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Abstract

Migrating cells and growth cones extend lamellipodial and filopodial protrusions that are required for outgrowth and
guidance. The mechanisms of cytoskeletal regulation that underlie cell and growth cone migration are of much interest to
developmental biologists. Previous studies have shown that the Arp2/3 complex and UNC-115/abLIM act redundantly to
mediate growth cone lamellipodia and filopodia formation and axon pathfinding. While much is known about the
regulation of Arp2/3, less is known about regulators of UNC-115/abLIM. Here we show that the Caenorhabditis elegans
counterpart of the Receptor for Activated C Kinase (RACK-1) interacts physically with the actin-binding protein UNC-115/
abLIM and that RACK-1 is required for axon pathfinding. Genetic interactions indicate that RACK-1 acts cell-autonomously in
the UNC-115/abLIM pathway in axon pathfinding and lamellipodia and filopodia formation, downstream of the CED-10/Rac
GTPase and in parallel to MIG-2/RhoG. Furthermore, we show that RACK-1 is involved in migration of the gonadal distal tip
cells and that the signaling pathways involved in this process might be distinct from those involved in axon pathfinding. In
sum, these studies pinpoint RACK-1 as a component of a novel signaling pathway involving Rac GTPases and UNC-115/
abLIM and suggest that RACK-1 might be involved in the regulation of the actin cytoskeleton and lamellipodia and filopodia
formation in migrating cells and growth cones.
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Introduction

The actin cytoskeleton is necessary for the formation of cellular

protrusions, lamellipodia and filopodia, that underlie morphoge-

netic events such as cell migration and axon pathfinding [1–4].

Unraveling the complex molecular events that regulate actin

structure and dynamics in migrating cells and growth cones will be

central to understanding the development of multicellular

organisms and the nervous system in particular. Migrating cells

and growth cones display dynamic lamellipodial and filopodial

protrusions consisting of a meshwork of actin filaments and

bundles of actin filaments, respectively [4–8]. Lamellipodia and

filopodia serve to guide cells and growth cones and also provide in

part the motile force necessary for cell migration and growth cone

advance [9]. A complex interplay of filopodial and lamellipodial

dynamics controlled by guidance receptors and their ligands is the

basis for guidance outgrowth and migration.

In cultured cells, the actin-nucleating Arp2/3 complex controls

the formation of lamellipodial networks [1,10,11], whereas the

anti-capping protein Enabled controls filopodial formation

[12,13]. Enabled also affects axon pathfinding in Caenorhabditis

elegans [14,15]. In migrating growth cones in C. elegans, the Arp2/3

complex is required for both lamellipodial and filopodial

formation [16], likely due to the contribution of Arp2/3-nucleated

actin filaments to filopodial bundles [7]. The actin-binding protein

UNC-115/abLIM [17] also controls lamellipodial and filopodial

formation in C. elegans growth cones [16], and acts in parallel to the

Arp2/3 complex in axon pathfinding [16–18], indicating that

UNC-115/abLIM may be contributing to both lamellipodial and

filopodial formation in growth cones. The signaling pathways that

control Arp2/3 activation are well documented. The Arp2/3

activators WASP and WAVE act downstream of Cdc42 and Rac

GTPases respectively to regulate Arp2/3 activity [11,19–22]. In C.

elegans axon pathfinding, WVE-1/WAVE acts downstream of

CED-10/Rac and WSP-1/WASP acts downstream of the MIG-

2/RhoG GTPase to regulate Arp2/3 [18].

While much is known about the Arp2/3 signaling pathway, less

is known about the control of UNC-115/abLIM in lamellipodia

and filopodia formation. The conserved UNC-115/abLIM

proteins have multiple LIM domains at the N terminus and an

actin-binding villin headpiece domain at the C terminus

[17,23,24]. The central region of the molecule contains a short

region of similarity shared with the dematin protein, which also

contains a C terminal actin-binding villin headpiece domain.

Previous studies in C. elegans showed that UNC-115/abLIM acts

downstream of the CED-10/Rac GTPase in neuronal lamellipo-

dia and filopodia formation [25]. The conserved seven-WD repeat

molecule SWAN-1 physically interacts with the UNC-115 LIM
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domains and with Rac GTPases, and is normally required to

attenuate Rac GTPase signaling [26], indicating that SWAN-1

might be a link between Rac signaling and UNC-115/abLIM.

A two-hybrid screen with the central region of UNC-115

identified the C. elegans Receptor for Activated C Kinase molecule

(Rack1), called RACK-1 in C. elegans [27,28]. Rack1 molecules are

composed of seven WD repeats, which form a seven-bladed beta

propeller structure that serves as a scaffold for protein-protein

interactions [29]. Rack1 was first identified as a molecule that

bound to activated protein kinase C and mediated its plasma

membrane translocation [30,31]. Further studies have shown that

Rack1 acts with a very diverse set of signaling complexes and can

mediate their sub cellular distributions and shuttling (reviewed in

[32]). This diversity of interaction leads to a diversity of function

for Rack1, including transcriptional and translational regulation,

regulation of membrane trafficking, regulation of signal transduc-

tion, and cell adhesion [32]. Interestingly, Rack1 controls cell

motility via its interaction with the Src tyrosine kinase [31,33].

Rack1 is a substrate for Src tyrosine phosphorylation and acts as a

repressor of Src in response to active PKC [31,34–37]. Rack1

inhibits Src-induced cell motility in cultured 3T3 fibroblasts, and

inhibits Src phosphorylation of p190RhoGAP [38], a modulator of

Rho GTPase signaling and actin organization. Rack1 is also

phosphorylated on tyrosine 52 by c-Abl, which is involved in

Rack1 regulation of focal adhesion kinase and integrin function

[39]. In C. elegans, RACK-1 has been shown to be involved in

embryonic cytokinesis [27]. C. elegans RACK-1 regulates mem-

brane trafficking and recycling endosome distribution via

interaction with dynactin, and thus might regulate the microtubule

motor dynein. As a consequence, rack-1 loss of function leads to

defects in cytokinesis and chromosome separation in the early

embryo.

Here we show that RACK-1 interacts with the actin-binding

protein UNC-115/abLIM, and that RACK-1 is required for axon

pathfinding. Genetic interactions indicate that RACK-1 acts in the

UNC-115/abLIM pathway in axon pathfinding, downstream of the

CED-10/Rac GTPase and in parallel to MIG-2/RhoG and the

UNC-34/Enabled. Neuron-specific expression of RACK-1 is

sufficient to rescue the axon pathfinding defects of rack-1 mutants,

indicating that RACK-1 acts cell autonomously in axon pathfind-

ing. Furthermore, we show that RACK-1 is involved in migration of

the gonadal distal tip cells, and that the signaling pathways involved

in this process might be distinct from those involved in axon

pathfinding. In sum, these studies pinpoint RACK-1 as a

component of a signaling pathway involving Rac GTPases and

UNC-115/abLIM, and suggest that RACK-1 might be involved in

the regulation of the actin cytoskeleton and lamellipodia and

filopodia formation in migrating cells and growth cones.

Results

RACK-1 interacts with UNC-115/abLIM in a yeast two-
hybrid screen

The actin-binding protein UNC-115/abLIM has three LIM

domains in the N-terminus, a villin headpiece domain (VHD) in

the C-terminus, and a middle region with unknown function that

contains a highly conserved region across species, the UAD

domain (UNC-115, abLIM, dematin) (Figure 1A) [17]. The VHD

physically interacts with F-actin [24,25], while the LIM domains

are thought to mediate protein-protein interactions. Previous

studies showed that the seven WD-repeat protein SWAN-1, a

negative regulator of UNC-115 activity, interacts with the LIM

domains of UNC-115 [26].

