 
fricatives were 
orders of 
magnitude larger.  
As a result, 
guessing was not 
nearly as 
deleterious—the 
model expected to 
be wrong 
occasionally.  

Table 5: Summary of Performance of the Models and Human Listeners. 

 

% Correct Model Fit Condition Model 

Discrete Prob. BIC Cues 

Listeners 91.2 - - 

Invariance 83.3 74.5 3399 13 

Cue Integration 85.0 79.2 3381 24 

Complete 

Compensation / C-CuRE 92.9 87.0 2990 24 (parsed) 

Listeners 76.3 - - 

Invariance 78.8 70.1 3537 9 

Frication 

Only 

Cue Integration 79.2 69.7 3431 10 
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 Thus, we modified the logistic model to include a chance of guessing, by constructing a 
mixture model in which the probability of a category was a mixture of logistic and guess trials. 

 ( ) ( )8
11log guessguessisticcategory pppp +−=       (7) 

Here, plogistic is the probability of a given fricative from the logistic regression, pguess is the 
likelihood of guessing, and there is a 1/8 chance of selecting any fricative on guess trials.   

It was not clear how to estimate 
pguess, as we had no independent data on 
listeners’ guessing.  Ideally, one would 
estimate this parameter with the rest of 
the parameters in the logistic model.  
However, the logistic model was fit to 
intended productions, not perceptual 
data, which left no way to estimate a 
property of the listener from an 
unambiguous training signal. Thus, we 
examined a roughly logarithmic range 
of guess-rates from 0 (the previously 
reported results) to 20%, to allow a 
comparison of each model at the same 
pguess.  We also estimated the optimal 
pguess for each model and compared 
models at their optimal guess rates. 

Figure 7 shows the results. At very low guess rates, (0 ≤ pguess ≤ 1e-6), the cue-integration 
model was more likely. However, once pguess exceeded 1e-6, the C-CuRE model was better at all 
values.  At 1e-6, the average odds-ratio (C-CuRE / cue-integration) for individual tokens was 
1.2, and this increased to 13.5 by .005, and stayed above 20 at when pguess was greater than .0225.  
Thus even assuming extremely low rates of guessing, the C-CuRE model was more likely to 
generate the perceptual data than the cue-integration model.  Our analysis at the optimal guess 
rates confirmed this.  For the cue-integration model, the optimal pguess was .02122 with a log-
likelihood of -3131.2; for the C-CuRE model the optimal pguess was slightly higher at .03094 but 
with a much higher log-likelihood of -2397.6, and the average odds ratio was 21.26 in favor of 
C-CuRE.  Thus, comparing models at their optimal pguess still favored the C-CuRE model. 
 

4.5 Further Issues. 

There are a few important caveats to the claim that the C-CuRE model offers the best fit.  First, 
we made the simplifying assumption that listeners can identify talkers and vowels perfectly.  
This is unreasonable, of course, so these data should be interpreted as an upper bound of 
performance given this type of compensation.  We probed the limit of this (Supplementary Note 
#4) by allowing the model to mis-identify the talker/vowel on some percentage of trials (thus 
compensating for the wrong talker or vowel). We found that until the mis-identification rate 
reaches 30-35% (for both talker and vowel simultaneously) C-CuRE still outperforms the cue-
integration model (details in Supplementary note #4).  Moreover, the variation and accuracy 
across talkers and vowels that only the C-CuRE model displayed was seen at every level of mis-
parsing tested. 

Similarly, we also examined the assumption that one must identify individual talkers and 
vowels for successful compensation (Online Supplement, Note #5).  We simplified the C-CuRE 

Figure 7: Log-likelihood for each of the models as a 
function of the guess rate.   
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model to categorize talkers only by gender, and to categorize vowels only in terms of height and 
backness (independently). These are easier to identify than individual talkers and phonemes, 
mitigating our assumption of perfect performance. This also reduces the number of parameters in 
each regression used for compensation to 4 (from 25), yielding a simpler model.  This did not 
substantially affect performance with accuracy between 83.5% and 90.8%.  

Finally, the C-CuRE framework is just one approach to compensation, and contrasts from 
classic approaches that posit purely bottom-up combinations of cues.  We examined this in a 
more limited model that compare specific compound cues that have been proposed in the 
literature (e.g. locus equations, duration ratios, etc) to the raw versions of these cues with and 
without C-CuRE (Online Supplement, Note #6).  The C-CuRE model outperformed the relative 
cue model substantially.  Given its broader generality (compensation via the same mechanisms 
can be used with any cue), and the fact that it preserves (rather than discards) fine-grained detail, 
C-CuRE may be the better approach to compensation. 
 

5.0 General discussion. 

5.1 Summary 

Our primary question concerned the information in the speech signal that is necessary to support 
categorization.  We collected a corpus of productions that was intended to capture as complete a 
description as possible for a large sample of fricatives. We measured every cue that had been 
proposed, and discovered some new ones (LowF, F4 and F5, Supplementary Note #1).  Acoustic 
analysis showed that these cues are heavily context- dependent, but also that there is substantial 
information for categorization: every cue had some correlation with fricative identity. 
  This database of measurements is the information available in the signal.  We 
manipulated its quantity and format in the context of a common categorization model, and 
compared that to listener performance on the same tokens, testing three sets of informational 
assumptions: 1) those of invariance models, that a small number of raw cues is sufficient; 2) 
those of exemplar and cue-integration models: that a large number of uncompensated cues is 
sufficient; and 3) those of compensation models, using cues after effects of context have been 
compensated for.  Compensation was instantiated in the C-CuRE framework, a mechanism that 
preserves fine-grained acoustic detail, and posits categorization as a basis of compensation. 

Only the model using compensated cues yielded listeners’ accuracy level and pattern of 
errors with complete-syllables, and no other model showed the right effects of vowel or talker. 
This was not due to our simplifying assumptions: the C-CuRE model can cope with mis-
identified talkers and vowels, factor out variance with a reduced feature set, and is superior to 
complex relative cues (Online Notes #4-6).  Minimally, this argues for some form of 
compensation, and it more specifically suggests that C-CuRE is a useful way to implement it.  
However, given the lack of formal models of compensation, it is possible that other approaches 
to compensation will offer a similar benefit. 

C-CuRE, however, offers a unique description of the difference between the frication-
only and complete-syllable conditions.  If each portion of the signal subserves decisions about 
multiple properties (segmental and talker), listeners’ differences between these conditions will be 
due in part to first-order cues in the vocalic portion that directly cue fricatives, but also to their 
abilities to use this portion to identify the talker and vowel as the basis of compensation of cues 
in the fricative. This is underscored by the good fit of the cue-integration to the frication-only 
condition, where the information necessary for compensation with C-CuRE may not be 
available.   It can also explain the beneficial performance for /u/ (relative to the other values) – 
the coarticulatory effect of /u/ on the frication due to lip-rounding is strong, and identifying this 
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vowel will offer a unique compensatory benefit for cues in the frication that is not seen with the 
other vowel (in the complete-syllable condition), or when compensation is not possible (via C-
CuRE), in the frication-only condition. 
  
5.2 Could uncompensated cues have worked? 

There are a number of reasons the cue-integration and invariance models may have failed that do 
not bear on their informational assumptions.  First, did we measure enough cues, or the right 
ones?  Could the cue-integration model have succeeded with better information?  We think not. 
We examined every cue reported by Jongman et al (2000), the most thorough fricative 
examination to date, and added 10 new ones (some of which were quite useful).  We also tried 
cue combinations that should have been more invariant, with little benefit (Supplementary Note 
#6).  Thus, our corpus did not lack information (although there may still be undiscovered cues 
for /ɵ, f, v/—even the C-CuRE model underperformed slightly on these).   

Second, it is possible that the cues were not scaled properly.  The auditory system 
represents some information nonlinearly (e.g., log scales for duration).  We were confronted with 
many such choices during model development: how to scale the cues (e.g. bark vs. Hz frequency; 
log vs. linear duration); whether to include polynomial terms; and how to compute residuals 
(standardized, unstandardized, studentized).  We explored many of these options and none 
affected model performance by more than 1%.   

While there may be some yet to-be-discovered cue or transformation that will offer a 
magic bullet, we doubt it is forthcoming. Rather, the simulations suggest that once we include 
many redundant sources of information, and particularly when information is coded relative to 
expectations driven by other categories (e.g. vowel, talker), the details of which specific cues and 
how they are scaled matter less.  It is the redundancy, the context sensitivity, and the statistical 
structure in the input that does the work, not the details of measuring and coding cues.   