In order to identify molecules that interact physically with the

non-LIM-domain region UNC-115, the central region of UNC-

115 (residues 243 to 553 of the F09B9.2b molecule as described on

Wormbase) was used as bait in a yeast two-hybrid screen

(Figure 1A). This two-hybrid screen was performed at the

Molecular Interaction Facility at the University of Wisconsin-

Madison. The screen involved activation of b-galactosidase

activity and HIS5 expression in a liquid-based microtiter screening

procedure (see Materials and Methods). From a total of 36 million

C. elegans poly-A primed cDNAs screened, seven cDNAs that

corresponded to the K04D7.1 gene (as annotated on Wormbase)

were found. All seven cDNAs were found to activate when

retested, and all seven cDNAs displayed bait-dependence and did

not activate in the absence of the UNC-115 bait (data not shown).

The seven cDNAs represented five independent isolates (i.e.

represented five different 59 ends), with two of the isolates having

two representatives each (Figure 1E). Three of the cDNAs

contained the entire predicted K04D7.1 open reading frame,

and two were missing some of the predicted 59 open reading

frame. All five cDNAs were in frame to the GAL4 activation

domain in the pACT two-hybrid vector.

The K04D7.1 cDNAs were predicted to encode a molecule

similar to vertebrate Receptor for Activated C Kinase (Rack1),

called RACK-1 in C. elegans (Figure 1D and 1E) [27]. RACK-1 is

predicted to contain seven WD repeats that form a seven-bladed

beta-propeller similar to the beta subunit of G proteins [40].

Rack1 molecules define a conserved family of seven-WD repeat

proteins, and are distinct from other families such as Gb and

AN11/SWAN-1 [26,40]. Rack1 molecules are defined by two

conserved regions that interact with protein kinase C, a conserved

tyrosine residue that is phosphorylated by the Src tyrosine kinase,

and a tyrosine residue at position 52 that is phosphorylated by c-

Abl. The PKC interaction sites and the Src phosphorylated

tyrosine are conserved in the C. elegans RACK-1 protein, but the c-

Abl phosphorylated tyrosine at position 52 in human Rack1 is not

present in C. elegans RACK-1 (Figure 1E). Two of the cDNAs

isolated in the two-hybrid screen were missing coding region for

the first predicted WD repeat and one of them was missing part of

the second predicted WD repeat (Figure 1E).

Author Summary

In the developing nervous system, the growth cone guides
axons of neurons to their correct targets in the organism.
The growth cone is a highly dynamic specialization at the
tip of the axon that senses cues and responds by crawling
toward its target, leaving the axon behind. Key to growth
cone motility are dynamic cellular protrusions called
lamellipodia and filopodia. These protrusions are required
for growth cone movement and steering. The genes that
are involved in lamellipodia and filopodia formation in the
growth cone are still being discovered, and studies to
understand how these genes act together in cell signaling
events that control growth cone movement are in their
infancy. Here we report discovery of a new gene necessary
for growth cone movement in Caenorhabditis elegans
called rack-1. This gene is conserved in vertebrates and is
involved in cellular signaling. We show that it interacts in a
novel manner with other cell signaling genes (the Rac
GTPase genes) and a gene involved in lamellipodia and
filopodia formation, called unc-115/abLIM. We think that
rack-1 is involved in a novel cellular signaling event
involving Rac GTPases that regulates lamellipodia and
filopodia protrusion in the growth cone during nervous
system development.

RACK-1 Controls Axon Pathfinding
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UNC-115 co-immunoprecipitated with RACK-1
To confirm that RACK-1 and UNC-115 interact in a complex,

we determined if RACK-1 and UNC-115 co-immunoprecipitated

from C. elegans extracts. We generated a transgene expressing

MYC-tagged RACK-1 under its endogenous promoter and made

animals transgenic for this construct. This transgene produced

functional RACK-1::MYC, as it rescued the sterility, gonadal

distal tip cell migration defects, and axon pathfinding defects

caused by the rack-1(tm2262) deletion (see below). We immuno-

precipitated MYC-tagged RACK-1 (RACK-1::MYC) using an

anti-MYC antibody from animals harboring a rack-1::myc integrat-

ed gene (see Materials and Methods). Using anti-MYC western

blots, we found that RACK-1::MYC (36 kD) was expressed in C.

elegans extracts and that it was immunoprecipitated by this

treatment (Figure 1B). Western blots using anti-UNC-115

antibody [26] showed the specific co-immunoprecipitation of

UNC-115 (72 kD) with RACK-1::MYC (Figure 1B). In the

absence of the anti-MYC antibody, RACK-1::MYC did not

precipitate, and neither did UNC-115 (Figure 1B). Furthermore,

we could detect no UNC-115 when extracts from C. elegans not

expressing RACK-1::MYC were immunoprecipitated with the

MYC antibody (data not shown). We repeated this co-immuno-

precipitation two additional times, and the results of one

representative experiment are shown in Figure 1.

rack-1 is required for axon pathfinding
C. elegans RACK-1 is a 325 amino-acid protein that has two

regions similar to the PKC binding sites of vertebrate RACK and

a conserved tyrosine that is phosphorylated by Src in vertebrate

RACK. C. elegans PKC and Src isoforms are expressed in the

Figure 1. RACK-1 and UNC-115 interact by two-hybrid and co-immunoprecipitation. A) A schematic diagram of the 639-residue UNC-115
molecule. LIM = LIM domains; VHD = villin headpiece domain; UAD = unc-115/abLIM/dematin domain. The bar represents the region of the
molecule used as bait in a two-hybrid screen. B) UNC-115 co-immunoprecipitated with MYC-tagged RACK-1. Lysates of worms expressing MYC-
tagged RACK-1 were used in immunoprecipitation experiments with and without anti-Myc antibody. Western blots using anti-UNC-115 antibody [26]
(top) showed that UNC-115 co-immunoprecipitated with RACK-1::MYC. Western blots using anti-Myc showed that RACK-1::MYC was expressed (input)
and was immunoprecipitated. RACK-1::MYC ran just below the Ig heavy chain of the anti-Myc antibody used in the immunoprecipitation. C) The rack-
1 gene and tm2262 allele. This model is based on the K07D7.1 gene model in Wormbase and on the cDNAs sequenced from the two-hybrid screen.
tm2262 is a 331-bp deletion. (D) Schematic diagram of the 325-residue RACK-1 protein. WD = WD repeat; PKC = conserved protein kinase C
interaction sites; Y = conserved tyrosine phosphorylated by Src in mammalian RACK. The region removed by the tm2262 deletion is indicated. E)
Sequence of the rack-1 cDNA and protein. cDNA sequence: The sequence of the RACK-1 cDNA is based upon sequencing seven cDNAs isolated from
the two-hybrid screen and on cDNA sequences in Wormbase. The predicted open reading frame is upper case, and the 59 and 39 untranslated regions
are lower case. A predicted poly-A addition site is underlined, and poly A residues are present in the cDNAs at the end of the sequence shown here.
The nucleotides removed by the tm2262 deletion are shaded in grey. The starting points of the five independent cDNAs isolated in the two-hybrid
screen are highlighted in black. Amino acid sequence: The predicted amino acid sequence is shown below the cDNA sequence. The WD repeats are
underlined; the two conserved PKC interaction sites are highlighted in black; and the conserved tyrosine residue that is phosphorylated by Src in
mammalian RACK is highlighted in black.
doi:10.1371/journal.pgen.1001215.g001

RACK-1 Controls Axon Pathfinding
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nervous system, and both PKC and Src have been implicated in

growth cone pathfinding and cell migration [41,42]. Furthermore,

we show above that RACK-1 interacts with UNC-115, a molecule

that controls axon pathfinding in C. elegans [17]. Thus, we

determined if RACK-1 was also involved in axon pathfinding in C.

elegans.

The VD and DD motor neurons are GABAergic neurons that

control the coordination and movement of the nematode [43,44].

The VD and DD cell bodies reside on the right side of the ventral

nerve cord. Axons extend anteriorly, branch, and extend dorsally

to form axon commissures (Figure 2). Upon reaching the dorsal

cord, the axons branch again and extend posteriorly and

anteriorly. We used an unc-25::gfp transgene (juIs76) to image the

VD/DD neurons and their axons [45]. unc-115(ky275) disrupts

axon pathfinding in these neurons, yielding in an uncoordinated

movement phenotype [17]. We perturbed rack-1 function using

RNAi by injection (see Materials and Methods). In 22% of injected

animals (n.100), rack-1(RNAi) disrupted the proper pathfinding of

the VD and DD commissural axons (Figure 2A and 2B). The

defects seen, such as axon misguidance, branching and premature

termination, resembled the defects observed in unc-115(ky275) [17]

and were never observed in wild-type animals. These results

Figure 2. RACK-1 is required for VD/DD motor axon pathfinding. All panels are micrographs of animals with unc-25promoter::gfp expression
(juIs76 transgene) in the VD/DD GABAergic motor neurons. The scale bar in A represents 10 mm for all panels. (A and B) Wild type and rack-1(RNAi)
showing the DD1/VD2 commissure on the left side of the animal. Misrouted and branched axons are indicated by an arrow. Dorsal is up, and anterior
is left. (C and D) Dorsal views of the dorsal nerve cords (marked by a D) of wild type and rack-1(tm2262). This dorsal view allows for demonstration of
the sidedness of axon pathfinding. The cell bodies in the ventral nerve cord are out of focus (marked by a V). The arrow in C points to the DD1/VD2
commissure on the left side of the animal. All other VD/DD commissures go up the right side. Arrows in D point to VD/DD commissures that
aberrantly extend up the left side of the animal in rack-1(tm2262). (E and F) VD/DD commissures in wild type and rack-1(tm2262). The arrow in F
points to a misguided axon.
doi:10.1371/journal.pgen.1001215.g002

RACK-1 Controls Axon Pathfinding
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suggest that RACK-1 might be involved in axon pathfinding,

similar to UNC-115.

A deletion of the rack-1 locus, called tm2262, was isolated and

kindly provided by the National Bioresource Project for the

Experimental Animal ‘‘Nematode C. elegans’’ (S. Mitani). The

tm2262 deletion was an in-frame deletion that removed part of the

first WD repeat, all of the second, and most of the third, including

the predicted PKC interaction site in WD3 (Figure 1C–1E). Since

tm2262 is an in-frame deletion, tm2262 animals might still produce

truncated RACK-1 protein and rack-1(tm2262) might be a

hypomorph. However, RNAi did not worsen the low brood size

or axon defects of rack-1(tm2262) (see below; data not shown),

indicating that it might be a strong loss of function allele.

Similar to RNAi of rack-1, the deletion allele rack-1(tm2262)

caused pathfinding defects in the VD and DD motor neurons

(Figure 2). Normally, all VD/DD commissures extend on the

right side of the animal except DD1/VD2, which form a single

commissure in the anterior (arrow in Figure 2C). rack-1(tm2262)

displayed VD/DD commissures aberrantly extending up the left

side of the animal (Figure 1D), and VD/DD axons that were

misguided on their dorsal migrations (Figure 1D). In our hands,

27% of wild type animals harboring the unc-25:gfp transgene

juIs76 had VD/DD commissures on the left side in addition to

DD1/VD2. However, 60% of rack-1(tm2262); juIs76 showed

VD/DD commissures on the left side (p,0.001) (Figure 3). In

juIs76 animals, generally only one or two left-side VD/DD were

observed, whereas multiple axons on the left side were often

observed in rack-1(tm2262); juIs76 animals (Figure 2D). In

addition, 42% of rack-1(tm2262); juIs76 animals displayed VD/

DD axon guidance and outgrowth defects such as axonal

wandering, branching or termination (Figure 3), whereas juIs76

alone showed no strong defects but did display some minor axon

wandering.

To ensure that the axon guidance defects observed in rack-

1(tm2262) were due to rack-1 perturbation and not a background

mutation, we rescued the VD/DD axon defects with a rack-1::myc

transgene. rack-1::myc rescued both left-right defects and commis-

sural guidance defects (60% to 32% (p,0.001) and 42% to 10%

(p,0.001)) (Figure 3). Together, these results indicate that RACK-

1 is required for VD/DD axon pathfinding.

rack-1(tm2262) caused reduced brood size
rack-1(tm2262) animals were slow growing and had very low

brood size. In a progeny count, ten wild type and ten rack-

1(tm2262) animals were individually plated and then transferred to

a new plate every day until egg laying ceased. The number of

viable adult progeny resulting from each animal were counted and

averaged. The average progeny count for a wild-type N2 animal

was of 278.4 (s.d. = 32.72), while for rack-1(tm2262) the count

dropped to 23.3 (s.d. = 9.9) (p,0.0001). A transgene containing

the rack-1 gene under its native promoter fused to the gfp coding

region (rack-1::gfp) (see Materials and Methods) increased brood

size in rack-1(tm2262) animals to 73.78 (s.d. = 17.18) (p,0.0001),

suggesting that rack-1::gfp was functional and could rescue the

brood size defect in rack-1 animals. rack-1::myc could also rescue the

low brood size of rack(tm2262) (data not shown). Thus, the

Figure 3. RACK-1 acts cell-autonomously in VD/DD motor axon pathfinding. The Y axis denotes genotype, and the X axis represents
percentage of defects of the sort described in the legend. Ex[rack-1(+)] is the full-length rack-1::myc transgene under the rack-1 endogenous
promoter, and Ex[unc-25::rack-1(+)] is a transgene with rack-1::gfp expression driven by the unc-25 promoter specifically in the GABAergic neurons,
including the VD/DDs. VD/DD commissural axon pathfinding defects were scored by animal (the percent of animals with defective axons) or by axon
(the percent of defect axons). Number of animals or axons scored is indicated in the bars. P-values for significance were determined by Fisher Exact
Analysis.
doi:10.1371/journal.pgen.1001215.g003

RACK-1 Controls Axon Pathfinding
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reduction in brood size was due to rack-1 and not due to genetic

background in the tm2262 strain.

The reduced brood size of rack-1(tm2262) seems to be

predominantly due to decreased production of fertilized embryos.

rack-1 might affect oogenesis or spermatogenesis, but the nature of

this sterility has not been explored. Previous studies indicate that

rack-1 also affects embryogenesis by regulating membrane

trafficking and recycling endosome distribution via interaction

with dynactin to control cytokinesis and chromosome separation

in the early embryo [27].

rack-1::gfp was expressed in most tissues, including
neurons and the distal tip cells

In order to determine where the rack-1 gene is expressed, we

constructed a reporter transgene consisting of the promoter region

of rack-1 fused to the gfp coding region (see Materials and

Methods). rack-1 promoter::gfp was expressed in most if not all tissues.

Due to mitotic loss of the transgene-bearing extrachromosomal

array, we were able to analyze rack-1 promoter::gfp expression in

mosaic animals in which we could discern specific cell types. rack-1

promoter::gfp was expressed in neurons as well as the distal tip cells of

the gonad (Figure 4A and 4B).