Third, perhaps this finding is unique to the statistics of fricatives.  It is possible that the 
statistics of cues associated with other phonemic contrasts may better support categorization.  
Cole et al (2010)’s, analysis of vowels, suggests that for at least one other class of phonemes C-
CuRE offers a decided advantage.  However, there is a need for these sorts of comparative 
informational analyses on other phonological feature, a fruitful (though laborious) undertaking.  

Fourth, we didn’t model lexical or statistical factors that contribute to perception—
perhaps with such things, uncompensated cues would be sufficient. But such factors could not 
have helped our listeners either: the stimuli were mostly nonwords, they uniformly spanned the 
space of possible CVs, and each was spoken by each talker.  These statistics were thus uniform 
in our experiment, yet listeners performed better than the cue-integration model predicted. 

Finally, perhaps the problem is our categorization model.  For example, the mechanisms 
of categorization proposed by exemplar theory differ substantially from logistic regression, and 
are potentially more powerful.  We cannot rule this out.  However, we have experimented with 
three-layer neural networks which are capable of learning non linearly-separable distributions, 
and should offer better categorization. This network performed at 87.5% on the discrete-choice 
rule and 83.5% on the probabilistic rule, better than the cue integration model (85.0% / 78.2%) 
but less accurate than listeners. Uncompensated cues in the dataset may not support accurate 
categorization under any categorization model.  In fact, we found even better performance when 
the same network was trained on cues parsed with C-CuRE (90.4% / 88.5%). 

Thus the failure of the cue-integration models was not likely due to these simplifications 
and we are left to conclude that simply using as much information as possible in its raw form 
may be insufficient to account for listener performance.  Interestingly, when this is the only route 
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available to listeners (in the frication-only condition), the cue-integration model succeeds. 
 
5.3 Is this result obvious? 

Superficially, these results seem obvious. Of course, when we use many cues, performance 
improves. Of course, compensation improves categorization.  However, this misses several 
important points.  First, our criterion wasn’t simply perfect categorization; it was match to 
listeners.  Listeners were not at ceiling, averaging 90% correct—if invariant cues were sufficient, 
for example, the cue-integration or C-CuRE models could have overshot performance.   

Second, our match to listener data was not based on accuracy alone, the effect of context 
(talker and vowel) was equally important.  This was not built into the models (they were not 
trained on listener data) and there was no a priori reason any of them would give rise to such 
effects.  Indeed, as we added cues, moving from the invariance to the cue-integration model, 
there was little improvement in this regard; it was only when we added compensation that we 
saw such performance. While one might expect that adding cues or compensation could increase 
the fit of the model to its training data, there was no reason to expect it to fit better to a 
completely independent dataset reflecting idiosyncratic performance across context.  Thus, our 
close fit in this regard suggests that these differences across speakers and vowels are not so much 
a function of the statistical distribution of speech cues within speakers and vowels, but rather of 
the differential sensitivity of these distributions to compensation. 
 Third, C-CuRE was not optimized to the goal of identifying the fricative. This component 
of the model was trained independently of fricative categorization, simply recoding the input as 
distance from the expected cue-values for that talker and/or vowel.  There was no guarantee that 
this would yield a cue-space better suited to fricative categorization, nor that it would result in 
the pattern of context effects we observed.  In fact, it is surprising that we only see the effects of 
talker and vowel in the categorization model after we have parsed their effects out of the cue-set.   
 Given these factors, success of the C-CuRE model was by no means a foregone 
conclusion and its findings should not be dismissed easily. 
 
5.4 Implications for Theories of Speech Perception 

Fundamentally, the problem of lack of invariance is a question of information.  On this issue, our 
acoustic analyses confirm for fricatives what most researchers have concluded in general: there 
is no invariance in the signal (e.g., Ohala, 1996; Lindblom, 1996).  Even measuring 24 cues and 
assessing the effects of context on each, we found no truly invariant cues, and even the best of 
what we had were not sufficient to match listener categorization performance.   