In order to determine the subcellular localization of RACK-1

protein, we constructed a full-length rack-1::gfp fusion. This

transgene is predicted to encode a full-length RACK-1 protein

with GFP at the C-terminus (RACK-1::GFP). rack-1::gfp rescued

the sterility and gonadal distal tip cell migration defects of rack-

1(tm2262) mutants. RACK-1::GFP was present in the cytoplasm

of cells and showed little if any nuclear accumulation (Figure 4C

and 4D), although low levels of RACK-1::GFP in the nucleus

cannot be excluded. RACK-1::GFP was present in the growth

cones of extending VD commissural axons, but was present in the

axons and cell bodies as well (Figure 5A and 5B).

rack-1 acts cell-autonomously in the VD/DD neurons to
control axon pathfinding

rack-1 was expressed in most if not all tissues in the animal,

including neurons. To determine if RACK-1 is required in the

VD/DD neurons themselves for axon pathfinding, we drove

expression of rack-1::gfp specifically in the VD/DD neurons using

Figure 4. RACK-1 is expressed in most cells, including neurons and the gonadal distal tip cells. Panels are fluorescent micrographs of
animals harboring rack-1::gfp transgenes. (A and B) are fusions of the rack-1 promoter to gfp; and (C and D) are fusions of the entire full-length rack-1
coding region to GFP. A) A distal tip cell expressed rack-1::gfp. B) Neurons expressed rack-1::gfp. C) Full-length RACK-1::GFP was expressed in neurons
in the ventral nerve cord (arrows) and in the amphid (arrowhead). D) Full-length RACK-1::GFP was excluded from nuclei in tail hypodermis and gut
(arrows). The scale bar in A represents 5 mm for A–C, and the scale bar in D represents 5 mm.
doi:10.1371/journal.pgen.1001215.g004

RACK-1 Controls Axon Pathfinding
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the GABAergic neuron-specific unc-25 promoter. The wild-type

rack-1(+) coding region lacking the upstream promoter region was

fused to gfp downstream of the unc-25 promoter. The Ex[unc-25

promoter::rack-1::gfp] transgene was expressed specifically in the

GABAergic neurons including the VD/DD neurons and nowhere

else (Figure 5A). This transgene did not rescue the fertility defects

and DTC migration defects of rack-1(tm2262) as did the genomic

rack-1(+) transgene (data not shown), indicating that expression

was specific to the VD/DD neurons. Ex[unc-25 promoter::rack-1(+)]

rescued the lateral asymmetry defects and axon wandering defects

of rack-1(tm2262) animals (Figure 3) (60% to 33% for lateral

asymmetry defects and 16% to 8% for axon wandering defects;

p,0.001 in both cases). In this experiment, individual axons were

scored, due to the mosaic nature of the Ex[unc-25 promoter::rack-

1(+)] transgene. These data indicate that rack-1 acts cell

autonomously in neurons in axon pathfinding.

rack-1(tm2262) enhanced mig-2(mu28) and unc-34(e951),
but not unc-115(ky275) or ced-10(n1993), in PDE axon
pathfinding

The above results show that RACK-1 physically interacted with

UNC-115/abLIM and that rack-1 loss of function caused axon

pathfinding defects similar to unc-115. Previous studies showed

that UNC-115/abLIM acts downstream of the Rac GTPase

CED-10/Rac and in parallel to MIG-2/RhoG in axon pathfind-

ing [25,46]. We next set out to determine if RACK-1 interacts

with UNC-115/abLIM and the Rac GTPases in axon pathfind-

ing. To analyze genetic interactions between these molecules, we

used the PDE neurons, which are located at the post-deiridic

region of the animal. These neurons are a good model for axon

pathfinding since the reporter construct osm-6::gfp is expressed only

in the PDEs in the post-deirid [25,47], allowing unambiguous

identification and scoring of the simple PDE axon morphology.

Furthermore, the defects in PDE axon pathfinding in single

mutants were weak, allowing for discrimination of genetic

interactions in double mutants.

In wild type, the PDE cell body extends an axonal projection

toward the ventral nerve cord in a straight line, where the axon

then branches and extends anteriorly and posteriorly (Figure 6A)

[43]. Pathfinding defects were defined as axons that were

prematurely terminated or that wandered at a greater than 45

degree angle relative to the normal PDE axon (for example,

Figure 6B). As shown previously, mig-2(mu28), ced-10(n1993), and

unc-115(ky275), alone had low-penetrance defects in PDE axon

pathfinding on their own (3%–7%; Figure 6C). We found that

rack-1(tm2262) also had very few defects in PDE axon pathfinding

(1%; Figure 6C).

Figure 5. RACK-1::GFP expression in GABAergic motor neurons. Micrographs are of animals harboring an unc-25::rack-1::gfp transgene that
expresses a full-length RACK-1::GFP fusion protein specifically in the VD/DD GABAergic motor neurons. A) RACK-1::GFP expression is specific to the
VD/DD motor neurons. Arrowheads indicate cell bodies in the ventral nerve cord, and arrows indicate commissural axons. The punctate fluorescence
throughout the animal is autofluorescence of the gut. B) RACK-1::GFP accumulated in a VD growth cone in an early L2 animal (arrow). The diagram at
the right traces the outline of the growth cone and axon. The scale bars represent 5 mm.
doi:10.1371/journal.pgen.1001215.g005

RACK-1 Controls Axon Pathfinding

PLoS Genetics | www.plosgenetics.org 7 November 2010 | Volume 6 | Issue 11 | e1001215



Previous results show that CED-10/Rac and MIG-2/RhoG act

redundantly in PDE axon pathfinding, and UNC-115/abLIM

works downstream of CED-10/Rac, in parallel to MIG-2/RhoG

in PDE pathfinding [25,48]. If RACK-1 works in the same

pathway as UNC-115/abLIM, we expect that loss of function of

both rack-1 and unc-115 would be no more severe than either

mutant alone. Indeed, rack-1(tm2262M+); unc-115(ky275) double

mutants (M+ denotes that the homozygous animal was derived

from a balanced heterozygote and has wild-type maternal

contribution) displayed levels of PDE axon pathfinding defects

(6%; Figure 6C) that were not significantly different from unc-

115(ky275) and rack-1(tm2262) alone, suggesting that UNC-115/

abLIM and RACK-1 might act in the same pathway. In contrast,

rack-1(tm2262M+); mig-2(mu28) double mutants showed signifi-

cantly increased levels of defects compared to either single alone

(28%; Figure 6C). This result demonstrates that rack-1(tm2262) can

synergize with other mutants to cause axon defects, and that

RACK-1 and MIG-2/RhoG might act in parallel pathways in

axon pathfinding.

CED-10/Rac and UNC-115/abLIM have previously been

shown to act in the same pathway in parallel to MIG-2/RhoG

[25]. rack-1(tm2262M+) ced-10(n1993M+) double mutants dis-

played no significant increase in PDE defects compared to either

single alone (6%; Figure 6C), consistent with the idea that

RACK-1, CED-10/Rac, and UNC-115/abLIM act in a

common pathway in parallel to MIG-2/RhoG in axon

Figure 6. RACK-1 acts genetically in the CED-10/Rac and UNC-115/abLIM pathway. (A and B) Micrographs of animals with osm-6::gfp
expression in the PDE neurons. The arrow in A indicates a wild-type axon, and the arrow in B indicates a misguided axon in a mig-2(mu28) mutant.
The scale bar represents 5 mm for A and B. C) The graph represents percent of PDE axon pathfinding defects in different genotypes. At least 100
neurons were scored for each genotype, and p-value significance was determined by Fisher Exact Analysis. The genotypes indicated with an NS are
not significantly different in any pairwise combination.
doi:10.1371/journal.pgen.1001215.g006
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pathfinding. If this is the case, we would expect the rack-

1(tm2262M+) ced-10(n1993M+); unc-115(ky275) triple mutant to

be no more severe than any double mutant combination alone.

As previously reported, ced-10(n1993); unc-115(ky275) double

mutants were significantly more severe than either single alone

(35%; Figure 6C) [25,48]. This is likely due to the fact that CED-

10/Rac also regulates the Arp2/3 complex in parallel to UNC-

115/abLIM [16,18]. rack-1(tm2262M+) ced-10(n1993M+) mu-

tants did not show this interaction. Possibly, RACK-1 is not the

only molecule regulating UNC-115 and has a weaker effect. In

any case, the rack-1(tm2262M+) ced-10(n1993M+); unc-115(ky275)

triple mutant was not significantly more severe than ced-

10(n1993); unc-115(ky275) alone (34% compared to 35%;

Figure 6C). Taken together, these results are consistent with

the idea that RACK-1, CED-10/Rac, and UNC-115/abLIM act

in a common pathway in axon pathfinding in parallel to MIG-2/

RhoG.