More importantly, however, the lack of invariance is not problematic, and one does not 
need to go to extremes to surmount it.  Motor theory (Liberman & Mattingly, 1985; Liberman & 
Whalen, 2000) explicitly argues that the only solution to the lack of invariance is to code speech 
in terms of articulatory gestures.  Exemplar theory (e.g. Pierrehumbert, 2001; Hawkins, 2003) 
makes a similar point: if listeners retain every exemplar they hear in fine-grained detail this can 
be overcome without compensation.  While there are other reasons to argue for these theories, 
the lack of invariance does not require any specific approach to representation—categorization 
built on prototypes and acoustic cues can yield listener-like performance as long as many 
information sources are used with simple compensation schemes. Lack of invariance does not 
equal lack of information, and does not require a particular solution. 

As our emphasis was information, we did not examine the categorization process, and 
any theory of speech categorization must describe both.  Thus, here, we discuss the implications 
of these findings for a number of theories of speech perception where they are directly relevant.   
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First, our cue-integration model shares the informational assumptions of exemplar 
theory: use every bit of the signal, but without compensation.  Clearly, the redundancy in a large 
cue-set offers advantages in performance and when compensation was not available (lacking the 
vocalic portion) listeners behave in a way that is consistent with these informational 
assumptions.  However, C-CuRE offered substantially better accuracy (7-8%), and uniquely fit 
the context effects on performance.  This would seem to disfavor exemplar models. 

One concern with this is that in exemplar models, categorization may do more of the 
work. Storing complete exemplars may capture contextual dependencies, making compensation 
less necessary and enabling better processing based on raw cues.  Testing this will require a 
formal implementation, which raises several issues.  First, categorization decisions in exemplar 
models are made by comparing the incoming input to clouds of stored exemplars.  But how 
many exemplars take part in this?  If the input is compared to every exemplar, the model will act 
like a prototype model as the entire distribution is relevant to categorization and will perform 
similarly to logistic regression.  On the other hand, if the input is only compared to the closest 
matching exemplar (or a handful of nearby ones), a model would harness more exemplar-like 
processing to achieve a better decision, if there is a close match. However, when one was not 
available (e.g. a new talker), it may perform worse.  Second, depending on the scope of the 
exemplars, all types of contextual dependencies may not be captured, for example, coarticulation 
that crosses a word boundary (Cole et al, 2010).  Thus, evaluating exemplar models may require 
concrete decisions about the categorization rule and exemplar scope.   

Second, without oversimplifying the differences, our use of logistic regression closely 
overlaps with a range of models we termed cue integration models, models like FLMP (Oden & 
Massaro, 1978), NAPP (Nearey, 1990, 1997), and HICAT (Smits, 2001a,b).  FLMP and NAPP 
are not strongly committed to any particular form of input (other than cues being continuous and 
independent), and we see no reason that input parsed with C-CuRE could not be used (though 
this would introduce feedback which may be incompatible with FLMP: Massaro, 1989, 2000).   

Of the cue-integration models, HICAT (Smits, 2001a,b) is closest to our approach, in that 
a cue’s interpretation is conditioned on other decisions (e.g. the vowel).  In HICAT, this is 
embedded (and optimized) as part of the categorization problem, using interaction terms (e.g. F1 
x Speaker) in the categorization model.  This potentially creates a problem of generalization, as 
the influence of categories on cues is encoded within a single categorization decision. For 
example, one would have to learn the influence of a vowel and speaker on F1onset for /s/ decisions 
separately from the same influences on F1 for /ʃ/ decisions. This may lead to an explosion of 
such interaction terms. In C-CuRE, on the other hand, context effects are independent of specific 
categories: rather than conditionalizing the interpretation of cues on context, cues are recoded 
relative to expectations derived from context, making them available for many processes.  This 
accounts for findings that listeners hear the signal as compensated: for example, hearing a 
nasalized vowel as more oral if nasalization can be attributed to coarticulation from a nasal 
consonant (Fowler & Brown, 2000; see also Pardo & Fowler, 1997; Beddor, Harnsberger & 
Lindemann, 2002).  Of course, it is an open question whether cues are only encoded in 
compensated form, and the frication-only models suggest that both raw and compensated cues 
may need to be available to listeners.  Either way, however, by recoding cues the parameters 
needed for compensation are independent of those needed for categorization (unlike HICAT), 
which makes model estimation much more tractable.  Crucially, our simulations suggest this 
simpler approach is sufficient to account for listener performance in this corpus. 

Cue-integration models like NAPP and HICAT have framed debates over cue-sharing, 
situations like the one studied here where a single cue is affected by multiple factors 
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(Mermelstein, 1978; Whalen, 1989, 1992; Nearey, 1990, 1992; Smits, 2001a) and model fit to 
complex perceptual datasets has been an important tool for comparing hypotheses.  Nearey 
(1990) has argued that compensation effects on fricative identity can be accounted for without 
category→cue relationships by assuming listeners are simply biased toward particular pairs of 
phonemes, while Whalen (1992) and Smits (2001a) argue that fricative categorization is 
dependent on how the vowel is categorized.  Our analysis supports the latter view, but using 
stimuli that capture the natural statistical distribution of cue-values (clustered), and a richer 
information source. The generality of the C-CuRE compensation mechanism, however, extends 
this by suggesting that phoneme categorization may also be contingent talker identity (cf., 
Strand, 1999; Nygaard et al, 1994) and thus offers a more unified account.   

Finally, in the last few years, a number of statistical learning accounts of speech 
perception have emerged (de Boer & Kuhl, 1997; McMurray, et al, 2009; Vallabha et al, 2007; 
Toscano & McMurray, 2010; Feldman, Griffiths & Morgan, 2009).  Our logistic model was not 
meant to advocate for any particular categorization framework, nor do we make strong claims 
about learning.   However, it shares with statistical approaches the intuition that the statistical 
structure of the input is fundamental to categorization and it represents a powerful proof of 
concept by demonstrating that speech perception may in principle be learnable from the input, 
and that fairly complex variation in listener performance (e.g. the effect across talkers and 
vowels) can be derived largely from the information in input.  

Ultimately, however, statistics (and hence, information) will not be sufficient to fully 
describe perception, we must also consider processing.  Herein lies a limitation of our 
implementation of the ideas proposed here: in this specific domain, how do listeners identify the 
vowel to compensate during fricative perception, when vowel identification may also benefit 
from knowing the fricative? We suggest that listeners must simultaneously and interactively 
identify the talker, vowel and fricative. While these factors are identified in parallel, the cues for 
each may be available at different times, meaning that at some points in processing (e.g. before 
the vowel arrives) listeners may rely on an approach closer to our cue-integration approach, 
while once these contextual sources of information are available, they may be able to revise their 
initial decisions.  This favors an approach more akin to interactive activation (e.g. Elman & 
McClelland, 1986), where a partial decision about talker or vowel could be used to parse cues to 
the fricative, increasing confidence in the fricative decision; while simultaneously, partial 
decisions about the fricative can be used to parse cues to the vowel (see also, Smits’ [2001b], 
fuzzy parallel version of HICAT).  Over time, the system gradually settles on a complete parse of 
all three factors without ever making a discrete decision about any one.  Ultimately, though, 
understanding such mechanisms will require detailed analyses of the timecourse of processing 
(e.g. McMurray, Clayards, Tanenhaus & Aslin, 2008b) and more dynamic models of perception. 

 
5.5 Computing Cues Relative to Expectations 

The C-CuRE approach builds on parsing approaches which have historically been associated 
with gestural or acoustic accounts (Fowler, 1984; Gow, 2003). In contrast, our work shows that 
such operations do not require a particular representational form (cf., Ohala, 1981; McMurray et 
al, in press). C-CuRE also builds on auditory contrast accounts (Lotto & Kluender, 1998, Holt, 
2006; Kluender, Coady & Kiefte, 2003) by proposing that cues are interpreted relative to 
expectations, though these expectations can be driven by categories (perhaps in addition to 
lower-level expectations). This generality allows a simple implementation using linear regression 
to partial out both articulatory (vowel) and non-articulatory (talker) factors as the difference 
between expected and actual cue values.   
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When compared against other ways of relativizing cues, C-CuRE has several advantages. 
By relying on remembered prototype values it avoids having to wait to accumulate information. 
For example, relativizing frication duration on the basis of vowel duration means that listeners 
must wait until the end of the vowel to identify the fricative. In fact, recent work (McMurray, et 
al, 2008b) on asynchronous cues to voicing suggests listeners do not do this.  C-CuRE also does 
not require a lifetime of phonetic studies to determine relativizing relationships for each cue, and 
it can be used equally well with any cue.  It also is consistent with prototype and statistical 
accounts of phonetic categories since in order to parse out the effect of a category on a cue you 
must know its mean and variance (McMurray & Farris-Trimble, in press). 