UNC-34/Enabled has been shown to act in parallel to both

CED-10/Rac and MIG-2/RhoG in axon pathfinding [15].

Indeed, rack-1(tm2262M+); unc-34(e951M+) double mutants dis-

played significantly increased pathfinding defects compared to unc-

34(e951) alone (35% compared to 19%; Figure 6C). This result

indicates that RACK-1 acts in parallel to UNC-34/Enabled and is

consistent with RACK-1 acting with CED-10/Rac and UNC-

115/abLIM in axon pathfinding.

rack-1(tm2262) partially suppressed axon pathfinding
defects and ectopic lamellipodia induced by activated
CED-10(G12V)

Loss-of-function studies described above provide evidence that

RACK-1 might act with CED-10/Rac and UNC-115/abLIM in

axon pathfinding. In order to further test the relationship between

RACK-1 and the Rac GTPases we next asked what effect rack-

1(tm2262) loss of function might have on overactive Rac GTPases.

Constitutively-activated Rac GTPases transgenes harbor a gua-

nine-12-valine mutation in the GTPase binding pocket, which

favors the active GTP-bound state of the GTPases. Previous

studies showed that CED-10(G12V) and MIG-2(G16V) (the G12V

equivalent) both caused axon pathfinding defects and drove the

formation of ectopic neurites, lamellipodia, and filopodia when

expressed in PDE neurons (Figure 7A), and that UNC-115/

abLIM was required for ectopic lamellipodia and filopodia

induced by CED-10(G12V) but not MIG-2(G16V) [25].

Figure 7. rack-1(tm2262) partially suppresses activated CED-10(G12V), but not MIG-2(G16V) or activated MYR::UNC-115. A) A
micrograph of the PDE neuron of an adult animal expressing activated CED-10(G12V). An ectopic lamellipodial protrusion is indicated by an arrow.
The scale bar represents 5 mm. B) Quantitation of PDE defects. lqIs14 is the osm-6::ced-10(G12V) transgene; lqIs46 is the osm-6::mig-2(G16V) transgene;
and lqIs62 is the unc-115::myr::unc-115 transgene. At least 100 neurons were scored for each genotype, and p-value significance was determined by
Fisher Exact Analysis.
doi:10.1371/journal.pgen.1001215.g007
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We determined if RACK-1 was required for the effects of CED-

10(G12V) and MIG-2(G16V). CED-10(G12V) alone caused 66%

of PDE neurons to have ectopic lamellipodia and filopodia in

young adults (Figure 7B). rack-1(tm2262); ced-10(G12V) animals

displayed 45% ectopic lamellipodia and filopodia, a significant

reduction (p = 0.004) from CED-10(G12V) alone (Figure 7B).

These data indicate that rack-1(tm2262) partially suppressed

activated CED-10(G12V) and that functional RACK-1 might be

required for the formation of ectopic lamellipodia and filopodia

induced by activated CED-10. In contrast, rack-1(tm2262) did not

suppress ectopic lamellipodia and filopodia associated with MIG-

2(G16V) and in fact slightly enhanced these defects (Figure 7B;

p = 0.03), indicating that this suppression is specific to CED-

10(G12V). These effects are similar to those observed with the wve-

1/WAVE mutant, which suppressed CED-10(G12V) and slightly

enhanced MIG-2(G16V) [18]. These data are consistent with the

idea that RACK-1 acts downstream of CED-10/Rac in parallel to

MIG-2/RhoG in axon pathfinding, similar to UNC-115/abLIM.

rack-1(tm2262) did not suppress defects induced by
activated myr::unc-115

Previous studies showed that UNC-115 tagged with an N-

terminal myristylation sequence (MYR) caused activation of the

molecule [49]. MYR::UNC-115 localized to the plasma mem-

brane and other membranes as expected for a myristylated protein

and induced the formation of ectopic lamellipodia, filopodia and

neurites in C. elegans neurons and in cultured mammalian

fibroblasts [49]. The formation of these ectopic lamellipodia and

filopodia was dependent upon the actin-binding domain of

UNC-115, suggesting that the molecule was constitutively active

[49].

To further dissect the interaction of RACK-1 with UNC-115,

we assayed the effects of MYR::UNC-115 in a rack-1(tm2262) loss

of function background. MYR::UNC-115 was expressed from the

unc-115 promoter (the lqIs62 transgene), which drives expression in

most neurons including PDE and the VD/DDs [49]. The myr::unc-

115 transgene scored in [49] was maintained as an extrachromo-

somal array. We integrated this transgene into the genome for

these studies (lqIs62). We found that lqIs62[MYR::UNC-115]

caused 8% ectopic lamellipodia and filopodia in PDE neurons

(Figure 7B), similar to but weaker than the extrachromosomal

array effects reported in [49]. The ectopic lamellipodia and

filopodia induced by MYR::UNC-115 were not significantly

altered by rack-1(tm2262) mutation (Figure 7B), indicating that

RACK-1 is not required for lamellipodia and filopodia induced by

MYR::UNC-115. This result suggests that RACK-1 might act

upstream of UNC-115 or together with UNC-115, or that the

MYR::UNC-115 molecule acts independently of RACK-1

activity.

To study the interactions of rack-1 with myr::unc-115 in more

detail, we analyzed the VD/DD motor neurons as described

above. myr::unc-115 expression caused left-right lateral asymmetry

defects and commissural axon pathfinding defects as described for

rack-1(tm2262) in Figure 2 and Figure 3 (Figure 8A). rack-

1(tm2262); myr::unc-115 animals displayed lateral asymmetry

defects similar to each alone (Figure 8A; 45%–55%, not

significant). This is consistent with RACK-1 acting upstream of

or together with UNC-115 in the same pathway. In VD/DD

commissural axon pathfinding, rack-1(tm2262); myr::unc-115 dis-

played significantly increased defects compared to the additive

effects of each alone (Figure 8A). Thus, rack-1(tm2262) might

enhance myr::unc-115 in VD/DD pathfinding.

In summary, we detected no strong suppression of myr::unc-115

by rack-1(tm2262) in the PDE neurons and the VD/DD neurons.

The results are consistent with RACK-1 acting upstream of or

together with UNC-115 in axon pathfinding. Some context-

specific interactions were observed, such as rack-1(tm2262)

enhancing VD/DD commissural axon pathfinding, indicating

that RACK-1 and UNC-115 might have distinct interactions in

different contexts or developmental events.

UNC-115 is required for the ectopic lamellipodia induced
by MYR::RACK-1

The above results indicate that RACK-1 is not required for the

effects of MYR::UNC-115, suggesting that RACK-1 might act

upstream of UNC-115. To test this idea, we constructed a

myristylated version of RACK-1, similar to MYR::UNC-115. We

reasoned that constitutive membrane localization might activate

RACK-1 as it does UNC-115. myr::rack-1::gfp was expressed in the

PDE neurons by the osm-6 promoter. MYR::RACK-1::GFP

displayed a membrane-associated distribution (arrowhead in

Figure 9A), as did MYR::UNC-115 [49]. MYR::RACK-1 animals

displayed ectopic lamellipodial protrusions along the cell body,

dendrite, and axon, similar to MYR::UNC-115 and activated Rac

GTPases (arrow in Figure 9A). The putative null unc-115 alleles

ky275 and ky274 suppressed this effect (11% in myr::rack-1 reduced

to 0% and 4% in unc-115(ky275); myr::rack-1 and unc-115(ky274);

myr::rack-1, respectively) (Figure 9B). The hypomorphic unc-

115(mn481) allele [17], which retains some UNC-115 activity,

did not suppress myr::rack-1, indicating that possibly only a small

amount of UNC-115 activity is required for MYR::RACK-1 to

drive ectopic lamellipodia. These studies support the model that

RACK-1 acts upstream of UNC-115 in lamellipodia formation.