Finally, like exemplar accounts, C-CuRE stresses the importance of fine-grained, 
continuous detail including indexical information, and the fact that it must be retained and used 
for multiple decisions during perception. Thus, it is not vulnerable to critiques leveled at 
normalization models (e.g. Pisoni, 1997).  Finally, also like exemplar accounts, we stress the 
importance of indexical cues, while positing a different role for them.  Rather than simply 
lumping indexical information in with phonetic cues, indexical cues are used to identify talkers, 
and that in turn is used to interpret cues signaling phonetic contrasts.   
 
5.6 Conclusions 

Speech categorization fundamentally requires massive cue-integration, but categorization must 
be performed at the same time as compensatory mechanisms that cope with contextual 
influences.  When we approach categorization in this richer framework, many problems appear 
easier. While studies of small numbers of cues are valuable for exploring which cues are used 
(e.g. Summerfield, 1981; Massaro & Cohen, 1976) and answering theoretical questions (e.g. 
Pisoni & Tash, 1974; Miller & Volaitis, 1989), they may also oversimplify issues and exaggerate 
problems (e.g., Shinn, Blumstein & Jongman 1985).   
 Massively redundant information is the norm in speech categorization, but at the same 
time, cue-sharing happens everywhere and compensation using information from other types of 
categories is needed to cope with it.  That is, categorization and compensation mechanisms may 
be deeply intertwined, challenging the conception that compensation occurs autonomously and 
pre-categorically. This has not been extensively explored outside of speech but may be crucial 
for understanding domains in which the information that supports categorization is variable and 
context-dependent, domains like face perception, color perception and even abstract category 
systems like syntactic categories (e.g. Monaghan, Christensen & Chater, 2005).  

C-CuRE suggests important interactions between categorization and the encoding of 
perceptual cues. However, it is not the only such interaction that has been proposed. Categorical 
perception (Liberman et al, 1957), for example, implies that cue-encoding is accomplished in 
terms of categories.  Categorical perception has not held up to empirical scrutiny in speech 
(Massaro & Cohen, 1983; Schouten, et al., 2003; Toscano et al, 2010), largely due to evidence 
that fine-grained detail is retained.  C-CuRE suggests a more interesting way in which categories 
may affect the encoding of continuous cues, one that preserves continuous detail by recoding 
cues relative to expectations derived from categories.  Thus, understanding compensation in 
perception may require us to understand higher-level processes like categorization, object 
recognition, and scene organization, and vice versa.  More importantly, the generality of 
mechanisms like C-CuRE suggests that debates over representation may be of less importance in 
understanding categorization than debates over process: when the information is right, the 
framework for categorization may matter less than the content it works on.  
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Appendix A: Measurement and Data Processing of the Corpus of Cue Values 

This appendix describes each of the individual cues that were measured in the corpus of 
fricatives and how they were measured.  JWW refers to the original Jongman et al (2000) study. 

Peak frequency was taken from JWW and measured from a 40 ms window at the center 
of the frication noise.  It is the frequency of the highest-amplitude peak of the FFT spectrum.  

Frication Duration and Vowel Duration were also obtained from JWW and measured 
from zero-crossings.  Fricative onset was the first point at which high-frequency energy appeared 
in the spectrogram.  Fricative offset/vowel onset was marked at the intensity minimum prior to 
the onset of periodic voicing energy for voiceless fricatives; and as the earliest period at which 
the waveform changed substantially (with respect to the frication) for voiced fricatives.  Vowel 
offset was identified as the onset of the closure portion of the /p/. 

Frication RMS amplitude and Vowel RMS amplitude were obtained from JWW, and 
measured by computing the RMS amplitude in dB for the entire frication as well as three 
consecutive pitch periods at the point of maximum vowel amplitude, respectively.   

Spectral mean, variance, skewness, and kurtosis were JWW measurements and computed 
from spectra obtained from three 40 ms Hamming windows centered at the onset, midpoint and 
end of the frication.  Spectra were based on a linear frequency scale as Jongman et al. (2000) 
reported little difference when values were derived from bark-scaled frequencies.   

Transition moments were also derived in the same way from a window that included the 
last 20 ms of the frication and the first 20 ms of the vowel. 
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All spectral moment data were taken directly from the JWW database, with three 
modifications. First, Jongman et al. (2000) reported the second moment as spectral variance 

which can have very high values.  We converted the second moment to standard deviations by 
taking the square root of each value (see Stoel-Gammon et al., 1994).  Second, Window-3 (the 
last 40 ms of the frication) was removed from the analysis because it overlapped with Window-4 
(which included the final 20 ms of the frication and the first 20 ms of the vowel) and would 
hence violate the independence assumptions of most statistical tests.  Third, the moments in 
Windows-1 and -2 were highly correlated, particularly for the first two moments (M1: R=.85; 
M2: R=.82; M3: .63; M4: .43).  This made it difficult for some of the models to converge.  
Therefore, moments in these two windows were averaged to create estimates of spectral mean, 
variance, skew and kurtosis that spanned the two windows.   

We also measured the following new cues, using a combination of the Praat speech 
analysis software (Boersma and Weenink, 2009) and several custom Matlab scripts.  

Low Frequency Energy was included as a potential measure of voicing during the 
frication.  A spectrum over the entire frication noise was computed, and the average amplitude of 
the components below 500 Hz was measured. 
 Formant Frequencies.  The frequency of the first five formants over the first 23.3 ms of 
vowel onset was measured in two stages.  First, frequencies were automatically extracted for all 
files using the Burg algorithm method with two different parameter-sets (one selected for men 
and one for women).  Next, a trained phonetic coder viewed plots of both formant tracks on top 
of the corresponding spectrograms and determined if either of the automatically coded tracks 
was correct.  If not, formant frequency values were entered by hand from the spectrogram. 
 Fundamental frequency (F0) was computed for the first 46.6 ms of each vowel.  

Narrow-band amplitude. This is a modification of the relative amplitude measure 
reported by JWW.  In their paper, relative amplitude was computed in two stages. First, the 
amplitude of F3 at vowel onset for sibilants (/s, z, ʃ, ʒ/), and of F5 for non-sibilants (/f, v, ɵ, ð/) 
was measured using a discrete Fourier transform over a 23.3 ms window.  Second, a spectrum 
was derived over the middle 23.3 ms of the fricative and the amplitude of the frequency 
component closest to the F3 or F5 values was obtained.  Relative amplitude was then the 
difference between fricative amplitude and vowel amplitude. 

While this is an excellent cue to place of articulation, we were concerned that this cue 
was measured differently depending on sibilance.  In the vocalic portion, the amplitude in the F3 
region (used for sibilants) is almost certainly greater than in the F5 region (used for non-
sibilants). Thus this cue could artificially distinguish sibilants from non-sibilants.  To avoid this, 
we measured both F3 and F5 amplitude for all fricatives and treated them as two separate cues.  

Jongman et al. (2000) relativized this measure by subtracting the amplitude in the 
fricative from that of the vowel.  We chose not to do this for two reasons.  First, several of the 
analyses were intended to examine the cues in the frication noise alone and it was unclear 
whether such cues should be counted as frication cues or vowel cues – there is clearly amplitude 
information in the fricative alone even if it cannot be relativized against the vowel.  Second, and 
more importantly, we wanted our models to use first-order cues (e.g. without normalization).  
Thus, it made sense to treat these as four independent cues: the amplitude in the F3 and F5 
regions for the frication and for the vocalic portion.  We refer to these measurements as narrow-

band amplitudes.   
Finally, some of the cues (spectral mean and variance, in particular) were large in real 

valued terms (spectral mean averaged 5879 Hz, and standard deviation averaged 2121 Hz in 
window 1.  Including these with values in the 0-1 range (e.g. duration in seconds) posed a 
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problem for fitting the logistic models used in Sections 4-8. Thus, prior to analysis, all variables 
were converted to Z-scores (relative to the overall mean and standard deviation), a form of 
centering that is common in regression and other generalized linear models (Cronbach, 1987). 
 