Despite the strong genetic interactions of rack-1 and unc-115, we

could detect no change in distribution of UNC-115::GFP in loss of

function rack-1(tm2262) or in the activated myr::unc-115 transgenics

(data not shown). In each case, UNC-115::GFP was present

uniformly throughout the cytoplasm, similar to wild-type animals,

and showed no membrane localization.

rack-1(tm2262) suppresses myr::unc-115 in VD cell body
position

Activated myr::unc-115 caused lateral displacement of GABAer-

gic motor neuron cell bodies such that they often were found

outside of the ventral nerve cord (Figure 8B). The VD GABAergic

neurons are descendants of the P cells. The P cells are born

laterally and the P nuclei migrate ventrally to the ventral nerve

cord, where the P cells divide to produce ventral hypodermal cells

including the vulva and the ventral VD neurons [50–51]. Failure

of the ventral migration of the P nuclei can result in laterally

displaced VD neuron cell bodies. This phenotype is observed in

mig-2; ced-10 double mutants, but not in unc-115 mutants [48].

Possibly, ectopic activity from MYR::UNC-115 impedes P nucleus

migration. rack-1(tm2262) suppressed the displaced VD cell body

defect of myr::unc-115 (Figure 8A): 30% of myr::unc-115 animals had

misplaced VD cell bodies compared to 15% of rack-1(tm2262);

myr::unc-115 (p = 0.011). This result suggests that RACK-1 might

act downstream of or participate with MYR::UNC-115 in

impeding P nucleus migration, again suggesting context-depen-

dent interactions of UNC-115 and RACK-1.

rack-1(tm2262) caused gonadal distal tip cell migration
defects

The C. elegans gonad is derived from two somatic cells (Z1 and

Z4) surrounding the two germ cells (Z2 and Z3) [52]. Z1 and Z4

divide to produce the somatic cells of the gonad. Before

morphogenesis, the gonad is oval shaped and located ventrally
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in the middle of the animal. The distal tip cells (DTCs) at the

anterior and posterior tips of the gonad begin migration, and as

they migrate they lead the gonad behind them. The DTCs migrate

anteriorly and posteriorly, turn dorsally and migrate to the dorsal

region of the animal, and then migrate posteriorly and anteriorly

back toward the middle of the animal. DTC migration results in

the U-shaped bi-lobed gonad of C. elegans (Figure 10A). If DTC

migration is perturbed, misrouted and misshapen gonads result.

The gonads of 32% of rack-1(tm2262) animals were misrouted

(Figure 10B and 10C). Misrouting defects included failure to turn

dorsally as well as extra turns, such as turning back ventrally after

the dorsal migration. We did not observe gonads that had

extended past their normal stopping point near the middle of the

animal, as has been observed in other mutations that affect DTC

migration [53,54]. A rack-1::gfp transgene rescued gonad misrout-

ing defects in rack-1(tm2262) (32% to 5%; p,0.005) (Figure 10C),

indicating that the gonad defects were due to rack-1 perturbation.

It should be noted that rack-1(tm2262) homozygotes from a

Figure 8. Activated MYR::UNC-115 in VD/DD motor neurons is not suppressed by rack-1(tm2262). A) Quantitation of VD/DD defects
caused by expression of MYR::UNC-115 from the unc-115 promoter, which is expressed in the VD/DD neurons. The asterisks represent a test of
additivity of the represented genotypes. The double mutant is significantly different from each single, and the double mutant had defects that were
significantly stronger than the additive effects of each single. The following formula was used to predict the additive effect of the double mutant
based on the single mutant phenotypes: rack-1(tm2262) + lqIs622 (rack-1(tm2262) * lqIs62); or 0.42+0.212 (0.42 * 0.21) = 0.54. At least 100 animals
were scored, and p-value significance was determined by Fisher Exact Analysis. B) A VD neuron cell body was laterally displaced (arrow) in a rack-
1(tm2262M+); lqIs62[myr::unc-115] animal. rack-1(tm2262) partially suppressed this phenotype compared to lqIs62 alone. Arrowheads indicate VD/DD
cell bodies in their normal positions in the ventral nerve cord.
doi:10.1371/journal.pgen.1001215.g008
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heterozygous mother (rack-1(tm2262M+)) had less severe DTC

migration defects compared to the rack-1(tm2262) animals without

maternal contribution (21% compared to 32%; p = 0.03). This

indicates that DTC migration defects were partially rescued by

wild-type maternal rack-1(+) activity. unc-115 mutants displayed no

defects in DTC migration, and the gonad defects of rack-1 were not

affected by unc-115 (data not shown). rack-1::myc also rescued the

DTC migration defects of rack-1(tm2262) (data not shown). Thus,

DTC migration is controlled by RACK-1 and is independent of

UNC-115/abLIM.

CED-10/Rac and MIG-2/RhoG have previously been shown

to control gonad distal tip cell migration [48], and we have shown

here that RACK-1 also controls DTC migration. To determine if

RACK-1 interacts with Rac signaling in DTC migration, we

analyzed DTC migration in double mutants.

As reported previously, both ced-10(n1993) and mig-2(mu28)

mutations caused defects in DTC migration (27% for mig-2(mu28),

12% for ced-10(n1993)) (Figure 10C) [48]. We found that double

mutants of ced-10 and mig-2 with rack-1 showed no significant

difference in defects compared to the stronger singles alone. rack-

1(tm2262M+); mig-2(mu28) showed no significant difference (26%)

compared to mig-2(mu28) (27%), and rack-1(tm2262M+) ced-

10(n1993) showed no significant difference compared to rack-

1(tm2262M+) (21% in each case).

Figure 9. UNC-115 is required for the effects of MYR::RACK-1. A) A micrograph of MYR::RACK-1::GFP expression in the PDE neuron driven by
the osm-6 promoter. The arrowhead points to the cell surface accumulation of MYR::RACK-1::GFP, and the arrow points to an ectopic lamellipodium.
The scale bar represents 5 mm. B) Quantitation of ectopic lamellipodial defects in PDEs expressing MYR::RACK-1::GFP. At least 100 animals were scored
for each genotype, and p-value significance was determined by Fisher Exact Analysis.
doi:10.1371/journal.pgen.1001215.g009
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CED-10/Rac and MIG-2/RhoG interact differently in the

DTCs than they do in other tissues such as axons, in which they

act in parallel redundant pathways. ced-10; mig-2 double mutants

did not display enhanced DTC migration defects compared to

either single alone [48], suggesting that they might act in the same

pathway or in independent pathways that each control a distinct

aspect of DTC migration. Our results suggest the same for

RACK-1, that it might act in a pathway independent of CED-10

and MIG-2, or that CED-10, MIG-2 and RACK-1 might all act

in the same pathway in DTC migration.

Discussion

In summary, we have presented data indicating that RACK-1 is

required cell autonomously for axon pathfinding, and that RACK-1

is required for migration of the distal tip cells of the gonad. We show

that RACK-1 interacts physically with UNC-115/abLIM, and that

RACK-1 and UNC-115/abLIM might act in the same pathway in

axon pathfinding. Consistent with this idea, RACK-1 was required

for ectopic lamellipodia and filopodia induced by the activated

CED-10/Rac GTPase, similar to UNC-115/abLIM. RACK-1-like

molecules have been implicated in a wide variety of cellular events

and have been shown to interact with a large number of distinct

protein complexes, consistent with the idea of RACK molecules as

scaffolds and integrators [32]. RACK molecules have been shown

to control cell adhesion and migration and interact with Src, c-Abl,

Rho GTPase regulators, and integrins in these events [31,33,39].

Our studies here suggest that RACK-1 interacts with the actin-

binding protein UNC-115/abLIM and Rac GTPases in the control

of axon pathfinding and cell migration.

Figure 10. RACK-1 is required for gonadal distal tip cell migration. (A and B) Differential Interference Contrast micrographs of wild type and
rack-1(tm2262) gonads. Dashed lines trace the outline of the gonad arm. The scale bar in A represents 10 mm. C) Quantitation of gonad arm migration
defects. Number of gonad arms scored is indicated in the bars (.100). P-value significance was determined by Fisher Exact Analysis. The predicted
additive effect of the rack-1(tm2262M+) ced-10(n1993M+) double if they did not interact was calculated by the formula rack-1(tm2262) + ced-10(n1993)
2 (rack-1(tm2262) * ced-10(n1993); or 0.32+0.142 (0.32 * 0.14) = 0.42. This number was also significantly different from the observed rack-
1(tm2262M+) ced-10(n1993M+) double mutant.
doi:10.1371/journal.pgen.1001215.g010
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Previous studies showed that in C. elegans, RACK-1 depletion by

RNAi resulted in embryos with cytokinesis defects, including

shorter astral microtubules, defects in chromosome separation,

and defects in membrane organization and recycling endosome

distribution [27]. We found that the deletion rack-1(tm2262) was

very sick and slow growing, and gave very few progeny. rack-

1(tm2262) produced very few embryos, suggesting that the animals

had defects in sperm and/or oocyte production. Indeed, rack-1

RNAi resulted in defects in germline membrane organization [27],

consistent with the sterility that we observed in the rack-1(tm2262)

mutant.

RACK-1 is cell-autonomously required for axon
pathfinding

rack-1(tm2262) mutants displayed a variety of axon pathfinding

defects, including left-right choice and guidance defects of the VD

and DD commissural motor axons and guidance defects of the

PDE axons. VD/DD axons are dorsally directed, and PDE axons

are ventrally directed, indicating that rack-1 is not specific for any

particular guidance direction. VD/DD axon pathfinding defects

were rescued when rack-1(+) was expressed under a promoter that

specifically drives expression in the GABAergic neurons including

VD/DD and nowhere else, demonstrating that RACK-1 is

required cell-autonomously for axon pathfinding. As RACK-1 is

likely involved in many different developmental events, this result

shows that the effects of RACK-1 on axon pathfinding are due to

defects in the neuron itself and not a substrate or guidepost tissue

such as the hypodermis or other neurons. Indeed, RACK-1 was

expressed in neurons, and functional RACK-1::GFP fusion

protein accumulated in the growth cones of neurons, consistent

with a role of RACK-1 in growth cone cytoskeletal regulation.

RACK-1::GFP also accumulated in the cell bodies and axons of

neurons.

RACK-1 controls distal tip cell migration
We have shown that rack-1(tm2262) mutants display defects in

the structure of the gonad arms consistent with a defect in distal tip

cell migration. rack-1 is expressed in the migrating distal tip cells.

The Rac GTPases CED-10/Rac and MIG-2/RhoG also each

affect distal tip cell migration, but do not show the phenotypic

synergy in DTC migration as is observed in axon pathfinding [48].

Thus, CED-10/Rac and MIG-2/RhoG might act in independent

pathways that control distinct aspects of DTC migration.

DTC migration defects in mig-2; rack-1 and ced-10 rack-1 double

mutants were not significantly different than the stronger single

mutants alone. This result suggests that RACK-1 might act in a

pathway independent of MIG-2 and CED-10, or that all three act

in a common pathway. This again points to context dependent

differences in the function of RACK-1 and suggests that RACK-1

might interact with different effectors in different ways in different

cells and cellular events. Indeed, the effect of RACK-1 on DTC

migration is likely to be independent of UNC-115/abLIM, as unc-

115 mutants have no effect on DTC migration alone or in any

double mutant combination analyzed so far, including ced-10 and

mig-2.

RACK-1 acts in the CED-10/Rac and UNC-115/abLIM
pathway in axon pathfinding

A model of RACK-1 interaction with CED-10/Rac and UNC-

115/abLIM is shown in Figure 10A. Double mutant analysis

showed that rack-1(tm2262) synergized with mig-2/RhoG and unc-

34/Enabled in PDE axon pathfinding, similar to unc-115/abLIM

and ced-10/Rac. rack-1(tm2262) did not synergize with unc-115/

abLIM or ced-10/Rac, consistent with the idea that they act in the

same pathway in parallel to mig-2/RhoG and unc-34/Enabled.

Activated CED-10(G12V) drives the formation of ectopic

lamellipodia and filopodia in PDE neurons, and unc-115 loss of

function suppresses this effect [25]. We show here that rack-

1(tm2262) also partially suppressed ectopic lamellipodia and

filopodia caused by CED-10(G12V), indicating that RACK-1 is

required downstream of CED-10/Rac in lamellipodia and

filopodia formation (Figure 10A). This result suggests that

RACK-1 might normally be required for lamellipodia and

filopodia formation. This is in contrast to the seven-WD repeat

protein SWAN-1, which physically interacts with the UNC-115

LIM domains and with CED-10/Rac but which is normally

required to inhibit CED-10/Rac signaling in lamellipodia and

filopodia formation [26]. Thus, these two seven-WD repeat

proteins SWAN-1 and RACK-1 might have opposite effect on

CED-10/Rac signaling: SWAN-1 inhibits it, and RACK-1 is

required downstream of it to form lamellipodia and filopodia.

That RACK-1 is required for lamellipodia and filopodia formation

downstream of CED-10/Rac suggests that RACK-1 might be

acting directly in cytoskeletal regulation. It is also possible that

RACK-1 exerts its effects downstream of Rac GTPases through

transcriptional or translational control, but the fact that RACK-1

interacts physically with the actin-binding protein UNC-115/

abLIM supports the idea that RACK-1 directly controls

cytoskeletal signaling.

RACK-1 physically interacts with UNC-115/abLIM and

genetically acts in the same pathway in axon pathfinding. UNC-

115 can be activated constitutively by the addition of an N-

terminal myristylation sequence [25], which mediates the covalent

attachment of a fatty acid myristyl residue to the protein and

drives localization to membranes, including the plasma mem-

brane. MYR::UNC-115 also drives the formation of ectopic

lamellipodia and filopodia, similar to but weaker than CED-

10(G12V) [25]. No strong suppression or enhancement of axon

pathfinding defects were observed in double mutants of rack-

1(tm2262) and myr::unc-115. One interpretation of these data is

that RACK-1 does not act downstream of UNC-115/abLIM and

instead might act together with or upstream of UNC-115/abLIM.

Indeed, unc-115 mutations suppressed the ectopic lamellipodia

caused by MYR::RACK-1, indicating that UNC-115 acts

downstream of RACK-1. These results are consistent with a

model in which RACK-1 acts downstream of CED-10/Rac and

upstream of UNC-115/abLIM in axon pathfinding (Figure 11).

RACK-1 and MYR::UNC-115 display context-specific
interactions

RACK-1 and UNC-115 displayed context-dependent interac-

tions in addition to those described in the PDE neurons above.

First, rack-1 slightly but significantly increased VD/DD commis-

sural pathfinding defects caused by myr::unc-115. We do not

understand the nature of the VD/DD axon pathfinding defects

caused by MYR::UNC-115, but it is possible that they are due to

excessive lamellipodial and filopodial protrusion, possibly in the

growth cone. If this is the case, these effects were enhanced by rack-

1 loss of function, suggesting that RACK-1 might negatively

regulate MYR::UNC-115 in this context, possibly by excluding

MYR::UNC-115 from regions in which it induces lamellipodia

and filopodia.

Second, rack-1(tm2262) suppressed the lateral displacement of

VD cell bodies caused by myr::unc-115. Laterally misplaced VD cell

bodies are indicative of a defect in the ventral migration of the

nuclei of the P cells. UNC-115 is not normally involved in P

nucleus migration, but ced-10/Rac and mig-2/RhoG act redundantly
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in the process [48]. Possibly, myr::unc-15 ectopically interferes with

P nucleus migration, and RACK-1 is required for this effect. In

this case RACK-1 might normally positively regulate MYR::

UNC-115. In any case, these data indicate that RACK-1 and

UNC-115 might have distinct interactions in different cellular

contexts.