 
                                                 

Notes 

 
1  There is a long history of empirical work showing striking commonalities between speech perception and other 

domains of perceptual categorization.  Most famously, categorical perception is seen in the  perception of 
speech (Liberman, Harris, Hoffman & Griffith, 1957), color (Bornstein & Korda, 1984), and faces (Beale & 
Keil, 1995) (to name a few); and the later refutations of categorical perception (e.g. Schouten, Gerrits & Van 
Hessen, 2003; Toscano, McMurray, Dennhardt & Luck, 2010) have also been observed in color (Roberson, 
Hanley & Pak, 2009; Roberson & Davidoff, 2000) and faces (Roberson & Davidoff, 2000).  Prototype effects 
are seen in both dot patterns (Posner & Keele, 1968) and speech categories (Miller & 1997) (among many other 
domains).  Effects of top-down expectations can be observed in color categorization (Mitterer & de Ruiter, 
2008), and speech (Ganong, 1980), though they may work differently in music (McMurray, Dennhardt & 
Struck-Marcel, 2008c).  Finally, evidence for a graded competition between categories can be seen in both 
speech (McMurray, Aslin, Tanenhaus, Spivey & Subik, 2008a) and color perception (Huette & McMurray, 
2009).  Perhaps most importantly, many of the models of categorization in speech rely on similar principles to 
categorization in non-speech, principles like exemplar encoding (Goldinger, 1998), or prototypes (Miller, 
1997), and many of the same models have been applied to both speech and non-speech problems (e.g. Oden & 
Massaro, 1978; Goldinger, 1998). 

 
2  Such accounts did not imply that such factors were eliminated from every level of encoding; rather that they are 

stripped away from encodings used during phonetic categorization.  Indexical variation, for example, would be 
posited to be eliminated in the representations that support phonological categorization while still being 
available to support speaker identification. 

 
3 The exception to this is the second formant frequency (F2) which was remeasured in order to ensure 

consistency between it and the other four formants in terms of the procedure and the measurer. 
 
4  Dummy coding is a standard technique in regression (Cohen & Cohen, 1983) in which an independent factor 

with multiple levels (e.g. talker) is recoded into several variables.  Each of the N-1 levels of the factor is given a 
single variable which is coded 1.0 if the current data-point has that level and 0 otherwise. These variables are 
then entered as a group into the regression. 

 
5 Multinomial logistic regression generalizes the binary form of logistic regression by implementing a series of 

binary comparisons between each category and the reference category—so a common reference category is 
required.  The choice of which outcome serves as the reference category is arbitrary and will make no 
difference in the resulting probability predictions (Hosmer & Lemshow, 2000). 

 
6  This is how classification tables in statistics packages like SPSS are constructed. 
 
7  Parsing regressions were run entering speaker codes first and then vowel.  However, this choice does not affect 

the residuals as the ultimate regression equation (using all of the terms) is the same regardless of order of entry.  
However, during online perception this may matter as certain factors may not be available at every time point – 
for example, the presence of a carrier sentence prior to the fricative may make speaker available for parsing 
before the vowel (see McMurray, et al., in press, for a discussion). 

 
8  We were initially surprised at the failure of F2 to participate in the categorization model given the wealth of 

studies positing a role for either F2 at onset or F2 locus equations.  We can think of two reasons for this.  First, 



Statistical models of fricative perception 

46 

                                                                                                                                                             
many of these studies have only examined sibilants (and voiceless sibilants at that)—the utility of this cue for 
sibilants may not have been sufficient to reach significance given the other meaningful contrasts and the 
redundant information in the signal like the other formants (F3 in particular).  Second, Nearey (personal 
communication) suggested that F2 should show a quadratic relationship to place of articulation.  We thus ran a 
second model including both linear and quadratic terms for each formant.  Model performance was increased by 
.8% (85.8% vs. 85.0%), but not enough to outweigh the penalty of the additional parameters (BICquadratics: 3453 
vs. BIClinear: 3381 without).  However in the quadratic model, both the linear and quadratic terms for F2 were 
now significant (L: χ2(7)=25.6, p=.01; Q: χ2(7)=120.1, p<.0001), and significant quadratic effects were also 
observed for F4 (χ2(7)=18.4, p<.0001) and F5 (χ2(7)=15.1 p=.035).  Given the higher BIC, however, and the 
complexities of using quadratic terms in the parsing model, we used only the linear term in this and subsequent 
models.   

 
9  This may have been due to cognitive factors that were not modeled. The fact that /ð/ generally only appears 

word-initially in function words and has the same orthographic representation as /ɵ/ may have led listeners to 
select /ð/ less than other responses. 
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