In summary, these studies suggest that RACK-1 acts in a

common pathway with CED-10/Rac and UNC-115/abLIM in

axon pathfinding (Figure 11). These studies implicate the Receptor

of Activated C Kinase as a new Rac GTPase effector molecule, as

RACK-1 acts downstream of CED-10 and upstream of UNC-

115/abLIM in axon pathfinding. Future studies will be directed at

understanding the roles of plasma membrane localization and

phosphorylation in the regulation of this pathway.

Materials and Methods

C. elegans genetics and culture
C. elegans culture and techniques were performed using standard

protocols [55–56]. All experiments were performed at 20uC. The

rack-1(tm2262) allele was provided to us by the National

Bioresource Project for the Experimental Animal ‘‘Nematode C.

elegans’’ (S. Mitani), and was outcrossed to wild-type N2 animals

three times before analysis. Polymerase chain reaction (PCR) was

used to verify the homozygosity of rack-1(tm2262) in strains. The

following mutations and genetic constructs were used: LGII:

juIs76[unc-25::gfp]; LGIV: ced-10(n1993), rack-1(tm2262), nT1 IV:V,

lqIs3[osm-6::gfp]; LGV: unc-34(e951); LGX: unc-115(ky275), mig-

2(mu28), lqIs2[osm-6::gfp]; LG?: lqIs62[myr::unc-115(+)]. C. elegans

transformation was performed by standard techniques using DNA

microinjection into the syncytial germline of hermaphrodites [57].

Transgenes were integrated into the genome using trimethylpsor-

alen and standard techniques [58–59].

All micrographs were obtained on a Leica DMRE microscope

with a Qimaging Rolera MGi EMCCD camera or a Qimaging

Retiga CCD camera. Openlab and IPlab software were used to

obtain images.

Molecular biology
All coding regions amplified by PCR were sequenced to ensure

the absence of mutations in the sequence. PCR, recombinant

DNA and other molecular biology techniques were performed

according to standard techniques [60]. Primer and plasmid

sequences are available upon request.

Scoring of VD, DD, and PDE axon defects
Axon pathfinding defects were scored with fluorescence

microscopy of hermaphrodite animals in the fourth larval stage

(L4) or young adults expressing a green fluorescent protein

transgene for specific cells. To visualize and score the axons of

VDs and DDs, animals harboring an unc-25 promoter::gfp integrated

transgene (juIs76 II) were used [45]. To visualize and score PDE

axons, animals harboring an osm-6 promoter::gfp integrated trans-

gene (lqIs2 X or lqIs3 IV) were used [25,47].

VD/DD lateral asymmetry. VD/DD commissural axons

normally extend up the right side of the animal (except the VD1/

DD2 commissure, which extends on the left). The number of

animals with aberrant left-side extension of commissural axons was

scored.

VD/DD axon pathfinding. A VD/DD commissural axon

that failed to reach the dorsal nerve cord or that wandered

laterally before reaching the dorsal nerve cord was considered

mutant. The percent of animals with pathfinding defects was

noted, and the percentage of defective axons was noted.

VD cell body displacement. The VD neurons are

descendants o the P cells. If the P nuclei fail to migrate

ventrally, the resulting VD cell bodies can be laterally displaced

out of the ventral nerve cord. The percentage of animals with

laterally displaced VD cell bodies was scored.

PDE axon pathfinding. The cell bodies of the PDE neurons

(PDEL and PDER) are situated in the posterior lateral post-deirid

ganglion. PDEs extend an axon ventrally to the ventral nerve cord,

which then bifurcates and extends anteriorly and posteriorly in the

ventral nerve cord. If the axon failed to reach the ventral nerve

cord or wandered beyond a 45u angle from a straight line ventrally

from the cell body, it was considered mutant. Significance was

determined using Fisher Exact Analysis.

Activated ced-10(G12V), mig-2(G16V), and myr::unc-115
transgenes

ced-10(G12V) and mig-2(G16V) transgenes under the control of

the osm-6 promoter were used as described previously [25]. A

myr::unc-115 transgene under the control of the unc-115 promoter

was used as described previously [49].

Scoring of distal tip cell migration defects
Gonadal distal tip cell migration defects were scored by

Differential Interference Microscopy in young adult hermaphro-

dite animals. Any deviation from the normal U-shape of gonad

arms was scored as defective, including failure to migrate fully,

failure to make a dorsal turn, failure to make an anterior or

Figure 11. RACK-1 might regulate UNC-115/abLIM downstream
of CED-10/Rac in lamellipodia and filopodia formation. A linear
pathway representing the genetic interactions between ced-10/Rac,
rack-1, and unc-115. RACK-1 acts downstream of CED-10/Rac and
controls UNC-115/abLIM. LIM = LIM domain; VHD = villin headpiece
domain.
doi:10.1371/journal.pgen.1001215.g011
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posterior turn, or extra dorsal-ventral or anterior-posterior turns.

Significances of differences (p values) were determined using Fisher

Exact Analysis.

RACK-1 transgenes
A full-length rack-1(+) transgene was generated by PCR from

genomic DNA (based on the Wormbase gene model K07D7.1)

and included the entire upstream rack-1 region (,2.5 kb), the

coding region, and the downstream region past the poly-A

addition site (Figure 1E). rack-1::gfp and rack-1::myc fusion

constructs were generated by amplifying the entire rack-1 upstream

region and coding region lacking the stop codon fused in frame to

gfp or myc. The unc-25 promoter::rack-1::gfp fusion protein was

generated by amplifying the rack-1 coding region lacking the

upstream region. This fragment was placed downstream of the unc-

25 promoter and fused in frame to gfp at the 39 end.

UNC-115 yeast two-hybrid screen
The two-hybrid screen was conducted at the Molecular

Interaction Facility at the University of Wisconsin-Madison

(thanks to E. Maher). In a liquid multi-well format, approximately

36 million C. elegans cDNA clones representing both oligo dT and

random-primed libraries were screened via mating. UNC-115 was

fused to the GAL4 DNA-binding domain in the pBUTE plasmid

and the prey cDNAs were fused to the GAL4 activation domain in

the pACT plasmid. In the yeast strain, the bacterial lacZ gene and

the HIS5 gene were under the control of a GAL4-regulated

promoter. The interaction screen consisted of assaying b-

galactosidase (b-gal) activity (for lacZ) and growth on 25 mM 3-

aminotriazole (3-AT) (for HIS5). This analysis identified 244

potential interacting cDNAs that had b-gal activity and grew on

25 mM 3-AT. From these 244, 142 isolates activated both lacZ

and HIS5 similarly when re-tested. Of these, 124 were bait-specific

and did not activate when the bait plasmid was removed. These

cDNAs were sequenced, and seven of these were found to

represent the K07D7.1 gene in Wormbase (rack-1) [27].

RACK-1::MYC immunoprecipitation
In order to obtain large amounts of C. elegans protein extract,

animals carrying an integrated rack-1::myc transgene were raised at

room temperature in a liquid culture containing 2.5 mg

cholesterol, 0.05 mg/mL streptomycin, Escherichia coli strain

HB101 and M9 buffer (up to 500 mL). After about a week, these

animals were harvested and snap-frozen in liquid nitrogen. We

then added lysis buffer (16PBS, 10% glycerol, 0.1% NP40, 0.1%

Tween) in a 1:1 ratio, and then 1 mM of phenylmethanesulpho-

nylfluoride. We lysed the animals with glass beads in a beater for

two cycles of 1 minute each. The supernatant was then collected

and stored at 280uC for further experiments. We based our

immunoprecipitation assays in Clonetech Laboratories’ protocol

No. PT3407-1 (Clonetech). We performed the standard immuno-

precipitation assays as described in [26] using protein G (Zymed)

and anti-Myc monoclonal antibody (Clontech). The anti-UNC-

115 antibody is described in [26].
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